1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
|
(* ======================================================================================== *)
(* Proof-objects for HOL-light, exportation to Coq *)
(* *)
(* Steven Obua, TU Mnchen, December 2004 *)
(* Chantal Keller, Laboratoire d'Informatique de Polytechnique (France), January 2010 *)
(* *)
(* based on Sebastian Skalberg's HOL4 proof-objects *)
(* ======================================================================================== *)
#load "unix.cma";;
#load "depgraph.cma";;
module type Proofobject_primitives =
sig
type proof
val proof_REFL : term -> proof
val proof_TRANS : proof * proof -> proof
val proof_MK_COMB : proof * proof -> proof
val proof_ASSUME : term -> proof
val proof_EQ_MP : proof -> proof -> proof
val proof_IMPAS : proof -> proof -> proof
val proof_DISCH : proof -> term -> proof
val proof_DEDUCT_ANTISYM_RULE : proof * term -> proof * term -> proof
val proof_BETA : term -> proof
val proof_ABS : term -> proof -> proof
val proof_INST_TYPE : (hol_type * hol_type) list -> proof -> proof
val proof_INST : (term * term) list -> proof -> proof
val proof_new_definition : string -> hol_type -> term -> proof
val proof_CONJ : proof -> proof -> proof
val proof_CONJUNCT1 : proof -> proof
val proof_CONJUNCT2 : proof -> proof
val proof_new_basic_type_definition :
string -> string * string -> term * term -> proof -> proof
val proof_SPEC : term -> proof -> proof
val proof_SYM : proof -> proof
val proof_GEN : proof -> term -> proof
val proof_DISJ1 : proof -> term -> proof
val proof_DISJ2 : proof -> term -> proof
val proof_NOTI : proof -> proof
val proof_NOTE : proof -> proof
val proof_CONTR : proof -> term -> proof
val proof_DISJCASES : proof -> proof -> proof -> proof
val proof_CHOOSE : term -> proof -> proof -> proof
val proof_EXISTS : term -> term -> proof -> proof
val new_axiom_name : string -> string
val proof_new_axiom : string -> term -> proof
val save_proof : string -> proof -> (term option) -> unit
val proof_database : unit -> ((string * proof * (term option)) list)
val export_saved_proofs : unit -> unit
val export_one_proof : string -> unit
val export_list : string list -> unit
end;;
module Proofobjects : Proofobject_primitives = struct
let THEORY_NAME = "hollight";;
(****** Utilities ******)
(* this is a little bit dangerous, because the function is not injective,
but I guess one can live with that *)
let modify = function
| "/" -> "_slash_"
| "\\" -> "_backslash_"
| "=" -> "_equal_"
| ">" -> "_greaterthan_"
| "<" -> "_lessthan_"
| "?" -> "_questionmark_"
| "!" -> "_exclamationmark_"
| "*" -> "_star_"
| "~" -> "_tilde_"
| "," -> "_comma_"
| "@" -> "_at_"
| "+" -> "_plus_"
| "-" -> "_minus_"
| "%" -> "_percent_"
| "$" -> "_dollar_"
| "." -> "_dot_"
| "'" -> "_quote_"
| "|" -> "_pipe_"
| ":" -> "_colon_"
| s -> s;;
let mfc s = implode (map modify (explode s));;
let ensure_export_directory thyname =
let dir = Sys.getenv "HOLPROOFEXPORTDIR" in
let dirsub = Filename.concat dir "hollight" in
let dirsubsub = Filename.concat dirsub thyname in
let mk d = if Sys.file_exists d then () else Unix.mkdir d 509
in mk dir; mk dirsub; mk dirsubsub; dirsubsub;;
(****** Proofs ******)
type proof_info_rec =
{disk_info: (string * string) option ref;
status: int ref;
references: int ref;
queued: bool ref};;
type proof_info = Info of proof_info_rec;;
type proof =
| Proof of (proof_info * proof_content * (unit -> unit))
and proof_content =
| Prefl of term
| Pbeta of string * hol_type * term
| Pinstt of proof * (string * hol_type) list
| Pabs of proof * string * hol_type
| Pdisch of proof * term
| Phyp of term
| Pspec of proof * term
| Pinst of proof * (string * hol_type * term) list
| Pgen of proof * string * hol_type
| Psym of proof
| Ptrans of proof * proof
| Pcomb of proof * proof
| Peqmp of proof * proof
| Pexists of proof * term * term
| Pchoose of string * hol_type * proof * proof
| Pconj of proof * proof
| Pconjunct1 of proof
| Pconjunct2 of proof
| Pdisj1 of proof * term
| Pdisj2 of proof * term
| Pdisjcases of proof * proof * proof
| Pnoti of proof
| Pnote of proof
| Pcontr of proof * term
| Pimpas of proof * proof
| Paxm of string * term
| Pdef of string * hol_type * term
| Ptyintro of hol_type * string * hol_type list * string * string * term;;
let content_of (Proof (_,p,_)) = p;;
let inc_references (Proof(Info{references=r},_,_) as p) = incr r; p;;
let mk_proof p = Proof(Info {disk_info = ref None; status = ref 0; references = ref 0; queued = ref false}, p, fun () -> ());;
let global_ax_counter = let counter = ref 1 in let f = fun () -> (incr counter; !counter - 1) in f;;
let new_axiom_name n = "ax_"^n^"_"^(string_of_int (global_ax_counter () ));;
(* corresponds to REFL *)
let proof_REFL t = mk_proof (Prefl t);;
(* corresponds to TRANS, with a simple improvment *)
let proof_TRANS (p,q) =
match (content_of p, content_of q) with
| (Prefl _,_) -> q
| (_, Prefl _) -> p
| _ -> mk_proof (Ptrans (inc_references p, inc_references q));;
(* corresponds to MK_COMB -> Pcomb *)
let proof_MK_COMB (p1,p2) =
match (content_of p1, content_of p2) with
| (Prefl tm1, Prefl tm2) -> mk_proof (Prefl (mk_comb (tm1, tm2)))
| _ -> mk_proof (Pcomb (inc_references p1, inc_references p2));;
(* corresponds to ASSUME -> Phyp *)
let proof_ASSUME t = mk_proof (Phyp t);;
(* corresponds to EQ_MP, with a simple improvment *)
let proof_EQ_MP p q =
match content_of p with
| Prefl _ -> q
| _ -> mk_proof (Peqmp(inc_references p, inc_references q));;
(* corresponds to IMP_ANTISYM_RULE th1 th2
not a base rule
used only in the extended mode *)
(* A1 |- t1 ==> t2 A2 |- t2 ==> t1 *)
(* ------------------------------------- IMP_ANTISYM_RULE *)
(* A1 u A2 |- t1 <=> t2 *)
let proof_IMPAS p1 p2 = mk_proof (Pimpas (inc_references p1, inc_references p2));;
(* corresponds to DISCH
not a base rule
used only in the extended mode *)
(* A |- t *)
(* -------------------- DISCH `u` *)
(* A - {u} |- u ==> t *)
let proof_DISCH p t = mk_proof (Pdisch(inc_references p, t));;
(* corresponds to DEDUCT_ANTISYM_RULE *)
(* made with IMPAS and DISCH (whereas in HOL-Light IMPAS is made with DAR and UNDISCH...) *)
(* A |- p B |- q *)
(* ---------------------------------- *)
(* (A - {q}) u (B - {p}) |- p <=> q *)
let proof_DEDUCT_ANTISYM_RULE (p1,t1) (p2,t2) =
proof_IMPAS (proof_DISCH p1 t2) (proof_DISCH p2 t1);;
(* BETA is a base rule *)
let proof_BETA tm =
try
let f,_ = dest_comb tm in
let v,bod = dest_abs f in
let (x, ty) = dest_var v in
mk_proof (Pbeta (x, ty, bod))
with
| _ -> failwith "proof_BETA"
(* corresponds to ABS, with a simple improvment *)
let proof_ABS x p =
match x with
| Var(s, ty) ->
mk_proof (Pabs(inc_references p, s, ty))
| _ -> failwith "proof_ABS: not a variable";;
(* corresponds to INST_TYPE -> Pinstt *)
let proof_INST_TYPE s p =
mk_proof (Pinstt(inc_references p, List.map (
fun (ty1, ty2) -> match ty2 with
| Tyvar s -> (s, ty1)
| _ -> failwith "proof_INST_TYPE: some redex is not a type variable"
) s));;
(* corresponds to INST *)
let proof_INST s p =
mk_proof (Pinst(inc_references p, List.map (
fun (t1, t2) -> match t2 with
| Var(s, ty) ->
(s, ty, t1)
| _ -> failwith "proof_INST: some redex is not a term variable"
) s));;
(* proof_new_definition is called in Thm.new_basic_definition. This
latter helps to define basic concepts such as T, AND... (almost
everything in Bool)... and to define derived rules!! -> Pdef *)
let proof_new_definition cname ty t =
mk_proof (Pdef (cname, ty, t));;
(* proof_new_axiom is called in Thm.new_axiom. This latter transforms
a term of type bool into a theorem. The main three axioms are
ETA_AX, SELECT_AX and INFINITY_AX. The other axiom is ax (in
drule.ml) -> Paxm *)
let proof_new_axiom axname t = mk_proof (Paxm (axname, t));;
(* corresponds to CONJ
not a base rule
used only in the extended mode *)
let proof_CONJ p1 p2 = mk_proof (Pconj (inc_references p1, inc_references p2));;
(* corresponds to CONJUNCT1
not a base rule
used only in the extended mode
also used in Thm.new_basic_definition *)
let proof_CONJUNCT1 p = mk_proof (Pconjunct1 (inc_references p));;
(* corresponds to CONJUNCT2
not a base rule
used only in the extended mode
also used in Thm.new_basic_definition *)
let proof_CONJUNCT2 p = mk_proof (Pconjunct2 (inc_references p));;
(* used only in Thm.new_basic_definition for the same purpose as for
CONJUNCTi -> Ptyintro *)
let proof_new_basic_type_definition tyname (absname, repname) (pt,tt) _ =
let rty = type_of tt in
let tyvars = sort (<=) (type_vars_in_term pt) in
mk_proof(Ptyintro(rty, tyname, tyvars, absname, repname, pt));;
(* ---- used only in substitute_proof calls ---- *)
(* corresponds to Bool.SPEC, the !-elimination rule *)
let proof_SPEC s p = mk_proof (Pspec(inc_references p, s));;
(* corresponds to Equal.SYM, the symmetry rule *)
let proof_SYM p = mk_proof (Psym(inc_references p));;
(* corresponds to Bool.GEN, the !-introduction rule *)
let proof_GEN p a =
match a with
| Var(s, ty) ->
mk_proof (Pgen(inc_references p, s, ty))
| _ -> failwith "proof_GEN: not a term variable";;
(* corresponds to Bool.DISJ1, the \/-left introduction rule *)
let proof_DISJ1 p a = mk_proof (Pdisj1 (inc_references p, a));;
(* corresponds to Bool.DISJ2, the \/-right introduction rule *)
let proof_DISJ2 p a = mk_proof (Pdisj2 (inc_references p, a));;
(* corresponds to Bool.NOT_INTRO, the following rule: *)
(* A |- t ==> F *)
(* -------------- NOT_INTRO *)
(* A |- ~t *)
let proof_NOTI p = mk_proof (Pnoti (inc_references p));;
(* corresponds to Bool.NOT_ELIM, the following rule: *)
(* A |- ~t *)
(* -------------- NOT_ELIM *)
(* A |- t ==> F *)
let proof_NOTE p = mk_proof (Pnote (inc_references p));;
(* corresponds to Bool.CONTR, the intuitionistic F-elimination rule: *)
(* A |- F *)
(* -------- CONTR `t` *)
(* A |- t *)
let proof_CONTR p a = mk_proof (Pcontr (inc_references p, a));;
(* corresponds to Bool.DISJ_CASES, the \/-elimination rule: *)
(* A |- t1 \/ t2 A1 u {t1} |- t A2 u {t2} |- t *)
(* ------------------------------------------------------ DISJ_CASES *)
(* A u A1 u A2 |- t *)
let proof_DISJCASES p q r =
mk_proof (Pdisjcases (inc_references p, inc_references q, inc_references r));;
(* corresponds to Bool.CHOOSE, the ?-elimination rule: *)
(* A1 |- ?x. s[x] A2 |- t *)
(* ------------------------------- CHOOSE (`v`,(A1 |- ?x. s)) *)
(* A1 u (A2 - {s[v/x]}) |- t *)
(* Where v is not free in A2 - {s[v/x]} or t. *)
let proof_CHOOSE a p q =
let (x,ty) = dest_var a in
mk_proof (Pchoose (x, ty, inc_references p, inc_references q));;
(* corresponds to Bool.EXISTS, the ?-introduction rule: *)
(* A |- p[u/x] *)
(* ------------- EXISTS (`?x. p`,`u`) *)
(* A |- ?x. p *)
(* x is p, y is u *)
let proof_EXISTS etm y p =
let _,x = dest_comb etm in
mk_proof (Pexists (inc_references p, x, y));;
(****** Utilities for exportation ******)
let content_of (Proof (_,x,_)) = x;;
let disk_info_of (Proof(Info {disk_info=di},_,_)) = !di;;
let set_disk_info_of (Proof(Info {disk_info=di},_,_)) thyname thmname =
di := Some (thyname,thmname);;
let reset_disk_info_of1 ((Proof(Info {disk_info=di}, _, _)) as p) =
di := None; p;;
let reset_disk_info_of2 (Proof(Info {disk_info=di}, _, _)) =
di := None;;
let references (Proof (Info info,_,_)) = !(info.references);;
let glob_counter = ref 0;;
let get_counter () = incr glob_counter; !glob_counter;;
let get_iname = string_of_int o get_counter;;
let next_counter () = !glob_counter;;
let trivial p =
match (content_of p) with
| Prefl _ -> true
| Pbeta _ -> true
| Paxm _ -> true
| Phyp _ -> true
| _ -> false;;
let do_share p = references p > 1 & not (trivial p);;
(****** Types and terms modification ******)
let idT = Hashtbl.create 17;;
let defT = Hashtbl.create 17;;
let idT_ref = ref 1;;
let defT_ref = ref 1;;
let make_idT x =
try Hashtbl.find idT x with | Not_found -> let n = !idT_ref in incr idT_ref; Hashtbl.add idT x n; n;;
let make_defT x =
try Hashtbl.find defT x with | Not_found -> let n = !defT_ref in incr defT_ref; Hashtbl.add defT x n; n;;
type ntype =
| Ntvar of int
| Nbool
| Nnum
| Narrow of ntype * ntype
| Ntdef of int * ntype list;;
let rec hol_type2ntype = function
| Tyvar x -> Ntvar (make_idT x)
| Tyapp (s, _) when s = "bool" -> Nbool
(* | Tyapp (s, _) when s = "ind" -> Nnum *)
| Tyapp (s, l) when s = "fun" ->
(match l with
| [a;b] -> Narrow (hol_type2ntype a, hol_type2ntype b)
| _ -> failwith "hol_type2ntype: wrong number of arguments for fun")
| Tyapp (s, l) -> Ntdef (make_defT s, List.map hol_type2ntype l);;
let idV = Hashtbl.create 17;;
let defV = Hashtbl.create 17;;
let idV_ref = ref 1;;
let defV_ref = ref 1;;
let make_idV x X =
try
fst (Hashtbl.find idV x)
with | Not_found ->
let n = !idV_ref in incr idV_ref; Hashtbl.add idV x (n,X); n;;
let make_defV x X f =
try let (a,_,_) = (Hashtbl.find defV x) in a with | Not_found -> let n = !defV_ref in incr defV_ref; Hashtbl.add defV x (n,X,f); n;;
type ncst =
| Heq of ntype
| Heps of ntype
| Hand
| Hor
| Hnot
| Himp
| Htrue
| Hfalse
| Hforall of ntype
| Hexists of ntype;;
type nterm =
| Ndbr of int
| Nvar of int * ntype
| Ncst of ncst
| Ndef of int * ntype
| Napp of nterm * nterm
| Nabs of ntype * nterm;;
let rec ext_var x (ty: ntype) i = function
| [] -> Nvar (make_idV x ty, ty)
| (y,typ)::l -> if ((x = y) && (ty = typ)) then Ndbr i else ext_var x ty (i+1) l;;
let rec term2nterm l = function
| Var (x, ty) -> ext_var x (hol_type2ntype ty) 0 l
| Comb (t1, t2) -> Napp (term2nterm l t1, term2nterm l t2)
| Abs (t1, t2) ->
(match t1 with
| Var (x, ty) ->
let typ = hol_type2ntype ty in
Nabs (typ, term2nterm ((x,typ)::l) t2)
| _ -> failwith "term2nterm: first argument of an abstraction is not a variable")
| Const (s, ty) when s = "=" ->
(match hol_type2ntype ty with
| Narrow(a, _) -> Ncst (Heq a)
| _ -> failwith "term2nterm: constant = must have arrow type")
| Const (s, ty) when s = "@" ->
(match hol_type2ntype ty with
| Narrow(_, a) -> Ncst (Heps a)
| _ -> failwith "term2nterm: constant @ must have arrow type")
| Const (s, ty) when s = "/\\" -> Ncst Hand
| Const (s, ty) when s = "\\/" -> Ncst Hor
| Const (s, ty) when s = "~" -> Ncst Hnot
| Const (s, ty) when s = "==>" -> Ncst Himp
| Const (s, ty) when s = "T" -> Ncst Htrue
| Const (s, ty) when s = "F" -> Ncst Hfalse
| Const (s, ty) when s = "_FALSITY_" -> Ncst Hfalse
| Const (s, ty) when s = "!" ->
(match hol_type2ntype ty with
| Narrow(Narrow (a, _), _) -> Ncst (Hforall a)
| _ -> failwith "term2nterm: constant ! must have arrow type")
| Const (s, ty) when s = "?" ->
(match hol_type2ntype ty with
| Narrow(Narrow (a, _), _) -> Ncst (Hexists a)
| _ -> failwith "term2nterm: constant ? must have arrow type")
| Const (s, ty) ->
let typ = hol_type2ntype ty in
Ndef(make_defV s typ true, typ);;
let term2nterm t = term2nterm [] t;;
(****** Proof exportation ******)
let rec print_list out str snil scons = function
| [] -> out snil
| t::q -> out "("; out scons; out " "; str t; out " "; print_list out str snil scons q; out ")";;
let print_names out x = out (string_of_int x); out "%positive";;
let print_type (out: string -> unit) ty =
let rec print_ntype = function
| Ntvar x -> out "(TVar "; print_names out x; out ")"
| Nbool -> out "Bool"
| Nnum -> out "Num"
| Narrow(a, b) -> out "("; print_ntype a; out " --> "; print_ntype b; out ")"
| Ntdef(s, l) -> out "(TDef "; print_names out s; out " "; print_list out print_ntype "Tnil" "Tcons" l; out ")" in
print_ntype ty;;
let print_cst out = function
| Heq ty -> out "(Heq "; print_type out ty; out ")"
| Heps ty -> out "(Heps "; print_type out ty; out ")"
| Hand -> out "Hand"
| Hor -> out "Hor"
| Hnot -> out "Hnot"
| Himp -> out "Himp"
| Htrue -> out "Htrue"
| Hfalse -> out "Hfalse"
| Hforall ty -> out "(Hforall "; print_type out ty; out ")"
| Hexists ty -> out "(Hexists "; print_type out ty; out ")";;
let print_term out t =
let rec print_nterm = function
| Ndbr n -> out "(Dbr "; out (string_of_int n); out ")"
| Nvar(x, ty) -> out "(Var "; print_names out x; out " "; print_type out ty; out ")"
| Ncst c -> out "(Cst "; print_cst out c; out ")"
| Ndef(a, ty) -> out "(Def "; print_names out a; out " "; print_type out ty; out ")"
| Napp(t1, t2) -> out "(App "; print_nterm t1; out " "; print_nterm t2; out ")"
| Nabs(ty, t) -> out "(Abs "; print_type out ty; out " "; print_nterm t; out ")" in
print_nterm t;;
(* Exportation *)
let total = ref 0;;
type nproof_content =
| Nprefl of nterm
| Npbeta of int * ntype * nterm
| Npinstt of nproof_content * (int * ntype) list
| Npabs of nproof_content * int * ntype
| Npdisch of nproof_content * nterm
| Nphyp of nterm
| Npspec of nproof_content * nterm
| Npinst of nproof_content * (int * ntype * nterm) list
| Npgen of nproof_content * int * ntype
| Npsym of nproof_content
| Nptrans of nproof_content * nproof_content
| Npcomb of nproof_content * nproof_content
| Npeqmp of nproof_content * nproof_content
| Npexists of nproof_content * nterm * nterm
| Npchoose of int * ntype * nproof_content * nproof_content
| Npconj of nproof_content * nproof_content
| Npconjunct1 of nproof_content
| Npconjunct2 of nproof_content
| Npdisj1 of nproof_content * nterm
| Npdisj2 of nproof_content * nterm
| Npdisjcases of nproof_content * nproof_content * nproof_content
| Npnoti of nproof_content
| Npnote of nproof_content
| Npcontr of nproof_content * nterm
| Npimpas of nproof_content * nproof_content
| Npaxm of string * nterm
| Npdef of int * ntype * nterm
| Nptyintro of ntype * ntype * int * int * nterm
| Nfact of string;;
let the_types = Hashtbl.create 17;;
let count_types = ref (-1);;
let share_types out ty =
let rec share_types ty =
try Hashtbl.find the_types ty with
| Not_found ->
incr count_types;
let name = THEORY_NAME^"_type_"^(string_of_int !count_types) in
(match ty with
| Narrow(a,b) ->
let n1 = share_types a in
let n2 = share_types b in
out "\nDefinition "; out name; out " := "; out n1; out " --> "; out n2; out "."
| Ntdef(i,l) ->
let names = List.map share_types l in
out "\nDefinition "; out name; out " := TDef "; print_names out i; out " "; print_list out out "Tnil" "Tcons" names; out "."
| t -> out "\nDefinition "; out name; out " := "; print_type out t; out ".");
Hashtbl.add the_types ty name;
name in
share_types ty;;
let the_terms = Hashtbl.create 17;;
let count_terms = ref (-1);;
let share_csts out out_types name = function
| Heq a ->
let n = share_types out_types a in
out "\nDefinition "; out name; out " := Cst (Heq "; out n; out ")."
| Heps a ->
let n = share_types out_types a in
out "\nDefinition "; out name; out " := Cst (Heps "; out n; out ")."
| Hand -> out "\nDefinition "; out name; out " := Cst Hand."
| Hor -> out "\nDefinition "; out name; out " := Cst Hor."
| Hnot -> out "\nDefinition "; out name; out " := Cst Hnot."
| Himp -> out "\nDefinition "; out name; out " := Cst Himp."
| Htrue -> out "\nDefinition "; out name; out " := Cst Htrue."
| Hfalse -> out "\nDefinition "; out name; out " := Cst Hfalse."
| Hforall a ->
let n = share_types out_types a in
out "\nDefinition "; out name; out " := Cst (Hforall "; out n; out ")."
| Hexists a ->
let n = share_types out_types a in
out "\nDefinition "; out name; out " := Cst (Hexists "; out n; out ")."
let share_terms out out_types tm =
let rec share_terms tm =
try Hashtbl.find the_terms tm with
| Not_found ->
incr count_terms;
let name = THEORY_NAME^"_term_"^(string_of_int !count_terms) in
(match tm with
| Napp(t1,t2) ->
let n1 = share_terms t1 in
let n2 = share_terms t2 in
out "\nDefinition "; out name; out " := App "; out n1; out " "; out n2; out "."
| Nabs(ty,t) ->
let n = share_terms t in
let ny = share_types out_types ty in
out "\nDefinition "; out name; out " := Abs "; out ny; out " "; out n; out "."
| Nvar(i,ty) ->
let ny = share_types out_types ty in
out "\nDefinition "; out name; out " := Var "; print_names out i; out " "; out ny; out "."
| Ndef(i,ty) ->
let ny = share_types out_types ty in
out "\nDefinition "; out name; out " := Def "; print_names out i; out " "; out ny; out "."
| Ncst c -> share_csts out out_types name c
| t -> out "\nDefinition "; out name; out " := "; print_term out t; out ".");
Hashtbl.add the_terms tm name;
name in
share_terms tm;;
let export_proof out share_type share_term p =
let rec wp = function
| Nprefl tm ->
let tm2 = share_term tm in
out "(Prefl "; out tm2; out ")"
| Npbeta (n, ty, tm) ->
let tm2 = share_term tm in
let ty2 = share_type ty in
out "(Pbeta "; print_names out n; out " "; out ty2; out " "; out tm2; out ")"
| Npinstt(p,lambda) ->
out "(Pinstt ";
wp p;
out " "; print_list out (fun (s, ty) ->
let ty2 = share_type ty in
out "("; print_names out s; out ", "; out ty2; out ")") "nil" "cons" lambda; out ")"
| Npabs(p,x,ty) ->
let ty2 = share_type ty in
out "(Pabs ";
wp p;
out " "; print_names out x;
out " "; out ty2; out ")"
| Npdisch(p,tm) ->
let tm2 = share_term tm in
out "(Pdisch ";
wp p;
out " "; out tm2; out ")"
| Nphyp tm ->
let tm2 = share_term tm in
out "(Phyp "; out tm2; out ")"
| Npaxm(_, _) -> ()
| Npdef(_, _, _) -> ()
| Nptyintro(_, _, _, _, _) -> ()
| Npspec(p,t) ->
let t2 = share_term t in
out "(Pspec ";
wp p;
out " "; out t2; out ")"
| Npinst(p,theta) ->
out "(Pinst ";
wp p;
out " "; print_list out (fun (s, ty, t) ->
let t2 = share_term t in
let ty2 = share_type ty in
out "("; print_names out s; out ", "; out ty2; out ", "; out t2; out ")") "nil" "cons" theta; out ")"
| Npgen(p,x,ty) ->
let ty2 = share_type ty in
out "(Pgen ";
wp p;
out " "; print_names out x; out " "; out ty2; out ")"
| Npsym p ->
out "(Psym ";
wp p;
out ")"
| Nptrans(p1,p2) ->
out "(Ptrans ";
wp p1;
out " ";
wp p2;
out ")"
| Npcomb(p1,p2) ->
out "(Pcomb ";
wp p1;
out " ";
wp p2;
out ")"
| Npeqmp(p1,p2) ->
out "(Peqmp ";
wp p1;
out " ";
wp p2;
out ")"
| Npexists(p,ex,w) ->
let ex2 = share_term ex in
let w2 = share_term w in
out "(Pexists ";
wp p;
out " "; out ex2; out " "; out w2; out ")"
| Npchoose(x,ty,p1,p2) ->
let ty2 = share_type ty in
out "(Pchoose "; print_names out x; out " "; out ty2; out " ";
wp p1;
out " ";
wp p2;
out ")"
| Npconj(p1,p2) ->
out "(Pconj ";
wp p1;
out " ";
wp p2;
out ")"
| Npimpas(p1,p2) ->
out "(Pimpas ";
wp p1;
out " ";
wp p2;
out ")"
| Npconjunct1 p ->
out "(Pconjunct1 ";
wp p;
out ")"
| Npconjunct2 p ->
out "(Pconjunct2 ";
wp p;
out ")"
| Npdisj1(p,tm) ->
let tm2 = share_term tm in
out "(Pdisj1 ";
wp p;
out " "; out tm2; out ")"
| Npdisj2(p,tm) ->
let tm2 = share_term tm in
out "(Pdisj2 ";
wp p;
out " "; out tm2; out ")"
| Npdisjcases(p1,p2,p3) ->
out "(Pdisjcases ";
wp p1;
out " ";
wp p2;
out " ";
wp p3;
out ")"
| Npnoti p ->
out "(Pnoti ";
wp p;
out ")"
| Npnote p ->
out "(Pnote ";
wp p;
out ")"
| Npcontr(p,tm) ->
let tm2 = share_term tm in
out "(Pcontr ";
wp p;
out " "; out tm2; out ")"
| Nfact(thm) -> out "(Poracle "; out thm; out "_def)" in
wp p;;
let export_ht out share_term h t thmname =
out "\n\n\nDefinition "; out thmname; out "_h := ";
(match h with
| [] -> out "hyp_empty"
| _ -> print_list out (fun tm ->
let tm2 = share_term tm in
out tm2) "nil" "cons" h);
out ".\n\nDefinition "; out thmname; out "_t := ";
let t2 = share_term t in
out t2; out ".";;
let export_lemma out share_type share_term p thmname =
out "\n\nLemma "; out thmname; out "_lemma : deriv "; out thmname; out "_h "; out thmname;
out "_t.\nProof.\n vm_cast_no_check (proof2deriv_correct "; export_proof out share_type share_term p; out ").\nQed.";;
let export_lemma_def out tree thmname =
out "\n\nLemma "; out thmname; out "_lemma : deriv "; out thmname; out "_h "; out thmname;
out "_t.\nProof.\n vm_cast_no_check (proof2deriv_correct "; out tree; out ").\nQed.";;
let export_sig out thmname =
out "\n\nDefinition "; out thmname; out "_def := my_exist "; out thmname; out "_lemma.";;
let export_def out thmname =
out "\n\nParameter "; out thmname; out "_lemma : deriv "; out thmname; out "_h "; out thmname; out "_t.";;
let export_tdef out thmname =
out "\n\nParameter "; out thmname; out "_lemma : deriv "; out thmname; out "_h "; out thmname; out "_t.";;
let export_axiom out thmname =
out "\n\nAxiom "; out thmname; out "_lemma : deriv "; out thmname; out "_h "; out thmname; out "_t.";;
(* Transforming a proof into a derivation *)
let rec opt_nth n l =
match (n, l) with
| 0, (x::_) -> Some x
| 0, [] -> None
| p, (_::l) -> opt_nth (p-1) l
| _, _ -> None;;
let type_cst = function
| Heq a -> Narrow(a, Narrow(a, Nbool))
| Heps a -> Narrow(Narrow(a, Nbool), a)
| Hand -> Narrow(Nbool, Narrow(Nbool, Nbool))
| Hor -> Narrow(Nbool, Narrow(Nbool, Nbool))
| Hnot -> Narrow(Nbool, Nbool)
| Himp -> Narrow(Nbool, Narrow(Nbool, Nbool))
| Htrue -> Nbool
| Hfalse -> Nbool
| Hforall a -> Narrow(Narrow(a, Nbool), Nbool)
| Hexists a -> Narrow(Narrow(a, Nbool), Nbool);;
let rec infer g = function
| Ndbr n -> opt_nth n g
| Nvar (_, a) -> Some a
| Ncst c -> Some (type_cst c)
| Ndef (_, a) -> Some a
| Napp (t1, t2) ->
(match infer g t1, infer g t2 with
| Some (Narrow (u1, u2)), Some v -> if u1 = v then Some u2 else None
| _, _ -> None)
| Nabs (a, u) ->
(match infer (a::g) u with
| Some b -> Some (Narrow (a, b))
| None -> None);;
let rec close_aux t x a i =
match t with
| Ndbr n -> Ndbr (if n < i then n else n+1)
| Nvar (y, b) -> if ((x = y) && (a = b)) then Ndbr i else Nvar (y, b)
| Napp (t1, t2) -> Napp (close_aux t1 x a i, close_aux t2 x a i)
| Nabs (b, u) -> Nabs(b, close_aux u x a (i+1))
| u -> u;;
let close t x a = close_aux t x a 0;;
let rec subst_idt_type_aux x = function
| [] -> Ntvar x
| (y,a)::q -> if x = y then a else subst_idt_type_aux x q;;
let rec subst_idt_type t s =
match t with
| Ntvar x -> subst_idt_type_aux x s
| Ntdef (a, l) -> Ntdef (a, subst_idt_list_type l s)
| Narrow (a, b) -> Narrow (subst_idt_type a s, subst_idt_type b s)
| u -> u
and subst_idt_list_type l s = List.map (fun t -> subst_idt_type t s) l;;
let rec subst_idt t s =
match t with
| Nvar (x, y) -> Nvar (x, subst_idt_type y s)
| Ncst (Heq a) -> Ncst (Heq (subst_idt_type a s))
| Ncst (Heps a) -> Ncst (Heps (subst_idt_type a s))
| Ncst (Hforall a) -> Ncst (Hforall (subst_idt_type a s))
| Ncst (Hexists a) -> Ncst (Hexists(subst_idt_type a s))
| Ndef (c, d) -> Ndef (c, subst_idt_type d s)
| Napp (t1, t2) -> Napp (subst_idt t1 s, subst_idt t2 s)
| Nabs (a, t) -> Nabs (subst_idt_type a s, subst_idt t s)
| u -> u;;
let subst_idt_context g s = List.map (fun a -> subst_idt_type a s) g;;
let rec subst_idv_aux x y s =
match s with
| [] -> Nvar (x, y)
| (z, t, u)::q -> if ((x = z) && (y = t)) then u else subst_idv_aux x y q;;
let rec subst_idv t s =
match t with
| Nvar (x, y) -> subst_idv_aux x y s
| Napp (t1, t2) -> Napp (subst_idv t1 s, subst_idv t2 s)
| Nabs (a, t) -> Nabs (a, subst_idv t s)
| u -> u;;
let rec wf_substitution_idv = function
| [] -> true
| (_,y,t)::q ->
match infer [] t with
| Some z -> if (y = z) then wf_substitution_idv q else false
| None -> false;;
let rec is_not_free x y = function
| Nvar (z, t) -> (x != z) or (not (y = t))
| Napp (t1, t2) -> (is_not_free x y t1) && (is_not_free x y t2)
| Nabs (_, u) -> is_not_free x y u
| _ -> true;;
let rec lift_term u i j =
match u with
| Ndbr n -> if n >= i then Ndbr (j + n) else Ndbr n
| Napp (u1, u2) -> Napp (lift_term u1 i j, lift_term u2 i j)
| Nabs (a, t) -> Nabs (a, lift_term t (i+1) j)
| u -> u;;
let rec subst_db t n u =
match t with
| Ndbr i -> if i < n then Ndbr i else if i = n then u else Ndbr (i-1)
| Napp (t1, t2) -> Napp (subst_db t1 n u, subst_db t2 n u)
| Nabs (a, t) -> Nabs (a, subst_db t (n+1) (lift_term u 0 1))
| u -> u;;
let nopen t u = subst_db t 0 u;;
let heq a t u = Napp (Napp (Ncst (Heq a), t), u);;
let hequiv t u = Napp (Napp (Ncst (Heq Nbool), t), u);;
let himp t u = Napp (Napp (Ncst Himp, t), u);;
let hand t u = Napp (Napp (Ncst Hand, t), u);;
let hor t u = Napp (Napp (Ncst Hor, t), u);;
let hnot t = Napp (Ncst Hnot, t);;
let htrue = Ncst Htrue;;
let hfalse = Ncst Hfalse;;
let hforall a p = Napp (Ncst (Hforall a), Nabs (a, p));;
let hexists a p = Napp (Ncst (Hexists a), Nabs (a, p));;
let hyp_empty = [];;
let rec hyp_remove e = function
| [] -> []
| t::q -> if (e = t) then q else t::(hyp_remove e q);;
let rec hyp_add e = function
| [] -> [e]
| t::q -> if (e = t) then t::q else t::(hyp_add e q);;
let hyp_union l m = List.fold_left (fun n e -> hyp_add e n) m l;;
let hyp_map f l = List.fold_left (fun m e -> hyp_add (f e) m) [] l;;
let hyp_singl e = [e];;
let rec hyp_is_not_free x y = function
| [] -> true
| t::q -> (is_not_free x y t) && (hyp_is_not_free x y q);;
let hyp_subst_idt h s = hyp_map (fun t -> subst_idt t s) h;;
let hyp_subst_idv h s = hyp_map (fun t -> subst_idv t s) h;;
let rec eq_type a b = match (a,b) with
| Ntvar i, Ntvar j -> i = j
| Nbool, Nbool -> true
| Nnum, Nnum -> true
| Narrow(a1, b1), Narrow(a2, b2) -> (eq_type a1 a2) && (eq_type b1 b2)
| Ntdef(i,l), Ntdef(j,m) -> (i = j) && (eq_list_type l m)
| _, _ -> false
and eq_list_type l m = match (l,m) with
| [], [] -> true
| t1::q1, t2::q2 -> (eq_type t1 t2) && (eq_list_type q1 q2)
| _, _ -> false;;
let eq_cst a b = match (a,b) with
| Heq a, Heq b -> eq_type a b
| Heps a, Heps b -> eq_type a b
| Hand, Hand -> true
| Hor, Hor -> true
| Hnot, Hnot -> true
| Himp, Himp -> true
| Htrue, Htrue -> true
| Hfalse, Hfalse -> true
| Hforall a, Hforall b -> eq_type a b
| Hexists a, Hexists b -> eq_type a b
| _, _ -> false;;
let rec eq_term a b = match (a,b) with
| Ndbr i, Ndbr j -> i = j
| Nvar(i,a), Nvar(j,b) -> (i = j) && (eq_type a b)
| Ncst c, Ncst d -> eq_cst c d
| Ndef(i,a), Ndef(j,b) -> (i = j) && (eq_type a b)
| Napp(a1,b1), Napp(a2,b2) -> (eq_term a1 a2) && (eq_term b1 b2)
| Nabs(t1,a1), Nabs(t2,a2) -> (eq_type t1 t2) && (eq_term a1 a2)
| _, _ -> false;;
let derivs = Hashtbl.create 17;;
let rec proof2deriv = function
| Nprefl t ->
(match infer [] t with
| Some a -> Some (hyp_empty, heq a t t)
| None -> (print_string "Nprefl\n"); None)
| Npbeta (x, y, t) ->
(match infer [] t with
| Some a -> Some (hyp_empty,
heq a (Napp (Nabs (y, close t x y), Nvar (x, y))) t)
| None -> (print_string "Npbeta\n"); None)
| Npinstt (q, l) ->
(match proof2deriv q with
| Some (h,v) -> Some (hyp_subst_idt h l, subst_idt v l)
| None -> (print_string "Npinstt\n"); None)
| Npabs (q, x, y) ->
(match proof2deriv q with
| Some (h, t) ->
(match t with
| Napp (Napp (Ncst (Heq a), t1), t2) ->
if hyp_is_not_free x y h then
Some (h, heq (Narrow (y, a)) (Nabs (y, close t1 x y)) (Nabs (y, close t2 x y)))
else ((print_string "Npabs\n"); None)
| _ -> (print_string "Npabs\n"); None)
| None -> (print_string "Npabs\n"); None)
| Npdisch (q, t) ->
(match proof2deriv q, infer [] t with
| Some (h, u), Some Nbool -> Some (hyp_remove t h, himp t u)
| _, _ -> (print_string "Npdisch\n"); None)
| Nphyp t ->
(match infer [] t with
| Some Nbool -> Some (hyp_singl t, t)
| _ -> (print_string "Nphyp\n"); None)
| Npspec (q, t) ->
(match proof2deriv q, infer [] t with
| Some (h, u), Some a ->
(match u with
| Napp (Ncst (Hforall b), Nabs (c, v)) ->
if ((eq_type a b) && (eq_type b c)) then
Some (h, nopen v t)
else ((print_string "Npspec\n"); None)
| _ -> (print_string "Npspec\n"); None)
| _, _ -> (print_string "Npspec\n"); None)
| Npinst (q, l) ->
(match proof2deriv q, wf_substitution_idv l with
| Some (h, v), true -> Some (hyp_subst_idv h l, subst_idv v l)
| _, _ -> (print_string "Npinst\n"); None)
| Npgen (q, x, y) ->
(match proof2deriv q with
| Some (h, t) ->
if hyp_is_not_free x y h then
Some (h, hforall y (close t x y))
else ((print_string "Npgen\n"); None)
| None -> (print_string "Npgen\n"); None)
| Npsym q ->
(match proof2deriv q with
| Some (h, t) ->
(match t with
| Napp (Napp (Ncst (Heq a), u), v) -> Some (h, heq a v u)
| _ -> (print_string "Npsym\n"); None)
| None -> (print_string "Npsym\n"); None)
| Nptrans (q1, q2) ->
(match proof2deriv q1, proof2deriv q2 with
| Some (h1, t1), Some (h2, t2) ->
(match t1, t2 with
| Napp (Napp (Ncst (Heq a), u1), u2),
Napp (Napp (Ncst (Heq b), v2), v3) ->
if ((eq_type a b) && (eq_term u2 v2)) then
Some (hyp_union h1 h2, heq a u1 v3)
else ((print_string "Nptrans\n"); None)
| _, _ -> (print_string "Nptrans\n"); None)
| _, _ -> (print_string "Nptrans\n"); None)
| Npcomb (q1, q2) ->
(match proof2deriv q1, proof2deriv q2 with
| Some (h1, t1), Some (h2, t2) ->
(match t1, t2 with
| Napp (Napp (Ncst (Heq (Narrow (a, b))), f), g),
Napp (Napp (Ncst (Heq c), u), v) ->
if (eq_type a c) then
Some (hyp_union h1 h2, heq b (Napp (f, u)) (Napp (g, v)))
else ((print_string "Npcomb\n"); None)
| _, _ -> (print_string "Npcomb\n"); None)
| _, _ -> (print_string "Npcomb\n"); None)
| Npeqmp (q1, q2) ->
(match proof2deriv q1, proof2deriv q2 with
| Some (h1, t1), Some (h2, t2) ->
(match t1 with
| Napp (Napp (Ncst (Heq Nbool), a), b) ->
if (eq_term a t2) then
Some (hyp_union h1 h2, b)
else ((print_string "Npeqmp\n"); None)
| _ -> (print_string "Npeqmp\n"); None)
| _, _ -> (print_string "Npeqmp\n"); None)
| Npexists (q, b, t) ->
(match proof2deriv q, b, infer [] t with
| Some (h, u), Nabs (bb, a), Some aa ->
if ((eq_type aa bb) && (eq_term (nopen a t) u)) then
Some (h, hexists aa a)
else ((print_string "Npexists\n"); None)
| _, _, _ -> (print_string "Npexists\n"); None)
| Npchoose (v, aa, q1, q2) ->
(match proof2deriv q1, proof2deriv q2 with
| Some (h1, t), Some (h2, c) ->
(match t with
| Napp (Ncst (Hexists bb), Nabs (cc, a)) ->
let s = hyp_remove (nopen a (Nvar (v, aa))) h2 in
if ((eq_type aa bb) && (eq_type bb cc) && (hyp_is_not_free v aa s) && (is_not_free v aa c)
&& (is_not_free v aa a)) then
Some (hyp_union h1 s, c)
else ((print_string "Npchoose\n"); None)
| _ -> (print_string "Npchoose\n"); None)
| _, _ -> (print_string "Npchoose\n"); None)
| Npconj (q1, q2) ->
(match proof2deriv q1, proof2deriv q2 with
| Some (h1, a), Some (h2, b) ->
Some (hyp_union h1 h2, hand a b)
| _, _ -> (print_string "Npconj\n"); None)
| Npconjunct1 q ->
(match proof2deriv q with
| Some (h, v) ->
(match v with
| Napp (Napp (Ncst Hand, t), u) ->
Some (h, t)
| _ -> (print_string "Npconjunct1\n"); None)
| _ -> (print_string "Npconjunct1\n"); None)
| Npconjunct2 q ->
(match proof2deriv q with
| Some (h, v) ->
(match v with
| Napp (Napp (Ncst Hand, t), u) ->
Some (h, u)
| _ -> (print_string "Npconjunct2\n"); None)
| _ -> (print_string "Npconjunct2\n"); None)
| Npdisj1 (q, b) ->
(match proof2deriv q, infer [] b with
| Some (h, a), Some Nbool -> Some (h, hor a b)
| _, _ -> (print_string "Npdisj1\n"); None)
| Npdisj2 (q, a) ->
(match proof2deriv q, infer [] a with
| Some (h, b), Some Nbool -> Some (h, hor a b)
| _, _ -> (print_string "Npdisj1\n"); None)
| Npdisjcases (q1, q2, q3) ->
(match proof2deriv q1, proof2deriv q2, proof2deriv q3 with
| Some (h1, t), Some (h2, c1), Some (h3, c2) ->
(match t with
| Napp (Napp (Ncst Hor, a), b) ->
if (eq_term c1 c2) then
Some (hyp_union h1 (hyp_union (hyp_remove a h2) (hyp_remove b h3)), c1)
else ((print_string "Npdisjcases\n"); None)
| _ -> (print_string "Npdisjcases\n"); None)
| _, _, _ -> (print_string "Npisjcases\n"); None)
| Npnoti q ->
(match proof2deriv q with
| Some (h, t) ->
(match t with
| Napp (Napp (Ncst Himp, a), Ncst Hfalse) -> Some (h, hnot a)
| _ -> (print_string "Npnoti\n"); None)
| _ -> (print_string "Npnoti\n"); None)
| Npnote q ->
(match proof2deriv q with
| Some (h, t) ->
(match t with
| Napp (Ncst Hnot, a) -> Some (h, himp a hfalse)
| _ -> (print_string "Npnote\n"); None)
| _ -> (print_string "Npnote\n"); None)
| Npcontr (q, a) ->
(match proof2deriv q, infer [] a with
| Some (h, t), Some Nbool ->
(match t with
| Ncst Hfalse -> Some (hyp_remove (hnot a) h, a)
| _ -> (print_string "Npcontr\n"); None)
| _, _ -> (print_string "Npcontr\n"); None)
| Npimpas (q1, q2) ->
(match proof2deriv q1, proof2deriv q2 with
| Some (h1, t), Some (h2, u) ->
(match t, u with
| Napp (Napp (Ncst Himp, a1), b1),
Napp (Napp (Ncst Himp, b2), a2) ->
if ((eq_term a1 a2) && (eq_term b1 b2)) then
Some (hyp_union h1 h2, hequiv b1 a1)
else ((print_string ("Npimpas1; 1: "^(string_of_bool (eq_term a1 a2))^"; 2: "^(string_of_bool (eq_term b1 b2))^"\n"));
let out = print_string in
print_term out a1; out "\n"; print_term out a2; out "\n"; print_term out b1; out "\n"; print_term out b2; out "\n"; None)
| _, _ -> (print_string "Npimpas2\n"); None)
| _, _ -> (print_string "Npimpas3\n"); None)
| Nfact thm ->
(try Some (Hashtbl.find derivs thm) with
| Not_found -> (print_string ("Nfact "^thm^"\n")); None)
| Npdef (i, a, t) -> Some (hyp_empty, heq a (Ndef (i, a)) t)
| Npaxm (_, t) -> Some (hyp_empty, t)
| Nptyintro (rty, aty, mk_name, dest_name, p) ->
let mk_type = Narrow(rty, aty) in
let dest_type = Narrow(aty, rty) in
let a_name = make_idV "a" aty in
let a = Nvar(a_name, aty) in
let r_name = make_idV "r" rty in
let r = Nvar(r_name, rty) in
Some (hyp_empty, hand (heq aty (Napp (Ndef (mk_name, mk_type), Napp (Ndef (dest_name, dest_type), a))) a)
(hequiv (Napp (p, r)) (heq rty (Napp (Ndef (dest_name, dest_type), Napp (Ndef (mk_name, mk_type), r))) r)));;
(* Dealing with dependencies *)
let rec make_dependencies_aux dep_graph proof_of_thm = function
| [] -> ()
| (thmname, p, c_opt)::il ->
incr total;
let wdi thm =
Depgraph.Dep.add_dep dep_graph thm thmname;
Nfact thm in
let write_proof p il =
let rec share_info_of p il =
match (disk_info_of p) with
| Some (thyname,thmname) -> Some(thyname,thmname,il)
| None ->
if do_share p then
let name = THEORY_NAME^"_"^(get_iname ()) in
set_disk_info_of p THEORY_NAME name;
Depgraph.Dep.add_thm dep_graph name;
Some(THEORY_NAME,name,(name,p,None)::il)
else
None
and wp' il = function
| Prefl tm -> Nprefl (term2nterm tm), il
| Pbeta(x, ty, tm) ->
let typ = hol_type2ntype ty in
Npbeta(make_idV x typ , typ, term2nterm tm), il
| Pinstt(p,lambda) ->
let p', res = wp il p in
Npinstt(p', List.map (
fun (s,ty) -> (make_idT s, hol_type2ntype ty)
) lambda), res
| Pabs(p,x,ty) ->
let p', res = wp il p in
let typ = hol_type2ntype ty in
Npabs(p',make_idV x typ,typ), res
| Pdisch(p,tm) ->
let p', res = wp il p in
Npdisch(p', term2nterm tm), res
| Phyp tm -> Nphyp (term2nterm tm), il
| Paxm(th,tm) -> Npaxm(th, term2nterm tm), il
| Pdef(name,ty,tm) ->
let typ = hol_type2ntype ty in
Npdef(make_defV name typ true, typ, term2nterm tm), il
| Ptyintro(rty2, tyname, tyvars, absname, repname, pt) ->
let rty = hol_type2ntype rty2 in
let new_name = make_defT tyname in
let ntyvars = List.map hol_type2ntype tyvars in
let aty = Ntdef(new_name, ntyvars) in
let mk_name = make_defV absname (Narrow(rty, aty)) false in
let dest_name = make_defV repname (Narrow(aty, rty)) false in
Nptyintro(rty, aty, mk_name, dest_name, term2nterm pt), il
| Pspec(p,t) ->
let p', res = wp il p in
Npspec(p', term2nterm t), res
| Pinst(p,theta) ->
let p', res = wp il p in
Npinst(p', List.map (
fun (s,ty,te) ->
let typ = hol_type2ntype ty in
(make_idV s typ, typ, term2nterm te)
) theta), res
| Pgen(p,x,ty) ->
let p', res = wp il p in
let typ = hol_type2ntype ty in
Npgen(p', make_idV x typ, typ), res
| Psym p ->
let p', res = wp il p in
Npsym p', res
| Ptrans(p1,p2) ->
let p1', il' = wp il p1 in
let p2', res = wp il' p2 in
Nptrans(p1', p2'), res
| Pcomb(p1,p2) ->
let p1', il' = wp il p1 in
let p2', res = wp il' p2 in
Npcomb(p1', p2'), res
| Peqmp(p1,p2) ->
let p1', il' = wp il p1 in
let p2', res = wp il' p2 in
Npeqmp(p1', p2'), res
| Pexists(p,ex,w) ->
let p', res = wp il p in
Npexists(p', term2nterm ex, term2nterm w), res
| Pchoose(x,ty,p1,p2) ->
let p1', il' = wp il p1 in
let p2', res = wp il' p2 in
let typ = hol_type2ntype ty in
Npchoose(make_idV x typ, typ, p1', p2'), res
| Pconj(p1,p2) ->
let p1', il' = wp il p1 in
let p2', res = wp il' p2 in
Npconj(p1', p2'), res
| Pimpas(p1,p2) ->
let p1', il' = wp il p1 in
let p2', res = wp il' p2 in
Npimpas(p1', p2'), res
| Pconjunct1 p ->
let p', res = wp il p in
Npconjunct1 p', res
| Pconjunct2 p ->
let p', res = wp il p in
Npconjunct2 p', res
| Pdisj1(p,tm) ->
let p', res = wp il p in
Npdisj1(p', term2nterm tm), res
| Pdisj2(p,tm) ->
let p', res = wp il p in
Npdisj2(p', term2nterm tm), res
| Pdisjcases(p1,p2,p3) ->
let p1', il' = wp il p1 in
let p2', il'' = wp il' p2 in
let p3', res = wp il'' p3 in
Npdisjcases(p1', p2', p3'), res
| Pnoti p ->
let p', res = wp il p in
Npnoti p', res
| Pnote p ->
let p', res = wp il p in
Npnote p', res
| Pcontr(p,tm) ->
let p', res = wp il p in
Npcontr(p', term2nterm tm), res
and wp il p =
match share_info_of p il with
| Some(_, thmname, il') -> wdi thmname, il'
| None -> wp' il (content_of p) in
match disk_info_of p with
| Some(_, thmname') -> if thmname' = thmname then wp' il (content_of p) else (wdi thmname', il)
| None -> wp' il (content_of p) in
let p', il = write_proof p il in
set_disk_info_of p THEORY_NAME thmname;
Hashtbl.add proof_of_thm thmname p';
make_dependencies_aux dep_graph proof_of_thm il;;
let make_dependencies out out_share out_sharet new_file count_thms path ((thmname, pr, _) as p) =
let dep_graph = Depgraph.Dep.create () in
let proof_of_thm = Hashtbl.create (references pr) in
Depgraph.Dep.add_thm dep_graph thmname;
make_dependencies_aux dep_graph proof_of_thm [p];
let share_type ty = share_types out_sharet ty in
let share_term ty = share_terms out_share out_sharet ty in
if thmname = (THEORY_NAME^"_DEF_T") then (
match content_of pr with
| Pdef (_, _, t) ->
let tm = hequiv htrue (term2nterm t) in
Hashtbl.add derivs thmname (hyp_empty, tm);
export_ht out share_term hyp_empty tm thmname;
export_lemma_def out "DEF_T" thmname;
export_sig out thmname
| _ -> ()
) else if thmname = (THEORY_NAME^"_DEF__slash__backslash_") then (
match content_of pr with
| Pdef (_, _, t) ->
let tm = heq (Narrow (Nbool, Narrow (Nbool, Nbool))) (Ncst Hand) (term2nterm t) in
Hashtbl.add derivs thmname (hyp_empty, tm);
export_ht out share_term hyp_empty tm thmname;
export_lemma_def out "DEF_AND" thmname;
export_sig out thmname
| _ -> ()
) else if thmname = (THEORY_NAME^"_DEF__equal__equal__greaterthan_") then (
match content_of pr with
| Pdef (_, _, t) ->
let tm = heq (Narrow (Nbool, Narrow (Nbool, Nbool))) (Ncst Himp) (term2nterm t) in
Hashtbl.add derivs thmname (hyp_empty, tm);
export_ht out share_term hyp_empty tm thmname;
export_lemma_def out "DEF_IMP" thmname;
export_sig out thmname
| _ -> ()
) else if thmname = (THEORY_NAME^"_DEF__exclamationmark_") then (
match content_of pr with
| Pdef (_, a, t) ->
let a2 = hol_type2ntype a in
(match a2 with
| Narrow (Narrow (b, _), _) ->
let tm = heq a2 (Ncst (Hforall b)) (term2nterm t) in
Hashtbl.add derivs thmname (hyp_empty, tm);
export_ht out share_term hyp_empty tm thmname;
export_lemma_def out "DEF_FORALL" thmname;
export_sig out thmname
| _ -> ())
| _ -> ()
) else if thmname = (THEORY_NAME^"_DEF__questionmark_") then (
match content_of pr with
| Pdef (_, a, t) ->
let a2 = hol_type2ntype a in
(match a2 with
| Narrow (Narrow (b, _), _) ->
let tm = heq a2 (Ncst (Hexists b)) (term2nterm t) in
Hashtbl.add derivs thmname (hyp_empty, tm);
export_ht out share_term hyp_empty tm thmname;
export_lemma_def out "DEF_EXISTS" thmname;
export_sig out thmname
| _ -> ())
| _ -> ()
) else if thmname = (THEORY_NAME^"_DEF__backslash__slash_") then (
match content_of pr with
| Pdef (_, _, t) ->
let tm = heq (Narrow (Nbool, Narrow (Nbool, Nbool))) (Ncst Hor) (term2nterm t) in
Hashtbl.add derivs thmname (hyp_empty, tm);
export_ht out share_term hyp_empty tm thmname;
export_lemma_def out "DEF_OR" thmname;
export_sig out thmname
| _ -> ()
) else if thmname = (THEORY_NAME^"_DEF_F") then (
match content_of pr with
| Pdef (_, _, t) ->
let tm = hequiv (Ncst Hfalse) (term2nterm t) in
Hashtbl.add derivs thmname (hyp_empty, tm);
export_ht out share_term hyp_empty tm thmname;
export_lemma_def out "DEF_F" thmname;
export_sig out thmname
| _ -> ()
) else if thmname = (THEORY_NAME^"_DEF__tilde_") then (
match content_of pr with
| Pdef(_, _, t) ->
let tm = heq (Narrow (Nbool, Nbool)) (Ncst Hnot) (term2nterm t) in
Hashtbl.add derivs thmname (hyp_empty, tm);
export_ht out share_term hyp_empty tm thmname;
export_lemma_def out "DEF_NOT" thmname;
export_sig out thmname
| _ -> ()
) else if thmname = (THEORY_NAME^"_DEF__FALSITY_") then (
let tm = heq Nbool (Ncst Hfalse) (Ncst Hfalse) in
Hashtbl.add derivs thmname (hyp_empty, tm);
export_ht out share_term hyp_empty tm thmname;
export_lemma_def out "(Prefl (Cst Hfalse))" thmname;
export_sig out thmname
) else if thmname = (THEORY_NAME^"_ax__1") then (
match content_of pr with
| Paxm (_, tm) ->
let tm2 = term2nterm tm in
Hashtbl.add derivs thmname (hyp_empty, tm2);
export_ht out share_term hyp_empty tm2 thmname;
export_lemma_def out "ETA_AX" thmname;
export_sig out thmname
| _ -> ()
) else if thmname = (THEORY_NAME^"_ax__2") then (
match content_of pr with
| Paxm (_, tm) ->
let tm2 = term2nterm tm in
Hashtbl.add derivs thmname (hyp_empty, tm2);
export_ht out share_term hyp_empty tm2 thmname;
export_lemma_def out "SELECT_AX" thmname;
export_sig out thmname
| _ -> ()
) else (
Depgraph.Dep_top.iter_top (
fun thm ->
incr count_thms;
if !count_thms = 1000 then (count_thms := 0; new_file ());
(try
let p = Hashtbl.find proof_of_thm thm in
(match proof2deriv p with
| Some (h, t) ->
Hashtbl.add derivs thm (h, t);
export_ht out share_term h t thm;
(match p with
| Npdef _ -> export_def out thm
| Nptyintro _ -> export_tdef out thm
| Npaxm _ -> export_axiom out thm
| _ -> export_lemma out share_type share_term p thm);
export_sig out thm
| None -> failwith ("Erreur make_dependencies "^thm^" de "^thmname^": no derivation associated to the proof\n"))
with | Not_found -> failwith ("Erreur make_dependencies "^thm^": proof_of_thm not found\n"));
) dep_graph
);
;;
let the_proof_database = ref ([]:(string*proof*(term option)) list);;
Random.self_init;;
let rec search_proof_name n db =
match db with [] -> n | ((m, _, _)::db') -> if n=m then n^"_"^(string_of_int (Random.int 1073741823)) else search_proof_name n db'
let save_proof name p c_opt =
let name' = search_proof_name name (!the_proof_database) in
the_proof_database := (name', p, c_opt)::(!the_proof_database);;
let proof_database () = !the_proof_database;;
(* Utilities to define Coq interpretation functions *)
let ut = Hashtbl.create 17;;
let ask_ut () =
try (
let filein = Pervasives.open_in "interpretation.txt" in
let line = ref 0 in
try
while true do
incr line;
let s1 = input_line filein in
incr line;
let s2 = input_line filein in
Hashtbl.add ut s1 s2
done
with
| End_of_file -> close_in filein
| _ -> failwith ("Error line "^(string_of_int !line)^".")
) with | Sys_error _ -> ()
;;
let tc_regexp = Str.regexp "\?[0-9]*";;
let make_tc_parameter out x n =
if Str.string_match tc_regexp x 0 then (
let i = Str.match_end () in
if i <> String.length x then (
out "\nParameter "; out THEORY_NAME; out "_idT_"; out (mfc x); out " : Type.\nParameter "; out THEORY_NAME; out "_idT_inhab_"; out (mfc x);
out " : "; out THEORY_NAME; out "_idT_"; out (mfc x); out "."
)
) else (
out "\nParameter "; out THEORY_NAME; out "_idT_"; out (mfc x); out " : Type.\nParameter "; out THEORY_NAME; out "_idT_inhab_"; out (mfc x);
out " : "; out THEORY_NAME; out "_idT_"; out (mfc x); out "."
);;
let make_tc_list out x n =
if Str.string_match tc_regexp x 0 then (
let i = Str.match_end () in
if i <> String.length x then (
out "\n("; out (string_of_int n); out ", mkTT "; out THEORY_NAME; out "_idT_inhab_"; out (mfc x); out ")::"
)
) else (
out "\n("; out (string_of_int n); out ", mkTT "; out THEORY_NAME; out "_idT_inhab_"; out (mfc x); out ")::"
);;
let defT_ut = Hashtbl.create 17;;
let make_tdt_parameter out x _ =
try (
let y = Hashtbl.find ut x in
Hashtbl.add defT_ut x y
) with | Not_found -> (
out "\nParameter "; out THEORY_NAME; out "_defT_"; out (mfc x); out " : Type.";
out "\nParameter "; out THEORY_NAME; out "_defT_inhab_"; out (mfc x); out " : "; out THEORY_NAME; out "_defT_"; out (mfc x); out ".\n";
Hashtbl.add defT_ut x ("fun _ => mkTT "^THEORY_NAME^"_defT_inhab_"^(mfc x))
);;
let make_tdt_list out x n =
try (
let s = Hashtbl.find defT_ut x in
out "\n("; out (string_of_int n); out ", "; out s; out ")::";
) with | Not_found -> (
out "\n("; out (string_of_int n); out ", fun _ => mkTT tt)::"
);;
let se_regexp = Str.regexp "_[0-9]*";;
let make_se_parameter out x (_,ty) =
if Str.string_match se_regexp x 0 then (
let i = Str.match_end () in
if i <> String.length x then (
out "\nParameter "; out THEORY_NAME; out "_idV_"; out (mfc x); out " : tr_type tc tdt "; print_type out ty; out "."
)
) else (
out "\nParameter "; out THEORY_NAME; out "_idV_"; out (mfc x); out " : tr_type tc tdt "; print_type out ty; out "."
);;
let make_se_list out x (n,ty) =
if Str.string_match se_regexp x 0 then (
let i = Str.match_end () in
if i <> String.length x then (
out "\n("; print_names out n; out ", existT (fun (t: type) => tr_type tc tdt t) "; print_type out ty; out " "; out THEORY_NAME; out "_idV_"; out (mfc x); out ")::"
)
) else (
out "\n("; print_names out n; out ", existT (fun (t: type) => tr_type tc tdt t) "; print_type out ty; out " "; out THEORY_NAME; out "_idV_"; out (mfc x); out ")::"
);;
let defV_ut = Hashtbl.create 17;;
let make_sdt_parameter out x (_,ty,_) =
if ((x <> "T") && (x <> "/\\") && (x <> "==>") && (x <> "!") && (x <> "?") && (x <> "\\/") && (x <> "F") && (x <> "~") && (x <> "_FALSITY_")) then (
try (
let y = Hashtbl.find ut x in
Hashtbl.add defV_ut x y
) with | Not_found -> (
out "\nParameter "; out THEORY_NAME; out "_defV_"; out (mfc x); out " : tr_type tc tdt "; print_type out ty; out "."
)
);;
let make_sdt_list out x (n,ty,_) =
try (
let s = Hashtbl.find defV_ut x in
out "\n("; print_names out n; out ", existT (fun (t: type) => tr_type tc tdt t) "; print_type out ty; out " ("; out s; out "))::"
) with | Not_found -> (
if ((x <> "T") && (x <> "/\\") && (x <> "==>") && (x <> "!") && (x <> "?") && (x <> "\\/") && (x <> "F") && (x <> "~") && (x <> "_FALSITY_")) then (
out "\n("; print_names out n; out ", existT (fun (t: type) => tr_type tc tdt t) "; print_type out ty; out " "; out THEORY_NAME; out "_defV_"; out (mfc x); out ")::"
)
);;
(* Main function: list of proofs exportation *)
let export_list thmname_list =
total := 0;
let path = ensure_export_directory THEORY_NAME in
let rec proof_of_thm acc acc2 = function
| [] -> acc, acc2
| (s,p,c)::q ->
if List.mem s thmname_list then
proof_of_thm ((THEORY_NAME^"_"^(mfc s), reset_disk_info_of1 p, c)::acc) (acc2+1) q
else match content_of p with
| Paxm _ | Pdef _ | Ptyintro _ -> proof_of_thm ((THEORY_NAME^"_"^(mfc s), reset_disk_info_of1 p, c)::acc) (acc2+1) q
| _ -> proof_of_thm acc acc2 q in
let l, total_thms = proof_of_thm [] 0 (proof_database ()) in
let count_thms = ref 0 in
let count_files = ref 1 in
(* Main file *)
let file = ref (open_out (Filename.concat path (THEORY_NAME^"_1.v"))) in
let count_file = ref 0 in
let out s = (output_string !file s; incr count_file; if !count_file = 1000 then (count_file := 0; flush !file)) in
out "(*** This file has been automatically generated from HOL-Light source files. ***)\n\nRequire Export List NArith.\nRequire Export hol deriv proof.\n\n";
(* Temporary file *)
let (file_temp_name, file_temp_aux) = Filename.open_temp_file (THEORY_NAME^"_") ".v" in
let file_temp = ref file_temp_aux in
let count_file_temp = ref 0 in
let out_temp s = (output_string !file_temp s; incr count_file_temp; if !count_file_temp = 1000 then (count_file_temp := 0; flush !file_temp)) in
let move_temp () =
(try
close_out !file_temp
with | Sys_error s -> raise (Sys_error ("move_temp1: "^s)));
(try
let buf = Pervasives.open_in file_temp_name in
(try
while true do
out "\n";
let l = input_line buf in
out l
done
with | End_of_file -> close_in buf)
with | Sys_error s -> raise (Sys_error ("move_temp3: "^s))) in
(* New file *)
let new_file () =
move_temp ();
file_temp := open_out file_temp_name;
incr count_files;
close_out !file;
file := open_out (Filename.concat path (THEORY_NAME^"_"^(string_of_int !count_files)^".v"));
out "(*** This file has been automatically generated from HOL-Light source files. ***)\n\nRequire Export "; out THEORY_NAME; out "_"; out (string_of_int (!count_files-1)); out ".\n\n" in
(* Coq files generation *)
let date1 = Unix.time () in
List.iter (make_dependencies out_temp out out new_file count_thms path) l;
let date2 = Unix.time () in
move_temp (); close_out !file;
(* Makefile *)
let make = open_out (Filename.concat path "Makefile") in
let out = output_string make in
out "# This file has been automatically generated from HOL-Light source files.\n\nCOQ=ssrcoq\nFLAGS=-dont-load-proofs -dump-glob /dev/null -compile\n\nSRC=";
for i = 1 to !count_files do
out " "; out THEORY_NAME; out "_"; out (string_of_int i); out ".v";
done;
out "\nOBJ=$(SRC:.v=.vo)\nGLOB=$(SRC:.v=.glob)\n\n\nall: $(OBJ)\n\n\n%.vo: %.v\n\t$(COQ) $(FLAGS) $(^:.v=)\n\n\nclean:\n\trm -f $(OBJ) $(GLOB) *~";
close_out make;
(* Interpretation *)
let interp = open_out (Filename.concat path "interpretation.v") in
let out = output_string interp in
out "(*** This file has been automatically generated from HOL-Light source files. ***)\n\nRequire Import ssreflect eqtype ssrnat ssrbool.\nRequire Import List NArith ZArith.ZOdiv_def.\nRequire Import hol cast typing translation axioms.\n\nOpen Local Scope positive_scope.\n\n";
ask_ut ();
(* tc *)
Hashtbl.iter (make_tc_parameter out) idT;
out "\n\nDefinition tc_list :=";
Hashtbl.iter (make_tc_list out) idT;
out "\nnil.\n\nDefinition tc := list_tc2tc tc_list.\n\n";
(* tdt *)
Hashtbl.iter (make_tdt_parameter out) defT;
out "\n\nDefinition tdt_list : list_tdt :=";
Hashtbl.iter (make_tdt_list out) defT;
out "\nnil.\n\nDefinition tdt := list_tdt2tdt tdt_list.\n\n";
(* se *)
Hashtbl.iter (make_se_parameter out) idV;
out "\n\nDefinition se_list :=";
Hashtbl.iter (make_se_list out) idV;
out "\nnil.\n\nDefinition se := list_se2se se_list.\n\n";
(* sdt *)
Hashtbl.iter (make_sdt_parameter out) defV;
out "\n\nDefinition sdt_list :=";
Hashtbl.iter (make_sdt_list out) defV;
out "\nnil.\n\nDefinition sdt := list_sdt2sdt sdt_list.";
close_out interp;
print_string "Generated "; print_int !total; print_string " facts for "; print_int total_thms; print_string " theorems.\n";
print_string "Exportation duration: "; print_float (date2 -. date1); print_string "s.\n"
;;
(* Main function: all proofs exportation *)
let export_saved_proofs () = export_list (List.map (fun (s,_,_) -> s) (proof_database ()));;
(* Main function: one proof exportation *)
let export_one_proof name = export_list [name];;
end;;
include Proofobjects;;
|