File: card.ml

package info (click to toggle)
hol-light 20131026-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 26,264 kB
  • ctags: 4,620
  • sloc: ml: 400,325; cpp: 438; java: 279; lisp: 261; makefile: 256; sh: 190; yacc: 108; perl: 78; ansic: 57; sed: 39
file content (1799 lines) | stat: -rw-r--r-- 80,946 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
(* ========================================================================= *)
(* Basic notions of cardinal arithmetic.                                     *)
(* ========================================================================= *)

needs "Library/wo.ml";;

let TRANS_CHAIN_TAC th =
  MAP_EVERY (fun t -> TRANS_TAC th t THEN ASM_REWRITE_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* We need these a few times, so give them names.                            *)
(* ------------------------------------------------------------------------- *)

let sum_DISTINCT = distinctness "sum";;

let sum_INJECTIVE = injectivity "sum";;

let sum_CASES = prove_cases_thm sum_INDUCT;;

let FORALL_SUM_THM = prove
 (`(!z. P z) <=> (!x. P(INL x)) /\ (!x. P(INR x))`,
  MESON_TAC[sum_CASES]);;

let EXISTS_SUM_THM = prove
 (`(?z. P z) <=> (?x. P(INL x)) \/ (?x. P(INR x))`,
  MESON_TAC[sum_CASES]);;

(* ------------------------------------------------------------------------- *)
(* Special case of Zorn's Lemma for restriction of subset lattice.           *)
(* ------------------------------------------------------------------------- *)

let POSET_RESTRICTED_SUBSET = prove
 (`!P. poset(\(x,y). P(x) /\ P(y) /\ x SUBSET y)`,
  GEN_TAC THEN REWRITE_TAC[poset; fl] THEN
  CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
  REWRITE_TAC[SUBSET; EXTENSION] THEN MESON_TAC[]);;

let FL_RESTRICTED_SUBSET = prove
 (`!P. fl(\(x,y). P(x) /\ P(y) /\ x SUBSET y) = P`,
  REWRITE_TAC[fl; FORALL_PAIR_THM; FUN_EQ_THM] THEN
  CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN MESON_TAC[SUBSET_REFL]);;

let ZL_SUBSETS = prove
 (`!P. (!c. (!x. x IN c ==> P x) /\
            (!x y. x IN c /\ y IN c ==> x SUBSET y \/ y SUBSET x)
            ==> ?z. P z /\ (!x. x IN c ==> x SUBSET z))
       ==> ?a:A->bool. P a /\ (!x. P x /\ a SUBSET x ==> (a = x))`,
  GEN_TAC THEN
  MP_TAC(ISPEC `\(x,y). P(x:A->bool) /\ P(y) /\ x SUBSET y` ZL) THEN
  REWRITE_TAC[POSET_RESTRICTED_SUBSET; FL_RESTRICTED_SUBSET] THEN
  REWRITE_TAC[chain] THEN
  CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
  REWRITE_TAC[IN] THEN MATCH_MP_TAC MONO_IMP THEN CONJ_TAC THENL
   [MATCH_MP_TAC MONO_FORALL; ALL_TAC] THEN
  MESON_TAC[]);;

let ZL_SUBSETS_UNIONS = prove
 (`!P. (!c. (!x. x IN c ==> P x) /\
            (!x y. x IN c /\ y IN c ==> x SUBSET y \/ y SUBSET x)
            ==> P(UNIONS c))
       ==> ?a:A->bool. P a /\ (!x. P x /\ a SUBSET x ==> (a = x))`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC ZL_SUBSETS THEN
  REPEAT STRIP_TAC THEN EXISTS_TAC `UNIONS(c:(A->bool)->bool)` THEN
  ASM_MESON_TAC[SUBSET; IN_UNIONS]);;

let ZL_SUBSETS_UNIONS_NONEMPTY = prove
 (`!P. (?x. P x) /\
       (!c. (?x. x IN c) /\
            (!x. x IN c ==> P x) /\
            (!x y. x IN c /\ y IN c ==> x SUBSET y \/ y SUBSET x)
            ==> P(UNIONS c))
       ==> ?a:A->bool. P a /\ (!x. P x /\ a SUBSET x ==> (a = x))`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC ZL_SUBSETS THEN
  REPEAT STRIP_TAC THEN ASM_CASES_TAC `?x:A->bool. x IN c` THENL
   [EXISTS_TAC `UNIONS(c:(A->bool)->bool)` THEN
    ASM_SIMP_TAC[] THEN MESON_TAC[SUBSET; IN_UNIONS];
    ASM_MESON_TAC[]]);;

(* ------------------------------------------------------------------------- *)
(* Useful lemma to reduce some higher order stuff to first order.            *)
(* ------------------------------------------------------------------------- *)

let FLATTEN_LEMMA = prove
 (`(!x. x IN s ==> (g(f(x)) = x)) <=> !y x. x IN s /\ (y = f x) ==> (g y = x)`,
  MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Knaster-Tarski fixpoint theorem (used in Schroeder-Bernstein below).      *)
(* ------------------------------------------------------------------------- *)

let TARSKI_SET = prove
 (`!f. (!s t. s SUBSET t ==> f(s) SUBSET f(t)) ==> ?s:A->bool. f(s) = s`,
  REPEAT STRIP_TAC THEN MAP_EVERY ABBREV_TAC
   [`Y = {b:A->bool | f(b) SUBSET b}`; `a:A->bool = INTERS Y`] THEN
  SUBGOAL_THEN `!b:A->bool. b IN Y <=> f(b) SUBSET b` ASSUME_TAC THENL
   [EXPAND_TAC "Y" THEN REWRITE_TAC[IN_ELIM_THM]; ALL_TAC] THEN
  SUBGOAL_THEN `!b:A->bool. b IN Y ==> f(a:A->bool) SUBSET b` ASSUME_TAC THENL
   [ASM_MESON_TAC[SUBSET_TRANS; IN_INTERS; SUBSET]; ALL_TAC] THEN
  SUBGOAL_THEN `f(a:A->bool) SUBSET a`
   (fun th -> ASM_MESON_TAC[SUBSET_ANTISYM; IN_INTERS; th]) THEN
  ASM_MESON_TAC[IN_INTERS; SUBSET]);;

(* ------------------------------------------------------------------------- *)
(* We need a nonemptiness hypothesis for the nicest total function form.     *)
(* ------------------------------------------------------------------------- *)

let INJECTIVE_LEFT_INVERSE_NONEMPTY = prove
 (`(?x. x IN s)
   ==> ((!x y. x IN s /\ y IN s /\ (f(x) = f(y)) ==> (x = y)) <=>
        ?g. (!y. y IN t ==> g(y) IN s) /\
            (!x. x IN s ==> (g(f(x)) = x)))`,
  REWRITE_TAC[FLATTEN_LEMMA; GSYM SKOLEM_THM; AND_FORALL_THM] THEN
  MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Now bijectivity.                                                          *)
(* ------------------------------------------------------------------------- *)

let BIJECTIVE_INJECTIVE_SURJECTIVE = prove
 (`(!x. x IN s ==> f(x) IN t) /\
   (!y. y IN t ==> ?!x. x IN s /\ (f x = y)) <=>
   (!x. x IN s ==> f(x) IN t) /\
   (!x y. x IN s /\ y IN s /\ (f(x) = f(y)) ==> (x = y)) /\
   (!y. y IN t ==> ?x. x IN s /\ (f x = y))`,
  MESON_TAC[]);;

let BIJECTIVE_INVERSES = prove
 (`(!x. x IN s ==> f(x) IN t) /\
   (!y. y IN t ==> ?!x. x IN s /\ (f x = y)) <=>
   (!x. x IN s ==> f(x) IN t) /\
   ?g. (!y. y IN t ==> g(y) IN s) /\
       (!y. y IN t ==> (f(g(y)) = y)) /\
       (!x. x IN s ==> (g(f(x)) = x))`,
  REWRITE_TAC[BIJECTIVE_INJECTIVE_SURJECTIVE;
              INJECTIVE_ON_LEFT_INVERSE;
              SURJECTIVE_ON_RIGHT_INVERSE] THEN
  MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> (a /\ b <=> a /\ c)`) THEN
  DISCH_TAC THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN
  AP_TERM_TAC THEN ABS_TAC THEN EQ_TAC THEN ASM_MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Other variants of cardinal equality.                                      *)
(* ------------------------------------------------------------------------- *)

let EQ_C_BIJECTIONS = prove
 (`!s:A->bool t:B->bool.
        s =_c t <=> ?f g. (!x. x IN s ==> f x IN t /\ g(f x) = x) /\
                          (!y. y IN t ==> g y IN s /\ f(g y) = y)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[eq_c] THEN
  AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN
  X_GEN_TAC `f:A->B` THEN REWRITE_TAC[] THEN
  EQ_TAC THENL [STRIP_TAC; MESON_TAC[]] THEN
  EXISTS_TAC `(\y. @x. x IN s /\ f x = y):B->A` THEN
  ASM_MESON_TAC[]);;

let EQ_C = prove
 (`s =_c t <=>
   ?R:A#B->bool. (!x y. R(x,y) ==> x IN s /\ y IN t) /\
                 (!x. x IN s ==> ?!y. y IN t /\ R(x,y)) /\
                 (!y. y IN t ==> ?!x. x IN s /\ R(x,y))`,
  REWRITE_TAC[eq_c] THEN EQ_TAC THENL
   [DISCH_THEN(X_CHOOSE_THEN `f:A->B` STRIP_ASSUME_TAC) THEN
    EXISTS_TAC `\(x:A,y:B). x IN s /\ y IN t /\ (y = f x)` THEN
    CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN ASM_MESON_TAC[];
    DISCH_THEN(CHOOSE_THEN (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
    DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
    GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV)
     [EXISTS_UNIQUE_ALT; RIGHT_IMP_EXISTS_THM; SKOLEM_THM] THEN
    MATCH_MP_TAC MONO_EXISTS THEN ASM_MESON_TAC[]]);;

(* ------------------------------------------------------------------------- *)
(* The "easy" ordering properties.                                           *)
(* ------------------------------------------------------------------------- *)

let CARD_LE_REFL = prove
 (`!s:A->bool. s <=_c s`,
  GEN_TAC THEN REWRITE_TAC[le_c] THEN EXISTS_TAC `\x:A. x` THEN SIMP_TAC[]);;

let CARD_LE_TRANS = prove
 (`!s:A->bool t:B->bool u:C->bool.
       s <=_c t /\ t <=_c u ==> s <=_c u`,
  REPEAT GEN_TAC THEN REWRITE_TAC[le_c] THEN
  DISCH_THEN(CONJUNCTS_THEN2
   (X_CHOOSE_TAC `f:A->B`) (X_CHOOSE_TAC `g:B->C`)) THEN
  EXISTS_TAC `(g:B->C) o (f:A->B)` THEN REWRITE_TAC[o_THM] THEN
  ASM_MESON_TAC[]);;

let CARD_LT_REFL = prove
 (`!s:A->bool. ~(s <_c s)`,
  MESON_TAC[lt_c; CARD_LE_REFL]);;

let CARD_LET_TRANS = prove
 (`!s:A->bool t:B->bool u:C->bool.
       s <=_c t /\ t <_c u ==> s <_c u`,
  REPEAT GEN_TAC THEN REWRITE_TAC[lt_c] THEN
  MATCH_MP_TAC(TAUT `(a /\ b ==> c) /\ (c' /\ a ==> b')
                     ==> a /\ b /\ ~b' ==> c /\ ~c'`) THEN
  REWRITE_TAC[CARD_LE_TRANS]);;

let CARD_LTE_TRANS = prove
 (`!s:A->bool t:B->bool u:C->bool.
       s <_c t /\ t <=_c u ==> s <_c u`,
  REPEAT GEN_TAC THEN REWRITE_TAC[lt_c] THEN
  MATCH_MP_TAC(TAUT `(a /\ b ==> c) /\ (b /\ c' ==> a')
                     ==> (a /\ ~a') /\ b ==> c /\ ~c'`) THEN
  REWRITE_TAC[CARD_LE_TRANS]);;

let CARD_LT_TRANS = prove
 (`!s:A->bool t:B->bool u:C->bool.
       s <_c t /\ t <_c u ==> s <_c u`,
  MESON_TAC[lt_c; CARD_LTE_TRANS]);;

let CARD_EQ_REFL = prove
 (`!s:A->bool. s =_c s`,
  GEN_TAC THEN REWRITE_TAC[eq_c] THEN EXISTS_TAC `\x:A. x` THEN
  SIMP_TAC[] THEN MESON_TAC[]);;

let CARD_EQ_SYM = prove
 (`!s t. s =_c t <=> t =_c s`,
  REPEAT GEN_TAC THEN REWRITE_TAC[eq_c; BIJECTIVE_INVERSES] THEN
  REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN
  GEN_REWRITE_TAC RAND_CONV [SWAP_EXISTS_THM] THEN
  REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN REWRITE_TAC[CONJ_ACI]);;

let CARD_EQ_IMP_LE = prove
 (`!s t. s =_c t ==> s <=_c t`,
  REWRITE_TAC[le_c; eq_c] THEN MESON_TAC[]);;

let CARD_LT_IMP_LE = prove
 (`!s t. s <_c t ==> s <=_c t`,
  SIMP_TAC[lt_c]);;

let CARD_LE_RELATIONAL = prove
 (`!R:A->B->bool.
        (!x y y'. x IN s /\ R x y /\ R x y' ==> y = y')
        ==> {y | ?x. x IN s /\ R x y} <=_c s`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[le_c] THEN
  EXISTS_TAC `\y:B. @x:A. x IN s /\ R x y` THEN
  REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[]);;

let CARD_LE_RELATIONAL_FULL = prove
 (`!R:A->B->bool s t.
        (!y. y IN t ==> ?x. x IN s /\ R x y) /\
        (!x y y'. x IN s /\ y IN t /\ y' IN t /\ R x y /\ R x y' ==> y = y')
        ==> t <=_c s`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[le_c] THEN
  EXISTS_TAC `\y:B. @x:A. x IN s /\ R x y` THEN
  REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Two trivial lemmas.                                                       *)
(* ------------------------------------------------------------------------- *)

let CARD_LE_EMPTY = prove
 (`!s. s <=_c {} <=> s = {}`,
  REWRITE_TAC[le_c; EXTENSION; NOT_IN_EMPTY] THEN MESON_TAC[]);;

let CARD_EQ_EMPTY = prove
 (`!s. s =_c {} <=> s = {}`,
  REWRITE_TAC[eq_c; EXTENSION; NOT_IN_EMPTY] THEN MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Antisymmetry (the Schroeder-Bernstein theorem).                           *)
(* ------------------------------------------------------------------------- *)

let CARD_LE_ANTISYM = prove
 (`!s:A->bool t:B->bool. s <=_c t /\ t <=_c s <=> (s =_c t)`,
  REPEAT GEN_TAC THEN EQ_TAC THENL
   [ALL_TAC;
    SIMP_TAC[CARD_EQ_IMP_LE] THEN ONCE_REWRITE_TAC[CARD_EQ_SYM] THEN
    SIMP_TAC[CARD_EQ_IMP_LE]] THEN
  ASM_CASES_TAC `s:A->bool = {}` THEN ASM_CASES_TAC `t:B->bool = {}` THEN
  ASM_SIMP_TAC[CARD_LE_EMPTY; CARD_EQ_EMPTY] THEN
  RULE_ASSUM_TAC(REWRITE_RULE[EXTENSION; NOT_IN_EMPTY; NOT_FORALL_THM]) THEN
  ASM_SIMP_TAC[le_c; eq_c; INJECTIVE_LEFT_INVERSE_NONEMPTY] THEN
  DISCH_THEN(CONJUNCTS_THEN2
   (X_CHOOSE_THEN `i:A->B`
     (CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_THEN `i':B->A` STRIP_ASSUME_TAC)))
   (X_CHOOSE_THEN `j:B->A`
     (CONJUNCTS_THEN2 ASSUME_TAC
       (X_CHOOSE_THEN `j':A->B` STRIP_ASSUME_TAC)))) THEN
  MP_TAC(ISPEC
    `\a. s DIFF (IMAGE (j:B->A) (t DIFF (IMAGE (i:A->B) a)))`
    TARSKI_SET) THEN
  REWRITE_TAC[] THEN ANTS_TAC THENL
   [REWRITE_TAC[SUBSET; IN_DIFF; IN_IMAGE] THEN MESON_TAC[];
    ALL_TAC] THEN
  DISCH_THEN(X_CHOOSE_THEN `a:A->bool` ASSUME_TAC) THEN
  REWRITE_TAC[BIJECTIVE_INVERSES] THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN
  EXISTS_TAC `\x. if x IN a then (i:A->B)(x) else j'(x)` THEN
  EXISTS_TAC `\y. if y IN (IMAGE (i:A->B) a) then i'(y) else (j:B->A)(y)` THEN
  REWRITE_TAC[FUN_EQ_THM; o_THM; I_DEF] THEN
  ONCE_REWRITE_TAC[TAUT `a /\ b /\ c /\ d <=> (a /\ d) /\ (b /\ c)`] THEN
  REWRITE_TAC[AND_FORALL_THM] THEN
  REWRITE_TAC[TAUT `(a ==> b) /\ (a ==> c) <=> a ==> b /\ c`] THEN
  CONJ_TAC THENL
   [X_GEN_TAC `x:A` THEN ASM_CASES_TAC `x:A IN a`;
    X_GEN_TAC `y:B` THEN ASM_CASES_TAC `y IN IMAGE (i:A->B) a`] THEN
  ASM_REWRITE_TAC[] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
  RULE_ASSUM_TAC(REWRITE_RULE[EXTENSION; IN_UNIV; IN_DIFF; IN_IMAGE]) THEN
  TRY(FIRST_X_ASSUM(X_CHOOSE_THEN `x:A` STRIP_ASSUME_TAC)) THEN
  TRY(FIRST_X_ASSUM(fun th -> MP_TAC(SPEC `x:A` th) THEN
      ASM_REWRITE_TAC[] THEN ASSUME_TAC th)) THEN
  ASM_MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Totality (cardinal comparability).                                        *)
(* ------------------------------------------------------------------------- *)

let CARD_LE_TOTAL = prove
 (`!s:A->bool t:B->bool. s <=_c t \/ t <=_c s`,
  REPEAT GEN_TAC THEN
  ABBREV_TAC
   `P = \R. (!x:A y:B. R(x,y) ==> x IN s /\ y IN t) /\
            (!x y y'. R(x,y) /\ R(x,y') ==> (y = y')) /\
            (!x x' y. R(x,y) /\ R(x',y) ==> (x = x'))` THEN
  MP_TAC(ISPEC `P:((A#B)->bool)->bool` ZL_SUBSETS_UNIONS) THEN ANTS_TAC THENL
   [GEN_TAC THEN EXPAND_TAC "P" THEN
    REWRITE_TAC[UNIONS; IN_ELIM_THM] THEN
    REWRITE_TAC[SUBSET; IN] THEN MESON_TAC[];
    ALL_TAC] THEN
  FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN REWRITE_TAC[] THEN
  DISCH_THEN(X_CHOOSE_THEN `R:A#B->bool` STRIP_ASSUME_TAC) THEN
  ASM_CASES_TAC `(!x:A. x IN s ==> ?y:B. y IN t /\ R(x,y)) \/
                 (!y:B. y IN t ==> ?x:A. x IN s /\ R(x,y))`
  THENL
   [FIRST_X_ASSUM(K ALL_TAC o SPEC `\(x:A,y:B). T`) THEN
    FIRST_X_ASSUM(DISJ_CASES_THEN MP_TAC) THEN
    REWRITE_TAC[RIGHT_IMP_EXISTS_THM; SKOLEM_THM; le_c] THEN ASM_MESON_TAC[];
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [DE_MORGAN_THM]) THEN
    REWRITE_TAC[NOT_FORALL_THM; NOT_IMP] THEN
    DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `a:A`) (X_CHOOSE_TAC `b:B`)) THEN
    FIRST_X_ASSUM(MP_TAC o SPEC
      `\(x:A,y:B). (x = a) /\ (y = b) \/ R(x,y)`) THEN
    REWRITE_TAC[SUBSET; FORALL_PAIR_THM; IN; EXTENSION] THEN
    CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
    RULE_ASSUM_TAC(REWRITE_RULE[IN]) THEN ASM_MESON_TAC[]]);;

(* ------------------------------------------------------------------------- *)
(* Other variants like "trichotomy of cardinals" now follow easily.          *)
(* ------------------------------------------------------------------------- *)

let CARD_LET_TOTAL = prove
 (`!s:A->bool t:B->bool. s <=_c t \/ t <_c s`,
  REWRITE_TAC[lt_c] THEN MESON_TAC[CARD_LE_TOTAL]);;

let CARD_LTE_TOTAL = prove
 (`!s:A->bool t:B->bool. s <_c t \/ t <=_c s`,
  REWRITE_TAC[lt_c] THEN MESON_TAC[CARD_LE_TOTAL]);;

let CARD_LT_TOTAL = prove
 (`!s:A->bool t:B->bool. s =_c t \/ s <_c t \/ t <_c s`,
  REWRITE_TAC[lt_c; GSYM CARD_LE_ANTISYM] THEN MESON_TAC[CARD_LE_TOTAL]);;

let CARD_NOT_LE = prove
 (`!s:A->bool t:B->bool. ~(s <=_c t) <=> t <_c s`,
  REWRITE_TAC[lt_c] THEN MESON_TAC[CARD_LE_TOTAL]);;

let CARD_NOT_LT = prove
 (`!s:A->bool t:B->bool. ~(s <_c t) <=> t <=_c s`,
  REWRITE_TAC[lt_c] THEN MESON_TAC[CARD_LE_TOTAL]);;

let CARD_LT_LE = prove
 (`!s t. s <_c t <=> s <=_c t /\ ~(s =_c t)`,
  REWRITE_TAC[lt_c; GSYM CARD_LE_ANTISYM] THEN CONV_TAC TAUT);;

let CARD_LE_LT = prove
 (`!s t. s <=_c t <=> s <_c t \/ s =_c t`,
  REPEAT GEN_TAC THEN REWRITE_TAC[GSYM CARD_NOT_LT] THEN
  GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [CARD_LT_LE] THEN
  REWRITE_TAC[DE_MORGAN_THM; CARD_NOT_LE; CARD_EQ_SYM]);;

let CARD_LE_CONG = prove
 (`!s:A->bool s':B->bool t:C->bool t':D->bool.
      s =_c s' /\ t =_c t' ==> (s <=_c t <=> s' <=_c t')`,
  REPEAT GEN_TAC THEN REWRITE_TAC[GSYM CARD_LE_ANTISYM] THEN
  MATCH_MP_TAC(TAUT
   `!x y. (b /\ e ==> x) /\ (x /\ c ==> f) /\ (a /\ f ==> y) /\ (y /\ d ==> e)
          ==> (a /\ b) /\ (c /\ d) ==> (e <=> f)`) THEN
  MAP_EVERY EXISTS_TAC
   [`(s':B->bool) <=_c (t:C->bool)`;
    `(s:A->bool) <=_c (t':D->bool)`] THEN
  REWRITE_TAC[CARD_LE_TRANS]);;

let CARD_LT_CONG = prove
 (`!s:A->bool s':B->bool t:C->bool t':D->bool.
      s =_c s' /\ t =_c t' ==> (s <_c t <=> s' <_c t')`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM CARD_NOT_LE] THEN
  AP_TERM_TAC THEN MATCH_MP_TAC CARD_LE_CONG THEN
  ASM_REWRITE_TAC[]);;

let CARD_EQ_TRANS = prove
 (`!s:A->bool t:B->bool u:C->bool.
       s =_c t /\ t =_c u ==> s =_c u`,
  REPEAT GEN_TAC THEN REWRITE_TAC[GSYM CARD_LE_ANTISYM] THEN
  REPEAT STRIP_TAC THEN ASM_MESON_TAC[CARD_LE_TRANS]);;

let CARD_EQ_CONG = prove
 (`!s:A->bool s':B->bool t:C->bool t':D->bool.
      s =_c s' /\ t =_c t' ==> (s =_c t <=> s' =_c t')`,
  REPEAT STRIP_TAC THEN EQ_TAC THEN DISCH_TAC THENL
   [TRANS_CHAIN_TAC CARD_EQ_TRANS [`t:C->bool`; `s:A->bool`];
    TRANS_CHAIN_TAC CARD_EQ_TRANS [`s':B->bool`; `t':D->bool`]] THEN
  ASM_MESON_TAC[CARD_EQ_SYM]);;

(* ------------------------------------------------------------------------- *)
(* Finiteness and infiniteness in terms of cardinality of N.                 *)
(* ------------------------------------------------------------------------- *)

let INFINITE_CARD_LE = prove
 (`!s:A->bool. INFINITE s <=> (UNIV:num->bool) <=_c s`,
  REPEAT STRIP_TAC THEN EQ_TAC THENL
   [ALL_TAC;
    ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN
    REWRITE_TAC[INFINITE; le_c; IN_UNIV] THEN REPEAT STRIP_TAC THEN
    FIRST_ASSUM(MP_TAC o MATCH_MP INFINITE_IMAGE_INJ) THEN
    DISCH_THEN(MP_TAC o C MATCH_MP num_INFINITE) THEN
    REWRITE_TAC[INFINITE] THEN
    MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `s:A->bool` THEN
    ASM_SIMP_TAC[SUBSET; IN_IMAGE; IN_UNIV; LEFT_IMP_EXISTS_THM]] THEN
  DISCH_TAC THEN
  SUBGOAL_THEN `?f:num->A. !n. f(n) = @x. x IN (s DIFF IMAGE f {m | m < n})`
  MP_TAC THENL
   [MATCH_MP_TAC(MATCH_MP WF_REC WF_num) THEN
    REWRITE_TAC[IN_IMAGE; IN_ELIM_THM; IN_DIFF] THEN REPEAT STRIP_TAC THEN
    AP_TERM_TAC THEN ABS_TAC THEN ASM_MESON_TAC[];
    ALL_TAC] THEN
  REWRITE_TAC[le_c] THEN MATCH_MP_TAC MONO_EXISTS THEN
  X_GEN_TAC `f:num->A` THEN REWRITE_TAC[IN_UNIV] THEN DISCH_TAC THEN
  SUBGOAL_THEN `!n. (f:num->A)(n) IN (s DIFF IMAGE f {m | m < n})` MP_TAC THENL
   [GEN_TAC THEN ONCE_ASM_REWRITE_TAC[] THEN CONV_TAC SELECT_CONV THEN
    REWRITE_TAC[MEMBER_NOT_EMPTY] THEN
    MATCH_MP_TAC INFINITE_NONEMPTY THEN MATCH_MP_TAC INFINITE_DIFF_FINITE THEN
    ASM_SIMP_TAC[FINITE_IMAGE; FINITE_NUMSEG_LT];
    ALL_TAC] THEN
  REWRITE_TAC[IN_IMAGE; IN_ELIM_THM; IN_DIFF] THEN MESON_TAC[LT_CASES]);;

let FINITE_CARD_LT = prove
 (`!s:A->bool. FINITE s <=> s <_c (UNIV:num->bool)`,
  ONCE_REWRITE_TAC[TAUT `(a <=> b) <=> (~a <=> ~b)`] THEN
  REWRITE_TAC[GSYM INFINITE; CARD_NOT_LT; INFINITE_CARD_LE]);;

let CARD_LE_SUBSET = prove
 (`!s:A->bool t. s SUBSET t ==> s <=_c t`,
  REWRITE_TAC[SUBSET; le_c] THEN MESON_TAC[I_THM]);;

let CARD_LE_UNIV = prove
 (`!s:A->bool. s <=_c (:A)`,
  GEN_TAC THEN MATCH_MP_TAC CARD_LE_SUBSET THEN REWRITE_TAC[SUBSET_UNIV]);;

let CARD_LE_EQ_SUBSET = prove
 (`!s:A->bool t:B->bool. s <=_c t <=> ?u. u SUBSET t /\ (s =_c u)`,
  REPEAT GEN_TAC THEN EQ_TAC THENL
   [ALL_TAC;
    REPEAT STRIP_TAC THEN
    FIRST_ASSUM(MP_TAC o MATCH_MP CARD_LE_SUBSET) THEN
    MATCH_MP_TAC(TAUT `(a <=> b) ==> b ==> a`) THEN
    MATCH_MP_TAC CARD_LE_CONG THEN
    ASM_REWRITE_TAC[CARD_LE_CONG; CARD_EQ_REFL]] THEN
  REWRITE_TAC[le_c; eq_c] THEN
  DISCH_THEN(X_CHOOSE_THEN `f:A->B` STRIP_ASSUME_TAC) THEN
  REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN EXISTS_TAC `IMAGE (f:A->B) s` THEN
  EXISTS_TAC `f:A->B` THEN REWRITE_TAC[IN_IMAGE; SUBSET] THEN
  ASM_MESON_TAC[]);;

let CARD_INFINITE_CONG = prove
 (`!s:A->bool t:B->bool. s =_c t ==> (INFINITE s <=> INFINITE t)`,
  REWRITE_TAC[INFINITE_CARD_LE] THEN REPEAT STRIP_TAC THEN
  MATCH_MP_TAC CARD_LE_CONG THEN ASM_REWRITE_TAC[CARD_EQ_REFL]);;

let CARD_FINITE_CONG = prove
 (`!s:A->bool t:B->bool. s =_c t ==> (FINITE s <=> FINITE t)`,
  ONCE_REWRITE_TAC[TAUT `(a <=> b) <=> (~a <=> ~b)`] THEN
  REWRITE_TAC[GSYM INFINITE; CARD_INFINITE_CONG]);;

let CARD_LE_FINITE = prove
 (`!s:A->bool t:B->bool. FINITE t /\ s <=_c t ==> FINITE s`,
  ASM_MESON_TAC[CARD_LE_EQ_SUBSET; FINITE_SUBSET; CARD_FINITE_CONG]);;

let CARD_EQ_FINITE = prove
 (`!s t:A->bool. FINITE t /\ s =_c t ==> FINITE s`,
  REWRITE_TAC[GSYM CARD_LE_ANTISYM] THEN MESON_TAC[CARD_LE_FINITE]);;

let CARD_LE_INFINITE = prove
 (`!s:A->bool t:B->bool. INFINITE s /\ s <=_c t ==> INFINITE t`,
  MESON_TAC[CARD_LE_FINITE; INFINITE]);;

let CARD_LT_FINITE_INFINITE = prove
 (`!s:A->bool t:B->bool. FINITE s /\ INFINITE t ==> s <_c t`,
  REWRITE_TAC[GSYM CARD_NOT_LE; INFINITE] THEN MESON_TAC[CARD_LE_FINITE]);;

let CARD_LE_CARD_IMP = prove
 (`!s:A->bool t:B->bool. FINITE t /\ s <=_c t ==> CARD s <= CARD t`,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `FINITE(s:A->bool)` ASSUME_TAC THENL
   [ASM_MESON_TAC[CARD_LE_FINITE]; ALL_TAC] THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [le_c]) THEN
  DISCH_THEN(X_CHOOSE_THEN `f:A->B` STRIP_ASSUME_TAC) THEN
  MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `CARD(IMAGE (f:A->B) s)` THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC(ARITH_RULE `(m = n:num) ==> n <= m`) THEN
    MATCH_MP_TAC CARD_IMAGE_INJ THEN ASM_REWRITE_TAC[];
    MATCH_MP_TAC CARD_SUBSET THEN ASM_REWRITE_TAC[] THEN
    ASM_MESON_TAC[SUBSET; IN_IMAGE]]);;

let CARD_EQ_CARD_IMP = prove
 (`!s:A->bool t:B->bool. FINITE t /\ s =_c t ==> (CARD s = CARD t)`,
  MESON_TAC[CARD_FINITE_CONG; LE_ANTISYM; CARD_LE_ANTISYM; CARD_LE_CARD_IMP]);;

let CARD_LE_CARD = prove
 (`!s:A->bool t:B->bool.
        FINITE s /\ FINITE t ==> (s <=_c t <=> CARD s <= CARD t)`,
  REPEAT STRIP_TAC THEN
  MATCH_MP_TAC(TAUT `(a ==> b) /\ (~a ==> ~b) ==> (a <=> b)`) THEN
  ASM_SIMP_TAC[CARD_LE_CARD_IMP] THEN
  REWRITE_TAC[CARD_NOT_LE; NOT_LE] THEN REWRITE_TAC[lt_c; LT_LE] THEN
  ASM_SIMP_TAC[CARD_LE_CARD_IMP] THEN
  MATCH_MP_TAC(TAUT `(c ==> a ==> b) ==> a /\ ~b ==> ~c`) THEN
  DISCH_TAC THEN GEN_REWRITE_TAC LAND_CONV [CARD_LE_EQ_SUBSET] THEN
  DISCH_THEN(X_CHOOSE_THEN `u:A->bool` STRIP_ASSUME_TAC) THEN
  MATCH_MP_TAC CARD_EQ_IMP_LE THEN
  SUBGOAL_THEN `u:A->bool = s` (fun th -> ASM_MESON_TAC[th; CARD_EQ_SYM]) THEN
  ASM_MESON_TAC[CARD_SUBSET_EQ; CARD_EQ_CARD_IMP; CARD_EQ_SYM]);;

let CARD_EQ_CARD = prove
 (`!s:A->bool t:B->bool.
        FINITE s /\ FINITE t ==> (s =_c t <=> (CARD s = CARD t))`,
  MESON_TAC[CARD_FINITE_CONG; LE_ANTISYM; CARD_LE_ANTISYM; CARD_LE_CARD]);;

let CARD_LT_CARD = prove
 (`!s:A->bool t:B->bool.
        FINITE s /\ FINITE t ==> (s <_c t <=> CARD s < CARD t)`,
  SIMP_TAC[CARD_LE_CARD; GSYM NOT_LE; GSYM CARD_NOT_LE]);;

let CARD_HAS_SIZE_CONG = prove
 (`!s:A->bool t:B->bool n. s HAS_SIZE n /\ s =_c t ==> t HAS_SIZE n`,
  REWRITE_TAC[HAS_SIZE] THEN
  MESON_TAC[CARD_EQ_CARD; CARD_FINITE_CONG]);;

let CARD_LE_IMAGE = prove
 (`!f s. IMAGE f s <=_c s`,
  REWRITE_TAC[LE_C; FORALL_IN_IMAGE] THEN MESON_TAC[]);;

let CARD_LE_IMAGE_GEN = prove
 (`!f:A->B s t. t SUBSET IMAGE f s ==> t <=_c s`,
  REPEAT STRIP_TAC THEN TRANS_TAC CARD_LE_TRANS `IMAGE (f:A->B) s` THEN
  ASM_SIMP_TAC[CARD_LE_IMAGE; CARD_LE_SUBSET]);;

let CARD_EQ_IMAGE = prove
 (`!f:A->B s.
        (!x y. x IN s /\ y IN s /\ f x = f y ==> x = y)
        ==> IMAGE f s =_c s`,
  REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[CARD_EQ_SYM] THEN
  REWRITE_TAC[eq_c] THEN EXISTS_TAC `f:A->B` THEN ASM SET_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Cardinal arithmetic operations.                                           *)
(* ------------------------------------------------------------------------- *)

parse_as_infix("+_c",(16,"right"));;
parse_as_infix("*_c",(20,"right"));;

let add_c = new_definition
  `s +_c t = {INL x | x IN s} UNION {INR y | y IN t}`;;

let mul_c = new_definition
  `s *_c t = {(x,y) | x IN s /\ y IN t}`;;

(* ------------------------------------------------------------------------- *)
(* Congruence properties for the arithmetic operators.                       *)
(* ------------------------------------------------------------------------- *)

let CARD_LE_ADD = prove
 (`!s:A->bool s':B->bool t:C->bool t':D->bool.
      s <=_c s' /\ t <=_c t' ==> s +_c t <=_c s' +_c t'`,
  REPEAT GEN_TAC THEN REWRITE_TAC[le_c; add_c] THEN
  DISCH_THEN(CONJUNCTS_THEN2
   (X_CHOOSE_THEN `f:A->B` STRIP_ASSUME_TAC)
   (X_CHOOSE_THEN `g:C->D` STRIP_ASSUME_TAC)) THEN
  MP_TAC(prove_recursive_functions_exist sum_RECURSION
   `(!x. h(INL x) = INL((f:A->B) x)) /\ (!y. h(INR y) = INR((g:C->D) y))`) THEN
  MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `h:(A+C)->(B+D)` THEN STRIP_TAC THEN
  REWRITE_TAC[IN_UNION; IN_ELIM_THM] THEN
  CONJ_TAC THEN REPEAT GEN_TAC THEN
  REPEAT(DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN
         ASM_REWRITE_TAC[]) THEN
  ASM_REWRITE_TAC[sum_DISTINCT;
                  sum_INJECTIVE] THEN
  ASM_MESON_TAC[]);;

let CARD_LE_MUL = prove
 (`!s:A->bool s':B->bool t:C->bool t':D->bool.
      s <=_c s' /\ t <=_c t' ==> s *_c t <=_c s' *_c t'`,
  REPEAT GEN_TAC THEN REWRITE_TAC[le_c; mul_c] THEN
  DISCH_THEN(CONJUNCTS_THEN2
   (X_CHOOSE_THEN `f:A->B` STRIP_ASSUME_TAC)
   (X_CHOOSE_THEN `g:C->D` STRIP_ASSUME_TAC)) THEN
  EXISTS_TAC `\(x,y). (f:A->B) x,(g:C->D) y` THEN
  REWRITE_TAC[FORALL_PAIR_THM; IN_ELIM_THM] THEN
  CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
  REWRITE_TAC[PAIR_EQ] THEN ASM_MESON_TAC[]);;

let CARD_FUNSPACE_LE = prove
 (`(:A) <=_c (:A') /\ (:B) <=_c (:B') ==> (:A->B) <=_c (:A'->B')`,
  REWRITE_TAC[le_c; IN_UNIV] THEN DISCH_THEN(CONJUNCTS_THEN2
   (X_CHOOSE_TAC `f:A->A'`) (X_CHOOSE_TAC `g:B->B'`)) THEN
  SUBGOAL_THEN `?f':A'->A. !x. f'(f x) = x` STRIP_ASSUME_TAC THENL
   [ASM_REWRITE_TAC[GSYM INJECTIVE_LEFT_INVERSE]; ALL_TAC] THEN
  EXISTS_TAC `\h. (g:B->B') o (h:A->B) o (f':A'->A)` THEN
  ASM_REWRITE_TAC[o_DEF; FUN_EQ_THM] THEN ASM_MESON_TAC[]);;

let CARD_ADD_CONG = prove
 (`!s:A->bool s':B->bool t:C->bool t':D->bool.
      s =_c s' /\ t =_c t' ==> s +_c t =_c s' +_c t'`,
  SIMP_TAC[CARD_LE_ADD; GSYM CARD_LE_ANTISYM]);;

let CARD_MUL_CONG = prove
 (`!s:A->bool s':B->bool t:C->bool t':D->bool.
      s =_c s' /\ t =_c t' ==> s *_c t =_c s' *_c t'`,
  SIMP_TAC[CARD_LE_MUL; GSYM CARD_LE_ANTISYM]);;

let CARD_FUNSPACE_CONG = prove
 (`(:A) =_c (:A') /\ (:B) =_c (:B') ==> (:A->B) =_c (:A'->B')`,
  SIMP_TAC[GSYM CARD_LE_ANTISYM; CARD_FUNSPACE_LE]);;

(* ------------------------------------------------------------------------- *)
(* Misc lemmas.                                                              *)
(* ------------------------------------------------------------------------- *)

let MUL_C_UNIV = prove
 (`(:A) *_c (:B) = (:A#B)`,
  REWRITE_TAC[EXTENSION; FORALL_PAIR_THM; mul_c; IN_ELIM_PAIR_THM; IN_UNIV]);;

let CARD_FUNSPACE_CURRY = prove
 (`(:A->B->C) =_c (:A#B->C)`,
  REWRITE_TAC[EQ_C_BIJECTIONS] THEN
  EXISTS_TAC `\(f:A->B->C) (x,y). f x y` THEN
  EXISTS_TAC `\(g:A#B->C) x y. g(x,y)` THEN
  REWRITE_TAC[IN_UNIV] THEN
  REWRITE_TAC[FUN_EQ_THM; FORALL_PAIR_THM]);;

let IN_CARD_ADD = prove
 (`(!x. INL(x) IN (s +_c t) <=> x IN s) /\
   (!y. INR(y) IN (s +_c t) <=> y IN t)`,
  REWRITE_TAC[add_c; IN_UNION; IN_ELIM_THM] THEN
  REWRITE_TAC[sum_DISTINCT; sum_INJECTIVE] THEN MESON_TAC[]);;

let IN_CARD_MUL = prove
 (`!s t x y. (x,y) IN (s *_c t) <=> x IN s /\ y IN t`,
  REWRITE_TAC[mul_c; IN_ELIM_THM; PAIR_EQ] THEN MESON_TAC[]);;

let CARD_LE_SQUARE = prove
 (`!s:A->bool. s <=_c s *_c s`,
  GEN_TAC THEN REWRITE_TAC[le_c] THEN EXISTS_TAC `\x:A. x,(@z:A. z IN s)` THEN
  SIMP_TAC[IN_CARD_MUL; PAIR_EQ] THEN
  CONV_TAC(ONCE_DEPTH_CONV SELECT_CONV) THEN MESON_TAC[]);;

let CARD_SQUARE_NUM = prove
 (`(UNIV:num->bool) *_c (UNIV:num->bool) =_c (UNIV:num->bool)`,
  REWRITE_TAC[GSYM CARD_LE_ANTISYM; CARD_LE_SQUARE] THEN
  REWRITE_TAC[le_c; IN_UNIV; mul_c; IN_ELIM_THM] THEN
  EXISTS_TAC `\(x,y). NUMPAIR x y` THEN
  REWRITE_TAC[FORALL_PAIR_THM] THEN
  CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN MESON_TAC[NUMPAIR_INJ]);;

let UNION_LE_ADD_C = prove
 (`!s t:A->bool. (s UNION t) <=_c s +_c t`,
  REPEAT GEN_TAC THEN MATCH_MP_TAC CARD_LE_IMAGE_GEN THEN
  EXISTS_TAC `function INL x -> (x:A) | INR x -> x` THEN
  REWRITE_TAC[add_c; IMAGE_UNION] THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE] THEN
  REWRITE_TAC[GSYM IMAGE_o; o_DEF] THEN SET_TAC[]);;

let CARD_ADD_C = prove
 (`!s t. FINITE s /\ FINITE t ==> CARD(s +_c t) = CARD s + CARD t`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[add_c] THEN
  W(MP_TAC o PART_MATCH (lhs o rand) CARD_UNION o lhand o snd) THEN
  ASM_SIMP_TAC[SIMPLE_IMAGE; FINITE_IMAGE] THEN
  REWRITE_TAC[SET_RULE `IMAGE f s INTER IMAGE g t = {} <=>
                        !x y. x IN s /\ y IN t ==> ~(f x = g y)`] THEN
  REWRITE_TAC[sum_DISTINCT] THEN DISCH_THEN SUBST1_TAC THEN
  BINOP_TAC THEN MATCH_MP_TAC CARD_IMAGE_INJ THEN
  ASM_SIMP_TAC[sum_INJECTIVE]);;

(* ------------------------------------------------------------------------- *)
(* Various "arithmetical" lemmas.                                            *)
(* ------------------------------------------------------------------------- *)

let CARD_ADD_SYM = prove
 (`!s:A->bool t:B->bool. s +_c t =_c t +_c s`,
  REPEAT GEN_TAC THEN REWRITE_TAC[eq_c] THEN
  MP_TAC(prove_recursive_functions_exist sum_RECURSION
    `(!x. (h:A+B->B+A) (INL x) = INR x) /\ (!y. h(INR y) = INL y)`) THEN
  MATCH_MP_TAC MONO_EXISTS THEN
  SIMP_TAC[FORALL_SUM_THM; EXISTS_SUM_THM; EXISTS_UNIQUE_THM] THEN
  REWRITE_TAC[sum_DISTINCT; sum_INJECTIVE; IN_CARD_ADD] THEN MESON_TAC[]);;

let CARD_ADD_ASSOC = prove
 (`!s:A->bool t:B->bool u:C->bool. s +_c (t +_c u) =_c (s +_c t) +_c u`,
  REPEAT GEN_TAC THEN REWRITE_TAC[eq_c] THEN
  CHOOSE_TAC(prove_recursive_functions_exist sum_RECURSION
    `(!u. (i:B+C->(A+B)+C) (INL u) = INL(INR u)) /\
     (!v. i(INR v) = INR v)`) THEN
  MP_TAC(prove_recursive_functions_exist sum_RECURSION
    `(!x. (h:A+B+C->(A+B)+C) (INL x) = INL(INL x)) /\
     (!z. h(INR z) = i(z))`) THEN
  MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN STRIP_TAC THEN
  ASM_REWRITE_TAC[FORALL_SUM_THM; EXISTS_SUM_THM; EXISTS_UNIQUE_THM;
                  sum_DISTINCT; sum_INJECTIVE; IN_CARD_ADD] THEN
  MESON_TAC[]);;

let CARD_MUL_SYM = prove
 (`!s:A->bool t:B->bool. s *_c t =_c t *_c s`,
  REPEAT GEN_TAC THEN REWRITE_TAC[eq_c] THEN
  MP_TAC(prove_recursive_functions_exist pair_RECURSION
    `(!x:A y:B. h(x,y) = (y,x))`) THEN
  MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN STRIP_TAC THEN
  REWRITE_TAC[EXISTS_UNIQUE_THM; FORALL_PAIR_THM; EXISTS_PAIR_THM] THEN
  ASM_REWRITE_TAC[FORALL_PAIR_THM; IN_CARD_MUL; PAIR_EQ] THEN
  MESON_TAC[]);;

let CARD_MUL_ASSOC = prove
 (`!s:A->bool t:B->bool u:C->bool. s *_c (t *_c u) =_c (s *_c t) *_c u`,
  REPEAT GEN_TAC THEN REWRITE_TAC[eq_c] THEN
  CHOOSE_TAC(prove_recursive_functions_exist pair_RECURSION
    `(!x y z. (i:A->B#C->(A#B)#C) x (y,z) = (x,y),z)`) THEN
  MP_TAC(prove_recursive_functions_exist pair_RECURSION
    `(!x p. (h:A#B#C->(A#B)#C) (x,p) = i x p)`) THEN
  MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN STRIP_TAC THEN
  REWRITE_TAC[EXISTS_UNIQUE_THM; FORALL_PAIR_THM; EXISTS_PAIR_THM] THEN
  ASM_REWRITE_TAC[FORALL_PAIR_THM; IN_CARD_MUL; PAIR_EQ] THEN
  MESON_TAC[]);;

let CARD_LDISTRIB = prove
 (`!s:A->bool t:B->bool u:C->bool.
        s *_c (t +_c u) =_c (s *_c t) +_c (s *_c u)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[eq_c] THEN
  CHOOSE_TAC(prove_recursive_functions_exist sum_RECURSION
    `(!x y. (i:A->(B+C)->A#B+A#C) x (INL y) = INL(x,y)) /\
     (!x z. (i:A->(B+C)->A#B+A#C) x (INR z) = INR(x,z))`) THEN
  MP_TAC(prove_recursive_functions_exist pair_RECURSION
    `(!x s. (h:A#(B+C)->(A#B)+(A#C)) (x,s) = i x s)`) THEN
  MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN STRIP_TAC THEN
  ASM_REWRITE_TAC[EXISTS_UNIQUE_THM; FORALL_PAIR_THM; EXISTS_PAIR_THM;
                  FORALL_SUM_THM; EXISTS_SUM_THM; PAIR_EQ; IN_CARD_MUL;
                  sum_DISTINCT; sum_INJECTIVE; IN_CARD_ADD] THEN
  MESON_TAC[]);;

let CARD_RDISTRIB = prove
 (`!s:A->bool t:B->bool u:C->bool.
        (s +_c t) *_c u =_c (s *_c u) +_c (t *_c u)`,
  REPEAT GEN_TAC THEN
  TRANS_TAC CARD_EQ_TRANS
   `(u:C->bool) *_c ((s:A->bool) +_c (t:B->bool))` THEN
  REWRITE_TAC[CARD_MUL_SYM] THEN
  TRANS_TAC CARD_EQ_TRANS
   `(u:C->bool) *_c (s:A->bool) +_c (u:C->bool) *_c (t:B->bool)` THEN
  REWRITE_TAC[CARD_LDISTRIB] THEN
  MATCH_MP_TAC CARD_ADD_CONG THEN REWRITE_TAC[CARD_MUL_SYM]);;

let CARD_LE_ADDR = prove
 (`!s:A->bool t:B->bool. s <=_c s +_c t`,
  REPEAT GEN_TAC THEN REWRITE_TAC[le_c] THEN
  EXISTS_TAC `INL:A->A+B` THEN SIMP_TAC[IN_CARD_ADD; sum_INJECTIVE]);;

let CARD_LE_ADDL = prove
 (`!s:A->bool t:B->bool. t <=_c s +_c t`,
  REPEAT GEN_TAC THEN REWRITE_TAC[le_c] THEN
  EXISTS_TAC `INR:B->A+B` THEN SIMP_TAC[IN_CARD_ADD; sum_INJECTIVE]);;

(* ------------------------------------------------------------------------- *)
(* A rather special lemma but temporarily useful.                            *)
(* ------------------------------------------------------------------------- *)

let CARD_ADD_LE_MUL_INFINITE = prove
 (`!s:A->bool. INFINITE s ==> s +_c s <=_c s *_c s`,
  GEN_TAC THEN REWRITE_TAC[INFINITE_CARD_LE; le_c; IN_UNIV] THEN
  DISCH_THEN(X_CHOOSE_THEN `f:num->A` STRIP_ASSUME_TAC) THEN
  MP_TAC(prove_recursive_functions_exist sum_RECURSION
    `(!x. h(INL x) = (f(0),x):A#A) /\ (!x. h(INR x) = (f(1),x))`) THEN
  MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `h:A+A->A#A` THEN
  STRIP_TAC THEN
  REPEAT((MATCH_MP_TAC sum_INDUCT THEN
          ASM_REWRITE_TAC[IN_CARD_ADD; IN_CARD_MUL; PAIR_EQ])
         ORELSE STRIP_TAC) THEN
  ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[NUM_REDUCE_CONV `1 = 0`]);;

(* ------------------------------------------------------------------------- *)
(* Relate cardinal addition to the simple union operation.                   *)
(* ------------------------------------------------------------------------- *)

let CARD_DISJOINT_UNION = prove
 (`!s:A->bool t. (s INTER t = {}) ==> (s UNION t =_c s +_c t)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[EXTENSION; IN_INTER; NOT_IN_EMPTY] THEN
  STRIP_TAC THEN REWRITE_TAC[eq_c; IN_UNION] THEN
  EXISTS_TAC `\x:A. if x IN s then INL x else INR x` THEN
  REWRITE_TAC[FORALL_SUM_THM; IN_CARD_ADD] THEN
  REWRITE_TAC[COND_RAND; COND_RATOR] THEN
  REWRITE_TAC[TAUT `(if b then x else y) <=> b /\ x \/ ~b /\ y`] THEN
  REWRITE_TAC[sum_DISTINCT; sum_INJECTIVE; IN_CARD_ADD] THEN
  ASM_MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* The key to arithmetic on infinite cardinals: k^2 = k.                     *)
(* ------------------------------------------------------------------------- *)

let CARD_SQUARE_INFINITE = prove
 (`!k:A->bool. INFINITE k ==> (k *_c k =_c k)`,
  let lemma = prove
   (`INFINITE(s:A->bool) /\ s SUBSET k /\
     (!x y. R(x,y) ==> x IN (s *_c s) /\ y IN s) /\
     (!x. x IN (s *_c s) ==> ?!y. y IN s /\ R(x,y)) /\
     (!y:A. y IN s ==> ?!x. x IN (s *_c s) /\ R(x,y))
     ==> (s = {z | ?p. R(p,z)})`,
    REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN MESON_TAC[]) in
  REPEAT STRIP_TAC THEN
  ABBREV_TAC
    `P = \R. ?s. INFINITE(s:A->bool) /\ s SUBSET k /\
                 (!x y. R(x,y) ==> x IN (s *_c s) /\ y IN s) /\
                 (!x. x IN (s *_c s) ==> ?!y. y IN s /\ R(x,y)) /\
                 (!y. y IN s ==> ?!x. x IN (s *_c s) /\ R(x,y))` THEN
  MP_TAC(ISPEC `P:((A#A)#A->bool)->bool` ZL_SUBSETS_UNIONS_NONEMPTY) THEN
  ANTS_TAC THENL
   [CONJ_TAC THENL
     [FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN REWRITE_TAC[] THEN
      ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN
      REWRITE_TAC[RIGHT_EXISTS_AND_THM; GSYM EQ_C] THEN
      FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [INFINITE_CARD_LE]) THEN
      REWRITE_TAC[CARD_LE_EQ_SUBSET] THEN
      MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `s:A->bool` THEN
      STRIP_TAC THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
       [ASM_MESON_TAC[num_INFINITE; CARD_INFINITE_CONG]; ALL_TAC] THEN
      FIRST_ASSUM(fun th ->
       MP_TAC(MATCH_MP CARD_MUL_CONG (CONJ th th))) THEN
      GEN_REWRITE_TAC LAND_CONV [CARD_EQ_SYM] THEN
      DISCH_THEN(MP_TAC o C CONJ CARD_SQUARE_NUM) THEN
      DISCH_THEN(MP_TAC o MATCH_MP CARD_EQ_TRANS) THEN
      FIRST_ASSUM(fun th ->
        DISCH_THEN(ACCEPT_TAC o MATCH_MP CARD_EQ_TRANS o C CONJ th));
      ALL_TAC] THEN
    SUBGOAL_THEN
     `P = \R. INFINITE {z | ?x y. R((x,y),z)} /\
              (!x:A y z. R((x,y),z) ==> x IN k /\ y IN k /\ z IN k) /\
              (!x y. (?u v. R((u,v),x)) /\ (?u v. R((u,v),y))
                     ==> ?z. R((x,y),z)) /\
              (!x y. (?z. R((x,y),z))
                     ==> (?u v. R((u,v),x)) /\ (?u v. R((u,v),y))) /\
              (!x y z1 z2. R((x,y),z1) /\ R((x,y),z2) ==> (z1 = z2)) /\
              (!x1 y1 x2 y2 z. R((x1,y1),z) /\ R((x2,y2),z)
                               ==> (x1 = x2) /\ (y1 = y2))`
    SUBST1_TAC THENL
     [FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN REWRITE_TAC[] THEN
      ONCE_REWRITE_TAC[MATCH_MP(TAUT `(a ==> b) ==> (a <=> b /\ a)`) lemma] THEN
      REWRITE_TAC[UNWIND_THM2] THEN REWRITE_TAC[FUN_EQ_THM] THEN
      REWRITE_TAC[IN_CARD_MUL; EXISTS_PAIR_THM; SUBSET; FUN_EQ_THM;
                  IN_ELIM_THM; FORALL_PAIR_THM; EXISTS_UNIQUE_THM;
                  UNIONS; PAIR_EQ] THEN
      GEN_TAC THEN AP_TERM_TAC THEN MESON_TAC[];
      ALL_TAC] THEN
    FIRST_X_ASSUM(K ALL_TAC o SYM) THEN REWRITE_TAC[] THEN GEN_TAC THEN
    GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV)
     [TAUT `a ==> b /\ c <=> (a ==> b) /\ (a ==> c)`] THEN
    GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [FORALL_AND_THM] THEN
    MATCH_MP_TAC(TAUT
     `(c /\ d ==> f) /\ (a /\ b ==> e)
      ==> (a /\ (b /\ c) /\ d ==> e /\ f)`) THEN
    CONJ_TAC THENL
     [REWRITE_TAC[UNIONS; IN_ELIM_THM] THEN
      REWRITE_TAC[SUBSET; IN] THEN MESON_TAC[];
      ALL_TAC] THEN
    DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `s:(A#A)#A->bool`) MP_TAC) THEN
    DISCH_THEN(MP_TAC o SPEC `s:(A#A)#A->bool`) THEN
    ASM_REWRITE_TAC[INFINITE; CONTRAPOS_THM] THEN
    MATCH_MP_TAC(ONCE_REWRITE_RULE[TAUT `a /\ b ==> c <=> b ==> a ==> c`]
                      FINITE_SUBSET) THEN
    REWRITE_TAC[SUBSET; IN_ELIM_THM; UNIONS] THEN ASM_MESON_TAC[IN];
    ALL_TAC] THEN
  FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN REWRITE_TAC[] THEN
  DISCH_THEN(X_CHOOSE_THEN `R:(A#A)#A->bool`
   (CONJUNCTS_THEN2 (X_CHOOSE_TAC `s:A->bool`) ASSUME_TAC)) THEN
  SUBGOAL_THEN `(s:A->bool) *_c s =_c s` ASSUME_TAC THENL
   [REWRITE_TAC[EQ_C] THEN EXISTS_TAC `R:(A#A)#A->bool` THEN ASM_REWRITE_TAC[];
    ALL_TAC] THEN
  SUBGOAL_THEN `s +_c s <=_c (s:A->bool)` ASSUME_TAC THENL
   [TRANS_TAC CARD_LE_TRANS `(s:A->bool) *_c s` THEN
    ASM_SIMP_TAC[CARD_EQ_IMP_LE; CARD_ADD_LE_MUL_INFINITE];
    ALL_TAC] THEN
  SUBGOAL_THEN `(s:A->bool) INTER (k DIFF s) = {}` ASSUME_TAC THENL
   [REWRITE_TAC[EXTENSION; IN_INTER; IN_DIFF; NOT_IN_EMPTY] THEN MESON_TAC[];
    ALL_TAC] THEN
  DISJ_CASES_TAC(ISPECL [`k DIFF (s:A->bool)`; `s:A->bool`] CARD_LE_TOTAL)
  THENL
   [SUBGOAL_THEN `k = (s:A->bool) UNION (k DIFF s)` SUBST1_TAC THENL
     [FIRST_ASSUM(MP_TAC o CONJUNCT1 o CONJUNCT2) THEN
      REWRITE_TAC[SUBSET; EXTENSION; IN_INTER; NOT_IN_EMPTY;
                  IN_UNION; IN_DIFF] THEN
      MESON_TAC[];
      ALL_TAC] THEN
    REWRITE_TAC[GSYM CARD_LE_ANTISYM; CARD_LE_SQUARE] THEN
    TRANS_TAC CARD_LE_TRANS
     `((s:A->bool) +_c (k DIFF s:A->bool)) *_c (s +_c k DIFF s)` THEN
    ASM_SIMP_TAC[CARD_DISJOINT_UNION; CARD_EQ_IMP_LE; CARD_MUL_CONG] THEN
    TRANS_TAC CARD_LE_TRANS `((s:A->bool) +_c s) *_c (s +_c s)` THEN
    ASM_SIMP_TAC[CARD_LE_ADD; CARD_LE_MUL; CARD_LE_REFL] THEN
    TRANS_TAC CARD_LE_TRANS `(s:A->bool) *_c s` THEN
    ASM_SIMP_TAC[CARD_LE_MUL] THEN
    TRANS_TAC CARD_LE_TRANS `s:A->bool` THEN ASM_SIMP_TAC[CARD_EQ_IMP_LE] THEN
    REWRITE_TAC[CARD_LE_EQ_SUBSET] THEN EXISTS_TAC `s:A->bool` THEN
    SIMP_TAC[CARD_EQ_REFL; SUBSET; IN_UNION];
    ALL_TAC] THEN
  UNDISCH_TAC `s:A->bool <=_c k DIFF s` THEN
  REWRITE_TAC[CARD_LE_EQ_SUBSET] THEN
  DISCH_THEN(X_CHOOSE_THEN `d:A->bool` STRIP_ASSUME_TAC) THEN
  SUBGOAL_THEN `(s:A->bool *_c d) UNION (d *_c s) UNION (d *_c d) =_c d`
  MP_TAC THENL
   [TRANS_TAC CARD_EQ_TRANS
       `((s:A->bool) *_c (d:A->bool)) +_c ((d *_c s) +_c (d *_c d))` THEN
    CONJ_TAC THENL
     [TRANS_TAC CARD_EQ_TRANS
       `((s:A->bool) *_c d) +_c ((d *_c s) UNION (d *_c d))` THEN
      CONJ_TAC THENL
       [ALL_TAC;
        MATCH_MP_TAC CARD_ADD_CONG THEN REWRITE_TAC[CARD_EQ_REFL]] THEN
      MATCH_MP_TAC CARD_DISJOINT_UNION THEN
      UNDISCH_TAC `s INTER (k DIFF s:A->bool) = {}` THEN
      UNDISCH_TAC `d SUBSET (k DIFF s:A->bool)` THEN
      REWRITE_TAC[EXTENSION; SUBSET; FORALL_PAIR_THM; NOT_IN_EMPTY;
                  IN_INTER; IN_UNION; IN_CARD_MUL; IN_DIFF] THEN MESON_TAC[];
      ALL_TAC] THEN
    TRANS_TAC CARD_EQ_TRANS `s:A->bool` THEN ASM_REWRITE_TAC[] THEN
    TRANS_TAC CARD_EQ_TRANS
      `(s:A->bool *_c s) +_c (s *_c s) +_c (s *_c s)` THEN
    CONJ_TAC THENL
     [REPEAT(MATCH_MP_TAC CARD_ADD_CONG THEN CONJ_TAC) THEN
      MATCH_MP_TAC CARD_MUL_CONG THEN ASM_REWRITE_TAC[CARD_EQ_REFL] THEN
      ONCE_REWRITE_TAC[CARD_EQ_SYM] THEN ASM_REWRITE_TAC[];
      ALL_TAC] THEN
    TRANS_TAC CARD_EQ_TRANS `(s:A->bool) +_c s +_c s` THEN CONJ_TAC THENL
     [REPEAT(MATCH_MP_TAC CARD_ADD_CONG THEN ASM_REWRITE_TAC[]);
      ALL_TAC] THEN
    REWRITE_TAC[GSYM CARD_LE_ANTISYM; CARD_LE_ADDR] THEN
    TRANS_TAC CARD_LE_TRANS `(s:A->bool) +_c s` THEN
    ASM_SIMP_TAC[CARD_LE_ADD; CARD_LE_REFL];
    ALL_TAC] THEN
  FIRST_X_ASSUM(CONJUNCTS_THEN ASSUME_TAC) THEN
  FIRST_X_ASSUM(CONJUNCTS_THEN ASSUME_TAC) THEN
  REWRITE_TAC[EQ_C; IN_UNION] THEN
  DISCH_THEN(X_CHOOSE_TAC `S:(A#A)#A->bool`) THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `\x:(A#A)#A. R(x) \/ S(x)`) THEN
  ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN DISCH_THEN(K ALL_TAC) THEN
  REWRITE_TAC[NOT_IMP] THEN REPEAT CONJ_TAC THENL
   [EXISTS_TAC `(s:A->bool) UNION d`;
    SIMP_TAC[SUBSET; IN];
    SUBGOAL_THEN `~(d:A->bool = {})` MP_TAC THENL
     [DISCH_THEN(MP_TAC o AP_TERM `FINITE:(A->bool)->bool`) THEN
      REWRITE_TAC[FINITE_RULES; GSYM INFINITE] THEN
      ASM_MESON_TAC[CARD_INFINITE_CONG];
      ALL_TAC] THEN
    REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN DISCH_THEN(X_CHOOSE_TAC `a:A`) THEN
    FIRST_ASSUM(MP_TAC o C MATCH_MP
     (ASSUME `a:A IN d`) o last o CONJUNCTS) THEN
    DISCH_THEN(MP_TAC o EXISTENCE) THEN
    DISCH_THEN(X_CHOOSE_THEN `b:A#A` (CONJUNCTS_THEN ASSUME_TAC)) THEN
    REWRITE_TAC[EXTENSION; NOT_FORALL_THM] THEN
    EXISTS_TAC `(b:A#A,a:A)` THEN ASM_REWRITE_TAC[IN] THEN
    DISCH_THEN(fun th -> FIRST_ASSUM
     (MP_TAC o CONJUNCT2 o C MATCH_MP th o CONJUNCT1)) THEN
    MAP_EVERY UNDISCH_TAC
     [`a:A IN d`; `(d:A->bool) SUBSET (k DIFF s)`] THEN
    REWRITE_TAC[SUBSET; IN_DIFF] THEN MESON_TAC[]] THEN
  REWRITE_TAC[INFINITE; FINITE_UNION; DE_MORGAN_THM] THEN
  ASM_REWRITE_TAC[GSYM INFINITE] THEN CONJ_TAC THENL
   [MAP_EVERY UNDISCH_TAC
     [`(d:A->bool) SUBSET (k DIFF s)`; `(s:A->bool) SUBSET k`] THEN
    REWRITE_TAC[SUBSET; IN_UNION; IN_DIFF] THEN MESON_TAC[];
    ALL_TAC] THEN
  REPEAT(FIRST_ASSUM(UNDISCH_TAC o check is_conj o concl)) THEN
  REWRITE_TAC[FORALL_PAIR_THM; EXISTS_UNIQUE_THM; EXISTS_PAIR_THM;
              IN_CARD_MUL; IN_UNION; PAIR_EQ] THEN
  MAP_EVERY UNDISCH_TAC
   [`(s:A->bool) SUBSET k`;
    `(d:A->bool) SUBSET (k DIFF s)`] THEN
  REWRITE_TAC[SUBSET; EXTENSION; NOT_IN_EMPTY; IN_INTER; IN_DIFF] THEN
  POP_ASSUM_LIST(K ALL_TAC) THEN
  REPEAT DISCH_TAC THEN REPEAT CONJ_TAC THENL
   [ASM_MESON_TAC[]; ASM_MESON_TAC[]; ALL_TAC] THEN
  GEN_TAC THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL
   [ASM_MESON_TAC[]; ALL_TAC] THEN
  DISCH_THEN(fun th -> CONJ_TAC THEN MP_TAC th) THENL
   [ALL_TAC; ASM_MESON_TAC[]] THEN
  DISCH_THEN(fun th ->
   FIRST_ASSUM(MP_TAC o C MATCH_MP th o last o CONJUNCTS)) THEN
  MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Preservation of finiteness.                                               *)
(* ------------------------------------------------------------------------- *)

let CARD_ADD_FINITE = prove
 (`!s t. FINITE s /\ FINITE t ==> FINITE(s +_c t)`,
  SIMP_TAC[add_c; FINITE_UNION; SIMPLE_IMAGE; FINITE_IMAGE]);;

let CARD_ADD_FINITE_EQ = prove
 (`!s:A->bool t:B->bool. FINITE(s +_c t) <=> FINITE s /\ FINITE t`,
  REPEAT GEN_TAC THEN EQ_TAC THEN REWRITE_TAC[CARD_ADD_FINITE] THEN
  DISCH_THEN(fun th -> CONJ_TAC THEN MP_TAC th) THEN
  MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] CARD_LE_FINITE) THEN
  REWRITE_TAC[CARD_LE_ADDL; CARD_LE_ADDR]);;

let CARD_MUL_FINITE = prove
 (`!s t. FINITE s /\ FINITE t ==> FINITE(s *_c t)`,
  SIMP_TAC[mul_c; FINITE_PRODUCT]);;

(* ------------------------------------------------------------------------- *)
(* Hence the "absorption laws" for arithmetic with an infinite cardinal.     *)
(* ------------------------------------------------------------------------- *)

let CARD_MUL_ABSORB_LE = prove
 (`!s:A->bool t:B->bool. INFINITE(t) /\ s <=_c t ==> s *_c t <=_c t`,
  REPEAT STRIP_TAC THEN
  TRANS_TAC CARD_LE_TRANS `(t:B->bool) *_c t` THEN
  ASM_SIMP_TAC[CARD_LE_MUL; CARD_LE_REFL;
               CARD_SQUARE_INFINITE; CARD_EQ_IMP_LE]);;

let CARD_MUL2_ABSORB_LE = prove
 (`!s:A->bool t:B->bool u:C->bool.
     INFINITE(u) /\ s <=_c u /\ t <=_c u ==> s *_c t <=_c u`,
  REPEAT STRIP_TAC THEN
  TRANS_TAC CARD_LE_TRANS `(s:A->bool) *_c (u:C->bool)` THEN
  ASM_SIMP_TAC[CARD_MUL_ABSORB_LE] THEN MATCH_MP_TAC CARD_LE_MUL THEN
  ASM_REWRITE_TAC[CARD_LE_REFL]);;

let CARD_ADD_ABSORB_LE = prove
 (`!s:A->bool t:B->bool. INFINITE(t) /\ s <=_c t ==> s +_c t <=_c t`,
  REPEAT STRIP_TAC THEN
  TRANS_TAC CARD_LE_TRANS `(t:B->bool) *_c t` THEN
  ASM_SIMP_TAC[CARD_SQUARE_INFINITE; CARD_EQ_IMP_LE] THEN
  TRANS_TAC CARD_LE_TRANS `(t:B->bool) +_c t` THEN
  ASM_SIMP_TAC[CARD_ADD_LE_MUL_INFINITE; CARD_LE_ADD; CARD_LE_REFL]);;

let CARD_ADD2_ABSORB_LE = prove
 (`!s:A->bool t:B->bool u:C->bool.
     INFINITE(u) /\ s <=_c u /\ t <=_c u ==> s +_c t <=_c u`,
  REPEAT STRIP_TAC THEN
  TRANS_TAC CARD_LE_TRANS `(s:A->bool) +_c (u:C->bool)` THEN
  ASM_SIMP_TAC[CARD_ADD_ABSORB_LE] THEN MATCH_MP_TAC CARD_LE_ADD THEN
  ASM_REWRITE_TAC[CARD_LE_REFL]);;

let CARD_MUL_ABSORB = prove
 (`!s:A->bool t:B->bool.
     INFINITE(t) /\ ~(s = {}) /\ s <=_c t ==> s *_c t =_c t`,
  SIMP_TAC[GSYM CARD_LE_ANTISYM; CARD_MUL_ABSORB_LE] THEN REPEAT STRIP_TAC THEN
  FIRST_X_ASSUM(X_CHOOSE_TAC `a:A` o
   GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN
  REWRITE_TAC[le_c] THEN EXISTS_TAC `\x:B. (a:A,x)` THEN
  ASM_SIMP_TAC[IN_CARD_MUL; PAIR_EQ]);;

let CARD_ADD_ABSORB = prove
 (`!s:A->bool t:B->bool. INFINITE(t) /\ s <=_c t ==> s +_c t =_c t`,
  SIMP_TAC[GSYM CARD_LE_ANTISYM; CARD_LE_ADDL; CARD_ADD_ABSORB_LE]);;

let CARD_ADD2_ABSORB_LT = prove
 (`!s:A->bool t:B->bool u:C->bool.
        INFINITE u /\ s <_c u /\ t <_c u ==> s +_c t <_c u`,
  REPEAT STRIP_TAC THEN
  ASM_CASES_TAC `FINITE((s:A->bool) +_c (t:B->bool))` THEN
  ASM_SIMP_TAC[CARD_LT_FINITE_INFINITE] THEN
  DISJ_CASES_TAC(ISPECL [`s:A->bool`; `t:B->bool`] CARD_LE_TOTAL) THENL
   [ASM_CASES_TAC `FINITE(t:B->bool)` THENL
     [ASM_MESON_TAC[CARD_LE_FINITE; CARD_ADD_FINITE];
      TRANS_TAC CARD_LET_TRANS `t:B->bool`];
    ASM_CASES_TAC `FINITE(s:A->bool)` THENL
     [ASM_MESON_TAC[CARD_LE_FINITE; CARD_ADD_FINITE];
      TRANS_TAC CARD_LET_TRANS `s:A->bool`]] THEN
  ASM_REWRITE_TAC[] THEN
  MATCH_MP_TAC CARD_ADD2_ABSORB_LE THEN
  ASM_REWRITE_TAC[INFINITE; CARD_LE_REFL]);;

let CARD_LT_ADD = prove
 (`!s:A->bool s':B->bool t:C->bool t':D->bool.
        s <_c s' /\ t <_c t' ==> s +_c t <_c s' +_c t'`,
  REPEAT STRIP_TAC THEN
  ASM_CASES_TAC `FINITE((s':B->bool) +_c (t':D->bool))` THENL
   [FIRST_X_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I
      [CARD_ADD_FINITE_EQ]) THEN
    SUBGOAL_THEN `FINITE(s:A->bool) /\ FINITE(t:C->bool)`
    STRIP_ASSUME_TAC THENL
     [CONJ_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP
        (REWRITE_RULE[IMP_CONJ_ALT] CARD_LE_FINITE) o
        MATCH_MP CARD_LT_IMP_LE) THEN
      ASM_REWRITE_TAC[];
      MAP_EVERY UNDISCH_TAC
       [`(s:A->bool) <_c (s':B->bool)`;
        `(t:C->bool) <_c (t':D->bool)`] THEN
      ASM_SIMP_TAC[CARD_LT_CARD; CARD_ADD_FINITE; CARD_ADD_C] THEN
      ARITH_TAC];
    MATCH_MP_TAC CARD_ADD2_ABSORB_LT THEN ASM_REWRITE_TAC[INFINITE] THEN
    CONJ_TAC THENL
     [TRANS_TAC CARD_LTE_TRANS `s':B->bool` THEN
      ASM_REWRITE_TAC[CARD_LE_ADDR];
      TRANS_TAC CARD_LTE_TRANS `t':D->bool` THEN
      ASM_REWRITE_TAC[CARD_LE_ADDL]]]);;

(* ------------------------------------------------------------------------- *)
(* Some more ad-hoc but useful theorems.                                     *)
(* ------------------------------------------------------------------------- *)

let CARD_MUL_LT_LEMMA = prove
 (`!s t:B->bool u. s <=_c t /\ t <_c u /\ INFINITE u ==> s *_c t <_c u`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `FINITE(t:B->bool)` THENL
   [REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
    ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN
    REWRITE_TAC[CARD_NOT_LT; INFINITE] THEN
    ASM_MESON_TAC[CARD_LE_FINITE; CARD_MUL_FINITE];
    ASM_MESON_TAC[INFINITE; CARD_MUL_ABSORB_LE; CARD_LET_TRANS]]);;

let CARD_MUL_LT_INFINITE = prove
 (`!s:A->bool t:B->bool u. s <_c u /\ t <_c u /\ INFINITE u ==> s *_c t <_c u`,
  REPEAT GEN_TAC THEN
  DISJ_CASES_TAC(ISPECL [`s:A->bool`; `t:B->bool`] CARD_LE_TOTAL) THENL
   [ASM_MESON_TAC[CARD_MUL_SYM; CARD_MUL_LT_LEMMA];
    STRIP_TAC THEN TRANS_TAC CARD_LET_TRANS `t:B->bool *_c s:A->bool` THEN
    ASM_MESON_TAC[CARD_EQ_IMP_LE; CARD_MUL_SYM; CARD_MUL_LT_LEMMA]]);;

(* ------------------------------------------------------------------------- *)
(* Cantor's theorem.                                                         *)
(* ------------------------------------------------------------------------- *)

let CANTOR_THM = prove
 (`!s:A->bool. s <_c {t | t SUBSET s}`,
  GEN_TAC THEN REWRITE_TAC[lt_c] THEN CONJ_TAC THENL
   [REWRITE_TAC[le_c] THEN EXISTS_TAC `(=):A->A->bool` THEN
    REWRITE_TAC[FUN_EQ_THM; IN_ELIM_THM; SUBSET; IN] THEN MESON_TAC[];
    REWRITE_TAC[LE_C; IN_ELIM_THM; SURJECTIVE_RIGHT_INVERSE] THEN
    REWRITE_TAC[NOT_EXISTS_THM] THEN X_GEN_TAC `g:A->(A->bool)` THEN
    DISCH_THEN(MP_TAC o SPEC `\x:A. s(x) /\ ~(g x x)`) THEN
    REWRITE_TAC[SUBSET; IN; FUN_EQ_THM] THEN MESON_TAC[]]);;

let CANTOR_THM_UNIV = prove
 (`(UNIV:A->bool) <_c (UNIV:(A->bool)->bool)`,
  MP_TAC(ISPEC `UNIV:A->bool` CANTOR_THM) THEN
  MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN
  REWRITE_TAC[EXTENSION; SUBSET; IN_UNIV; IN_ELIM_THM]);;

(* ------------------------------------------------------------------------- *)
(* Lemmas about countability.                                                *)
(* ------------------------------------------------------------------------- *)

let NUM_COUNTABLE = prove
 (`COUNTABLE(:num)`,
  REWRITE_TAC[COUNTABLE; ge_c; CARD_LE_REFL]);;

let COUNTABLE_ALT = prove
 (`!s. COUNTABLE s <=> s <=_c (:num)`,
  REWRITE_TAC[COUNTABLE; ge_c]);;

let COUNTABLE_CASES = prove
 (`!s. COUNTABLE s <=> FINITE s \/ s =_c (:num)`,
  REWRITE_TAC[COUNTABLE_ALT; FINITE_CARD_LT; CARD_LE_LT]);;

let CARD_LE_COUNTABLE = prove
 (`!s t:A->bool. COUNTABLE t /\ s <=_c t ==> COUNTABLE s`,
  REWRITE_TAC[COUNTABLE; ge_c] THEN REPEAT STRIP_TAC THEN
  TRANS_TAC CARD_LE_TRANS `t:A->bool` THEN ASM_REWRITE_TAC[]);;

let CARD_EQ_COUNTABLE = prove
 (`!s t:A->bool. COUNTABLE t /\ s =_c t ==> COUNTABLE s`,
  REWRITE_TAC[GSYM CARD_LE_ANTISYM] THEN MESON_TAC[CARD_LE_COUNTABLE]);;

let CARD_COUNTABLE_CONG = prove
 (`!s t. s =_c t ==> (COUNTABLE s <=> COUNTABLE t)`,
  REWRITE_TAC[GSYM CARD_LE_ANTISYM] THEN MESON_TAC[CARD_LE_COUNTABLE]);;

let COUNTABLE_SUBSET = prove
 (`!s t:A->bool. COUNTABLE t /\ s SUBSET t ==> COUNTABLE s`,
  REWRITE_TAC[COUNTABLE; ge_c] THEN REPEAT STRIP_TAC THEN
  TRANS_TAC CARD_LE_TRANS `t:A->bool` THEN
  ASM_SIMP_TAC[CARD_LE_SUBSET]);;

let COUNTABLE_RESTRICT = prove
 (`!s P. COUNTABLE s ==> COUNTABLE {x | x IN s /\ P x}`,
  REPEAT GEN_TAC THEN
  MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] COUNTABLE_SUBSET) THEN
  SET_TAC[]);;

let FINITE_IMP_COUNTABLE = prove
 (`!s. FINITE s ==> COUNTABLE s`,
  SIMP_TAC[FINITE_CARD_LT; lt_c; COUNTABLE; ge_c]);;

let COUNTABLE_IMAGE = prove
 (`!f:A->B s. COUNTABLE s ==> COUNTABLE (IMAGE f s)`,
  REWRITE_TAC[COUNTABLE; ge_c] THEN REPEAT STRIP_TAC THEN
  TRANS_TAC CARD_LE_TRANS `s:A->bool` THEN
  ASM_SIMP_TAC[CARD_LE_IMAGE]);;

let COUNTABLE_IMAGE_INJ_GENERAL = prove
 (`!(f:A->B) A s.
        (!x y. x IN s /\ y IN s /\ f(x) = f(y) ==> x = y) /\
        COUNTABLE A
        ==> COUNTABLE {x | x IN s /\ f(x) IN A}`,
  REPEAT STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [INJECTIVE_ON_LEFT_INVERSE]) THEN
  DISCH_THEN(X_CHOOSE_TAC `g:B->A`) THEN
  MATCH_MP_TAC COUNTABLE_SUBSET THEN EXISTS_TAC `IMAGE (g:B->A) A` THEN
  ASM_SIMP_TAC[COUNTABLE_IMAGE] THEN ASM SET_TAC[]);;

let COUNTABLE_IMAGE_INJ_EQ = prove
 (`!(f:A->B) s.
        (!x y. x IN s /\ y IN s /\ (f(x) = f(y)) ==> (x = y))
        ==> (COUNTABLE(IMAGE f s) <=> COUNTABLE s)`,
  REPEAT STRIP_TAC THEN EQ_TAC THEN ASM_SIMP_TAC[COUNTABLE_IMAGE] THEN
  POP_ASSUM MP_TAC THEN REWRITE_TAC[IMP_IMP] THEN
  DISCH_THEN(MP_TAC o MATCH_MP COUNTABLE_IMAGE_INJ_GENERAL) THEN
  MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN SET_TAC[]);;

let COUNTABLE_IMAGE_INJ = prove
 (`!(f:A->B) A.
        (!x y. (f(x) = f(y)) ==> (x = y)) /\
         COUNTABLE A
         ==> COUNTABLE {x | f(x) IN A}`,
  REPEAT GEN_TAC THEN
  MP_TAC(SPECL [`f:A->B`; `A:B->bool`; `UNIV:A->bool`]
    COUNTABLE_IMAGE_INJ_GENERAL) THEN REWRITE_TAC[IN_UNIV]);;

let COUNTABLE_EMPTY = prove
 (`COUNTABLE {}`,
  SIMP_TAC[FINITE_IMP_COUNTABLE; FINITE_RULES]);;

let COUNTABLE_INTER = prove
 (`!s t. COUNTABLE s \/ COUNTABLE t ==> COUNTABLE (s INTER t)`,
  REWRITE_TAC[TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`] THEN
  REPEAT GEN_TAC THEN CONJ_TAC THEN
  MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] COUNTABLE_SUBSET) THEN
  SET_TAC[]);;

let COUNTABLE_UNION_IMP = prove
 (`!s t:A->bool. COUNTABLE s /\ COUNTABLE t ==> COUNTABLE(s UNION t)`,
  REWRITE_TAC[COUNTABLE; ge_c] THEN REPEAT STRIP_TAC THEN
  TRANS_TAC CARD_LE_TRANS `(s:A->bool) +_c (t:A->bool)` THEN
  ASM_SIMP_TAC[CARD_ADD2_ABSORB_LE; num_INFINITE; UNION_LE_ADD_C]);;

let COUNTABLE_UNION = prove
 (`!s t:A->bool. COUNTABLE(s UNION t) <=> COUNTABLE s /\ COUNTABLE t`,
  REPEAT GEN_TAC THEN EQ_TAC THEN REWRITE_TAC[COUNTABLE_UNION_IMP] THEN
  DISCH_THEN(fun th -> CONJ_TAC THEN MP_TAC th) THEN
  MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] COUNTABLE_SUBSET) THEN
  SET_TAC[]);;

let COUNTABLE_SING = prove
 (`!x. COUNTABLE {x}`,
  SIMP_TAC[FINITE_IMP_COUNTABLE; FINITE_SING]);;

let COUNTABLE_INSERT = prove
 (`!x s. COUNTABLE(x INSERT s) <=> COUNTABLE s`,
  ONCE_REWRITE_TAC[SET_RULE `x INSERT s = {x} UNION s`] THEN
  REWRITE_TAC[COUNTABLE_UNION; COUNTABLE_SING]);;

let COUNTABLE_DELETE = prove
 (`!x:A s. COUNTABLE(s DELETE x) <=> COUNTABLE s`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `(x:A) IN s` THEN
  ASM_SIMP_TAC[SET_RULE `~(x IN s) ==> s DELETE x = s`] THEN
  MATCH_MP_TAC EQ_TRANS THEN
  EXISTS_TAC `COUNTABLE((x:A) INSERT (s DELETE x))` THEN CONJ_TAC THENL
   [REWRITE_TAC[COUNTABLE_INSERT]; AP_TERM_TAC THEN ASM SET_TAC[]]);;

let COUNTABLE_DIFF_FINITE = prove
 (`!s t. FINITE s ==> (COUNTABLE(t DIFF s) <=> COUNTABLE t)`,
  REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[DIFF_EMPTY; SET_RULE `s DIFF (x INSERT t) = (s DIFF t) DELETE x`;
           COUNTABLE_DELETE]);;

let COUNTABLE_CROSS = prove
 (`!s t. COUNTABLE s /\ COUNTABLE t ==> COUNTABLE(s CROSS t)`,
  REWRITE_TAC[COUNTABLE; ge_c; CROSS; GSYM mul_c] THEN
  SIMP_TAC[CARD_MUL2_ABSORB_LE; num_INFINITE]);;

let COUNTABLE_AS_IMAGE_SUBSET = prove
 (`!s. COUNTABLE s ==> ?f. s SUBSET (IMAGE f (:num))`,
  REWRITE_TAC[COUNTABLE; ge_c; LE_C; SUBSET; IN_IMAGE] THEN MESON_TAC[]);;

let COUNTABLE_AS_IMAGE_SUBSET_EQ = prove
 (`!s:A->bool. COUNTABLE s <=> ?f. s SUBSET (IMAGE f (:num))`,
  REWRITE_TAC[COUNTABLE; ge_c; LE_C; SUBSET; IN_IMAGE] THEN MESON_TAC[]);;

let COUNTABLE_AS_IMAGE = prove
 (`!s:A->bool. COUNTABLE s /\ ~(s = {}) ==> ?f. s = IMAGE f (:num)`,
  REPEAT STRIP_TAC THEN FIRST_X_ASSUM(X_CHOOSE_TAC `a:A` o
    GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN
  FIRST_X_ASSUM(MP_TAC o MATCH_MP COUNTABLE_AS_IMAGE_SUBSET) THEN
  DISCH_THEN(X_CHOOSE_TAC `f:num->A`) THEN
  EXISTS_TAC `\n. if (f:num->A) n IN s then f n else a` THEN
  ASM SET_TAC[]);;

let FORALL_COUNTABLE_AS_IMAGE = prove
 (`(!d. COUNTABLE d ==> P d) <=> P {} /\ (!f. P(IMAGE f (:num)))`,
  MESON_TAC[COUNTABLE_AS_IMAGE; COUNTABLE_IMAGE; NUM_COUNTABLE;
            COUNTABLE_EMPTY]);;

let COUNTABLE_AS_INJECTIVE_IMAGE = prove
 (`!s. COUNTABLE s /\ INFINITE s
       ==> ?f. s = IMAGE f (:num) /\ (!m n. f(m) = f(n) ==> m = n)`,
  GEN_TAC THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN
  REWRITE_TAC[INFINITE_CARD_LE; COUNTABLE; ge_c] THEN
  REWRITE_TAC[CARD_LE_ANTISYM; eq_c] THEN
  MATCH_MP_TAC MONO_EXISTS THEN SET_TAC[]);;

let COUNTABLE_UNIONS = prove
 (`!A:(A->bool)->bool.
        COUNTABLE A /\ (!s. s IN A ==> COUNTABLE s)
        ==> COUNTABLE (UNIONS A)`,
  GEN_TAC THEN
  GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV)
   [COUNTABLE_AS_IMAGE_SUBSET_EQ] THEN
  DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `f:num->A->bool`) MP_TAC) THEN
  GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [RIGHT_IMP_EXISTS_THM] THEN
  REWRITE_TAC[SKOLEM_THM] THEN
  DISCH_THEN(X_CHOOSE_TAC `g:(A->bool)->num->A`) THEN
  MATCH_MP_TAC COUNTABLE_SUBSET THEN
  EXISTS_TAC `IMAGE (\(m,n). (g:(A->bool)->num->A) ((f:num->A->bool) m) n)
                    ((:num) CROSS (:num))` THEN
  ASM_SIMP_TAC[COUNTABLE_IMAGE; COUNTABLE_CROSS; NUM_COUNTABLE] THEN
  REWRITE_TAC[SUBSET; FORALL_IN_UNIONS] THEN
  REWRITE_TAC[IN_IMAGE; EXISTS_PAIR_THM; IN_CROSS; IN_UNIV] THEN
  ASM SET_TAC[]);;

let COUNTABLE_PRODUCT_DEPENDENT = prove
 (`!f:A->B->C s t.
        COUNTABLE s /\ (!x. x IN s ==> COUNTABLE(t x))
        ==> COUNTABLE {f x y | x IN s /\ y IN (t x)}`,
  REPEAT GEN_TAC THEN DISCH_TAC THEN
  SUBGOAL_THEN `{(f:A->B->C) x y | x IN s /\ y IN (t x)} =
                IMAGE (\(x,y). f x y) {(x,y) | x IN s /\ y IN (t x)}`
  SUBST1_TAC THENL
   [REWRITE_TAC[EXTENSION; IN_IMAGE; EXISTS_PAIR_THM; IN_ELIM_PAIR_THM] THEN
    SET_TAC[];
    MATCH_MP_TAC COUNTABLE_IMAGE THEN POP_ASSUM MP_TAC] THEN
  GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV)
   [COUNTABLE_AS_IMAGE_SUBSET_EQ] THEN
  DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `f:num->A`) MP_TAC) THEN
  GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [RIGHT_IMP_EXISTS_THM] THEN
  REWRITE_TAC[SKOLEM_THM] THEN
  DISCH_THEN(X_CHOOSE_TAC `g:A->num->B`) THEN
  MATCH_MP_TAC COUNTABLE_SUBSET THEN
  EXISTS_TAC `IMAGE (\(m,n). (f:num->A) m,(g:A->num->B)(f m) n)
                    ((:num) CROSS (:num))` THEN
  ASM_SIMP_TAC[COUNTABLE_IMAGE; COUNTABLE_CROSS; NUM_COUNTABLE] THEN
  REWRITE_TAC[SUBSET; FORALL_IN_UNIONS] THEN
  REWRITE_TAC[IN_IMAGE; FORALL_PAIR_THM; IN_ELIM_PAIR_THM;
              EXISTS_PAIR_THM; IN_CROSS; IN_UNIV] THEN
  ASM SET_TAC[]);;

let COUNTABLE_CARD_MUL = prove
 (`!s:A->bool t:B->bool. COUNTABLE s /\ COUNTABLE t ==> COUNTABLE(s *_c t)`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[mul_c] THEN
  ASM_SIMP_TAC[COUNTABLE_PRODUCT_DEPENDENT]);;

let COUNTABLE_CARD_MUL_EQ = prove
 (`!s:A->bool t:B->bool.
        COUNTABLE(s *_c t) <=> s = {} \/ t = {} \/ COUNTABLE s /\ COUNTABLE t`,
  REPEAT GEN_TAC THEN REWRITE_TAC[mul_c] THEN
  MAP_EVERY ASM_CASES_TAC [`s:A->bool = {}`; `t:B->bool = {}`] THEN
  ASM_REWRITE_TAC[COUNTABLE_EMPTY; EMPTY_GSPEC; NOT_IN_EMPTY;
                  SET_RULE `{x,y | F} = {}`] THEN
  EQ_TAC THEN SIMP_TAC[REWRITE_RULE[mul_c] COUNTABLE_CARD_MUL] THEN
  REPEAT STRIP_TAC THEN MATCH_MP_TAC COUNTABLE_SUBSET THENL
   [EXISTS_TAC `IMAGE FST ((s:A->bool) *_c (t:B->bool))`;
    EXISTS_TAC `IMAGE SND ((s:A->bool) *_c (t:B->bool))`] THEN
  ASM_SIMP_TAC[COUNTABLE_IMAGE; mul_c; SUBSET; IN_IMAGE; EXISTS_PAIR_THM] THEN
  REWRITE_TAC[IN_ELIM_PAIR_THM] THEN ASM SET_TAC[]);;

let CARD_EQ_PCROSS = prove
 (`!s:A^M->bool t:A^N->bool. s PCROSS t =_c s *_c t`,
  REPEAT GEN_TAC THEN REWRITE_TAC[EQ_C_BIJECTIONS; mul_c] THEN
  EXISTS_TAC `\z:A^(M,N)finite_sum. fstcart z,sndcart z` THEN
  EXISTS_TAC `\(x:A^M,y:A^N). pastecart x y` THEN
  REWRITE_TAC[FORALL_IN_GSPEC; PASTECART_IN_PCROSS] THEN
  REWRITE_TAC[IN_ELIM_PAIR_THM; PASTECART_FST_SND] THEN
  REWRITE_TAC[FORALL_IN_PCROSS; FSTCART_PASTECART; SNDCART_PASTECART]);;

let COUNTABLE_PCROSS_EQ = prove
 (`!s:A^M->bool t:A^N->bool.
        COUNTABLE(s PCROSS t) <=>
        s = {} \/ t = {} \/ COUNTABLE s /\ COUNTABLE t`,
  REPEAT GEN_TAC THEN MATCH_MP_TAC EQ_TRANS THEN
  EXISTS_TAC `COUNTABLE((s:A^M->bool) *_c (t:A^N->bool))` THEN CONJ_TAC THENL
   [MATCH_MP_TAC CARD_COUNTABLE_CONG THEN REWRITE_TAC[CARD_EQ_PCROSS];
    REWRITE_TAC[COUNTABLE_CARD_MUL_EQ]]);;

let COUNTABLE_PCROSS = prove
 (`!s:A^M->bool t:A^N->bool.
        COUNTABLE s /\ COUNTABLE t ==> COUNTABLE(s PCROSS t)`,
  SIMP_TAC[COUNTABLE_PCROSS_EQ]);;

let COUNTABLE_CART = prove
 (`!P. (!i. 1 <= i /\ i <= dimindex(:N) ==> COUNTABLE {x | P i x})
       ==> COUNTABLE {v:A^N | !i. 1 <= i /\ i <= dimindex(:N) ==> P i (v$i)}`,
  GEN_TAC THEN DISCH_TAC THEN
  SUBGOAL_THEN
   `!n. n <= dimindex(:N)
        ==> COUNTABLE {v:A^N | (!i. 1 <= i /\ i <= dimindex(:N) /\ i <= n
                                 ==> P i (v$i)) /\
                            (!i. 1 <= i /\ i <= dimindex(:N) /\ n < i
                                 ==> v$i = @x. F)}`
   (MP_TAC o SPEC `dimindex(:N)`) THEN REWRITE_TAC[LE_REFL; LET_ANTISYM] THEN
  INDUCT_TAC THENL
   [REWRITE_TAC[ARITH_RULE `1 <= i /\ i <= n /\ i <= 0 <=> F`] THEN
    SIMP_TAC[ARITH_RULE `1 <= i /\ i <= n /\ 0 < i <=> 1 <= i /\ i <= n`] THEN
    SUBGOAL_THEN
     `{v | !i. 1 <= i /\ i <= dimindex (:N) ==> v$i = (@x. F)} =
      {(lambda i. @x. F):A^N}`
     (fun th -> SIMP_TAC[COUNTABLE_SING;th]) THEN
    SIMP_TAC[EXTENSION; IN_SING; IN_ELIM_THM; CART_EQ; LAMBDA_BETA];
    ALL_TAC] THEN
  DISCH_TAC THEN
  MATCH_MP_TAC COUNTABLE_SUBSET THEN EXISTS_TAC
   `IMAGE (\(x:A,v:A^N). (lambda i. if i = SUC n then x else v$i):A^N)
          {x,v | x IN {x:A | P (SUC n) x} /\
                 v IN {v:A^N | (!i. 1 <= i /\ i <= dimindex(:N) /\ i <= n
                                ==> P i (v$i)) /\
                           (!i. 1 <= i /\ i <= dimindex (:N) /\ n < i
                                ==> v$i = (@x. F))}}` THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC COUNTABLE_IMAGE THEN
    ASM_SIMP_TAC[REWRITE_RULE[CROSS] COUNTABLE_CROSS; ARITH_RULE `1 <= SUC n`;
                 ARITH_RULE `SUC n <= m ==> n <= m`];
    ALL_TAC] THEN
  REWRITE_TAC[SUBSET; IN_IMAGE; IN_ELIM_PAIR_THM; EXISTS_PAIR_THM] THEN
  X_GEN_TAC `v:A^N` THEN REWRITE_TAC[IN_ELIM_THM] THEN
  STRIP_TAC THEN EXISTS_TAC `(v:A^N)$(SUC n)` THEN
  EXISTS_TAC `(lambda i. if i = SUC n then @x. F else (v:A^N)$i):A^N` THEN
  SIMP_TAC[CART_EQ; LAMBDA_BETA; ARITH_RULE `i <= n ==> ~(i = SUC n)`] THEN
  ASM_MESON_TAC[LE; ARITH_RULE `1 <= SUC n`;
                ARITH_RULE `n < i /\ ~(i = SUC n) ==> SUC n < i`]);;

let COUNTABLE_SUBSET_IMAGE = prove
 (`!f:A->B s t.
        COUNTABLE(t) /\ t SUBSET (IMAGE f s) <=>
        ?s'. COUNTABLE s' /\ s' SUBSET s /\ (t = IMAGE f s')`,
  REPEAT GEN_TAC THEN EQ_TAC THENL
   [ALL_TAC; ASM_MESON_TAC[COUNTABLE_IMAGE; IMAGE_SUBSET]] THEN
  STRIP_TAC THEN
  EXISTS_TAC `IMAGE (\y. @x. x IN s /\ ((f:A->B)(x) = y)) t` THEN
  ASM_SIMP_TAC[COUNTABLE_IMAGE] THEN
  REWRITE_TAC[EXTENSION; SUBSET; FORALL_IN_IMAGE] THEN CONJ_TAC THENL
   [ASM_MESON_TAC[SUBSET; IN_IMAGE]; ALL_TAC] THEN
  REWRITE_TAC[IN_IMAGE] THEN X_GEN_TAC `y:B` THEN
  REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN
  ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN
  REWRITE_TAC[UNWIND_THM2; GSYM CONJ_ASSOC] THEN
  ASM_MESON_TAC[SUBSET; IN_IMAGE]);;

let EXISTS_COUNTABLE_SUBSET_IMAGE = prove
 (`!P f s.
    (?t. COUNTABLE t /\ t SUBSET IMAGE f s /\ P t) <=>
    (?t. COUNTABLE t /\ t SUBSET s /\ P (IMAGE f t))`,
  REWRITE_TAC[COUNTABLE_SUBSET_IMAGE; CONJ_ASSOC] THEN MESON_TAC[]);;

let FORALL_COUNTABLE_SUBSET_IMAGE = prove
 (`!P f s. (!t. COUNTABLE t /\ t SUBSET IMAGE f s ==> P t) <=>
           (!t. COUNTABLE t /\ t SUBSET s ==> P(IMAGE f t))`,
  REPEAT GEN_TAC THEN
  ONCE_REWRITE_TAC[MESON[] `(!x. P x) <=> ~(?x. ~P x)`] THEN
  REWRITE_TAC[NOT_IMP; GSYM CONJ_ASSOC; EXISTS_COUNTABLE_SUBSET_IMAGE]);;

(* ------------------------------------------------------------------------- *)
(* Cardinality of infinite list and cartesian product types.                 *)
(* ------------------------------------------------------------------------- *)

let CARD_EQ_LIST_GEN = prove
 (`!s:A->bool. INFINITE(s) ==> {l | !x. MEM x l ==> x IN s} =_c s`,
  GEN_TAC THEN DISCH_TAC THEN
  REWRITE_TAC[GSYM CARD_LE_ANTISYM] THEN CONJ_TAC THENL
   [ALL_TAC;
    REWRITE_TAC[le_c; IN_UNIV] THEN
    EXISTS_TAC `\x:A. [x]` THEN SIMP_TAC[CONS_11; IN_ELIM_THM; MEM]] THEN
  TRANS_TAC CARD_LE_TRANS `(:num) *_c (s:A->bool)` THEN CONJ_TAC THENL
   [ALL_TAC;
    MATCH_MP_TAC CARD_MUL2_ABSORB_LE THEN
    ASM_REWRITE_TAC[GSYM INFINITE_CARD_LE; CARD_LE_REFL]] THEN
  SUBGOAL_THEN `s *_c s <=_c (s:A->bool)` MP_TAC THENL
   [MATCH_MP_TAC CARD_MUL2_ABSORB_LE THEN ASM_REWRITE_TAC[CARD_LE_REFL];
    ALL_TAC] THEN
  REWRITE_TAC[le_c; mul_c; FORALL_PAIR_THM; IN_ELIM_PAIR_THM; PAIR_EQ] THEN
  REWRITE_TAC[IN_UNIV; LEFT_IMP_EXISTS_THM] THEN
  GEN_REWRITE_TAC I [FORALL_CURRY] THEN
  X_GEN_TAC `pair:A->A->A` THEN REWRITE_TAC[IN_ELIM_THM] THEN STRIP_TAC THEN
  SUBGOAL_THEN `?b:A. b IN s` CHOOSE_TAC THENL
   [ASM_MESON_TAC[INFINITE; FINITE_EMPTY; MEMBER_NOT_EMPTY]; ALL_TAC] THEN
  EXISTS_TAC `\l. LENGTH l,ITLIST (pair:A->A->A) l b` THEN
  REWRITE_TAC[PAIR_EQ; RIGHT_EXISTS_AND_THM; GSYM EXISTS_REFL] THEN
  SUBGOAL_THEN
   `!l:A list. (!x. MEM x l ==> x IN s) ==> (ITLIST pair l b) IN s`
  ASSUME_TAC THENL
   [LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[MEM; ITLIST] THEN ASM_MESON_TAC[];
    CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC]] THEN
  ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
  LIST_INDUCT_TAC THEN SIMP_TAC[LENGTH_EQ_NIL; LENGTH] THEN
  LIST_INDUCT_TAC THEN REWRITE_TAC[LENGTH; NOT_SUC] THEN
  REWRITE_TAC[ITLIST; SUC_INJ; MEM; CONS_11] THEN
  REPEAT STRIP_TAC THENL [ALL_TAC; FIRST_X_ASSUM MATCH_MP_TAC] THEN
  ASM_MESON_TAC[]);;

let CARD_EQ_LIST = prove
 (`INFINITE(:A) ==> (:A list) =_c (:A)`,
  DISCH_THEN(MP_TAC o MATCH_MP CARD_EQ_LIST_GEN) THEN
  REWRITE_TAC[IN_UNIV; SET_RULE `{x | T} = UNIV`]);;

let CARD_EQ_CART = prove
 (`INFINITE(:A) ==> (:A^N) =_c (:A)`,
  DISCH_TAC THEN REWRITE_TAC[GSYM CARD_LE_ANTISYM] THEN CONJ_TAC THENL
   [ALL_TAC;
    REWRITE_TAC[le_c; IN_UNIV] THEN
    EXISTS_TAC `(\x. lambda i. x):A->A^N` THEN
    SIMP_TAC[CART_EQ; LAMBDA_BETA] THEN
    MESON_TAC[LE_REFL; DIMINDEX_GE_1]] THEN
  TRANS_TAC CARD_LE_TRANS `(:A list)` THEN
  ASM_SIMP_TAC[CARD_EQ_LIST; CARD_EQ_IMP_LE] THEN REWRITE_TAC[LE_C] THEN
  EXISTS_TAC `(\l. lambda i. EL i l):(A)list->A^N` THEN
  ASM_SIMP_TAC[CART_EQ; IN_UNIV; LAMBDA_BETA] THEN X_GEN_TAC `x:A^N` THEN
  SUBGOAL_THEN `!n f. ?l. !i. i < n ==> EL i l:A = f i` MP_TAC THENL
   [INDUCT_TAC THEN REWRITE_TAC[CONJUNCT1 LT] THEN X_GEN_TAC `f:num->A` THEN
    FIRST_X_ASSUM(MP_TAC o SPEC `\i. (f:num->A)(SUC i)`) THEN
    REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `l:A list` THEN
    DISCH_TAC THEN EXISTS_TAC `CONS ((f:num->A) 0) l` THEN
    INDUCT_TAC THEN ASM_SIMP_TAC[EL; HD; TL; LT_SUC];
    DISCH_THEN(MP_TAC o SPECL [`dimindex(:N)+1`; `\i. (x:A^N)$i`]) THEN
    REWRITE_TAC[LEFT_IMP_EXISTS_THM; ARITH_RULE `i < n + 1 <=> i <= n`] THEN
    MESON_TAC[]]);;

(* ------------------------------------------------------------------------- *)
(* Cardinality of the reals. This is done in a rather laborious way to avoid *)
(* any dependence on the theories of analysis.                               *)
(* ------------------------------------------------------------------------- *)

let CARD_EQ_REAL = prove
 (`(:real) =_c (:num->bool)`,
  let lemma = prove
   (`!s m n. sum (s INTER (m..n)) (\i. inv(&3 pow i)) < &3 / &2 / &3 pow m`,
    REPEAT GEN_TAC THEN MATCH_MP_TAC REAL_LET_TRANS THEN
    EXISTS_TAC `sum (m..n) (\i. inv(&3 pow i))` THEN CONJ_TAC THENL
     [MATCH_MP_TAC SUM_SUBSET_SIMPLE THEN
      SIMP_TAC[FINITE_NUMSEG; INTER_SUBSET; REAL_LE_INV_EQ;
               REAL_POW_LE; REAL_POS];
      WF_INDUCT_TAC `n - m:num` THEN
      ASM_CASES_TAC `m:num <= n` THENL
       [ASM_SIMP_TAC[SUM_CLAUSES_LEFT] THEN ASM_CASES_TAC `m + 1 <= n` THENL
         [FIRST_X_ASSUM(MP_TAC o SPECL [`n:num`; `SUC m`]) THEN
          ANTS_TAC THENL [ASM_ARITH_TAC; REWRITE_TAC[ADD1; REAL_POW_ADD]] THEN
          MATCH_MP_TAC(REAL_ARITH
           `a + j:real <= k ==> x < j ==> a + x < k`) THEN
          REWRITE_TAC[real_div; REAL_INV_MUL; REAL_POW_1] THEN REAL_ARITH_TAC;
          ALL_TAC];
        ALL_TAC] THEN
      RULE_ASSUM_TAC(REWRITE_RULE[NOT_LE; GSYM NUMSEG_EMPTY]) THEN
      ASM_REWRITE_TAC[SUM_CLAUSES; REAL_ADD_RID] THEN
      REWRITE_TAC[REAL_ARITH `inv x < &3 / &2 / x <=> &0 < inv x`] THEN
      SIMP_TAC[REAL_LT_INV_EQ; REAL_LT_DIV; REAL_POW_LT; REAL_OF_NUM_LT;
               ARITH]]) in
  REWRITE_TAC[GSYM CARD_LE_ANTISYM] THEN CONJ_TAC THENL
   [TRANS_TAC CARD_LE_TRANS `(:num) *_c (:num->bool)` THEN CONJ_TAC THENL
     [ALL_TAC;
      MATCH_MP_TAC CARD_MUL2_ABSORB_LE THEN REWRITE_TAC[INFINITE_CARD_LE] THEN
      SIMP_TAC[CANTOR_THM_UNIV; CARD_LT_IMP_LE; CARD_LE_REFL]] THEN
    TRANS_TAC CARD_LE_TRANS `(:num) *_c {x:real | &0 <= x}` THEN CONJ_TAC THENL
     [REWRITE_TAC[LE_C; mul_c; EXISTS_PAIR_THM; IN_ELIM_PAIR_THM; IN_UNIV] THEN
      EXISTS_TAC `\(n,x:real). --(&1) pow n * x` THEN X_GEN_TAC `x:real` THEN
      MATCH_MP_TAC(MESON[] `P 0 \/ P 1 ==> ?n. P n`) THEN
      REWRITE_TAC[OR_EXISTS_THM] THEN EXISTS_TAC `abs x` THEN
      REWRITE_TAC[IN_ELIM_THM] THEN REAL_ARITH_TAC;
      ALL_TAC] THEN
    MATCH_MP_TAC CARD_LE_MUL THEN REWRITE_TAC[CARD_LE_REFL] THEN
    MP_TAC(ISPECL [`(:num)`; `(:num)`] CARD_MUL_ABSORB_LE) THEN
    REWRITE_TAC[CARD_LE_REFL; num_INFINITE] THEN
    REWRITE_TAC[le_c; mul_c; IN_UNIV; FORALL_PAIR_THM; IN_ELIM_PAIR_THM] THEN
    REWRITE_TAC[GSYM FORALL_PAIR_THM; INJECTIVE_LEFT_INVERSE] THEN
    REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
    MAP_EVERY X_GEN_TAC [`pair:num#num->num`; `unpair:num->num#num`] THEN
    DISCH_TAC THEN
    EXISTS_TAC `\x:real n:num. &(FST(unpair n)) * x <= &(SND(unpair n))` THEN
    MATCH_MP_TAC REAL_WLOG_LT THEN REWRITE_TAC[IN_ELIM_THM; FUN_EQ_THM] THEN
    CONJ_TAC THENL [REWRITE_TAC[EQ_SYM_EQ; CONJ_ACI]; ALL_TAC] THEN
    MAP_EVERY X_GEN_TAC [`x:real`; `y:real`] THEN REPEAT STRIP_TAC THEN
    FIRST_X_ASSUM(MP_TAC o GENL [`p:num`; `q:num`] o
      SPEC `(pair:num#num->num) (p,q)`) THEN
    ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(TAUT `~p ==> p ==> q`) THEN
    MP_TAC(SPEC `y - x:real` REAL_ARCH) THEN
    ASM_REWRITE_TAC[REAL_SUB_LT; NOT_FORALL_THM] THEN
    DISCH_THEN(MP_TAC o SPEC `&2`) THEN MATCH_MP_TAC MONO_EXISTS THEN
    X_GEN_TAC `p:num` THEN DISCH_TAC THEN
    MP_TAC(ISPEC `&p * x:real` REAL_ARCH_LT) THEN
    GEN_REWRITE_TAC LAND_CONV [num_WOP] THEN MATCH_MP_TAC MONO_EXISTS THEN
    MATCH_MP_TAC num_INDUCTION THEN
    ASM_SIMP_TAC[REAL_LE_MUL; REAL_POS;
      REAL_ARITH `x:real < &0 <=> ~(&0 <= x)`] THEN
    X_GEN_TAC `q:num` THEN REWRITE_TAC[GSYM REAL_OF_NUM_SUC] THEN
    DISCH_THEN(K ALL_TAC) THEN STRIP_TAC THEN
    FIRST_X_ASSUM(MP_TAC o SPEC `q:num`) THEN
    REWRITE_TAC[LT] THEN ASM_REAL_ARITH_TAC;
    REWRITE_TAC[le_c; IN_UNIV] THEN
    EXISTS_TAC `\s:num->bool. sup { sum (s INTER (0..n)) (\i. inv(&3 pow i)) |
                                    n IN (:num) }` THEN
    MAP_EVERY X_GEN_TAC [`x:num->bool`; `y:num->bool`] THEN
    ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN
    REWRITE_TAC[EXTENSION; NOT_FORALL_THM] THEN
    GEN_REWRITE_TAC LAND_CONV [num_WOP] THEN
    MAP_EVERY (fun w -> SPEC_TAC(w,w)) [`y:num->bool`; `x:num->bool`] THEN
    MATCH_MP_TAC(MESON[IN]
     `((!P Q n. R P Q n <=> R Q P n) /\ (!P Q. S P Q <=> S Q P)) /\
      (!P Q. (?n. n IN P /\ ~(n IN Q) /\ R P Q n) ==> S P Q)
      ==> !P Q. (?n:num. ~(n IN P <=> n IN Q) /\ R P Q n) ==> S P Q`) THEN
    CONJ_TAC THENL [REWRITE_TAC[EQ_SYM_EQ]; REWRITE_TAC[]] THEN
    MAP_EVERY X_GEN_TAC [`x:num->bool`; `y:num->bool`] THEN
    DISCH_THEN(X_CHOOSE_THEN `n:num` STRIP_ASSUME_TAC) THEN
    MATCH_MP_TAC(REAL_ARITH `!z:real. y < z /\ z <= x ==> ~(x = y)`) THEN
    EXISTS_TAC `sum (x INTER (0..n)) (\i. inv(&3 pow i))` THEN CONJ_TAC THENL
     [MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC
       `sum (y INTER (0..n)) (\i. inv(&3 pow i)) +
        &3 / &2 / &3 pow (SUC n)` THEN
      CONJ_TAC THENL
       [MATCH_MP_TAC REAL_SUP_LE THEN
        CONJ_TAC THENL [SET_TAC[]; REWRITE_TAC[FORALL_IN_GSPEC; IN_UNIV]] THEN
        X_GEN_TAC `p:num` THEN ASM_CASES_TAC `n:num <= p` THENL
         [MATCH_MP_TAC(REAL_ARITH
           `!d. s:real = t + d /\ d <= e ==> s <= t + e`) THEN
          EXISTS_TAC `sum(y INTER (n+1..p)) (\i. inv (&3 pow i))` THEN
          CONJ_TAC THENL
           [ONCE_REWRITE_TAC[INTER_COMM] THEN
            REWRITE_TAC[INTER; SUM_RESTRICT_SET] THEN
            ASM_SIMP_TAC[SUM_COMBINE_R; LE_0];
            SIMP_TAC[ADD1; lemma; REAL_LT_IMP_LE]];
          MATCH_MP_TAC(REAL_ARITH `y:real <= x /\ &0 <= d ==> y <= x + d`) THEN
          SIMP_TAC[REAL_LE_DIV; REAL_POS; REAL_POW_LE] THEN
          MATCH_MP_TAC SUM_SUBSET_SIMPLE THEN
          SIMP_TAC[REAL_LE_INV_EQ; REAL_POW_LE; REAL_POS] THEN
          SIMP_TAC[FINITE_INTER; FINITE_NUMSEG] THEN MATCH_MP_TAC
           (SET_RULE `s SUBSET t ==> u INTER s SUBSET u INTER t`) THEN
          REWRITE_TAC[SUBSET_NUMSEG] THEN ASM_ARITH_TAC];
        ONCE_REWRITE_TAC[INTER_COMM] THEN
        REWRITE_TAC[INTER; SUM_RESTRICT_SET] THEN ASM_CASES_TAC `n = 0` THENL
         [FIRST_X_ASSUM SUBST_ALL_TAC THEN
          ASM_REWRITE_TAC[SUM_SING; NUMSEG_SING; real_pow] THEN REAL_ARITH_TAC;
          ASM_SIMP_TAC[SUM_CLAUSES_RIGHT; LE_1; LE_0; REAL_ADD_RID] THEN
          MATCH_MP_TAC(REAL_ARITH `s:real = t /\ d < e ==> s + d < t + e`) THEN
          CONJ_TAC THENL
           [MATCH_MP_TAC SUM_EQ_NUMSEG THEN
            ASM_SIMP_TAC[ARITH_RULE `~(n = 0) /\ m <= n - 1 ==> m < n`];
            REWRITE_TAC[real_pow; real_div; REAL_INV_MUL; REAL_MUL_ASSOC] THEN
            CONV_TAC REAL_RAT_REDUCE_CONV THEN
            REWRITE_TAC[REAL_ARITH `&1 / &2 * x < x <=> &0 < x`] THEN
            SIMP_TAC[REAL_LT_INV_EQ; REAL_POW_LT; REAL_OF_NUM_LT; ARITH]]]];
      MP_TAC(ISPEC `{ sum (x INTER (0..n)) (\i. inv(&3 pow i)) | n IN (:num) }`
          SUP) THEN REWRITE_TAC[FORALL_IN_GSPEC; IN_UNIV] THEN
      ANTS_TAC THENL [ALL_TAC; SIMP_TAC[]] THEN
      CONJ_TAC THENL [SET_TAC[]; ALL_TAC] THEN
      EXISTS_TAC `&3 / &2 / &3 pow 0` THEN
      SIMP_TAC[lemma; REAL_LT_IMP_LE]]]);;

let UNCOUNTABLE_REAL = prove
 (`~COUNTABLE(:real)`,
  REWRITE_TAC[COUNTABLE; CARD_NOT_LE; ge_c] THEN
  TRANS_TAC CARD_LTE_TRANS `(:num->bool)` THEN
  REWRITE_TAC[CANTOR_THM_UNIV] THEN MATCH_MP_TAC CARD_EQ_IMP_LE THEN
  ONCE_REWRITE_TAC[CARD_EQ_SYM] THEN REWRITE_TAC[CARD_EQ_REAL]);;

let CARD_EQ_REAL_IMP_UNCOUNTABLE = prove
 (`!s. s =_c (:real) ==> ~COUNTABLE s`,
  GEN_TAC THEN STRIP_TAC THEN
  DISCH_THEN(MP_TAC o ISPEC `(:real)` o MATCH_MP
    (REWRITE_RULE[IMP_CONJ] CARD_EQ_COUNTABLE)) THEN
  REWRITE_TAC[UNCOUNTABLE_REAL] THEN ASM_MESON_TAC[CARD_EQ_SYM]);;

let COUNTABLE_IMP_CARD_LT_REAL = prove
 (`!s:A->bool. COUNTABLE s ==> s <_c (:real)`,
  REWRITE_TAC[GSYM CARD_NOT_LE] THEN
  ASM_MESON_TAC[CARD_LE_COUNTABLE; UNCOUNTABLE_REAL]);;

(* ------------------------------------------------------------------------- *)
(* More about cardinality of lists and restricted powersets etc.             *)
(* ------------------------------------------------------------------------- *)

let CARD_EQ_FINITE_SUBSETS = prove
 (`!s:A->bool. INFINITE(s) ==> {t | t SUBSET s /\ FINITE t} =_c s`,
  GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[GSYM CARD_LE_ANTISYM] THEN
  CONJ_TAC THENL
   [TRANS_TAC CARD_LE_TRANS `{l:A list | !x. MEM x l ==> x IN s}` THEN
    CONJ_TAC THENL
     [REWRITE_TAC[LE_C; IN_ELIM_THM] THEN
      EXISTS_TAC `set_of_list:A list->(A->bool)` THEN
      X_GEN_TAC `t:A->bool` THEN STRIP_TAC THEN
      EXISTS_TAC `list_of_set(t:A->bool)` THEN
      ASM_SIMP_TAC[MEM_LIST_OF_SET; GSYM SUBSET; SET_OF_LIST_OF_SET];
      MATCH_MP_TAC CARD_EQ_IMP_LE THEN
      MATCH_MP_TAC CARD_EQ_LIST_GEN THEN ASM_REWRITE_TAC[]];
   REWRITE_TAC[le_c] THEN EXISTS_TAC `\x:A. {x}` THEN
   REWRITE_TAC[IN_ELIM_THM; FINITE_SING] THEN SET_TAC[]]);;

let CARD_LE_LIST = prove
 (`!s:A->bool t:B->bool.
        s <=_c t
        ==> {l | !x. MEM x l ==> x IN s} <=_c {l | !x. MEM x l ==> x IN t}`,
  GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[le_c; IN_ELIM_THM] THEN
  DISCH_THEN(X_CHOOSE_THEN `f:A->B` STRIP_ASSUME_TAC) THEN
  EXISTS_TAC `MAP (f:A->B)` THEN
  MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL
   [REWRITE_TAC[MEM_MAP] THEN ASM_MESON_TAC[]; DISCH_TAC] THEN
  ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
  LIST_INDUCT_TAC THEN SIMP_TAC[MAP_EQ_NIL; MAP] THEN
  LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; NOT_CONS_NIL; MEM; CONS_11] THEN
  ASM_MESON_TAC[]);;

let CARD_LE_SUBPOWERSET = prove
 (`!s:A->bool t:B->bool.
        s <=_c t /\ (!f s. P s ==> Q(IMAGE f s))
        ==> {u | u SUBSET s /\ P u} <=_c {v | v SUBSET t /\ Q v}`,
  REPEAT GEN_TAC THEN REWRITE_TAC[le_c; IN_ELIM_THM] THEN DISCH_THEN
   (CONJUNCTS_THEN2 (X_CHOOSE_THEN `f:A->B` STRIP_ASSUME_TAC) ASSUME_TAC) THEN
  EXISTS_TAC `IMAGE (f:A->B)` THEN ASM_SIMP_TAC[] THEN ASM SET_TAC[]);;

let CARD_LE_FINITE_SUBSETS = prove
 (`!s:A->bool t:B->bool.
    s <=_c t
    ==> {u | u SUBSET s /\ FINITE u} <=_c {v | v SUBSET t /\ FINITE v}`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC CARD_LE_SUBPOWERSET THEN
  ASM_SIMP_TAC[FINITE_IMAGE]);;

let CARD_LE_COUNTABLE_SUBSETS = prove
 (`!s:A->bool t:B->bool.
    s <=_c t
    ==> {u | u SUBSET s /\ COUNTABLE u} <=_c {v | v SUBSET t /\ COUNTABLE v}`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC CARD_LE_SUBPOWERSET THEN
  ASM_SIMP_TAC[COUNTABLE_IMAGE]);;

let CARD_LE_POWERSET = prove
 (`!s:A->bool t:B->bool.
    s <=_c t ==> {u | u SUBSET s} <=_c {v | v SUBSET t}`,
  REPEAT STRIP_TAC THEN PURE_ONCE_REWRITE_TAC[SET_RULE
    `{x | x SUBSET y} = {x | x SUBSET y /\ T}`] THEN
  MATCH_MP_TAC CARD_LE_SUBPOWERSET THEN
  ASM_SIMP_TAC[]);;

let COUNTABLE_LIST_GEN = prove
 (`!s:A->bool. COUNTABLE s ==> COUNTABLE {l | !x. MEM x l ==> x IN s}`,
  GEN_TAC THEN REWRITE_TAC[COUNTABLE; ge_c] THEN
  DISCH_THEN(MP_TAC o MATCH_MP CARD_LE_LIST) THEN
  MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] CARD_LE_TRANS) THEN
  MATCH_MP_TAC CARD_EQ_IMP_LE THEN
  REWRITE_TAC[IN_UNIV; SET_RULE `{x | T} = UNIV`] THEN
  SIMP_TAC[CARD_EQ_LIST; num_INFINITE]);;

let COUNTABLE_LIST = prove
 (`COUNTABLE(:A) ==> COUNTABLE(:A list)`,
  MP_TAC(ISPEC `(:A)` COUNTABLE_LIST_GEN) THEN
  REWRITE_TAC[IN_UNIV; SET_RULE `{x | T} = UNIV`]);;

let COUNTABLE_FINITE_SUBSETS = prove
 (`!s:A->bool. COUNTABLE(s) ==> COUNTABLE {t | t SUBSET s /\ FINITE t}`,
  GEN_TAC THEN REWRITE_TAC[COUNTABLE; ge_c] THEN
  DISCH_THEN(MP_TAC o MATCH_MP CARD_LE_FINITE_SUBSETS) THEN
  MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] CARD_LE_TRANS) THEN
  MATCH_MP_TAC CARD_EQ_IMP_LE THEN
  REWRITE_TAC[IN_UNIV; SET_RULE `{x | T} = UNIV`] THEN
  SIMP_TAC[CARD_EQ_FINITE_SUBSETS; num_INFINITE]);;

let CARD_EQ_REAL_SEQUENCES = prove
 (`(:num->real) =_c (:real)`,
  TRANS_TAC CARD_EQ_TRANS `(:num->num->bool)` THEN
  ASM_SIMP_TAC[CARD_FUNSPACE_CONG; CARD_EQ_REFL; CARD_EQ_REAL] THEN
  TRANS_TAC CARD_EQ_TRANS `(:num#num->bool)` THEN
  ASM_SIMP_TAC[CARD_FUNSPACE_CURRY] THEN
  TRANS_TAC CARD_EQ_TRANS `(:num->bool)` THEN
  ASM_SIMP_TAC[CARD_FUNSPACE_CONG; CARD_EQ_REFL;
               ONCE_REWRITE_RULE[CARD_EQ_SYM] CARD_EQ_REAL;
               REWRITE_RULE[MUL_C_UNIV] CARD_SQUARE_NUM]);;

let CARD_EQ_COUNTABLE_SUBSETS_REAL = prove
 (`{s:real->bool | COUNTABLE s} =_c (:real)`,
  REWRITE_TAC[GSYM CARD_LE_ANTISYM] THEN CONJ_TAC THENL
   [TRANS_TAC CARD_LE_TRANS
     `{{}:real->bool} +_c {s:real->bool | COUNTABLE s /\ ~(s = {})}` THEN
    CONJ_TAC THENL
     [W(MP_TAC o PART_MATCH rand UNION_LE_ADD_C o rand o snd) THEN
      MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] CARD_LE_TRANS) THEN
      MATCH_MP_TAC(MESON[CARD_LE_REFL] `s = t ==> s <=_c t`) THEN
      ONCE_REWRITE_TAC[EXTENSION] THEN
      REWRITE_TAC[IN_ELIM_THM; IN_UNION; IN_SING] THEN
      MESON_TAC[COUNTABLE_EMPTY];
      ALL_TAC] THEN
    TRANS_TAC CARD_LE_TRANS `{{}:real->bool} +_c (:real)` THEN CONJ_TAC THENL
     [MATCH_MP_TAC CARD_LE_ADD THEN
      REWRITE_TAC[CARD_LE_REFL] THEN
      TRANS_TAC CARD_LE_TRANS `(:num->real)` THEN
      ASM_SIMP_TAC[CARD_EQ_REAL_SEQUENCES; CARD_EQ_IMP_LE] THEN
      REWRITE_TAC[LE_C] THEN EXISTS_TAC `\f:num->real. IMAGE f (:num)` THEN
      REWRITE_TAC[IN_UNIV; IN_ELIM_THM] THEN
      MESON_TAC[COUNTABLE_AS_IMAGE];
      MATCH_MP_TAC CARD_ADD_ABSORB_LE THEN
      SIMP_TAC[real_INFINITE; le_c; IN_UNIV; IN_SING]];
     REWRITE_TAC[le_c] THEN EXISTS_TAC `\x:real. {x}` THEN
     REWRITE_TAC[IN_UNIV; COUNTABLE_SING; IN_ELIM_THM] THEN SET_TAC[]]);;