1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
|
\DOC NUM_REDUCE_CONV
\TYPE {NUM_REDUCE_CONV : term -> thm}
\SYNOPSIS
Evaluate subexpressions built up from natural number numerals, by proof.
\KEYWORDS
conversion, number, arithmetic.
\DESCRIBE
When applied to a term, {NUM_REDUCE_CONV} performs a recursive bottom-up
evaluation by proof of subterms built from numerals using the unary operators
`{SUC}', `{PRE}' and `{FACT}' and the binary arithmetic (`{+}', `{-}', `{*}',
`{EXP}', `{DIV}', `{MOD}') and relational (`{<}', `{<=}', `{>}', `{>=}', `{=}')
operators, as well as propagating constants through logical operations, e.g. {T
/\ x <=> x}, returning a theorem that the original and reduced terms are equal.
\FAILURE
Never fails, but may have no effect.
\EXAMPLE
{
# NUM_REDUCE_CONV `(432 - 234) + 198`;;
val it : thm = |- 432 - 234 + 198 = 396
# NUM_REDUCE_CONV
`if 100 < 200 then 2 EXP (8 DIV 2) else 3 EXP ((26 EXP 0) * 3)`;;
val it : thm =
|- (if 100 < 200 then 2 EXP (8 DIV 2) else 3 EXP (26 EXP 0 * 3)) = 16
# NUM_REDUCE_CONV `(!x. f(x + 2 + 2) < f(x + 0)) ==> f(12 * x) = f(12 * 12)`;;
val it : thm =
|- (!x. f (x + 2 + 2) < f (x + 0)) ==> f (12 * x) = f (12 * 12) <=>
(!x. f (x + 4) < f (x + 0)) ==> f (12 * x) = f 144
}
\SEEALSO
NUM_ADD_CONV, NUM_DIV_CONV, NUM_EQ_CONV, NUM_EVEN_CONV, NUM_EXP_CONV,
NUM_FACT_CONV, NUM_GE_CONV, NUM_GT_CONV, NUM_LE_CONV, NUM_LT_CONV,
NUM_MAX_CONV, NUM_MIN_CONV, NUM_MOD_CONV, NUM_MULT_CONV, NUM_ODD_CONV,
NUM_PRE_CONV, NUM_REDUCE_TAC, NUM_RED_CONV, NUM_REL_CONV, NUM_SUB_CONV,
NUM_SUC_CONV, REAL_RAT_REDUCE_CONV.
\ENDDOC
|