1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
(* ========================================================================= *)
(* Products of real numbers. *)
(* ========================================================================= *)
prioritize_real();;
(* ------------------------------------------------------------------------- *)
(* Definition of infinite product. *)
(* ------------------------------------------------------------------------- *)
let product = new_definition
`product = iterate ( * )`;;
(* ------------------------------------------------------------------------- *)
(* Various elementary properties (should add more comprehensive list). *)
(* ------------------------------------------------------------------------- *)
let PRODUCT_CLAUSES = prove
(`(!f. product {} f = &1) /\
(!x f s. FINITE(s)
==> (product (x INSERT s) f =
if x IN s then product s f else f(x) * product s f))`,
REWRITE_TAC[product; GSYM NEUTRAL_REAL_MUL] THEN
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
MATCH_MP_TAC ITERATE_CLAUSES THEN REWRITE_TAC[MONOIDAL_REAL_MUL]);;
let PRODUCT_UNION = prove
(`!f s t. FINITE s /\ FINITE t /\ DISJOINT s t
==> (product (s UNION t) f = product s f * product t f)`,
SIMP_TAC[product; ITERATE_UNION; MONOIDAL_REAL_MUL]);;
let PRODUCT_IMAGE = prove
(`!f g s. (!x y. x IN s /\ y IN s /\ (f x = f y) ==> (x = y))
==> (product (IMAGE f s) g = product s (g o f))`,
REWRITE_TAC[product; GSYM NEUTRAL_REAL_MUL] THEN
MATCH_MP_TAC ITERATE_IMAGE THEN REWRITE_TAC[MONOIDAL_REAL_MUL]);;
let PRODUCT_ADD_SPLIT = prove
(`!f m n p.
m <= n + 1
==> (product (m..(n+p)) f = product(m..n) f * product(n+1..n+p) f)`,
SIMP_TAC[NUMSEG_ADD_SPLIT; PRODUCT_UNION; DISJOINT_NUMSEG; FINITE_NUMSEG;
ARITH_RULE `x < x + 1`]);;
let PRODUCT_POS_LE = prove
(`!f s. FINITE s /\ (!x. x IN s ==> &0 <= f x) ==> &0 <= product s f`,
GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[PRODUCT_CLAUSES; REAL_POS; IN_INSERT; REAL_LE_MUL]);;
let PRODUCT_POS_LE_NUMSEG = prove
(`!f m n. (!x. m <= x /\ x <= n ==> &0 <= f x) ==> &0 <= product(m..n) f`,
SIMP_TAC[PRODUCT_POS_LE; FINITE_NUMSEG; IN_NUMSEG]);;
let PRODUCT_POS_LT = prove
(`!f s. FINITE s /\ (!x. x IN s ==> &0 < f x) ==> &0 < product s f`,
GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[PRODUCT_CLAUSES; REAL_LT_01; IN_INSERT; REAL_LT_MUL]);;
let PRODUCT_POS_LT_NUMSEG = prove
(`!f m n. (!x. m <= x /\ x <= n ==> &0 < f x) ==> &0 < product(m..n) f`,
SIMP_TAC[PRODUCT_POS_LT; FINITE_NUMSEG; IN_NUMSEG]);;
let PRODUCT_OFFSET = prove
(`!f m p. product(m+p..n+p) f = product(m..n) (\i. f(i + p))`,
SIMP_TAC[NUMSEG_OFFSET_IMAGE; PRODUCT_IMAGE;
EQ_ADD_RCANCEL; FINITE_NUMSEG] THEN
REWRITE_TAC[o_DEF]);;
let PRODUCT_SING = prove
(`!f x. product {x} f = f(x)`,
SIMP_TAC[PRODUCT_CLAUSES; FINITE_RULES; NOT_IN_EMPTY; REAL_MUL_RID]);;
let PRODUCT_SING_NUMSEG = prove
(`!f n. product(n..n) f = f(n)`,
REWRITE_TAC[NUMSEG_SING; PRODUCT_SING]);;
let PRODUCT_CLAUSES_NUMSEG = prove
(`(!m. product(m..0) f = if m = 0 then f(0) else &1) /\
(!m n. product(m..SUC n) f = if m <= SUC n then product(m..n) f * f(SUC n)
else product(m..n) f)`,
REWRITE_TAC[NUMSEG_CLAUSES] THEN REPEAT STRIP_TAC THEN
COND_CASES_TAC THEN
ASM_SIMP_TAC[PRODUCT_SING; PRODUCT_CLAUSES; FINITE_NUMSEG; IN_NUMSEG] THEN
REWRITE_TAC[ARITH_RULE `~(SUC n <= n)`; REAL_MUL_AC]);;
let PRODUCT_EQ = prove
(`!f g s. (!x. x IN s ==> (f x = g x)) ==> product s f = product s g`,
REWRITE_TAC[product] THEN MATCH_MP_TAC ITERATE_EQ THEN
REWRITE_TAC[MONOIDAL_REAL_MUL]);;
let PRODUCT_EQ_NUMSEG = prove
(`!f g m n. (!i. m <= i /\ i <= n ==> (f(i) = g(i)))
==> (product(m..n) f = product(m..n) g)`,
MESON_TAC[PRODUCT_EQ; FINITE_NUMSEG; IN_NUMSEG]);;
let PRODUCT_EQ_0 = prove
(`!f s. FINITE s ==> (product s f = &0 <=> ?x. x IN s /\ f(x) = &0)`,
GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[PRODUCT_CLAUSES; REAL_ENTIRE; IN_INSERT; REAL_OF_NUM_EQ; ARITH;
NOT_IN_EMPTY] THEN
MESON_TAC[]);;
let PRODUCT_EQ_0_NUMSEG = prove
(`!f m n. product(m..n) f = &0 <=> ?x. m <= x /\ x <= n /\ f(x) = &0`,
SIMP_TAC[PRODUCT_EQ_0; FINITE_NUMSEG; IN_NUMSEG; GSYM CONJ_ASSOC]);;
let PRODUCT_LE = prove
(`!f s. FINITE s /\ (!x. x IN s ==> &0 <= f(x) /\ f(x) <= g(x))
==> product s f <= product s g`,
GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[IN_INSERT; PRODUCT_CLAUSES; NOT_IN_EMPTY; REAL_LE_REFL] THEN
MESON_TAC[REAL_LE_MUL2; PRODUCT_POS_LE]);;
let PRODUCT_LE_NUMSEG = prove
(`!f m n. (!i. m <= i /\ i <= n ==> &0 <= f(i) /\ f(i) <= g(i))
==> product(m..n) f <= product(m..n) g`,
SIMP_TAC[PRODUCT_LE; FINITE_NUMSEG; IN_NUMSEG]);;
let PRODUCT_EQ_1 = prove
(`!f s. (!x:A. x IN s ==> (f(x) = &1)) ==> (product s f = &1)`,
REWRITE_TAC[product; GSYM NEUTRAL_REAL_MUL] THEN
SIMP_TAC[ITERATE_EQ_NEUTRAL; MONOIDAL_REAL_MUL]);;
let PRODUCT_EQ_1_NUMSEG = prove
(`!f m n. (!i. m <= i /\ i <= n ==> (f(i) = &1)) ==> (product(m..n) f = &1)`,
SIMP_TAC[PRODUCT_EQ_1; IN_NUMSEG]);;
let PRODUCT_MUL = prove
(`!f g s. FINITE s ==> product s (\x. f x * g x) = product s f * product s g`,
GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[PRODUCT_CLAUSES; REAL_MUL_AC; REAL_MUL_LID]);;
let PRODUCT_MUL_NUMSEG = prove
(`!f g m n.
product(m..n) (\x. f x * g x) = product(m..n) f * product(m..n) g`,
SIMP_TAC[PRODUCT_MUL; FINITE_NUMSEG]);;
let PRODUCT_CONST = prove
(`!c s. FINITE s ==> product s (\x. c) = c pow (CARD s)`,
GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[PRODUCT_CLAUSES; CARD_CLAUSES; real_pow]);;
let PRODUCT_CONST_NUMSEG = prove
(`!c m n. product (m..n) (\x. c) = c pow ((n + 1) - m)`,
SIMP_TAC[PRODUCT_CONST; CARD_NUMSEG; FINITE_NUMSEG]);;
let PRODUCT_CONST_NUMSEG_1 = prove
(`!c n. product(1..n) (\x. c) = c pow n`,
SIMP_TAC[PRODUCT_CONST; CARD_NUMSEG_1; FINITE_NUMSEG]);;
let PRODUCT_NEG = prove
(`!f s:A->bool.
FINITE s ==> product s (\i. --(f i)) = --(&1) pow (CARD s) * product s f`,
SIMP_TAC[GSYM PRODUCT_CONST; GSYM PRODUCT_MUL] THEN
REWRITE_TAC[REAL_MUL_LNEG; REAL_MUL_LID]);;
let PRODUCT_NEG_NUMSEG = prove
(`!f m n. product(m..n) (\i. --(f i)) =
--(&1) pow ((n + 1) - m) * product(m..n) f`,
SIMP_TAC[PRODUCT_NEG; CARD_NUMSEG; FINITE_NUMSEG]);;
let PRODUCT_NEG_NUMSEG_1 = prove
(`!f n. product(1..n) (\i. --(f i)) = --(&1) pow n * product(1..n) f`,
REWRITE_TAC[PRODUCT_NEG_NUMSEG; ADD_SUB]);;
let PRODUCT_INV = prove
(`!f s. FINITE s ==> product s (\x. inv(f x)) = inv(product s f)`,
GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[PRODUCT_CLAUSES; REAL_INV_1; REAL_INV_MUL]);;
let PRODUCT_DIV = prove
(`!f g s. FINITE s ==> product s (\x. f x / g x) = product s f / product s g`,
SIMP_TAC[real_div; PRODUCT_MUL; PRODUCT_INV]);;
let PRODUCT_DIV_NUMSEG = prove
(`!f g m n.
product(m..n) (\x. f x / g x) = product(m..n) f / product(m..n) g`,
SIMP_TAC[PRODUCT_DIV; FINITE_NUMSEG]);;
let PRODUCT_ONE = prove
(`!s. product s (\n. &1) = &1`,
SIMP_TAC[PRODUCT_EQ_1]);;
let PRODUCT_LE_1 = prove
(`!f s. FINITE s /\ (!x. x IN s ==> &0 <= f x /\ f x <= &1)
==> product s f <= &1`,
GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[PRODUCT_CLAUSES; REAL_LE_REFL; IN_INSERT] THEN
REPEAT STRIP_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_LID] THEN
MATCH_MP_TAC REAL_LE_MUL2 THEN ASM_SIMP_TAC[PRODUCT_POS_LE]);;
let PRODUCT_ABS = prove
(`!f s. FINITE s ==> product s (\x. abs(f x)) = abs(product s f)`,
GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[PRODUCT_CLAUSES; REAL_ABS_MUL; REAL_ABS_NUM]);;
let PRODUCT_CLOSED = prove
(`!P f:A->real s.
P(&1) /\ (!x y. P x /\ P y ==> P(x * y)) /\ (!a. a IN s ==> P(f a))
==> P(product s f)`,
REPEAT STRIP_TAC THEN MP_TAC(MATCH_MP ITERATE_CLOSED MONOIDAL_REAL_MUL) THEN
DISCH_THEN(MP_TAC o SPEC `P:real->bool`) THEN
ASM_SIMP_TAC[NEUTRAL_REAL_MUL; GSYM product]);;
let PRODUCT_CLAUSES_LEFT = prove
(`!f m n. m <= n ==> product(m..n) f = f(m) * product(m+1..n) f`,
SIMP_TAC[GSYM NUMSEG_LREC; PRODUCT_CLAUSES; FINITE_NUMSEG; IN_NUMSEG] THEN
ARITH_TAC);;
let PRODUCT_CLAUSES_RIGHT = prove
(`!f m n. 0 < n /\ m <= n ==> product(m..n) f = product(m..n-1) f * f(n)`,
GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN
SIMP_TAC[LT_REFL; PRODUCT_CLAUSES_NUMSEG; SUC_SUB1]);;
(* ------------------------------------------------------------------------- *)
(* Extend congruences. *)
(* ------------------------------------------------------------------------- *)
let th = prove
(`(!f g s. (!x. x IN s ==> f(x) = g(x))
==> product s (\i. f(i)) = product s g) /\
(!f g a b. (!i. a <= i /\ i <= b ==> f(i) = g(i))
==> product(a..b) (\i. f(i)) = product(a..b) g) /\
(!f g p. (!x. p x ==> f x = g x)
==> product {y | p y} (\i. f(i)) = product {y | p y} g)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC PRODUCT_EQ THEN
ASM_SIMP_TAC[IN_ELIM_THM; IN_NUMSEG]) in
extend_basic_congs (map SPEC_ALL (CONJUNCTS th));;
|