File: REFL.doc

package info (click to toggle)
hol-light 20131026-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 26,264 kB
  • ctags: 4,620
  • sloc: ml: 400,325; cpp: 438; java: 279; lisp: 261; makefile: 256; sh: 190; yacc: 108; perl: 78; ansic: 57; sed: 39
file content (32 lines) | stat: -rw-r--r-- 454 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
\DOC REFL

\TYPE {REFL : term -> thm}

\SYNOPSIS
Returns theorem expressing reflexivity of equality.

\KEYWORDS
rule, reflexive, equality.

\DESCRIBE
{REFL} maps any term {`t`} to the corresponding theorem {|- t = t}.

\FAILURE
Never fails.

\EXAMPLE
{
  # REFL `2`;;
  val it : thm = |- 2 = 2
  
  # REFL `p:bool`;;
  val it : thm = |- p <=> p
}

\COMMENTS
This is one of HOL Light's 10 primitive inference rules.

\SEEALSO
ALL_CONV, REFL_TAC.

\ENDDOC