1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
(* ========================================================================= *)
(* Abstract type of theorems and primitive inference rules. *)
(* *)
(* John Harrison, University of Cambridge Computer Laboratory *)
(* *)
(* (c) Copyright, University of Cambridge 1998 *)
(* (c) Copyright, John Harrison 1998-2007 *)
(* ========================================================================= *)
(* ------------------------------------------------------------------------- *)
(* A few bits of general derived syntax. *)
(* ------------------------------------------------------------------------- *)
let rator tm =
match tm with
Comb(l,r) -> l
| _ -> failwith "rator: Not a combination";;
let rand tm =
match tm with
Comb(l,r) -> r
| _ -> failwith "rand: Not a combination";;
(* ------------------------------------------------------------------------- *)
(* Syntax operations for equations. *)
(* ------------------------------------------------------------------------- *)
let mk_eq =
let eq = mk_const("=",[]) in
fun (l,r) ->
try let ty = type_of l in
let eq_tm = inst [ty,aty] eq in
mk_comb(mk_comb(eq_tm,l),r)
with Failure _ -> failwith "mk_eq";;
let dest_eq tm =
match tm with
Comb(Comb(Const("=",_),l),r) -> l,r
| _ -> failwith "dest_eq";;
let is_eq tm =
match tm with
Comb(Comb(Const("=",_),_),_) -> true
| _ -> false;;
(* ------------------------------------------------------------------------- *)
(* Useful to have term union modulo alpha-conversion for assumption lists. *)
(* ------------------------------------------------------------------------- *)
let term_remove t l = filter (fun t' -> not(aconv t t')) l;;
let rec term_union l1 l2 =
match l1 with
[] -> l2
| (h::t) -> let subun = term_union t l2 in
if exists (aconv h) subun then subun else h::subun;;
(* ------------------------------------------------------------------------- *)
(* The abstract type of theorems. *)
(* ------------------------------------------------------------------------- *)
module type Hol_thm_primitives =
sig type thm
val dest_thm : thm -> term list * term
val hyp : thm -> term list
val concl : thm -> term
val REFL : term -> thm
val TRANS : thm -> thm -> thm
val MK_COMB : thm * thm -> thm
val ABS : term -> thm -> thm
val BETA : term -> thm
val ASSUME : term -> thm
val EQ_MP : thm -> thm -> thm
val DEDUCT_ANTISYM_RULE : thm -> thm -> thm
val INST_TYPE : (hol_type * hol_type) list -> thm -> thm
val INST : (term * term) list -> thm -> thm
val axioms : unit -> thm list
val new_axiom : term -> thm
val new_basic_definition : term -> thm
val new_basic_type_definition : string -> string * string -> thm -> thm * thm
end;;
(* ------------------------------------------------------------------------- *)
(* This is the implementation of those primitives. *)
(* ------------------------------------------------------------------------- *)
module Hol : Hol_thm_primitives = struct
type thm = Sequent of (term list * term)
(* ------------------------------------------------------------------------- *)
(* Basic theorem destructors. *)
(* ------------------------------------------------------------------------- *)
let dest_thm (Sequent(asl,c)) = (asl,c)
let hyp (Sequent(asl,c)) = asl
let concl (Sequent(asl,c)) = c
(* ------------------------------------------------------------------------- *)
(* Basic equality properties; TRANS is derivable but included for efficiency *)
(* ------------------------------------------------------------------------- *)
let REFL tm =
Sequent([],mk_eq(tm,tm))
let TRANS (Sequent(asl1,c1)) (Sequent(asl2,c2)) =
match (c1,c2) with
Comb(Comb(Const("=",_),l),m1),Comb(Comb(Const("=",_),m2),r)
when aconv m1 m2 -> Sequent(term_union asl1 asl2,mk_eq(l,r))
| _ -> failwith "TRANS"
(* ------------------------------------------------------------------------- *)
(* Congruence properties of equality. *)
(* ------------------------------------------------------------------------- *)
let MK_COMB(Sequent(asl1,c1),Sequent(asl2,c2)) =
match (c1,c2) with
Comb(Comb(Const("=",_),l1),r1),Comb(Comb(Const("=",_),l2),r2)
-> Sequent(term_union asl1 asl2,mk_eq(mk_comb(l1,l2),mk_comb(r1,r2)))
| _ -> failwith "MK_COMB"
let ABS v (Sequent(asl,c)) =
match c with
Comb(Comb(Const("=",_),l),r) ->
if exists (vfree_in v) asl
then failwith "ABS: variable is free in assumptions"
else Sequent(asl,mk_eq(mk_abs(v,l),mk_abs(v,r)))
| _ -> failwith "ABS: not an equation"
(* ------------------------------------------------------------------------- *)
(* Trivial case of lambda calculus beta-conversion. *)
(* ------------------------------------------------------------------------- *)
let BETA tm =
match tm with
Comb(Abs(v,bod),arg) when arg = v -> Sequent([],mk_eq(tm,bod))
| _ -> failwith "BETA: not a trivial beta-redex"
(* ------------------------------------------------------------------------- *)
(* Rules connected with deduction. *)
(* ------------------------------------------------------------------------- *)
let ASSUME tm =
if type_of tm = bool_ty then Sequent([tm],tm)
else failwith "ASSUME: not a proposition"
let EQ_MP (Sequent(asl1,eq)) (Sequent(asl2,c)) =
match eq with
Comb(Comb(Const("=",_),l),r) when aconv l c
-> Sequent(term_union asl1 asl2,r)
| _ -> failwith "EQ_MP"
let DEDUCT_ANTISYM_RULE (Sequent(asl1,c1)) (Sequent(asl2,c2)) =
let asl1' = term_remove c2 asl1 and asl2' = term_remove c1 asl2 in
Sequent(term_union asl1' asl2',mk_eq(c1,c2))
(* ------------------------------------------------------------------------- *)
(* Type and term instantiation. *)
(* ------------------------------------------------------------------------- *)
let INST_TYPE theta (Sequent(asl,c)) =
let inst_fn = inst theta in
Sequent(map inst_fn asl,inst_fn c)
let INST theta (Sequent(asl,c)) =
let inst_fun = vsubst theta in
Sequent(map inst_fun asl,inst_fun c)
(* ------------------------------------------------------------------------- *)
(* Handling of axioms. *)
(* ------------------------------------------------------------------------- *)
let the_axioms = ref ([]:thm list)
let axioms() = !the_axioms
let new_axiom tm =
if fst(dest_type(type_of tm)) = "bool" then
let th = Sequent([],tm) in
(the_axioms := th::(!the_axioms); th)
else failwith "new_axiom: Not a proposition"
(* ------------------------------------------------------------------------- *)
(* Handling of (term) definitions. *)
(* ------------------------------------------------------------------------- *)
let new_basic_definition tm =
let l,r = dest_eq tm in
let cname,ty = dest_var l in
if not(freesin [] r) then failwith "new_definition: term not closed" else
if not (subset (type_vars_in_term r) (tyvars ty))
then failwith "new_definition: Type variables not reflected in constant"
else
let c = new_constant(cname,ty); mk_const(cname,[]) in
Sequent([],mk_eq(c,r))
(* ------------------------------------------------------------------------- *)
(* Handling of type definitions. *)
(* *)
(* This function now involves no logical constants beyond equality. *)
(* *)
(* |- P t *)
(* --------------------------- *)
(* |- abs(rep a) = a *)
(* |- P r = (rep(abs r) = r) *)
(* *)
(* Where "abs" and "rep" are new constants with the nominated names. *)
(* ------------------------------------------------------------------------- *)
let new_basic_type_definition tyname (absname,repname) (Sequent(asl,c)) =
if exists (can get_const_type) [absname; repname] then
failwith "new_basic_type_definition: Constant(s) already in use" else
if not (asl = []) then
failwith "new_basic_type_definition: Assumptions in theorem" else
let P,x = try dest_comb c
with Failure _ ->
failwith "new_basic_type_definition: Not a combination" in
if not(freesin [] P) then
failwith "new_basic_type_definition: Predicate is not closed" else
let tyvars = sort (<=) (type_vars_in_term P) in
let _ = try new_type(tyname,length tyvars)
with Failure _ ->
failwith "new_basic_type_definition: Type already defined" in
let aty = mk_type(tyname,tyvars)
and rty = type_of x in
let abs = new_constant(absname,mk_fun_ty rty aty); mk_const(absname,[])
and rep = new_constant(repname,mk_fun_ty aty rty); mk_const(repname,[]) in
let a = mk_var("a",aty) and r = mk_var("r",rty) in
Sequent([],mk_eq(mk_comb(abs,mk_comb(rep,a)),a)),
Sequent([],mk_eq(mk_comb(P,r),mk_eq(mk_comb(rep,mk_comb(abs,r)),r)))
end;;
include Hol;;
(* ------------------------------------------------------------------------- *)
(* Comparison function on theorems. Currently the same as equality, but *)
(* it's useful to separate because in the proof-recording version it isn't. *)
(* ------------------------------------------------------------------------- *)
let equals_thm th th' = dest_thm th = dest_thm th';;
|