File: num_CONV.doc

package info (click to toggle)
hol-light 20131026-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 26,264 kB
  • ctags: 4,620
  • sloc: ml: 400,325; cpp: 438; java: 279; lisp: 261; makefile: 256; sh: 190; yacc: 108; perl: 78; ansic: 57; sed: 39
file content (30 lines) | stat: -rw-r--r-- 634 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
\DOC num_CONV

\TYPE {num_CONV : term -> thm}

\SYNOPSIS
Provides definitional axiom for a nonzero numeral.

\KEYWORDS
conversion, number, arithmetic.

\DESCRIBE
{num_CONV} is an axiom-scheme from which one may obtain a defining equation for
any numeral not equal to {0} (i.e. {1}, {2}, {3},...).  If
{`n`} is such a constant, then {num_CONV `n`} returns the theorem:
{
   |- n = SUC m
}
\noindent where {m} is the numeral that denotes the predecessor of the
number denoted by {n}.

\FAILURE
{num_CONV tm} fails if {tm} is {`0`} or if not {tm} is not a numeral.

\EXAMPLE
{
  # num_CONV `3`;;
  val it : thm = |- 3 = SUC 2
}

\ENDDOC