File: REAL_IDEAL_CONV.doc

package info (click to toggle)
hol-light 20131026-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 26,264 kB
  • ctags: 4,620
  • sloc: ml: 400,325; cpp: 438; java: 279; lisp: 261; makefile: 256; sh: 190; yacc: 108; perl: 78; ansic: 57; sed: 39
file content (31 lines) | stat: -rw-r--r-- 1,101 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
\DOC REAL_IDEAL_CONV

\TYPE {REAL_IDEAL_CONV : term list -> term -> thm}

\SYNOPSIS
Produces identity proving ideal membership over the reals.

\DESCRIBE
The call {REAL_IDEAL_CONV [`p1`; ...; `pn`] `p`}, where all the terms have
type {:real} and can be considered as polynomials, will test whether {p} is in
the ideal generated by the {p1,...,pn}. If so, it will return a corresponding 
theorem {|- p = q1 * p1 + ... + qn * pn} showing how to express {p} in terms of 
the other polynomials via some `cofactors' {qi}.
                                                             
\FAILURE                    
Fails if the terms are ill-typed, or if ideal membership fails.
                   
\EXAMPLE    
In the case of a singleton list, this just corresponds to dividing one 
multivariate polynomial by another, e.g.
{
  # REAL_IDEAL_CONV [`x - &1`] `x pow 4 - &1`;; 
  1 basis elements and 0 critical pairs
  val it : thm =
    |- x pow 4 - &1 = (&1 * x pow 3 + &1 * x pow 2 + &1 * x + &1) * (x - &1)
}

\SEEALSO
ideal_cofactors, real_ideal_cofactors, REAL_RING, RING, RING_AND_IDEAL_CONV.

\ENDDOC