File: theorems.ml

package info (click to toggle)
hol-light 20120602-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 23,452 kB
  • sloc: ml: 348,797; cpp: 438; java: 279; makefile: 252; sh: 183; yacc: 108; perl: 78; ansic: 57; sed: 39
file content (372 lines) | stat: -rw-r--r-- 12,924 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
(* ========================================================================= *)
(* Additional theorems, mainly about quantifiers.                            *)
(*                                                                           *)
(*       John Harrison, University of Cambridge Computer Laboratory          *)
(*                                                                           *)
(*            (c) Copyright, University of Cambridge 1998                    *)
(*              (c) Copyright, John Harrison 1998-2007                       *)
(* ========================================================================= *)

needs "simp.ml";;

(* ------------------------------------------------------------------------- *)
(* More stuff about equality.                                                *)
(* ------------------------------------------------------------------------- *)

let EQ_REFL = prove
 (`!x:A. x = x`,
  GEN_TAC THEN REFL_TAC);;

let REFL_CLAUSE = prove
 (`!x:A. (x = x) <=> T`,
  GEN_TAC THEN MATCH_ACCEPT_TAC(EQT_INTRO(SPEC_ALL EQ_REFL)));;

let EQ_SYM = prove
 (`!(x:A) y. (x = y) ==> (y = x)`,
  REPEAT GEN_TAC THEN DISCH_THEN(ACCEPT_TAC o SYM));;

let EQ_SYM_EQ = prove
 (`!(x:A) y. (x = y) <=> (y = x)`,
  REPEAT GEN_TAC THEN EQ_TAC THEN MATCH_ACCEPT_TAC EQ_SYM);;

let EQ_TRANS = prove
 (`!(x:A) y z. (x = y) /\ (y = z) ==> (x = z)`,
  REPEAT STRIP_TAC THEN PURE_ASM_REWRITE_TAC[] THEN REFL_TAC);;

(* ------------------------------------------------------------------------- *)
(* The following is a common special case of ordered rewriting.              *)
(* ------------------------------------------------------------------------- *)

let AC acsuite = EQT_ELIM o PURE_REWRITE_CONV[acsuite; REFL_CLAUSE];;

(* ------------------------------------------------------------------------- *)
(* A couple of theorems about beta reduction.                                *)
(* ------------------------------------------------------------------------- *)

let BETA_THM = prove
 (`!(f:A->B) y. (\x. (f:A->B) x) y = f y`,
  REPEAT GEN_TAC THEN BETA_TAC THEN REFL_TAC);;

let ABS_SIMP = prove
 (`!(t1:A) (t2:B). (\x. t1) t2 = t1`,
  REPEAT GEN_TAC THEN REWRITE_TAC[BETA_THM; REFL_CLAUSE]);;

(* ------------------------------------------------------------------------- *)
(* A few "big name" intuitionistic tautologies.                              *)
(* ------------------------------------------------------------------------- *)

let CONJ_ASSOC = prove
 (`!t1 t2 t3. t1 /\ t2 /\ t3 <=> (t1 /\ t2) /\ t3`,
  ITAUT_TAC);;

let CONJ_SYM = prove
 (`!t1 t2. t1 /\ t2 <=> t2 /\ t1`,
  ITAUT_TAC);;

let CONJ_ACI = prove
 (`(p /\ q <=> q /\ p) /\
   ((p /\ q) /\ r <=> p /\ (q /\ r)) /\
   (p /\ (q /\ r) <=> q /\ (p /\ r)) /\
   (p /\ p <=> p) /\
   (p /\ (p /\ q) <=> p /\ q)`,
  ITAUT_TAC);;

let DISJ_ASSOC = prove
 (`!t1 t2 t3. t1 \/ t2 \/ t3 <=> (t1 \/ t2) \/ t3`,
  ITAUT_TAC);;

let DISJ_SYM = prove
 (`!t1 t2. t1 \/ t2 <=> t2 \/ t1`,
  ITAUT_TAC);;

let DISJ_ACI = prove
 (`(p \/ q <=> q \/ p) /\
   ((p \/ q) \/ r <=> p \/ (q \/ r)) /\
   (p \/ (q \/ r) <=> q \/ (p \/ r)) /\
   (p \/ p <=> p) /\
   (p \/ (p \/ q) <=> p \/ q)`,
  ITAUT_TAC);;

let IMP_CONJ = prove
 (`p /\ q ==> r <=> p ==> q ==> r`,
  ITAUT_TAC);;

let IMP_IMP = GSYM IMP_CONJ;;

let IMP_CONJ_ALT = prove
 (`p /\ q ==> r <=> q ==> p ==> r`,
  ITAUT_TAC);;

(* ------------------------------------------------------------------------- *)
(* A couple of "distribution" tautologies are useful.                        *)
(* ------------------------------------------------------------------------- *)

let LEFT_OR_DISTRIB = prove
 (`!p q r. p /\ (q \/ r) <=> p /\ q \/ p /\ r`,
  ITAUT_TAC);;

let RIGHT_OR_DISTRIB = prove
 (`!p q r. (p \/ q) /\ r <=> p /\ r \/ q /\ r`,
  ITAUT_TAC);;

(* ------------------------------------------------------------------------- *)
(* Degenerate cases of quantifiers.                                          *)
(* ------------------------------------------------------------------------- *)

let FORALL_SIMP = prove
 (`!t. (!x:A. t) = t`,
  ITAUT_TAC);;

let EXISTS_SIMP = prove
 (`!t. (?x:A. t) = t`,
  ITAUT_TAC);;

(* ------------------------------------------------------------------------- *)
(* I also use this a lot (as a prelude to congruence reasoning).             *)
(* ------------------------------------------------------------------------- *)

let EQ_IMP = ITAUT `(a <=> b) ==> a ==> b`;;

(* ------------------------------------------------------------------------- *)
(* Start building up the basic rewrites; we add a few more later.            *)
(* ------------------------------------------------------------------------- *)

let EQ_CLAUSES = prove
 (`!t. ((T <=> t) <=> t) /\ ((t <=> T) <=> t) /\
       ((F <=> t) <=> ~t) /\ ((t <=> F) <=> ~t)`,
  ITAUT_TAC);;

let NOT_CLAUSES_WEAK = prove
 (`(~T <=> F) /\ (~F <=> T)`,
  ITAUT_TAC);;

let AND_CLAUSES = prove
 (`!t. (T /\ t <=> t) /\ (t /\ T <=> t) /\ (F /\ t <=> F) /\
       (t /\ F <=> F) /\ (t /\ t <=> t)`,
  ITAUT_TAC);;

let OR_CLAUSES = prove
 (`!t. (T \/ t <=> T) /\ (t \/ T <=> T) /\ (F \/ t <=> t) /\
       (t \/ F <=> t) /\ (t \/ t <=> t)`,
  ITAUT_TAC);;

let IMP_CLAUSES = prove
 (`!t. (T ==> t <=> t) /\ (t ==> T <=> T) /\ (F ==> t <=> T) /\
       (t ==> t <=> T) /\ (t ==> F <=> ~t)`,
  ITAUT_TAC);;

extend_basic_rewrites
  [REFL_CLAUSE;
   EQ_CLAUSES;
   NOT_CLAUSES_WEAK;
   AND_CLAUSES;
   OR_CLAUSES;
   IMP_CLAUSES;
   FORALL_SIMP;
   EXISTS_SIMP;
   BETA_THM;
   let IMP_EQ_CLAUSE = prove
    (`((x = x) ==> p) <=> p`,
     REWRITE_TAC[EQT_INTRO(SPEC_ALL EQ_REFL); IMP_CLAUSES]) in
   IMP_EQ_CLAUSE];;

extend_basic_congs
  [ITAUT `(p <=> p') ==> (p' ==> (q <=> q')) ==> (p ==> q <=> p' ==> q')`];;

(* ------------------------------------------------------------------------- *)
(* Rewrite rule for unique existence.                                        *)
(* ------------------------------------------------------------------------- *)

let EXISTS_UNIQUE_THM = prove
 (`!P. (?!x:A. P x) <=> (?x. P x) /\ (!x x'. P x /\ P x' ==> (x = x'))`,
  GEN_TAC THEN REWRITE_TAC[EXISTS_UNIQUE_DEF]);;

(* ------------------------------------------------------------------------- *)
(* Trivial instances of existence.                                           *)
(* ------------------------------------------------------------------------- *)

let EXISTS_REFL = prove
 (`!a:A. ?x. x = a`,
  GEN_TAC THEN EXISTS_TAC `a:A` THEN REFL_TAC);;

let EXISTS_UNIQUE_REFL = prove
 (`!a:A. ?!x. x = a`,
  GEN_TAC THEN REWRITE_TAC[EXISTS_UNIQUE_THM] THEN
  REPEAT(EQ_TAC ORELSE STRIP_TAC) THENL
   [EXISTS_TAC `a:A`; ASM_REWRITE_TAC[]] THEN
  REFL_TAC);;

(* ------------------------------------------------------------------------- *)
(* Unwinding.                                                                *)
(* ------------------------------------------------------------------------- *)

let UNWIND_THM1 = prove
 (`!P (a:A). (?x. a = x /\ P x) <=> P a`,
  REPEAT GEN_TAC THEN EQ_TAC THENL
   [DISCH_THEN(CHOOSE_THEN (CONJUNCTS_THEN2 SUBST1_TAC ACCEPT_TAC));
    DISCH_TAC THEN EXISTS_TAC `a:A` THEN
    CONJ_TAC THEN TRY(FIRST_ASSUM MATCH_ACCEPT_TAC) THEN
    REFL_TAC]);;

let UNWIND_THM2 = prove
 (`!P (a:A). (?x. x = a /\ P x) <=> P a`,
  REPEAT GEN_TAC THEN CONV_TAC(LAND_CONV(ONCE_DEPTH_CONV SYM_CONV)) THEN
  MATCH_ACCEPT_TAC UNWIND_THM1);;

let FORALL_UNWIND_THM2 = prove
 (`!P (a:A). (!x. x = a ==> P x) <=> P a`,
  REPEAT GEN_TAC THEN EQ_TAC THENL
   [DISCH_THEN(MP_TAC o SPEC `a:A`) THEN REWRITE_TAC[];
    DISCH_TAC THEN GEN_TAC THEN DISCH_THEN SUBST1_TAC THEN
    ASM_REWRITE_TAC[]]);;

let FORALL_UNWIND_THM1 = prove
 (`!P a. (!x. a = x ==> P x) <=> P a`,
  REPEAT GEN_TAC THEN CONV_TAC(LAND_CONV(ONCE_DEPTH_CONV SYM_CONV)) THEN
  MATCH_ACCEPT_TAC FORALL_UNWIND_THM2);;

(* ------------------------------------------------------------------------- *)
(* Permuting quantifiers.                                                    *)
(* ------------------------------------------------------------------------- *)

let SWAP_FORALL_THM = prove
 (`!P:A->B->bool. (!x y. P x y) <=> (!y x. P x y)`,
  ITAUT_TAC);;

let SWAP_EXISTS_THM = prove
 (`!P:A->B->bool. (?x y. P x y) <=> (?y x. P x y)`,
  ITAUT_TAC);;

(* ------------------------------------------------------------------------- *)
(* Universal quantifier and conjunction.                                     *)
(* ------------------------------------------------------------------------- *)

let FORALL_AND_THM = prove
 (`!P Q. (!x:A. P x /\ Q x) <=> (!x. P x) /\ (!x. Q x)`,
  ITAUT_TAC);;

let AND_FORALL_THM = prove
 (`!P Q. (!x. P x) /\ (!x. Q x) <=> (!x:A. P x /\ Q x)`,
  ITAUT_TAC);;

let LEFT_AND_FORALL_THM = prove
 (`!P Q. (!x:A. P x) /\ Q <=> (!x:A. P x /\ Q)`,
  ITAUT_TAC);;

let RIGHT_AND_FORALL_THM = prove
 (`!P Q. P /\ (!x:A. Q x) <=> (!x. P /\ Q x)`,
  ITAUT_TAC);;

(* ------------------------------------------------------------------------- *)
(* Existential quantifier and disjunction.                                   *)
(* ------------------------------------------------------------------------- *)

let EXISTS_OR_THM = prove
 (`!P Q. (?x:A. P x \/ Q x) <=> (?x. P x) \/ (?x. Q x)`,
  ITAUT_TAC);;

let OR_EXISTS_THM = prove
 (`!P Q. (?x. P x) \/ (?x. Q x) <=> (?x:A. P x \/ Q x)`,
  ITAUT_TAC);;

let LEFT_OR_EXISTS_THM = prove
 (`!P Q. (?x. P x) \/ Q <=> (?x:A. P x \/ Q)`,
  ITAUT_TAC);;

let RIGHT_OR_EXISTS_THM = prove
 (`!P Q. P \/ (?x. Q x) <=> (?x:A. P \/ Q x)`,
  ITAUT_TAC);;

(* ------------------------------------------------------------------------- *)
(* Existential quantifier and conjunction.                                   *)
(* ------------------------------------------------------------------------- *)

let LEFT_EXISTS_AND_THM = prove
 (`!P Q. (?x:A. P x /\ Q) <=> (?x:A. P x) /\ Q`,
  ITAUT_TAC);;

let RIGHT_EXISTS_AND_THM = prove
 (`!P Q. (?x:A. P /\ Q x) <=> P /\ (?x:A. Q x)`,
  ITAUT_TAC);;

let TRIV_EXISTS_AND_THM = prove
 (`!P Q. (?x:A. P /\ Q) <=> (?x:A. P) /\ (?x:A. Q)`,
  ITAUT_TAC);;

let LEFT_AND_EXISTS_THM = prove
 (`!P Q. (?x:A. P x) /\ Q <=> (?x:A. P x /\ Q)`,
  ITAUT_TAC);;

let RIGHT_AND_EXISTS_THM = prove
 (`!P Q. P /\ (?x:A. Q x) <=> (?x:A. P /\ Q x)`,
  ITAUT_TAC);;

let TRIV_AND_EXISTS_THM = prove
 (`!P Q. (?x:A. P) /\ (?x:A. Q) <=> (?x:A. P /\ Q)`,
  ITAUT_TAC);;

(* ------------------------------------------------------------------------- *)
(* Only trivial instances of universal quantifier and disjunction.           *)
(* ------------------------------------------------------------------------- *)

let TRIV_FORALL_OR_THM = prove
 (`!P Q. (!x:A. P \/ Q) <=> (!x:A. P) \/ (!x:A. Q)`,
  ITAUT_TAC);;

let TRIV_OR_FORALL_THM = prove
 (`!P Q. (!x:A. P) \/ (!x:A. Q) <=> (!x:A. P \/ Q)`,
  ITAUT_TAC);;

(* ------------------------------------------------------------------------- *)
(* Implication and quantifiers.                                              *)
(* ------------------------------------------------------------------------- *)

let RIGHT_IMP_FORALL_THM = prove
 (`!P Q. (P ==> !x:A. Q x) <=> (!x. P ==> Q x)`,
  ITAUT_TAC);;

let RIGHT_FORALL_IMP_THM = prove
 (`!P Q. (!x. P ==> Q x) <=> (P ==> !x:A. Q x)`,
  ITAUT_TAC);;

let LEFT_IMP_EXISTS_THM = prove
 (`!P Q. ((?x:A. P x) ==> Q) <=> (!x. P x ==> Q)`,
  ITAUT_TAC);;

let LEFT_FORALL_IMP_THM = prove
 (`!P Q. (!x. P x ==> Q) <=> ((?x:A. P x) ==> Q)`,
  ITAUT_TAC);;

let TRIV_FORALL_IMP_THM = prove
 (`!P Q. (!x:A. P ==> Q) <=> ((?x:A. P) ==> (!x:A. Q))`,
  ITAUT_TAC);;

let TRIV_EXISTS_IMP_THM = prove
 (`!P Q. (?x:A. P ==> Q) <=> ((!x:A. P) ==> (?x:A. Q))`,
  ITAUT_TAC);;

(* ------------------------------------------------------------------------- *)
(* Alternative versions of unique existence.                                 *)
(* ------------------------------------------------------------------------- *)

let EXISTS_UNIQUE_ALT = prove
 (`!P:A->bool. (?!x. P x) <=> (?x. !y. P y <=> (x = y))`,
  GEN_TAC THEN REWRITE_TAC[EXISTS_UNIQUE_THM] THEN EQ_TAC THENL
   [DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `x:A`) ASSUME_TAC) THEN
    EXISTS_TAC `x:A` THEN GEN_TAC THEN EQ_TAC THENL
     [DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[];
      DISCH_THEN(SUBST1_TAC o SYM) THEN FIRST_ASSUM MATCH_ACCEPT_TAC];
    DISCH_THEN(X_CHOOSE_TAC `x:A`) THEN
    ASM_REWRITE_TAC[GSYM EXISTS_REFL] THEN REPEAT GEN_TAC THEN
    DISCH_THEN(CONJUNCTS_THEN (SUBST1_TAC o SYM)) THEN REFL_TAC]);;

let EXISTS_UNIQUE = prove
 (`!P:A->bool. (?!x. P x) <=> (?x. P x /\ !y. P y ==> (y = x))`,
  GEN_TAC THEN REWRITE_TAC[EXISTS_UNIQUE_ALT] THEN
  AP_TERM_TAC THEN ABS_TAC THEN
  GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV)
   [ITAUT `(a <=> b) <=> (a ==> b) /\ (b ==> a)`] THEN
  GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [EQ_SYM_EQ] THEN
  REWRITE_TAC[FORALL_AND_THM] THEN SIMP_TAC[] THEN
  REWRITE_TAC[LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN
  REWRITE_TAC[CONJ_ACI]);;