File: misc.ml

package info (click to toggle)
hol-light 20131026-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 26,264 kB
  • ctags: 4,620
  • sloc: ml: 400,325; cpp: 438; java: 279; lisp: 261; makefile: 256; sh: 190; yacc: 108; perl: 78; ansic: 57; sed: 39
file content (520 lines) | stat: -rw-r--r-- 21,433 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
(* ========================================================================= *)
(* Various convenient background stuff.                                      *)
(*                                                                           *)
(*              (c) Copyright, John Harrison 1998-2008                       *)
(* ========================================================================= *)

prioritize_real();;

(* ------------------------------------------------------------------------- *)
(* A couple of extra tactics used in some proofs below.                      *)
(* ------------------------------------------------------------------------- *)

let ASSERT_TAC tm =
  SUBGOAL_THEN tm STRIP_ASSUME_TAC;;

let EQ_TRANS_TAC tm =
  MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC tm THEN CONJ_TAC;;

(* ------------------------------------------------------------------------- *)
(* Miscellaneous lemmas.                                                     *)
(* ------------------------------------------------------------------------- *)

let EXISTS_DIFF = prove
 (`(?s:A->bool. P(UNIV DIFF s)) <=> (?s. P s)`,
  MESON_TAC[prove(`UNIV DIFF (UNIV DIFF s) = s`,SET_TAC[])]);;

let GE_REFL = prove
 (`!n:num. n >= n`,
  REWRITE_TAC[GE; LE_REFL]);;

let FORALL_SUC = prove
 (`(!n. ~(n = 0) ==> P n) <=> (!n. P(SUC n))`,
  MESON_TAC[num_CASES; NOT_SUC]);;

let SEQ_MONO_LEMMA = prove
 (`!d e. (!n. n >= m ==> d(n) < e(n)) /\ (!n. n >= m ==> e(n) <= e(m))
         ==> !n:num. n >= m ==> d(n) < e(m)`,
  MESON_TAC[GE; REAL_LTE_TRANS]);;

let REAL_HALF = prove
 (`(!e. &0 < e / &2 <=> &0 < e) /\
   (!e. e / &2 + e / &2 = e) /\
   (!e. &2 * (e / &2) = e)`,
  REAL_ARITH_TAC);;

let UPPER_BOUND_FINITE_SET = prove
 (`!f:(A->num) s. FINITE(s) ==> ?a. !x. x IN s ==> f(x) <= a`,
  GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
  MESON_TAC[LE_CASES; LE_REFL; LE_TRANS]);;

let UPPER_BOUND_FINITE_SET_REAL = prove
 (`!f:(A->real) s. FINITE(s) ==> ?a. !x. x IN s ==> f(x) <= a`,
  GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
  MESON_TAC[REAL_LE_TOTAL; REAL_LE_REFL; REAL_LE_TRANS]);;

let LOWER_BOUND_FINITE_SET = prove
 (`!f:(A->num) s. FINITE(s) ==> ?a. !x. x IN s ==> a <= f(x)`,
  GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
  MESON_TAC[LE_CASES; LE_REFL; LE_TRANS]);;

let LOWER_BOUND_FINITE_SET_REAL = prove
 (`!f:(A->real) s. FINITE(s) ==> ?a. !x. x IN s ==> a <= f(x)`,
  GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
  MESON_TAC[REAL_LE_TOTAL; REAL_LE_REFL; REAL_LE_TRANS]);;

let REAL_CONVEX_BOUND2_LT = prove
 (`!x y a u v. x < a /\ y < b /\ &0 <= u /\ &0 <= v /\ u + v = &1
               ==> u * x + v * y < u * a + v * b`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `u = &0` THENL
   [ASM_REWRITE_TAC[REAL_MUL_LZERO; REAL_ADD_LID] THEN REPEAT STRIP_TAC;
    REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LTE_ADD2 THEN
    ASM_SIMP_TAC[REAL_LE_LMUL; REAL_LT_IMP_LE]] THEN
  MATCH_MP_TAC REAL_LT_LMUL THEN ASM_REAL_ARITH_TAC);;

let REAL_CONVEX_BOUND_LT = prove
 (`!x y a u v. x < a /\ y < a /\ &0 <= u /\ &0 <= v /\ (u + v = &1)
               ==> u * x + v * y < a`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LTE_TRANS THEN
  EXISTS_TAC `u * a + v * a:real` THEN CONJ_TAC THENL
   [ASM_SIMP_TAC[REAL_CONVEX_BOUND2_LT];
    MATCH_MP_TAC REAL_EQ_IMP_LE THEN
    UNDISCH_TAC `u + v = &1` THEN CONV_TAC REAL_RING]);;

let REAL_CONVEX_BOUND_LE = prove
 (`!x y a u v. x <= a /\ y <= a /\ &0 <= u /\ &0 <= v /\ (u + v = &1)
               ==> u * x + v * y <= a`,
  REPEAT STRIP_TAC THEN
  MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `(u + v) * a` THEN
  CONJ_TAC THENL [ALL_TAC; ASM_REWRITE_TAC[REAL_LE_REFL; REAL_MUL_LID]] THEN
  ASM_SIMP_TAC[REAL_ADD_RDISTRIB; REAL_LE_ADD2; REAL_LE_LMUL]);;

let INFINITE_ENUMERATE_WEAK = prove
 (`!s:num->bool.
       INFINITE s
       ==> ?r:num->num. (!m n. m < n ==> r(m) < r(n)) /\ (!n. r n IN s)`,
  GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP INFINITE_ENUMERATE) THEN
  MATCH_MP_TAC MONO_EXISTS THEN SET_TAC[]);;

let APPROACHABLE_LT_LE = prove
 (`!P f. (?d. &0 < d /\ !x. f(x) < d ==> P x) =
         (?d. &0 < d /\ !x. f(x) <= d ==> P x)`,
  let lemma = prove
   (`&0 < d ==> x <= d / &2 ==> x < d`,
    SIMP_TAC[REAL_LE_RDIV_EQ; REAL_OF_NUM_LT; ARITH] THEN REAL_ARITH_TAC) in
  MESON_TAC[REAL_LT_IMP_LE; lemma; REAL_HALF]);;

let REAL_LE_BETWEEN = prove
 (`!a b. a <= b <=> ?x. a <= x /\ x <= b`,
  MESON_TAC[REAL_LE_TRANS; REAL_LE_REFL]);;

let REAL_LT_BETWEEN = prove
 (`!a b. a < b <=> ?x. a < x /\ x < b`,
  REPEAT GEN_TAC THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[REAL_LT_TRANS]] THEN
  DISCH_TAC THEN EXISTS_TAC `(a + b) / &2` THEN
  SIMP_TAC[REAL_LT_RDIV_EQ; REAL_LT_LDIV_EQ; REAL_OF_NUM_LT; ARITH] THEN
  POP_ASSUM MP_TAC THEN REAL_ARITH_TAC);;

let TRIANGLE_LEMMA = prove
 (`!x y z. &0 <= x /\ &0 <= y /\ &0 <= z /\ x pow 2 <= y pow 2 + z pow 2
           ==> x <= y + z`,
  REPEAT GEN_TAC THEN
  REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
  ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN
  REWRITE_TAC[REAL_NOT_LE] THEN DISCH_TAC THEN
  MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `(y + z) pow 2` THEN
  ASM_SIMP_TAC[REAL_POW_LT2; REAL_LE_ADD; ARITH_EQ] THEN
  ASM_SIMP_TAC[REAL_LE_MUL; REAL_POW_2; REAL_ARITH
   `x * x + y * y <= (x + y) * (x + y) <=> &0 <= x * y`]);;

let LAMBDA_SKOLEM = prove
 (`(!i. 1 <= i /\ i <= dimindex(:N) ==> ?x. P i x) =
   (?x:A^N. !i. 1 <= i /\ i <= dimindex(:N) ==> P i (x$i))`,
  REWRITE_TAC[RIGHT_IMP_EXISTS_THM; SKOLEM_THM] THEN EQ_TAC THENL
   [DISCH_THEN(X_CHOOSE_TAC `x:num->A`) THEN
    EXISTS_TAC `(lambda i. x i):A^N` THEN ASM_SIMP_TAC[LAMBDA_BETA];
    DISCH_THEN(X_CHOOSE_TAC `x:A^N`) THEN
    EXISTS_TAC `\i. (x:A^N)$i` THEN ASM_REWRITE_TAC[]]);;

let LAMBDA_PAIR = prove
 (`(\(x,y). P x y) = (\p. P (FST p) (SND p))`,
  REWRITE_TAC[FUN_EQ_THM; FORALL_PAIR_THM] THEN
  CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN REWRITE_TAC[]);;

let EPSILON_DELTA_MINIMAL = prove
 (`!P:real->A->bool Q.
        FINITE {x | Q x} /\
        (!d e x. Q x /\ &0 < e /\ e < d ==> P d x ==> P e x) /\
        (!x. Q x ==> ?d. &0 < d /\ P d x)
        ==> ?d. &0 < d /\ !x. Q x ==> P d x`,
  REWRITE_TAC[IMP_IMP] THEN REPEAT STRIP_TAC THEN
  ASM_CASES_TAC `{x:A | Q x} = {}` THENL
   [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [EXTENSION]) THEN
    REWRITE_TAC[NOT_IN_EMPTY; IN_ELIM_THM] THEN
    DISCH_TAC THEN EXISTS_TAC `&1` THEN ASM_REWRITE_TAC[REAL_LT_01];
    FIRST_X_ASSUM(MP_TAC o
     GEN_REWRITE_RULE BINDER_CONV [RIGHT_IMP_EXISTS_THM]) THEN
    REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN
    X_GEN_TAC `d:A->real` THEN DISCH_TAC THEN
    EXISTS_TAC `inf(IMAGE d {x:A | Q x})` THEN
    ASM_SIMP_TAC[REAL_LT_INF_FINITE; FINITE_IMAGE; IMAGE_EQ_EMPTY] THEN
    ASM_SIMP_TAC[FORALL_IN_IMAGE; FORALL_IN_GSPEC] THEN
    X_GEN_TAC `a:A` THEN DISCH_TAC THEN
    SUBGOAL_THEN
     `&0 < inf(IMAGE d {x:A | Q x}) /\ inf(IMAGE d {x | Q x}) <= d a`
    MP_TAC THENL
     [ASM_SIMP_TAC[REAL_LT_INF_FINITE; REAL_INF_LE_FINITE;
                   FINITE_IMAGE; IMAGE_EQ_EMPTY] THEN
      REWRITE_TAC[EXISTS_IN_IMAGE; FORALL_IN_IMAGE; IN_ELIM_THM] THEN
      ASM_MESON_TAC[REAL_LE_REFL];
      REWRITE_TAC[REAL_LE_LT] THEN STRIP_TAC THEN ASM_SIMP_TAC[] THEN
      FIRST_X_ASSUM MATCH_MP_TAC THEN
      EXISTS_TAC `(d:A->real) a` THEN ASM_SIMP_TAC[]]]);;

(* ------------------------------------------------------------------------- *)
(* A generic notion of "hull" (convex, affine, conic hull and closure).      *)
(* ------------------------------------------------------------------------- *)

parse_as_infix("hull",(21,"left"));;

let hull = new_definition
  `P hull s = INTERS {t | P t /\ s SUBSET t}`;;

let HULL_P = prove
 (`!P s. P s ==> (P hull s = s)`,
  REWRITE_TAC[hull; EXTENSION; IN_INTERS; IN_ELIM_THM] THEN
  MESON_TAC[SUBSET]);;

let P_HULL = prove
 (`!P s. (!f. (!s. s IN f ==> P s) ==> P(INTERS f)) ==> P(P hull s)`,
  REWRITE_TAC[hull] THEN SIMP_TAC[IN_ELIM_THM]);;

let HULL_EQ = prove
 (`!P s. (!f. (!s. s IN f ==> P s) ==> P(INTERS f))
         ==> ((P hull s = s) <=> P s)`,
  MESON_TAC[P_HULL; HULL_P]);;

let HULL_HULL = prove
 (`!P s. P hull (P hull s) = P hull s`,
  REWRITE_TAC[hull; EXTENSION; IN_INTERS; IN_ELIM_THM; SUBSET] THEN
  MESON_TAC[]);;

let HULL_SUBSET = prove
 (`!P s. s SUBSET (P hull s)`,
  REWRITE_TAC[hull; SUBSET; IN_INTERS; IN_ELIM_THM] THEN MESON_TAC[]);;

let HULL_MONO = prove
 (`!P s t. s SUBSET t ==> (P hull s) SUBSET (P hull t)`,
   REWRITE_TAC[hull; SUBSET; IN_INTERS; IN_ELIM_THM] THEN MESON_TAC[]);;

let HULL_ANTIMONO = prove
 (`!P Q s. P SUBSET Q ==> (Q hull s) SUBSET (P hull s)`,
  REWRITE_TAC[SUBSET; hull; IN_INTERS; IN_ELIM_THM] THEN MESON_TAC[IN]);;

let HULL_MINIMAL = prove
 (`!P s t. s SUBSET t /\ P t ==> (P hull s) SUBSET t`,
  REWRITE_TAC[hull; SUBSET; IN_INTERS; IN_ELIM_THM] THEN MESON_TAC[]);;

let SUBSET_HULL = prove
 (`!P s t. P t ==> ((P hull s) SUBSET t <=> s SUBSET t)`,
  REWRITE_TAC[hull; SUBSET; IN_INTERS; IN_ELIM_THM] THEN MESON_TAC[]);;

let HULL_UNIQUE = prove
 (`!P s t. s SUBSET t /\ P t /\ (!t'. s SUBSET t' /\ P t' ==> t SUBSET t')
           ==> (P hull s = t)`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN
  REWRITE_TAC[hull; SUBSET; IN_INTERS; IN_ELIM_THM] THEN
  ASM_MESON_TAC[SUBSET_HULL; SUBSET]);;

let HULL_UNION_SUBSET = prove
 (`!P s t. (P hull s) UNION (P hull t) SUBSET (P hull (s UNION t))`,
  SIMP_TAC[UNION_SUBSET; HULL_MONO; SUBSET_UNION]);;

let HULL_UNION = prove
 (`!P s t. P hull (s UNION t) = P hull (P hull s UNION P hull t)`,
  REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[hull] THEN
  AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; UNION_SUBSET] THEN
  MESON_TAC[SUBSET_HULL]);;

let HULL_UNION_LEFT = prove
 (`!P s t:A->bool.
        P hull (s UNION t) = P hull (P hull s UNION t)`,
  REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[hull] THEN
  AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; UNION_SUBSET] THEN
  MESON_TAC[SUBSET_HULL]);;

let HULL_UNION_RIGHT = prove
 (`!P s t:A->bool.
        P hull (s UNION t) = P hull (s UNION P hull t)`,
  REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[hull] THEN
  AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; UNION_SUBSET] THEN
  MESON_TAC[SUBSET_HULL]);;

let HULL_REDUNDANT_EQ = prove
 (`!P a s. a IN (P hull s) <=> (P hull (a INSERT s) = P hull s)`,
  REWRITE_TAC[hull] THEN SET_TAC[]);;

let HULL_REDUNDANT = prove
 (`!P a s. a IN (P hull s) ==> (P hull (a INSERT s) = P hull s)`,
  REWRITE_TAC[HULL_REDUNDANT_EQ]);;

let HULL_INDUCT = prove
 (`!P p s. (!x:A. x IN s ==> p x) /\ P {x | p x}
           ==> !x. x IN P hull s ==> p x`,
  REPEAT GEN_TAC THEN
  MP_TAC(ISPECL [`P:(A->bool)->bool`; `s:A->bool`; `{x:A | p x}`]
                HULL_MINIMAL) THEN
  REWRITE_TAC[SUBSET; IN_ELIM_THM]);;

let HULL_INC = prove
 (`!P s x. x IN s ==> x IN P hull s`,
  MESON_TAC[REWRITE_RULE[SUBSET] HULL_SUBSET]);;

let HULL_IMAGE_SUBSET = prove
 (`!P f s. P(P hull s) /\ (!s. P s ==> P(IMAGE f s))
           ==> P hull (IMAGE f s) SUBSET (IMAGE f (P hull s))`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC HULL_MINIMAL THEN
  ASM_SIMP_TAC[IMAGE_SUBSET; HULL_SUBSET]);;

let HULL_IMAGE_GALOIS = prove
 (`!P f g s. (!s. P(P hull s)) /\
             (!s. P s ==> P(IMAGE f s)) /\ (!s. P s ==> P(IMAGE g s)) /\
             (!s t. s SUBSET IMAGE g t <=> IMAGE f s SUBSET t)
             ==> P hull (IMAGE f s) = IMAGE f (P hull s)`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN
  ASM_SIMP_TAC[HULL_IMAGE_SUBSET] THEN
  FIRST_ASSUM(fun th -> GEN_REWRITE_TAC I [GSYM th]) THEN
  MATCH_MP_TAC HULL_MINIMAL THEN
  ASM_SIMP_TAC[HULL_SUBSET]);;

let HULL_IMAGE = prove
 (`!P f s. (!s. P(P hull s)) /\ (!s. P(IMAGE f s) <=> P s) /\
           (!x y:A. f x = f y ==> x = y) /\ (!y. ?x. f x = y)
           ==> P hull (IMAGE f s) = IMAGE f (P hull s)`,
  REPEAT GEN_TAC THEN
  REPLICATE_TAC 2 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
  REWRITE_TAC[BIJECTIVE_LEFT_RIGHT_INVERSE] THEN
  DISCH_THEN(X_CHOOSE_THEN `g:A->A` STRIP_ASSUME_TAC) THEN
  MATCH_MP_TAC HULL_IMAGE_GALOIS THEN EXISTS_TAC `g:A->A` THEN
  ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN
  X_GEN_TAC `s:A->bool` THEN
  FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [GSYM th]) THEN
  MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN ASM SET_TAC[]);;

let IS_HULL = prove
 (`!P s. (!f. (!s. s IN f ==> P s) ==> P(INTERS f))
         ==> (P s <=> ?t. s = P hull t)`,
  MESON_TAC[HULL_P; P_HULL]);;

let HULLS_EQ = prove
 (`!P s t.
        (!f. (!s. s IN f ==> P s) ==> P (INTERS f)) /\
        s SUBSET P hull t /\ t SUBSET P hull s
        ==> P hull s = P hull t`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN
  CONJ_TAC THEN MATCH_MP_TAC HULL_MINIMAL THEN
  ASM_SIMP_TAC[P_HULL]);;

let HULL_P_AND_Q = prove
 (`!P Q. (!f. (!s. s IN f ==> P s) ==> P(INTERS f)) /\
         (!f. (!s. s IN f ==> Q s) ==> Q(INTERS f)) /\
         (!s. Q s ==> Q(P hull s))
         ==> (\x. P x /\ Q x) hull s = P hull (Q hull s)`,
  REPEAT STRIP_TAC THEN
  MATCH_MP_TAC HULL_UNIQUE THEN ASM_SIMP_TAC[HULL_INC; SUBSET_HULL] THEN
  ASM_MESON_TAC[P_HULL; HULL_SUBSET; SUBSET_TRANS]);;

(* ------------------------------------------------------------------------- *)
(* More variants of the Archimedian property and useful consequences.        *)
(* ------------------------------------------------------------------------- *)

let REAL_ARCH_INV = prove
 (`!e. &0 < e <=> ?n. ~(n = 0) /\ &0 < inv(&n) /\ inv(&n) < e`,
  GEN_TAC THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[REAL_LT_TRANS]] THEN
  DISCH_TAC THEN MP_TAC(SPEC `inv(e)` REAL_ARCH_LT) THEN
  MATCH_MP_TAC MONO_EXISTS THEN
  ASM_MESON_TAC[REAL_LT_INV2; REAL_INV_INV; REAL_LT_INV_EQ; REAL_LT_TRANS;
                REAL_LT_ANTISYM]);;

let REAL_POW_LBOUND = prove
 (`!x n. &0 <= x ==> &1 + &n * x <= (&1 + x) pow n`,
  GEN_TAC THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN
  INDUCT_TAC THEN
  REWRITE_TAC[real_pow; REAL_MUL_LZERO; REAL_ADD_RID; REAL_LE_REFL] THEN
  REWRITE_TAC[GSYM REAL_OF_NUM_SUC] THEN
  MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `(&1 + x) * (&1 + &n * x)` THEN
  ASM_SIMP_TAC[REAL_LE_LMUL; REAL_ARITH `&0 <= x ==> &0 <= &1 + x`] THEN
  ASM_SIMP_TAC[REAL_LE_MUL; REAL_POS; REAL_ARITH
   `&1 + (n + &1) * x <= (&1 + x) * (&1 + n * x) <=> &0 <= n * x * x`]);;

let REAL_ARCH_POW = prove
 (`!x y. &1 < x ==> ?n. y < x pow n`,
  REPEAT STRIP_TAC THEN
  MP_TAC(SPEC `x - &1` REAL_ARCH) THEN ASM_REWRITE_TAC[REAL_SUB_LT] THEN
  DISCH_THEN(MP_TAC o SPEC `y:real`) THEN MATCH_MP_TAC MONO_EXISTS THEN
  X_GEN_TAC `n:num` THEN DISCH_TAC THEN MATCH_MP_TAC REAL_LTE_TRANS THEN
  EXISTS_TAC `&1 + &n * (x - &1)` THEN
  ASM_SIMP_TAC[REAL_ARITH `x < y ==> x < &1 + y`] THEN
  ASM_MESON_TAC[REAL_POW_LBOUND; REAL_SUB_ADD2; REAL_ARITH
    `&1 < x ==> &0 <= x - &1`]);;

let REAL_ARCH_POW2 = prove
 (`!x. ?n. x < &2 pow n`,
  SIMP_TAC[REAL_ARCH_POW; REAL_OF_NUM_LT; ARITH]);;

let REAL_ARCH_POW_INV = prove
 (`!x y. &0 < y /\ x < &1 ==> ?n. x pow n < y`,
  REPEAT STRIP_TAC THEN ASM_CASES_TAC `&0 < x` THENL
   [ALL_TAC; ASM_MESON_TAC[REAL_POW_1; REAL_LET_TRANS; REAL_NOT_LT]] THEN
  SUBGOAL_THEN `inv(&1) < inv(x)` MP_TAC THENL
   [ASM_SIMP_TAC[REAL_LT_INV2]; REWRITE_TAC[REAL_INV_1]] THEN
  DISCH_THEN(MP_TAC o SPEC `inv(y)` o MATCH_MP REAL_ARCH_POW) THEN
  MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN DISCH_TAC THEN
  GEN_REWRITE_TAC BINOP_CONV [GSYM REAL_INV_INV] THEN
  ASM_SIMP_TAC[GSYM REAL_POW_INV; REAL_LT_INV; REAL_LT_INV2]);;

let FORALL_POS_MONO = prove
 (`!P. (!d e. d < e /\ P d ==> P e) /\ (!n. ~(n = 0) ==> P(inv(&n)))
       ==> !e. &0 < e ==> P e`,
  MESON_TAC[REAL_ARCH_INV; REAL_LT_TRANS]);;

let FORALL_POS_MONO_1 = prove
 (`!P. (!d e. d < e /\ P d ==> P e) /\ (!n. P(inv(&n + &1)))
       ==> !e. &0 < e ==> P e`,
  REWRITE_TAC[REAL_OF_NUM_SUC; GSYM FORALL_SUC; FORALL_POS_MONO]);;

let REAL_ARCH_RDIV_EQ_0 = prove
 (`!x c. &0 <= x /\ &0 <= c /\ (!m. 0 < m ==> &m * x <= c) ==> x = &0`,
  SIMP_TAC [GSYM REAL_LE_ANTISYM; GSYM REAL_NOT_LT] THEN REPEAT STRIP_TAC THEN
  POP_ASSUM (STRIP_ASSUME_TAC o SPEC `c:real` o MATCH_MP REAL_ARCH) THEN
  ASM_CASES_TAC `n=0` THENL
   [POP_ASSUM SUBST_ALL_TAC THEN
    RULE_ASSUM_TAC (REWRITE_RULE [REAL_MUL_LZERO]) THEN
    ASM_MESON_TAC [REAL_LET_ANTISYM];
    ASM_MESON_TAC [REAL_LET_ANTISYM; REAL_MUL_SYM; LT_NZ]]);;

(* ------------------------------------------------------------------------- *)
(* Relate max and min to sup and inf.                                        *)
(* ------------------------------------------------------------------------- *)

let REAL_MAX_SUP = prove
 (`!x y. max x y = sup {x,y}`,
  SIMP_TAC[GSYM REAL_LE_ANTISYM; REAL_SUP_LE_FINITE; REAL_LE_SUP_FINITE;
           FINITE_RULES; NOT_INSERT_EMPTY; REAL_MAX_LE; REAL_LE_MAX] THEN
  REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN MESON_TAC[REAL_LE_TOTAL]);;

let REAL_MIN_INF = prove
 (`!x y. min x y = inf {x,y}`,
  SIMP_TAC[GSYM REAL_LE_ANTISYM; REAL_INF_LE_FINITE; REAL_LE_INF_FINITE;
           FINITE_RULES; NOT_INSERT_EMPTY; REAL_MIN_LE; REAL_LE_MIN] THEN
  REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN MESON_TAC[REAL_LE_TOTAL]);;

(* ------------------------------------------------------------------------- *)
(* Define square root here to decouple it from the existing analysis theory. *)
(* ------------------------------------------------------------------------- *)

let sqrt = new_definition
  `sqrt(x) = @y. &0 <= y /\ (y pow 2 = x)`;;

let SQRT_UNIQUE = prove
 (`!x y. &0 <= y /\ (y pow 2 = x) ==> (sqrt(x) = y)`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[sqrt] THEN MATCH_MP_TAC SELECT_UNIQUE THEN
  FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN REWRITE_TAC[REAL_POW_2] THEN
  REWRITE_TAC[REAL_ARITH `(x * x = y * y) <=> ((x + y) * (x - y) = &0)`] THEN
  REWRITE_TAC[REAL_ENTIRE] THEN POP_ASSUM MP_TAC THEN REAL_ARITH_TAC);;

let POW_2_SQRT = prove
 (`!x. &0 <= x ==> (sqrt(x pow 2) = x)`,
  MESON_TAC[SQRT_UNIQUE]);;

let SQRT_0 = prove
 (`sqrt(&0) = &0`,
  MESON_TAC[SQRT_UNIQUE; REAL_POW_2; REAL_MUL_LZERO; REAL_POS]);;

let SQRT_1 = prove
 (`sqrt(&1) = &1`,
   MESON_TAC[SQRT_UNIQUE; REAL_POW_2; REAL_MUL_LID; REAL_POS]);;

let POW_2_SQRT_ABS = prove
 (`!x. sqrt(x pow 2) = abs(x)`,
  GEN_TAC THEN MATCH_MP_TAC SQRT_UNIQUE THEN
  REWRITE_TAC[REAL_ABS_POS; REAL_POW_2; GSYM REAL_ABS_MUL] THEN
  REWRITE_TAC[real_abs; REAL_LE_SQUARE]);;

(* ------------------------------------------------------------------------- *)
(* Geometric progression.                                                    *)
(* ------------------------------------------------------------------------- *)

let SUM_GP_BASIC = prove
 (`!x n. (&1 - x) * sum(0..n) (\i. x pow i) = &1 - x pow (SUC n)`,
  GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[SUM_CLAUSES_NUMSEG] THEN
  REWRITE_TAC[real_pow; REAL_MUL_RID; LE_0] THEN
  ASM_REWRITE_TAC[REAL_ADD_LDISTRIB; real_pow] THEN REAL_ARITH_TAC);;

let SUM_GP_MULTIPLIED = prove
 (`!x m n. m <= n
           ==> ((&1 - x) * sum(m..n) (\i. x pow i) = x pow m - x pow (SUC n))`,
  REPEAT STRIP_TAC THEN ASM_SIMP_TAC
   [SUM_OFFSET_0; REAL_POW_ADD; REAL_MUL_ASSOC; SUM_GP_BASIC; SUM_RMUL] THEN
  REWRITE_TAC[REAL_SUB_RDISTRIB; GSYM REAL_POW_ADD; REAL_MUL_LID] THEN
  ASM_SIMP_TAC[ARITH_RULE `m <= n ==> (SUC(n - m) + m = SUC n)`]);;

let SUM_GP = prove
 (`!x m n.
        sum(m..n) (\i. x pow i) =
                if n < m then &0
                else if x = &1 then &((n + 1) - m)
                else (x pow m - x pow (SUC n)) / (&1 - x)`,
  REPEAT GEN_TAC THEN
  DISJ_CASES_TAC(ARITH_RULE `n < m \/ ~(n < m) /\ m <= n:num`) THEN
  ASM_SIMP_TAC[SUM_TRIV_NUMSEG] THEN COND_CASES_TAC THENL
   [ASM_REWRITE_TAC[REAL_POW_ONE; SUM_CONST_NUMSEG; REAL_MUL_RID]; ALL_TAC] THEN
  MATCH_MP_TAC REAL_EQ_LCANCEL_IMP THEN EXISTS_TAC `&1 - x` THEN
  ASM_SIMP_TAC[REAL_DIV_LMUL; REAL_SUB_0; SUM_GP_MULTIPLIED]);;

let SUM_GP_OFFSET = prove
 (`!x m n. sum(m..m+n) (\i. x pow i) =
                if x = &1 then &n + &1
                else x pow m * (&1 - x pow (SUC n)) / (&1 - x)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[SUM_GP; ARITH_RULE `~(m + n < m:num)`] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL
   [REWRITE_TAC[REAL_OF_NUM_ADD] THEN AP_TERM_TAC THEN ARITH_TAC;
    REWRITE_TAC[real_div; real_pow; REAL_POW_ADD] THEN REAL_ARITH_TAC]);;

(* ------------------------------------------------------------------------- *)
(* Segment of natural numbers starting at a specific number.                 *)
(* ------------------------------------------------------------------------- *)

let from = new_definition
  `from n = {m:num | n <= m}`;;

let FROM_0 = prove
 (`from 0 = (:num)`,
  REWRITE_TAC[from; LE_0] THEN SET_TAC[]);;

let FROM_INTER_NUMSEG_GEN = prove
 (`!k m n. (from k) INTER (m..n) = (if m < k then k..n else m..n)`,
  REPEAT GEN_TAC THEN COND_CASES_TAC THEN POP_ASSUM MP_TAC THEN
  REWRITE_TAC[from; IN_ELIM_THM; IN_INTER; IN_NUMSEG; EXTENSION] THEN
  ARITH_TAC);;

let FROM_INTER_NUMSEG = prove
 (`!k n. (from k) INTER (0..n) = k..n`,
  REWRITE_TAC[from; IN_ELIM_THM; IN_INTER; IN_NUMSEG; EXTENSION] THEN
  ARITH_TAC);;

let IN_FROM = prove
 (`!m n. m IN from n <=> n <= m`,
  REWRITE_TAC[from; IN_ELIM_THM]);;

let INFINITE_FROM = prove
 (`!n. INFINITE(from n)`,
  GEN_TAC THEN
  SUBGOAL_THEN `from n = (:num) DIFF {i | i < n}`
   (fun th -> SIMP_TAC[th; INFINITE_DIFF_FINITE; FINITE_NUMSEG_LT;
   num_INFINITE]) THEN
  REWRITE_TAC[EXTENSION; from; IN_DIFF; IN_UNIV; IN_ELIM_THM] THEN ARITH_TAC);;