1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
|
(* ========================================================================= *)
(* Various convenient background stuff. *)
(* *)
(* (c) Copyright, John Harrison 1998-2008 *)
(* ========================================================================= *)
prioritize_real();;
(* ------------------------------------------------------------------------- *)
(* A couple of extra tactics used in some proofs below. *)
(* ------------------------------------------------------------------------- *)
let ASSERT_TAC tm =
SUBGOAL_THEN tm STRIP_ASSUME_TAC;;
let EQ_TRANS_TAC tm =
MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC tm THEN CONJ_TAC;;
(* ------------------------------------------------------------------------- *)
(* Miscellaneous lemmas. *)
(* ------------------------------------------------------------------------- *)
let EXISTS_DIFF = prove
(`(?s:A->bool. P(UNIV DIFF s)) <=> (?s. P s)`,
MESON_TAC[prove(`UNIV DIFF (UNIV DIFF s) = s`,SET_TAC[])]);;
let GE_REFL = prove
(`!n:num. n >= n`,
REWRITE_TAC[GE; LE_REFL]);;
let FORALL_SUC = prove
(`(!n. ~(n = 0) ==> P n) <=> (!n. P(SUC n))`,
MESON_TAC[num_CASES; NOT_SUC]);;
let SEQ_MONO_LEMMA = prove
(`!d e. (!n. n >= m ==> d(n) < e(n)) /\ (!n. n >= m ==> e(n) <= e(m))
==> !n:num. n >= m ==> d(n) < e(m)`,
MESON_TAC[GE; REAL_LTE_TRANS]);;
let REAL_HALF = prove
(`(!e. &0 < e / &2 <=> &0 < e) /\
(!e. e / &2 + e / &2 = e) /\
(!e. &2 * (e / &2) = e)`,
REAL_ARITH_TAC);;
let UPPER_BOUND_FINITE_SET = prove
(`!f:(A->num) s. FINITE(s) ==> ?a. !x. x IN s ==> f(x) <= a`,
GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
MESON_TAC[LE_CASES; LE_REFL; LE_TRANS]);;
let UPPER_BOUND_FINITE_SET_REAL = prove
(`!f:(A->real) s. FINITE(s) ==> ?a. !x. x IN s ==> f(x) <= a`,
GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
MESON_TAC[REAL_LE_TOTAL; REAL_LE_REFL; REAL_LE_TRANS]);;
let LOWER_BOUND_FINITE_SET = prove
(`!f:(A->num) s. FINITE(s) ==> ?a. !x. x IN s ==> a <= f(x)`,
GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
MESON_TAC[LE_CASES; LE_REFL; LE_TRANS]);;
let LOWER_BOUND_FINITE_SET_REAL = prove
(`!f:(A->real) s. FINITE(s) ==> ?a. !x. x IN s ==> a <= f(x)`,
GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
MESON_TAC[REAL_LE_TOTAL; REAL_LE_REFL; REAL_LE_TRANS]);;
let REAL_CONVEX_BOUND2_LT = prove
(`!x y a u v. x < a /\ y < b /\ &0 <= u /\ &0 <= v /\ u + v = &1
==> u * x + v * y < u * a + v * b`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `u = &0` THENL
[ASM_REWRITE_TAC[REAL_MUL_LZERO; REAL_ADD_LID] THEN REPEAT STRIP_TAC;
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LTE_ADD2 THEN
ASM_SIMP_TAC[REAL_LE_LMUL; REAL_LT_IMP_LE]] THEN
MATCH_MP_TAC REAL_LT_LMUL THEN ASM_REAL_ARITH_TAC);;
let REAL_CONVEX_BOUND_LT = prove
(`!x y a u v. x < a /\ y < a /\ &0 <= u /\ &0 <= v /\ (u + v = &1)
==> u * x + v * y < a`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LTE_TRANS THEN
EXISTS_TAC `u * a + v * a:real` THEN CONJ_TAC THENL
[ASM_SIMP_TAC[REAL_CONVEX_BOUND2_LT];
MATCH_MP_TAC REAL_EQ_IMP_LE THEN
UNDISCH_TAC `u + v = &1` THEN CONV_TAC REAL_RING]);;
let REAL_CONVEX_BOUND_LE = prove
(`!x y a u v. x <= a /\ y <= a /\ &0 <= u /\ &0 <= v /\ (u + v = &1)
==> u * x + v * y <= a`,
REPEAT STRIP_TAC THEN
MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `(u + v) * a` THEN
CONJ_TAC THENL [ALL_TAC; ASM_REWRITE_TAC[REAL_LE_REFL; REAL_MUL_LID]] THEN
ASM_SIMP_TAC[REAL_ADD_RDISTRIB; REAL_LE_ADD2; REAL_LE_LMUL]);;
let INFINITE_ENUMERATE_WEAK = prove
(`!s:num->bool.
INFINITE s
==> ?r:num->num. (!m n. m < n ==> r(m) < r(n)) /\ (!n. r n IN s)`,
GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP INFINITE_ENUMERATE) THEN
MATCH_MP_TAC MONO_EXISTS THEN SET_TAC[]);;
let APPROACHABLE_LT_LE = prove
(`!P f. (?d. &0 < d /\ !x. f(x) < d ==> P x) =
(?d. &0 < d /\ !x. f(x) <= d ==> P x)`,
let lemma = prove
(`&0 < d ==> x <= d / &2 ==> x < d`,
SIMP_TAC[REAL_LE_RDIV_EQ; REAL_OF_NUM_LT; ARITH] THEN REAL_ARITH_TAC) in
MESON_TAC[REAL_LT_IMP_LE; lemma; REAL_HALF]);;
let REAL_LE_BETWEEN = prove
(`!a b. a <= b <=> ?x. a <= x /\ x <= b`,
MESON_TAC[REAL_LE_TRANS; REAL_LE_REFL]);;
let REAL_LT_BETWEEN = prove
(`!a b. a < b <=> ?x. a < x /\ x < b`,
REPEAT GEN_TAC THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[REAL_LT_TRANS]] THEN
DISCH_TAC THEN EXISTS_TAC `(a + b) / &2` THEN
SIMP_TAC[REAL_LT_RDIV_EQ; REAL_LT_LDIV_EQ; REAL_OF_NUM_LT; ARITH] THEN
POP_ASSUM MP_TAC THEN REAL_ARITH_TAC);;
let TRIANGLE_LEMMA = prove
(`!x y z. &0 <= x /\ &0 <= y /\ &0 <= z /\ x pow 2 <= y pow 2 + z pow 2
==> x <= y + z`,
REPEAT GEN_TAC THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN
REWRITE_TAC[REAL_NOT_LE] THEN DISCH_TAC THEN
MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `(y + z) pow 2` THEN
ASM_SIMP_TAC[REAL_POW_LT2; REAL_LE_ADD; ARITH_EQ] THEN
ASM_SIMP_TAC[REAL_LE_MUL; REAL_POW_2; REAL_ARITH
`x * x + y * y <= (x + y) * (x + y) <=> &0 <= x * y`]);;
let LAMBDA_SKOLEM = prove
(`(!i. 1 <= i /\ i <= dimindex(:N) ==> ?x. P i x) =
(?x:A^N. !i. 1 <= i /\ i <= dimindex(:N) ==> P i (x$i))`,
REWRITE_TAC[RIGHT_IMP_EXISTS_THM; SKOLEM_THM] THEN EQ_TAC THENL
[DISCH_THEN(X_CHOOSE_TAC `x:num->A`) THEN
EXISTS_TAC `(lambda i. x i):A^N` THEN ASM_SIMP_TAC[LAMBDA_BETA];
DISCH_THEN(X_CHOOSE_TAC `x:A^N`) THEN
EXISTS_TAC `\i. (x:A^N)$i` THEN ASM_REWRITE_TAC[]]);;
let LAMBDA_PAIR = prove
(`(\(x,y). P x y) = (\p. P (FST p) (SND p))`,
REWRITE_TAC[FUN_EQ_THM; FORALL_PAIR_THM] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN REWRITE_TAC[]);;
let EPSILON_DELTA_MINIMAL = prove
(`!P:real->A->bool Q.
FINITE {x | Q x} /\
(!d e x. Q x /\ &0 < e /\ e < d ==> P d x ==> P e x) /\
(!x. Q x ==> ?d. &0 < d /\ P d x)
==> ?d. &0 < d /\ !x. Q x ==> P d x`,
REWRITE_TAC[IMP_IMP] THEN REPEAT STRIP_TAC THEN
ASM_CASES_TAC `{x:A | Q x} = {}` THENL
[FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [EXTENSION]) THEN
REWRITE_TAC[NOT_IN_EMPTY; IN_ELIM_THM] THEN
DISCH_TAC THEN EXISTS_TAC `&1` THEN ASM_REWRITE_TAC[REAL_LT_01];
FIRST_X_ASSUM(MP_TAC o
GEN_REWRITE_RULE BINDER_CONV [RIGHT_IMP_EXISTS_THM]) THEN
REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `d:A->real` THEN DISCH_TAC THEN
EXISTS_TAC `inf(IMAGE d {x:A | Q x})` THEN
ASM_SIMP_TAC[REAL_LT_INF_FINITE; FINITE_IMAGE; IMAGE_EQ_EMPTY] THEN
ASM_SIMP_TAC[FORALL_IN_IMAGE; FORALL_IN_GSPEC] THEN
X_GEN_TAC `a:A` THEN DISCH_TAC THEN
SUBGOAL_THEN
`&0 < inf(IMAGE d {x:A | Q x}) /\ inf(IMAGE d {x | Q x}) <= d a`
MP_TAC THENL
[ASM_SIMP_TAC[REAL_LT_INF_FINITE; REAL_INF_LE_FINITE;
FINITE_IMAGE; IMAGE_EQ_EMPTY] THEN
REWRITE_TAC[EXISTS_IN_IMAGE; FORALL_IN_IMAGE; IN_ELIM_THM] THEN
ASM_MESON_TAC[REAL_LE_REFL];
REWRITE_TAC[REAL_LE_LT] THEN STRIP_TAC THEN ASM_SIMP_TAC[] THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN
EXISTS_TAC `(d:A->real) a` THEN ASM_SIMP_TAC[]]]);;
(* ------------------------------------------------------------------------- *)
(* A generic notion of "hull" (convex, affine, conic hull and closure). *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("hull",(21,"left"));;
let hull = new_definition
`P hull s = INTERS {t | P t /\ s SUBSET t}`;;
let HULL_P = prove
(`!P s. P s ==> (P hull s = s)`,
REWRITE_TAC[hull; EXTENSION; IN_INTERS; IN_ELIM_THM] THEN
MESON_TAC[SUBSET]);;
let P_HULL = prove
(`!P s. (!f. (!s. s IN f ==> P s) ==> P(INTERS f)) ==> P(P hull s)`,
REWRITE_TAC[hull] THEN SIMP_TAC[IN_ELIM_THM]);;
let HULL_EQ = prove
(`!P s. (!f. (!s. s IN f ==> P s) ==> P(INTERS f))
==> ((P hull s = s) <=> P s)`,
MESON_TAC[P_HULL; HULL_P]);;
let HULL_HULL = prove
(`!P s. P hull (P hull s) = P hull s`,
REWRITE_TAC[hull; EXTENSION; IN_INTERS; IN_ELIM_THM; SUBSET] THEN
MESON_TAC[]);;
let HULL_SUBSET = prove
(`!P s. s SUBSET (P hull s)`,
REWRITE_TAC[hull; SUBSET; IN_INTERS; IN_ELIM_THM] THEN MESON_TAC[]);;
let HULL_MONO = prove
(`!P s t. s SUBSET t ==> (P hull s) SUBSET (P hull t)`,
REWRITE_TAC[hull; SUBSET; IN_INTERS; IN_ELIM_THM] THEN MESON_TAC[]);;
let HULL_ANTIMONO = prove
(`!P Q s. P SUBSET Q ==> (Q hull s) SUBSET (P hull s)`,
REWRITE_TAC[SUBSET; hull; IN_INTERS; IN_ELIM_THM] THEN MESON_TAC[IN]);;
let HULL_MINIMAL = prove
(`!P s t. s SUBSET t /\ P t ==> (P hull s) SUBSET t`,
REWRITE_TAC[hull; SUBSET; IN_INTERS; IN_ELIM_THM] THEN MESON_TAC[]);;
let SUBSET_HULL = prove
(`!P s t. P t ==> ((P hull s) SUBSET t <=> s SUBSET t)`,
REWRITE_TAC[hull; SUBSET; IN_INTERS; IN_ELIM_THM] THEN MESON_TAC[]);;
let HULL_UNIQUE = prove
(`!P s t. s SUBSET t /\ P t /\ (!t'. s SUBSET t' /\ P t' ==> t SUBSET t')
==> (P hull s = t)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN
REWRITE_TAC[hull; SUBSET; IN_INTERS; IN_ELIM_THM] THEN
ASM_MESON_TAC[SUBSET_HULL; SUBSET]);;
let HULL_UNION_SUBSET = prove
(`!P s t. (P hull s) UNION (P hull t) SUBSET (P hull (s UNION t))`,
SIMP_TAC[UNION_SUBSET; HULL_MONO; SUBSET_UNION]);;
let HULL_UNION = prove
(`!P s t. P hull (s UNION t) = P hull (P hull s UNION P hull t)`,
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[hull] THEN
AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; UNION_SUBSET] THEN
MESON_TAC[SUBSET_HULL]);;
let HULL_UNION_LEFT = prove
(`!P s t:A->bool.
P hull (s UNION t) = P hull (P hull s UNION t)`,
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[hull] THEN
AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; UNION_SUBSET] THEN
MESON_TAC[SUBSET_HULL]);;
let HULL_UNION_RIGHT = prove
(`!P s t:A->bool.
P hull (s UNION t) = P hull (s UNION P hull t)`,
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[hull] THEN
AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; UNION_SUBSET] THEN
MESON_TAC[SUBSET_HULL]);;
let HULL_REDUNDANT_EQ = prove
(`!P a s. a IN (P hull s) <=> (P hull (a INSERT s) = P hull s)`,
REWRITE_TAC[hull] THEN SET_TAC[]);;
let HULL_REDUNDANT = prove
(`!P a s. a IN (P hull s) ==> (P hull (a INSERT s) = P hull s)`,
REWRITE_TAC[HULL_REDUNDANT_EQ]);;
let HULL_INDUCT = prove
(`!P p s. (!x:A. x IN s ==> p x) /\ P {x | p x}
==> !x. x IN P hull s ==> p x`,
REPEAT GEN_TAC THEN
MP_TAC(ISPECL [`P:(A->bool)->bool`; `s:A->bool`; `{x:A | p x}`]
HULL_MINIMAL) THEN
REWRITE_TAC[SUBSET; IN_ELIM_THM]);;
let HULL_INC = prove
(`!P s x. x IN s ==> x IN P hull s`,
MESON_TAC[REWRITE_RULE[SUBSET] HULL_SUBSET]);;
let HULL_IMAGE_SUBSET = prove
(`!P f s. P(P hull s) /\ (!s. P s ==> P(IMAGE f s))
==> P hull (IMAGE f s) SUBSET (IMAGE f (P hull s))`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC HULL_MINIMAL THEN
ASM_SIMP_TAC[IMAGE_SUBSET; HULL_SUBSET]);;
let HULL_IMAGE_GALOIS = prove
(`!P f g s. (!s. P(P hull s)) /\
(!s. P s ==> P(IMAGE f s)) /\ (!s. P s ==> P(IMAGE g s)) /\
(!s t. s SUBSET IMAGE g t <=> IMAGE f s SUBSET t)
==> P hull (IMAGE f s) = IMAGE f (P hull s)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN
ASM_SIMP_TAC[HULL_IMAGE_SUBSET] THEN
FIRST_ASSUM(fun th -> GEN_REWRITE_TAC I [GSYM th]) THEN
MATCH_MP_TAC HULL_MINIMAL THEN
ASM_SIMP_TAC[HULL_SUBSET]);;
let HULL_IMAGE = prove
(`!P f s. (!s. P(P hull s)) /\ (!s. P(IMAGE f s) <=> P s) /\
(!x y:A. f x = f y ==> x = y) /\ (!y. ?x. f x = y)
==> P hull (IMAGE f s) = IMAGE f (P hull s)`,
REPEAT GEN_TAC THEN
REPLICATE_TAC 2 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
REWRITE_TAC[BIJECTIVE_LEFT_RIGHT_INVERSE] THEN
DISCH_THEN(X_CHOOSE_THEN `g:A->A` STRIP_ASSUME_TAC) THEN
MATCH_MP_TAC HULL_IMAGE_GALOIS THEN EXISTS_TAC `g:A->A` THEN
ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN
X_GEN_TAC `s:A->bool` THEN
FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [GSYM th]) THEN
MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN ASM SET_TAC[]);;
let IS_HULL = prove
(`!P s. (!f. (!s. s IN f ==> P s) ==> P(INTERS f))
==> (P s <=> ?t. s = P hull t)`,
MESON_TAC[HULL_P; P_HULL]);;
let HULLS_EQ = prove
(`!P s t.
(!f. (!s. s IN f ==> P s) ==> P (INTERS f)) /\
s SUBSET P hull t /\ t SUBSET P hull s
==> P hull s = P hull t`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN
CONJ_TAC THEN MATCH_MP_TAC HULL_MINIMAL THEN
ASM_SIMP_TAC[P_HULL]);;
let HULL_P_AND_Q = prove
(`!P Q. (!f. (!s. s IN f ==> P s) ==> P(INTERS f)) /\
(!f. (!s. s IN f ==> Q s) ==> Q(INTERS f)) /\
(!s. Q s ==> Q(P hull s))
==> (\x. P x /\ Q x) hull s = P hull (Q hull s)`,
REPEAT STRIP_TAC THEN
MATCH_MP_TAC HULL_UNIQUE THEN ASM_SIMP_TAC[HULL_INC; SUBSET_HULL] THEN
ASM_MESON_TAC[P_HULL; HULL_SUBSET; SUBSET_TRANS]);;
(* ------------------------------------------------------------------------- *)
(* More variants of the Archimedian property and useful consequences. *)
(* ------------------------------------------------------------------------- *)
let REAL_ARCH_INV = prove
(`!e. &0 < e <=> ?n. ~(n = 0) /\ &0 < inv(&n) /\ inv(&n) < e`,
GEN_TAC THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[REAL_LT_TRANS]] THEN
DISCH_TAC THEN MP_TAC(SPEC `inv(e)` REAL_ARCH_LT) THEN
MATCH_MP_TAC MONO_EXISTS THEN
ASM_MESON_TAC[REAL_LT_INV2; REAL_INV_INV; REAL_LT_INV_EQ; REAL_LT_TRANS;
REAL_LT_ANTISYM]);;
let REAL_POW_LBOUND = prove
(`!x n. &0 <= x ==> &1 + &n * x <= (&1 + x) pow n`,
GEN_TAC THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN
INDUCT_TAC THEN
REWRITE_TAC[real_pow; REAL_MUL_LZERO; REAL_ADD_RID; REAL_LE_REFL] THEN
REWRITE_TAC[GSYM REAL_OF_NUM_SUC] THEN
MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `(&1 + x) * (&1 + &n * x)` THEN
ASM_SIMP_TAC[REAL_LE_LMUL; REAL_ARITH `&0 <= x ==> &0 <= &1 + x`] THEN
ASM_SIMP_TAC[REAL_LE_MUL; REAL_POS; REAL_ARITH
`&1 + (n + &1) * x <= (&1 + x) * (&1 + n * x) <=> &0 <= n * x * x`]);;
let REAL_ARCH_POW = prove
(`!x y. &1 < x ==> ?n. y < x pow n`,
REPEAT STRIP_TAC THEN
MP_TAC(SPEC `x - &1` REAL_ARCH) THEN ASM_REWRITE_TAC[REAL_SUB_LT] THEN
DISCH_THEN(MP_TAC o SPEC `y:real`) THEN MATCH_MP_TAC MONO_EXISTS THEN
X_GEN_TAC `n:num` THEN DISCH_TAC THEN MATCH_MP_TAC REAL_LTE_TRANS THEN
EXISTS_TAC `&1 + &n * (x - &1)` THEN
ASM_SIMP_TAC[REAL_ARITH `x < y ==> x < &1 + y`] THEN
ASM_MESON_TAC[REAL_POW_LBOUND; REAL_SUB_ADD2; REAL_ARITH
`&1 < x ==> &0 <= x - &1`]);;
let REAL_ARCH_POW2 = prove
(`!x. ?n. x < &2 pow n`,
SIMP_TAC[REAL_ARCH_POW; REAL_OF_NUM_LT; ARITH]);;
let REAL_ARCH_POW_INV = prove
(`!x y. &0 < y /\ x < &1 ==> ?n. x pow n < y`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `&0 < x` THENL
[ALL_TAC; ASM_MESON_TAC[REAL_POW_1; REAL_LET_TRANS; REAL_NOT_LT]] THEN
SUBGOAL_THEN `inv(&1) < inv(x)` MP_TAC THENL
[ASM_SIMP_TAC[REAL_LT_INV2]; REWRITE_TAC[REAL_INV_1]] THEN
DISCH_THEN(MP_TAC o SPEC `inv(y)` o MATCH_MP REAL_ARCH_POW) THEN
MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN DISCH_TAC THEN
GEN_REWRITE_TAC BINOP_CONV [GSYM REAL_INV_INV] THEN
ASM_SIMP_TAC[GSYM REAL_POW_INV; REAL_LT_INV; REAL_LT_INV2]);;
let FORALL_POS_MONO = prove
(`!P. (!d e. d < e /\ P d ==> P e) /\ (!n. ~(n = 0) ==> P(inv(&n)))
==> !e. &0 < e ==> P e`,
MESON_TAC[REAL_ARCH_INV; REAL_LT_TRANS]);;
let FORALL_POS_MONO_1 = prove
(`!P. (!d e. d < e /\ P d ==> P e) /\ (!n. P(inv(&n + &1)))
==> !e. &0 < e ==> P e`,
REWRITE_TAC[REAL_OF_NUM_SUC; GSYM FORALL_SUC; FORALL_POS_MONO]);;
let REAL_ARCH_RDIV_EQ_0 = prove
(`!x c. &0 <= x /\ &0 <= c /\ (!m. 0 < m ==> &m * x <= c) ==> x = &0`,
SIMP_TAC [GSYM REAL_LE_ANTISYM; GSYM REAL_NOT_LT] THEN REPEAT STRIP_TAC THEN
POP_ASSUM (STRIP_ASSUME_TAC o SPEC `c:real` o MATCH_MP REAL_ARCH) THEN
ASM_CASES_TAC `n=0` THENL
[POP_ASSUM SUBST_ALL_TAC THEN
RULE_ASSUM_TAC (REWRITE_RULE [REAL_MUL_LZERO]) THEN
ASM_MESON_TAC [REAL_LET_ANTISYM];
ASM_MESON_TAC [REAL_LET_ANTISYM; REAL_MUL_SYM; LT_NZ]]);;
(* ------------------------------------------------------------------------- *)
(* Relate max and min to sup and inf. *)
(* ------------------------------------------------------------------------- *)
let REAL_MAX_SUP = prove
(`!x y. max x y = sup {x,y}`,
SIMP_TAC[GSYM REAL_LE_ANTISYM; REAL_SUP_LE_FINITE; REAL_LE_SUP_FINITE;
FINITE_RULES; NOT_INSERT_EMPTY; REAL_MAX_LE; REAL_LE_MAX] THEN
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN MESON_TAC[REAL_LE_TOTAL]);;
let REAL_MIN_INF = prove
(`!x y. min x y = inf {x,y}`,
SIMP_TAC[GSYM REAL_LE_ANTISYM; REAL_INF_LE_FINITE; REAL_LE_INF_FINITE;
FINITE_RULES; NOT_INSERT_EMPTY; REAL_MIN_LE; REAL_LE_MIN] THEN
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN MESON_TAC[REAL_LE_TOTAL]);;
(* ------------------------------------------------------------------------- *)
(* Define square root here to decouple it from the existing analysis theory. *)
(* ------------------------------------------------------------------------- *)
let sqrt = new_definition
`sqrt(x) = @y. &0 <= y /\ (y pow 2 = x)`;;
let SQRT_UNIQUE = prove
(`!x y. &0 <= y /\ (y pow 2 = x) ==> (sqrt(x) = y)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[sqrt] THEN MATCH_MP_TAC SELECT_UNIQUE THEN
FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN REWRITE_TAC[REAL_POW_2] THEN
REWRITE_TAC[REAL_ARITH `(x * x = y * y) <=> ((x + y) * (x - y) = &0)`] THEN
REWRITE_TAC[REAL_ENTIRE] THEN POP_ASSUM MP_TAC THEN REAL_ARITH_TAC);;
let POW_2_SQRT = prove
(`!x. &0 <= x ==> (sqrt(x pow 2) = x)`,
MESON_TAC[SQRT_UNIQUE]);;
let SQRT_0 = prove
(`sqrt(&0) = &0`,
MESON_TAC[SQRT_UNIQUE; REAL_POW_2; REAL_MUL_LZERO; REAL_POS]);;
let SQRT_1 = prove
(`sqrt(&1) = &1`,
MESON_TAC[SQRT_UNIQUE; REAL_POW_2; REAL_MUL_LID; REAL_POS]);;
let POW_2_SQRT_ABS = prove
(`!x. sqrt(x pow 2) = abs(x)`,
GEN_TAC THEN MATCH_MP_TAC SQRT_UNIQUE THEN
REWRITE_TAC[REAL_ABS_POS; REAL_POW_2; GSYM REAL_ABS_MUL] THEN
REWRITE_TAC[real_abs; REAL_LE_SQUARE]);;
(* ------------------------------------------------------------------------- *)
(* Geometric progression. *)
(* ------------------------------------------------------------------------- *)
let SUM_GP_BASIC = prove
(`!x n. (&1 - x) * sum(0..n) (\i. x pow i) = &1 - x pow (SUC n)`,
GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[SUM_CLAUSES_NUMSEG] THEN
REWRITE_TAC[real_pow; REAL_MUL_RID; LE_0] THEN
ASM_REWRITE_TAC[REAL_ADD_LDISTRIB; real_pow] THEN REAL_ARITH_TAC);;
let SUM_GP_MULTIPLIED = prove
(`!x m n. m <= n
==> ((&1 - x) * sum(m..n) (\i. x pow i) = x pow m - x pow (SUC n))`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC
[SUM_OFFSET_0; REAL_POW_ADD; REAL_MUL_ASSOC; SUM_GP_BASIC; SUM_RMUL] THEN
REWRITE_TAC[REAL_SUB_RDISTRIB; GSYM REAL_POW_ADD; REAL_MUL_LID] THEN
ASM_SIMP_TAC[ARITH_RULE `m <= n ==> (SUC(n - m) + m = SUC n)`]);;
let SUM_GP = prove
(`!x m n.
sum(m..n) (\i. x pow i) =
if n < m then &0
else if x = &1 then &((n + 1) - m)
else (x pow m - x pow (SUC n)) / (&1 - x)`,
REPEAT GEN_TAC THEN
DISJ_CASES_TAC(ARITH_RULE `n < m \/ ~(n < m) /\ m <= n:num`) THEN
ASM_SIMP_TAC[SUM_TRIV_NUMSEG] THEN COND_CASES_TAC THENL
[ASM_REWRITE_TAC[REAL_POW_ONE; SUM_CONST_NUMSEG; REAL_MUL_RID]; ALL_TAC] THEN
MATCH_MP_TAC REAL_EQ_LCANCEL_IMP THEN EXISTS_TAC `&1 - x` THEN
ASM_SIMP_TAC[REAL_DIV_LMUL; REAL_SUB_0; SUM_GP_MULTIPLIED]);;
let SUM_GP_OFFSET = prove
(`!x m n. sum(m..m+n) (\i. x pow i) =
if x = &1 then &n + &1
else x pow m * (&1 - x pow (SUC n)) / (&1 - x)`,
REPEAT GEN_TAC THEN REWRITE_TAC[SUM_GP; ARITH_RULE `~(m + n < m:num)`] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL
[REWRITE_TAC[REAL_OF_NUM_ADD] THEN AP_TERM_TAC THEN ARITH_TAC;
REWRITE_TAC[real_div; real_pow; REAL_POW_ADD] THEN REAL_ARITH_TAC]);;
(* ------------------------------------------------------------------------- *)
(* Segment of natural numbers starting at a specific number. *)
(* ------------------------------------------------------------------------- *)
let from = new_definition
`from n = {m:num | n <= m}`;;
let FROM_0 = prove
(`from 0 = (:num)`,
REWRITE_TAC[from; LE_0] THEN SET_TAC[]);;
let FROM_INTER_NUMSEG_GEN = prove
(`!k m n. (from k) INTER (m..n) = (if m < k then k..n else m..n)`,
REPEAT GEN_TAC THEN COND_CASES_TAC THEN POP_ASSUM MP_TAC THEN
REWRITE_TAC[from; IN_ELIM_THM; IN_INTER; IN_NUMSEG; EXTENSION] THEN
ARITH_TAC);;
let FROM_INTER_NUMSEG = prove
(`!k n. (from k) INTER (0..n) = k..n`,
REWRITE_TAC[from; IN_ELIM_THM; IN_INTER; IN_NUMSEG; EXTENSION] THEN
ARITH_TAC);;
let IN_FROM = prove
(`!m n. m IN from n <=> n <= m`,
REWRITE_TAC[from; IN_ELIM_THM]);;
let INFINITE_FROM = prove
(`!n. INFINITE(from n)`,
GEN_TAC THEN
SUBGOAL_THEN `from n = (:num) DIFF {i | i < n}`
(fun th -> SIMP_TAC[th; INFINITE_DIFF_FINITE; FINITE_NUMSEG_LT;
num_INFINITE]) THEN
REWRITE_TAC[EXTENSION; from; IN_DIFF; IN_UNIV; IN_ELIM_THM] THEN ARITH_TAC);;
|