File: MONO_TAC.doc

package info (click to toggle)
hol-light 20131026-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 26,264 kB
  • ctags: 4,620
  • sloc: ml: 400,325; cpp: 438; java: 279; lisp: 261; makefile: 256; sh: 190; yacc: 108; perl: 78; ansic: 57; sed: 39
file content (43 lines) | stat: -rw-r--r-- 888 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
\DOC MONO_TAC

\TYPE {MONO_TAC : tactic}

\SYNOPSIS
Attempt to prove monotonicity theorem automatically.

\DESCRIBE

\FAILURE
Never fails but may have no effect.

\EXAMPLE
We set up the following goal:
{
  # g `(!x. P x ==> Q x) ==> (?y. P y /\ ~Q y) ==> (?y. Q y /\ ~P y)`;;
  ...
}
\noindent and after breaking it down, we reach the standard form expected for 
monotonicity goals:
{
  # e STRIP_TAC;;
  val it : goalstack = 1 subgoal (1 total)
  
   0 [`!x. P x ==> Q x`]
  
  `(?y. P y /\ ~Q y) ==> (?y. Q y /\ ~P y)`
}
\noindent Indeed, it is solved automatically:
{
  # e MONO_TAC;;
  val it : goalstack = No subgoals
}

\COMMENTS
Normally, this kind of reasoning is automated by the inductive definitions 
package, so explicit use of this tactic is rare.

\SEEALSO
monotonicity_theorems, new_inductive_definition, 
prove_inductive_relations_exist, prove_monotonicity_hyps.

\ENDDOC