File: NUM_ADD_CONV.doc

package info (click to toggle)
hol-light 20131026-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 26,264 kB
  • ctags: 4,620
  • sloc: ml: 400,325; cpp: 438; java: 279; lisp: 261; makefile: 256; sh: 190; yacc: 108; perl: 78; ansic: 57; sed: 39
file content (36 lines) | stat: -rw-r--r-- 887 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
\DOC NUM_ADD_CONV

\TYPE {NUM_ADD_CONV : term -> thm}

\SYNOPSIS
Proves what the sum of two natural number numerals is.

\KEYWORDS
conversion, number, arithmetic.

\DESCRIBE
If {n} and {m} are numerals (e.g. {0}, {1}, {2}, {3},...), then
{NUM_ADD_CONV `n + m`} returns the theorem:
{
   |- n + m = s
}
\noindent where {s} is the numeral that denotes the sum of the natural
numbers denoted by {n} and {m}.

\FAILURE
{NUM_ADD_CONV tm} fails if {tm} is not of the form  {`n + m`}, where {n} and
{m} are numerals.

\EXAMPLE
{
  # NUM_ADD_CONV `75 + 25`;;
  val it : thm = |- 75 + 25 = 100
}

\SEEALSO
NUM_DIV_CONV, NUM_EQ_CONV, NUM_EVEN_CONV, NUM_EXP_CONV, NUM_FACT_CONV,
NUM_GE_CONV, NUM_GT_CONV, NUM_LE_CONV, NUM_LT_CONV, NUM_MAX_CONV, NUM_MIN_CONV,
NUM_MOD_CONV, NUM_MULT_CONV, NUM_ODD_CONV, NUM_PRE_CONV, NUM_REDUCE_CONV,
NUM_RED_CONV, NUM_REL_CONV, NUM_SUB_CONV, NUM_SUC_CONV.

\ENDDOC