1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
|
(* ========================================================================= *)
(* Additional theorems, mainly about quantifiers. *)
(* *)
(* John Harrison, University of Cambridge Computer Laboratory *)
(* *)
(* (c) Copyright, University of Cambridge 1998 *)
(* (c) Copyright, John Harrison 1998-2007 *)
(* ========================================================================= *)
needs "simp.ml";;
(* ------------------------------------------------------------------------- *)
(* More stuff about equality. *)
(* ------------------------------------------------------------------------- *)
let EQ_REFL = prove
(`!x:A. x = x`,
GEN_TAC THEN REFL_TAC);;
let REFL_CLAUSE = prove
(`!x:A. (x = x) <=> T`,
GEN_TAC THEN MATCH_ACCEPT_TAC(EQT_INTRO(SPEC_ALL EQ_REFL)));;
let EQ_SYM = prove
(`!(x:A) y. (x = y) ==> (y = x)`,
REPEAT GEN_TAC THEN DISCH_THEN(ACCEPT_TAC o SYM));;
let EQ_SYM_EQ = prove
(`!(x:A) y. (x = y) <=> (y = x)`,
REPEAT GEN_TAC THEN EQ_TAC THEN MATCH_ACCEPT_TAC EQ_SYM);;
let EQ_TRANS = prove
(`!(x:A) y z. (x = y) /\ (y = z) ==> (x = z)`,
REPEAT STRIP_TAC THEN PURE_ASM_REWRITE_TAC[] THEN REFL_TAC);;
(* ------------------------------------------------------------------------- *)
(* The following is a common special case of ordered rewriting. *)
(* ------------------------------------------------------------------------- *)
let AC acsuite = EQT_ELIM o PURE_REWRITE_CONV[acsuite; REFL_CLAUSE];;
(* ------------------------------------------------------------------------- *)
(* A couple of theorems about beta reduction. *)
(* ------------------------------------------------------------------------- *)
let BETA_THM = prove
(`!(f:A->B) y. (\x. (f:A->B) x) y = f y`,
REPEAT GEN_TAC THEN BETA_TAC THEN REFL_TAC);;
let ABS_SIMP = prove
(`!(t1:A) (t2:B). (\x. t1) t2 = t1`,
REPEAT GEN_TAC THEN REWRITE_TAC[BETA_THM; REFL_CLAUSE]);;
(* ------------------------------------------------------------------------- *)
(* A few "big name" intuitionistic tautologies. *)
(* ------------------------------------------------------------------------- *)
let CONJ_ASSOC = prove
(`!t1 t2 t3. t1 /\ t2 /\ t3 <=> (t1 /\ t2) /\ t3`,
ITAUT_TAC);;
let CONJ_SYM = prove
(`!t1 t2. t1 /\ t2 <=> t2 /\ t1`,
ITAUT_TAC);;
let CONJ_ACI = prove
(`(p /\ q <=> q /\ p) /\
((p /\ q) /\ r <=> p /\ (q /\ r)) /\
(p /\ (q /\ r) <=> q /\ (p /\ r)) /\
(p /\ p <=> p) /\
(p /\ (p /\ q) <=> p /\ q)`,
ITAUT_TAC);;
let DISJ_ASSOC = prove
(`!t1 t2 t3. t1 \/ t2 \/ t3 <=> (t1 \/ t2) \/ t3`,
ITAUT_TAC);;
let DISJ_SYM = prove
(`!t1 t2. t1 \/ t2 <=> t2 \/ t1`,
ITAUT_TAC);;
let DISJ_ACI = prove
(`(p \/ q <=> q \/ p) /\
((p \/ q) \/ r <=> p \/ (q \/ r)) /\
(p \/ (q \/ r) <=> q \/ (p \/ r)) /\
(p \/ p <=> p) /\
(p \/ (p \/ q) <=> p \/ q)`,
ITAUT_TAC);;
let IMP_CONJ = prove
(`p /\ q ==> r <=> p ==> q ==> r`,
ITAUT_TAC);;
let IMP_IMP = GSYM IMP_CONJ;;
let IMP_CONJ_ALT = prove
(`p /\ q ==> r <=> q ==> p ==> r`,
ITAUT_TAC);;
(* ------------------------------------------------------------------------- *)
(* A couple of "distribution" tautologies are useful. *)
(* ------------------------------------------------------------------------- *)
let LEFT_OR_DISTRIB = prove
(`!p q r. p /\ (q \/ r) <=> p /\ q \/ p /\ r`,
ITAUT_TAC);;
let RIGHT_OR_DISTRIB = prove
(`!p q r. (p \/ q) /\ r <=> p /\ r \/ q /\ r`,
ITAUT_TAC);;
(* ------------------------------------------------------------------------- *)
(* Degenerate cases of quantifiers. *)
(* ------------------------------------------------------------------------- *)
let FORALL_SIMP = prove
(`!t. (!x:A. t) = t`,
ITAUT_TAC);;
let EXISTS_SIMP = prove
(`!t. (?x:A. t) = t`,
ITAUT_TAC);;
(* ------------------------------------------------------------------------- *)
(* I also use this a lot (as a prelude to congruence reasoning). *)
(* ------------------------------------------------------------------------- *)
let EQ_IMP = ITAUT `(a <=> b) ==> a ==> b`;;
(* ------------------------------------------------------------------------- *)
(* Start building up the basic rewrites; we add a few more later. *)
(* ------------------------------------------------------------------------- *)
let EQ_CLAUSES = prove
(`!t. ((T <=> t) <=> t) /\ ((t <=> T) <=> t) /\
((F <=> t) <=> ~t) /\ ((t <=> F) <=> ~t)`,
ITAUT_TAC);;
let NOT_CLAUSES_WEAK = prove
(`(~T <=> F) /\ (~F <=> T)`,
ITAUT_TAC);;
let AND_CLAUSES = prove
(`!t. (T /\ t <=> t) /\ (t /\ T <=> t) /\ (F /\ t <=> F) /\
(t /\ F <=> F) /\ (t /\ t <=> t)`,
ITAUT_TAC);;
let OR_CLAUSES = prove
(`!t. (T \/ t <=> T) /\ (t \/ T <=> T) /\ (F \/ t <=> t) /\
(t \/ F <=> t) /\ (t \/ t <=> t)`,
ITAUT_TAC);;
let IMP_CLAUSES = prove
(`!t. (T ==> t <=> t) /\ (t ==> T <=> T) /\ (F ==> t <=> T) /\
(t ==> t <=> T) /\ (t ==> F <=> ~t)`,
ITAUT_TAC);;
extend_basic_rewrites
[REFL_CLAUSE;
EQ_CLAUSES;
NOT_CLAUSES_WEAK;
AND_CLAUSES;
OR_CLAUSES;
IMP_CLAUSES;
FORALL_SIMP;
EXISTS_SIMP;
BETA_THM;
let IMP_EQ_CLAUSE = prove
(`((x = x) ==> p) <=> p`,
REWRITE_TAC[EQT_INTRO(SPEC_ALL EQ_REFL); IMP_CLAUSES]) in
IMP_EQ_CLAUSE];;
extend_basic_congs
[ITAUT `(p <=> p') ==> (p' ==> (q <=> q')) ==> (p ==> q <=> p' ==> q')`];;
(* ------------------------------------------------------------------------- *)
(* Rewrite rule for unique existence. *)
(* ------------------------------------------------------------------------- *)
let EXISTS_UNIQUE_THM = prove
(`!P. (?!x:A. P x) <=> (?x. P x) /\ (!x x'. P x /\ P x' ==> (x = x'))`,
GEN_TAC THEN REWRITE_TAC[EXISTS_UNIQUE_DEF]);;
(* ------------------------------------------------------------------------- *)
(* Trivial instances of existence. *)
(* ------------------------------------------------------------------------- *)
let EXISTS_REFL = prove
(`!a:A. ?x. x = a`,
GEN_TAC THEN EXISTS_TAC `a:A` THEN REFL_TAC);;
let EXISTS_UNIQUE_REFL = prove
(`!a:A. ?!x. x = a`,
GEN_TAC THEN REWRITE_TAC[EXISTS_UNIQUE_THM] THEN
REPEAT(EQ_TAC ORELSE STRIP_TAC) THENL
[EXISTS_TAC `a:A`; ASM_REWRITE_TAC[]] THEN
REFL_TAC);;
(* ------------------------------------------------------------------------- *)
(* Unwinding. *)
(* ------------------------------------------------------------------------- *)
let UNWIND_THM1 = prove
(`!P (a:A). (?x. a = x /\ P x) <=> P a`,
REPEAT GEN_TAC THEN EQ_TAC THENL
[DISCH_THEN(CHOOSE_THEN (CONJUNCTS_THEN2 SUBST1_TAC ACCEPT_TAC));
DISCH_TAC THEN EXISTS_TAC `a:A` THEN
CONJ_TAC THEN TRY(FIRST_ASSUM MATCH_ACCEPT_TAC) THEN
REFL_TAC]);;
let UNWIND_THM2 = prove
(`!P (a:A). (?x. x = a /\ P x) <=> P a`,
REPEAT GEN_TAC THEN CONV_TAC(LAND_CONV(ONCE_DEPTH_CONV SYM_CONV)) THEN
MATCH_ACCEPT_TAC UNWIND_THM1);;
let FORALL_UNWIND_THM2 = prove
(`!P (a:A). (!x. x = a ==> P x) <=> P a`,
REPEAT GEN_TAC THEN EQ_TAC THENL
[DISCH_THEN(MP_TAC o SPEC `a:A`) THEN REWRITE_TAC[];
DISCH_TAC THEN GEN_TAC THEN DISCH_THEN SUBST1_TAC THEN
ASM_REWRITE_TAC[]]);;
let FORALL_UNWIND_THM1 = prove
(`!P a. (!x. a = x ==> P x) <=> P a`,
REPEAT GEN_TAC THEN CONV_TAC(LAND_CONV(ONCE_DEPTH_CONV SYM_CONV)) THEN
MATCH_ACCEPT_TAC FORALL_UNWIND_THM2);;
(* ------------------------------------------------------------------------- *)
(* Permuting quantifiers. *)
(* ------------------------------------------------------------------------- *)
let SWAP_FORALL_THM = prove
(`!P:A->B->bool. (!x y. P x y) <=> (!y x. P x y)`,
ITAUT_TAC);;
let SWAP_EXISTS_THM = prove
(`!P:A->B->bool. (?x y. P x y) <=> (?y x. P x y)`,
ITAUT_TAC);;
(* ------------------------------------------------------------------------- *)
(* Universal quantifier and conjunction. *)
(* ------------------------------------------------------------------------- *)
let FORALL_AND_THM = prove
(`!P Q. (!x:A. P x /\ Q x) <=> (!x. P x) /\ (!x. Q x)`,
ITAUT_TAC);;
let AND_FORALL_THM = prove
(`!P Q. (!x. P x) /\ (!x. Q x) <=> (!x:A. P x /\ Q x)`,
ITAUT_TAC);;
let LEFT_AND_FORALL_THM = prove
(`!P Q. (!x:A. P x) /\ Q <=> (!x:A. P x /\ Q)`,
ITAUT_TAC);;
let RIGHT_AND_FORALL_THM = prove
(`!P Q. P /\ (!x:A. Q x) <=> (!x. P /\ Q x)`,
ITAUT_TAC);;
(* ------------------------------------------------------------------------- *)
(* Existential quantifier and disjunction. *)
(* ------------------------------------------------------------------------- *)
let EXISTS_OR_THM = prove
(`!P Q. (?x:A. P x \/ Q x) <=> (?x. P x) \/ (?x. Q x)`,
ITAUT_TAC);;
let OR_EXISTS_THM = prove
(`!P Q. (?x. P x) \/ (?x. Q x) <=> (?x:A. P x \/ Q x)`,
ITAUT_TAC);;
let LEFT_OR_EXISTS_THM = prove
(`!P Q. (?x. P x) \/ Q <=> (?x:A. P x \/ Q)`,
ITAUT_TAC);;
let RIGHT_OR_EXISTS_THM = prove
(`!P Q. P \/ (?x. Q x) <=> (?x:A. P \/ Q x)`,
ITAUT_TAC);;
(* ------------------------------------------------------------------------- *)
(* Existential quantifier and conjunction. *)
(* ------------------------------------------------------------------------- *)
let LEFT_EXISTS_AND_THM = prove
(`!P Q. (?x:A. P x /\ Q) <=> (?x:A. P x) /\ Q`,
ITAUT_TAC);;
let RIGHT_EXISTS_AND_THM = prove
(`!P Q. (?x:A. P /\ Q x) <=> P /\ (?x:A. Q x)`,
ITAUT_TAC);;
let TRIV_EXISTS_AND_THM = prove
(`!P Q. (?x:A. P /\ Q) <=> (?x:A. P) /\ (?x:A. Q)`,
ITAUT_TAC);;
let LEFT_AND_EXISTS_THM = prove
(`!P Q. (?x:A. P x) /\ Q <=> (?x:A. P x /\ Q)`,
ITAUT_TAC);;
let RIGHT_AND_EXISTS_THM = prove
(`!P Q. P /\ (?x:A. Q x) <=> (?x:A. P /\ Q x)`,
ITAUT_TAC);;
let TRIV_AND_EXISTS_THM = prove
(`!P Q. (?x:A. P) /\ (?x:A. Q) <=> (?x:A. P /\ Q)`,
ITAUT_TAC);;
(* ------------------------------------------------------------------------- *)
(* Only trivial instances of universal quantifier and disjunction. *)
(* ------------------------------------------------------------------------- *)
let TRIV_FORALL_OR_THM = prove
(`!P Q. (!x:A. P \/ Q) <=> (!x:A. P) \/ (!x:A. Q)`,
ITAUT_TAC);;
let TRIV_OR_FORALL_THM = prove
(`!P Q. (!x:A. P) \/ (!x:A. Q) <=> (!x:A. P \/ Q)`,
ITAUT_TAC);;
(* ------------------------------------------------------------------------- *)
(* Implication and quantifiers. *)
(* ------------------------------------------------------------------------- *)
let RIGHT_IMP_FORALL_THM = prove
(`!P Q. (P ==> !x:A. Q x) <=> (!x. P ==> Q x)`,
ITAUT_TAC);;
let RIGHT_FORALL_IMP_THM = prove
(`!P Q. (!x. P ==> Q x) <=> (P ==> !x:A. Q x)`,
ITAUT_TAC);;
let LEFT_IMP_EXISTS_THM = prove
(`!P Q. ((?x:A. P x) ==> Q) <=> (!x. P x ==> Q)`,
ITAUT_TAC);;
let LEFT_FORALL_IMP_THM = prove
(`!P Q. (!x. P x ==> Q) <=> ((?x:A. P x) ==> Q)`,
ITAUT_TAC);;
let TRIV_FORALL_IMP_THM = prove
(`!P Q. (!x:A. P ==> Q) <=> ((?x:A. P) ==> (!x:A. Q))`,
ITAUT_TAC);;
let TRIV_EXISTS_IMP_THM = prove
(`!P Q. (?x:A. P ==> Q) <=> ((!x:A. P) ==> (?x:A. Q))`,
ITAUT_TAC);;
(* ------------------------------------------------------------------------- *)
(* Alternative versions of unique existence. *)
(* ------------------------------------------------------------------------- *)
let EXISTS_UNIQUE_ALT = prove
(`!P:A->bool. (?!x. P x) <=> (?x. !y. P y <=> (x = y))`,
GEN_TAC THEN REWRITE_TAC[EXISTS_UNIQUE_THM] THEN EQ_TAC THENL
[DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `x:A`) ASSUME_TAC) THEN
EXISTS_TAC `x:A` THEN GEN_TAC THEN EQ_TAC THENL
[DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[];
DISCH_THEN(SUBST1_TAC o SYM) THEN FIRST_ASSUM MATCH_ACCEPT_TAC];
DISCH_THEN(X_CHOOSE_TAC `x:A`) THEN
ASM_REWRITE_TAC[GSYM EXISTS_REFL] THEN REPEAT GEN_TAC THEN
DISCH_THEN(CONJUNCTS_THEN (SUBST1_TAC o SYM)) THEN REFL_TAC]);;
let EXISTS_UNIQUE = prove
(`!P:A->bool. (?!x. P x) <=> (?x. P x /\ !y. P y ==> (y = x))`,
GEN_TAC THEN REWRITE_TAC[EXISTS_UNIQUE_ALT] THEN
AP_TERM_TAC THEN ABS_TAC THEN
GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV)
[ITAUT `(a <=> b) <=> (a ==> b) /\ (b ==> a)`] THEN
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [EQ_SYM_EQ] THEN
REWRITE_TAC[FORALL_AND_THM] THEN SIMP_TAC[] THEN
REWRITE_TAC[LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN
REWRITE_TAC[CONJ_ACI]);;
|