1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
|
\DOC num_CONV
\TYPE {num_CONV : term -> thm}
\SYNOPSIS
Provides definitional axiom for a nonzero numeral.
\KEYWORDS
conversion, number, arithmetic.
\DESCRIBE
{num_CONV} is an axiom-scheme from which one may obtain a defining equation for
any numeral not equal to {0} (i.e. {1}, {2}, {3},...). If
{`n`} is such a constant, then {num_CONV `n`} returns the theorem:
{
|- n = SUC m
}
\noindent where {m} is the numeral that denotes the predecessor of the
number denoted by {n}.
\FAILURE
{num_CONV tm} fails if {tm} is {`0`} or if not {tm} is not a numeral.
\EXAMPLE
{
# num_CONV `3`;;
val it : thm = |- 3 = SUC 2
}
\ENDDOC
|