File: products.ml

package info (click to toggle)
hol-light 20131026-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 26,264 kB
  • ctags: 4,620
  • sloc: ml: 400,325; cpp: 438; java: 279; lisp: 261; makefile: 256; sh: 190; yacc: 108; perl: 78; ansic: 57; sed: 39
file content (232 lines) | stat: -rw-r--r-- 9,446 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
(* ========================================================================= *)
(* Products of real numbers.                                                 *)
(* ========================================================================= *)

prioritize_real();;

(* ------------------------------------------------------------------------- *)
(* Definition of infinite product.                                           *)
(* ------------------------------------------------------------------------- *)

let product = new_definition
  `product = iterate ( * )`;;

(* ------------------------------------------------------------------------- *)
(* Various elementary properties (should add more comprehensive list).       *)
(* ------------------------------------------------------------------------- *)

let PRODUCT_CLAUSES = prove
 (`(!f. product {} f = &1) /\
   (!x f s. FINITE(s)
            ==> (product (x INSERT s) f =
                 if x IN s then product s f else f(x) * product s f))`,
  REWRITE_TAC[product; GSYM NEUTRAL_REAL_MUL] THEN
  ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
  MATCH_MP_TAC ITERATE_CLAUSES THEN REWRITE_TAC[MONOIDAL_REAL_MUL]);;

let PRODUCT_UNION = prove
 (`!f s t. FINITE s /\ FINITE t /\ DISJOINT s t
           ==> (product (s UNION t) f = product s f * product t f)`,
  SIMP_TAC[product; ITERATE_UNION; MONOIDAL_REAL_MUL]);;

let PRODUCT_IMAGE = prove
 (`!f g s. (!x y. x IN s /\ y IN s /\ (f x = f y) ==> (x = y))
           ==> (product (IMAGE f s) g = product s (g o f))`,
  REWRITE_TAC[product; GSYM NEUTRAL_REAL_MUL] THEN
  MATCH_MP_TAC ITERATE_IMAGE THEN REWRITE_TAC[MONOIDAL_REAL_MUL]);;

let PRODUCT_ADD_SPLIT = prove
 (`!f m n p.
        m <= n + 1
        ==> (product (m..(n+p)) f = product(m..n) f * product(n+1..n+p) f)`,
  SIMP_TAC[NUMSEG_ADD_SPLIT; PRODUCT_UNION; DISJOINT_NUMSEG; FINITE_NUMSEG;
           ARITH_RULE `x < x + 1`]);;

let PRODUCT_POS_LE = prove
 (`!f s. FINITE s /\ (!x. x IN s ==> &0 <= f x) ==> &0 <= product s f`,
  GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[PRODUCT_CLAUSES; REAL_POS; IN_INSERT; REAL_LE_MUL]);;

let PRODUCT_POS_LE_NUMSEG = prove
 (`!f m n. (!x. m <= x /\ x <= n ==> &0 <= f x) ==> &0 <= product(m..n) f`,
  SIMP_TAC[PRODUCT_POS_LE; FINITE_NUMSEG; IN_NUMSEG]);;

let PRODUCT_POS_LT = prove
 (`!f s. FINITE s /\ (!x. x IN s ==> &0 < f x) ==> &0 < product s f`,
  GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[PRODUCT_CLAUSES; REAL_LT_01; IN_INSERT; REAL_LT_MUL]);;

let PRODUCT_POS_LT_NUMSEG = prove
 (`!f m n. (!x. m <= x /\ x <= n ==> &0 < f x) ==> &0 < product(m..n) f`,
  SIMP_TAC[PRODUCT_POS_LT; FINITE_NUMSEG; IN_NUMSEG]);;

let PRODUCT_OFFSET = prove
 (`!f m p. product(m+p..n+p) f = product(m..n) (\i. f(i + p))`,
  SIMP_TAC[NUMSEG_OFFSET_IMAGE; PRODUCT_IMAGE;
           EQ_ADD_RCANCEL; FINITE_NUMSEG] THEN
  REWRITE_TAC[o_DEF]);;

let PRODUCT_SING = prove
 (`!f x. product {x} f = f(x)`,
  SIMP_TAC[PRODUCT_CLAUSES; FINITE_RULES; NOT_IN_EMPTY; REAL_MUL_RID]);;

let PRODUCT_SING_NUMSEG = prove
 (`!f n. product(n..n) f = f(n)`,
  REWRITE_TAC[NUMSEG_SING; PRODUCT_SING]);;

let PRODUCT_CLAUSES_NUMSEG = prove
 (`(!m. product(m..0) f = if m = 0 then f(0) else &1) /\
   (!m n. product(m..SUC n) f = if m <= SUC n then product(m..n) f * f(SUC n)
                                else product(m..n) f)`,
  REWRITE_TAC[NUMSEG_CLAUSES] THEN REPEAT STRIP_TAC THEN
  COND_CASES_TAC THEN
  ASM_SIMP_TAC[PRODUCT_SING; PRODUCT_CLAUSES; FINITE_NUMSEG; IN_NUMSEG] THEN
  REWRITE_TAC[ARITH_RULE `~(SUC n <= n)`; REAL_MUL_AC]);;

let PRODUCT_EQ = prove
 (`!f g s. (!x. x IN s ==> (f x = g x)) ==> product s f = product s g`,
  REWRITE_TAC[product] THEN MATCH_MP_TAC ITERATE_EQ THEN
  REWRITE_TAC[MONOIDAL_REAL_MUL]);;

let PRODUCT_EQ_NUMSEG = prove
 (`!f g m n. (!i. m <= i /\ i <= n ==> (f(i) = g(i)))
             ==> (product(m..n) f = product(m..n) g)`,
  MESON_TAC[PRODUCT_EQ; FINITE_NUMSEG; IN_NUMSEG]);;

let PRODUCT_EQ_0 = prove
 (`!f s. FINITE s ==> (product s f = &0 <=> ?x. x IN s /\ f(x) = &0)`,
  GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[PRODUCT_CLAUSES; REAL_ENTIRE; IN_INSERT; REAL_OF_NUM_EQ; ARITH;
           NOT_IN_EMPTY] THEN
  MESON_TAC[]);;

let PRODUCT_EQ_0_NUMSEG = prove
 (`!f m n. product(m..n) f = &0 <=> ?x. m <= x /\ x <= n /\ f(x) = &0`,
  SIMP_TAC[PRODUCT_EQ_0; FINITE_NUMSEG; IN_NUMSEG; GSYM CONJ_ASSOC]);;

let PRODUCT_LE = prove
 (`!f s. FINITE s /\ (!x. x IN s ==> &0 <= f(x) /\ f(x) <= g(x))
         ==> product s f <= product s g`,
  GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[IN_INSERT; PRODUCT_CLAUSES; NOT_IN_EMPTY; REAL_LE_REFL] THEN
  MESON_TAC[REAL_LE_MUL2; PRODUCT_POS_LE]);;

let PRODUCT_LE_NUMSEG = prove
 (`!f m n. (!i. m <= i /\ i <= n ==> &0 <= f(i) /\ f(i) <= g(i))
           ==> product(m..n) f <= product(m..n) g`,
  SIMP_TAC[PRODUCT_LE; FINITE_NUMSEG; IN_NUMSEG]);;

let PRODUCT_EQ_1 = prove
 (`!f s. (!x:A. x IN s ==> (f(x) = &1)) ==> (product s f = &1)`,
  REWRITE_TAC[product; GSYM NEUTRAL_REAL_MUL] THEN
  SIMP_TAC[ITERATE_EQ_NEUTRAL; MONOIDAL_REAL_MUL]);;

let PRODUCT_EQ_1_NUMSEG = prove
 (`!f m n. (!i. m <= i /\ i <= n ==> (f(i) = &1)) ==> (product(m..n) f = &1)`,
  SIMP_TAC[PRODUCT_EQ_1; IN_NUMSEG]);;

let PRODUCT_MUL = prove
 (`!f g s. FINITE s ==> product s (\x. f x * g x) = product s f * product s g`,
  GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[PRODUCT_CLAUSES; REAL_MUL_AC; REAL_MUL_LID]);;

let PRODUCT_MUL_NUMSEG = prove
 (`!f g m n.
     product(m..n) (\x. f x * g x) = product(m..n) f * product(m..n) g`,
  SIMP_TAC[PRODUCT_MUL; FINITE_NUMSEG]);;

let PRODUCT_CONST = prove
 (`!c s. FINITE s ==> product s (\x. c) = c pow (CARD s)`,
  GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[PRODUCT_CLAUSES; CARD_CLAUSES; real_pow]);;

let PRODUCT_CONST_NUMSEG = prove
 (`!c m n. product (m..n) (\x. c) = c pow ((n + 1) - m)`,
  SIMP_TAC[PRODUCT_CONST; CARD_NUMSEG; FINITE_NUMSEG]);;

let PRODUCT_CONST_NUMSEG_1 = prove
 (`!c n. product(1..n) (\x. c) = c pow n`,
  SIMP_TAC[PRODUCT_CONST; CARD_NUMSEG_1; FINITE_NUMSEG]);;

let PRODUCT_NEG = prove
 (`!f s:A->bool.
     FINITE s ==> product s (\i. --(f i)) = --(&1) pow (CARD s) * product s f`,
  SIMP_TAC[GSYM PRODUCT_CONST; GSYM PRODUCT_MUL] THEN
  REWRITE_TAC[REAL_MUL_LNEG; REAL_MUL_LID]);;

let PRODUCT_NEG_NUMSEG = prove
 (`!f m n. product(m..n) (\i. --(f i)) =
           --(&1) pow ((n + 1) - m) * product(m..n) f`,
  SIMP_TAC[PRODUCT_NEG; CARD_NUMSEG; FINITE_NUMSEG]);;

let PRODUCT_NEG_NUMSEG_1 = prove
 (`!f n. product(1..n) (\i. --(f i)) = --(&1) pow n * product(1..n) f`,
  REWRITE_TAC[PRODUCT_NEG_NUMSEG; ADD_SUB]);;

let PRODUCT_INV = prove
 (`!f s. FINITE s ==> product s (\x. inv(f x)) = inv(product s f)`,
  GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[PRODUCT_CLAUSES; REAL_INV_1; REAL_INV_MUL]);;

let PRODUCT_DIV = prove
 (`!f g s. FINITE s ==> product s (\x. f x / g x) = product s f / product s g`,
  SIMP_TAC[real_div; PRODUCT_MUL; PRODUCT_INV]);;

let PRODUCT_DIV_NUMSEG = prove
 (`!f g m n.
         product(m..n) (\x. f x / g x) = product(m..n) f / product(m..n) g`,
  SIMP_TAC[PRODUCT_DIV; FINITE_NUMSEG]);;

let PRODUCT_ONE = prove
 (`!s. product s (\n. &1) = &1`,
  SIMP_TAC[PRODUCT_EQ_1]);;

let PRODUCT_LE_1 = prove
 (`!f s. FINITE s /\ (!x. x IN s ==> &0 <= f x /\ f x <= &1)
         ==> product s f <= &1`,
  GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[PRODUCT_CLAUSES; REAL_LE_REFL; IN_INSERT] THEN
  REPEAT STRIP_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_LID] THEN
  MATCH_MP_TAC REAL_LE_MUL2 THEN ASM_SIMP_TAC[PRODUCT_POS_LE]);;

let PRODUCT_ABS = prove
 (`!f s. FINITE s ==> product s (\x. abs(f x)) = abs(product s f)`,
  GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[PRODUCT_CLAUSES; REAL_ABS_MUL; REAL_ABS_NUM]);;

let PRODUCT_CLOSED = prove
 (`!P f:A->real s.
        P(&1) /\ (!x y. P x /\ P y ==> P(x * y)) /\ (!a. a IN s ==> P(f a))
        ==> P(product s f)`,
  REPEAT STRIP_TAC THEN MP_TAC(MATCH_MP ITERATE_CLOSED MONOIDAL_REAL_MUL) THEN
  DISCH_THEN(MP_TAC o SPEC `P:real->bool`) THEN
  ASM_SIMP_TAC[NEUTRAL_REAL_MUL; GSYM product]);;

let PRODUCT_CLAUSES_LEFT = prove
 (`!f m n. m <= n ==> product(m..n) f = f(m) * product(m+1..n) f`,
  SIMP_TAC[GSYM NUMSEG_LREC; PRODUCT_CLAUSES; FINITE_NUMSEG; IN_NUMSEG] THEN
  ARITH_TAC);;

let PRODUCT_CLAUSES_RIGHT = prove
 (`!f m n. 0 < n /\ m <= n ==> product(m..n) f = product(m..n-1) f * f(n)`,
  GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN
  SIMP_TAC[LT_REFL; PRODUCT_CLAUSES_NUMSEG; SUC_SUB1]);;

(* ------------------------------------------------------------------------- *)
(* Extend congruences.                                                       *)
(* ------------------------------------------------------------------------- *)

let th = prove
   (`(!f g s.   (!x. x IN s ==> f(x) = g(x))
                ==> product s (\i. f(i)) = product s g) /\
     (!f g a b. (!i. a <= i /\ i <= b ==> f(i) = g(i))
                ==> product(a..b) (\i. f(i)) = product(a..b) g) /\
     (!f g p.   (!x. p x ==> f x = g x)
                ==> product {y | p y} (\i. f(i)) = product {y | p y} g)`,
    REPEAT STRIP_TAC THEN MATCH_MP_TAC PRODUCT_EQ THEN
    ASM_SIMP_TAC[IN_ELIM_THM; IN_NUMSEG]) in
    extend_basic_congs (map SPEC_ALL (CONJUNCTS th));;