File: CONTRAPOS_CONV.doc

package info (click to toggle)
hol-light 20131026-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 26,264 kB
  • ctags: 4,620
  • sloc: ml: 400,325; cpp: 438; java: 279; lisp: 261; makefile: 256; sh: 190; yacc: 108; perl: 78; ansic: 57; sed: 39
file content (27 lines) | stat: -rw-r--r-- 516 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
\DOC CONTRAPOS_CONV

\TYPE {CONTRAPOS_CONV : term -> thm}

\SYNOPSIS
Proves the equivalence of an implication and its contrapositive.

\KEYWORDS
conversion, contrapositive, implication.

\DESCRIBE
When applied to an implication {`p ==> q`}, the conversion {CONTRAPOS_CONV}
returns the theorem:
{
   |- (p ==> q) <=> (~q ==> ~p)
}

\FAILURE
Fails if applied to a term that is not an implication.

\COMMENTS
The same effect can be had by {GEN_REWRITE_CONV I [GSYM CONTRAPOS_THM]}

\SEEALSO
CCONTR, CONTR_TAC.

\ENDDOC