File: ABS.doc

package info (click to toggle)
hol-light 20131026-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 26,264 kB
  • ctags: 4,620
  • sloc: ml: 400,325; cpp: 438; java: 279; lisp: 261; makefile: 256; sh: 190; yacc: 108; perl: 78; ansic: 57; sed: 39
file content (34 lines) | stat: -rw-r--r-- 542 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
\DOC ABS

\TYPE {ABS : term -> thm -> thm}

\SYNOPSIS
Abstracts both sides of an equation.

\KEYWORDS
rule, abstraction.

\DESCRIBE
{
         A |- t1 = t2
   ------------------------  ABS `x`            [Where x is not free in A]
    A |- (\x.t1) = (\x.t2)
}

\FAILURE
If the theorem is not an equation, or if the variable {x} is free in the
assumptions {A}.

\EXAMPLE
{
  # ABS `m:num` (REFL `m:num`);;
  val it : thm = |- (\m. m) = (\m. m)
}

\COMMENTS
This is one of HOL Light's 10 primitive inference rules.

\SEEALSO
ETA_CONV.

\ENDDOC