1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
|
(* ========================================================================= *)
(* Theory of integers. *)
(* *)
(* The integers are carved out of the real numbers; hence all the *)
(* universal theorems can be derived trivially from the real analog. *)
(* *)
(* John Harrison, University of Cambridge Computer Laboratory *)
(* *)
(* (c) Copyright, University of Cambridge 1998 *)
(* (c) Copyright, John Harrison 1998-2007 *)
(* ========================================================================= *)
needs "calc_rat.ml";;
(* ------------------------------------------------------------------------- *)
(* Representing predicate. The "is_int" variant is useful for backwards *)
(* compatibility with former definition of "is_int" constant, now removed. *)
(* ------------------------------------------------------------------------- *)
let integer = new_definition
`integer(x) <=> ?n. abs(x) = &n`;;
let is_int = prove
(`integer(x) <=> ?n. x = &n \/ x = -- &n`,
REWRITE_TAC[integer] THEN AP_TERM_TAC THEN ABS_TAC THEN REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Type of integers. *)
(* ------------------------------------------------------------------------- *)
let int_tybij = new_type_definition "int" ("int_of_real","real_of_int")
(prove(`?x. integer x`,
EXISTS_TAC `&0` THEN
REWRITE_TAC[is_int; REAL_OF_NUM_EQ; EXISTS_OR_THM; GSYM EXISTS_REFL]));;
let int_abstr,int_rep =
SPEC_ALL(CONJUNCT1 int_tybij),SPEC_ALL(CONJUNCT2 int_tybij);;
let dest_int_rep = prove
(`!i. ?n. (real_of_int i = &n) \/ (real_of_int i = --(&n))`,
REWRITE_TAC[GSYM is_int; int_rep; int_abstr]);;
(* ------------------------------------------------------------------------- *)
(* We want the following too. *)
(* ------------------------------------------------------------------------- *)
let int_eq = prove
(`!x y. (x = y) <=> (real_of_int x = real_of_int y)`,
REPEAT GEN_TAC THEN EQ_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN
POP_ASSUM(MP_TAC o AP_TERM `int_of_real`) THEN
REWRITE_TAC[int_abstr]);;
(* ------------------------------------------------------------------------- *)
(* Set up interface map. *)
(* ------------------------------------------------------------------------- *)
do_list overload_interface
["+",`int_add:int->int->int`; "-",`int_sub:int->int->int`;
"*",`int_mul:int->int->int`; "<",`int_lt:int->int->bool`;
"<=",`int_le:int->int->bool`; ">",`int_gt:int->int->bool`;
">=",`int_ge:int->int->bool`; "--",`int_neg:int->int`;
"pow",`int_pow:int->num->int`; "abs",`int_abs:int->int`;
"max",`int_max:int->int->int`; "min",`int_min:int->int->int`;
"&",`int_of_num:num->int`];;
let prioritize_int() = prioritize_overload(mk_type("int",[]));;
(* ------------------------------------------------------------------------- *)
(* Definitions and closure derivations of all operations but "inv" and "/". *)
(* ------------------------------------------------------------------------- *)
let int_le = new_definition
`x <= y <=> (real_of_int x) <= (real_of_int y)`;;
let int_lt = new_definition
`x < y <=> (real_of_int x) < (real_of_int y)`;;
let int_ge = new_definition
`x >= y <=> (real_of_int x) >= (real_of_int y)`;;
let int_gt = new_definition
`x > y <=> (real_of_int x) > (real_of_int y)`;;
let int_of_num = new_definition
`&n = int_of_real(real_of_num n)`;;
let int_of_num_th = prove
(`!n. real_of_int(int_of_num n) = real_of_num n`,
REWRITE_TAC[int_of_num; GSYM int_rep; is_int] THEN
REWRITE_TAC[REAL_OF_NUM_EQ; EXISTS_OR_THM; GSYM EXISTS_REFL]);;
let int_neg = new_definition
`--i = int_of_real(--(real_of_int i))`;;
let int_neg_th = prove
(`!x. real_of_int(int_neg x) = --(real_of_int x)`,
REWRITE_TAC[int_neg; GSYM int_rep; is_int] THEN
GEN_TAC THEN STRIP_ASSUME_TAC(SPEC `x:int` dest_int_rep) THEN
ASM_REWRITE_TAC[REAL_NEG_NEG; EXISTS_OR_THM; REAL_EQ_NEG2;
REAL_OF_NUM_EQ; GSYM EXISTS_REFL]);;
let int_add = new_definition
`x + y = int_of_real((real_of_int x) + (real_of_int y))`;;
let int_add_th = prove
(`!x y. real_of_int(x + y) = (real_of_int x) + (real_of_int y)`,
REWRITE_TAC[int_add; GSYM int_rep; is_int] THEN REPEAT GEN_TAC THEN
X_CHOOSE_THEN `m:num` DISJ_CASES_TAC (SPEC `x:int` dest_int_rep) THEN
X_CHOOSE_THEN `n:num` DISJ_CASES_TAC (SPEC `y:int` dest_int_rep) THEN
ASM_REWRITE_TAC[REAL_OF_NUM_ADD; REAL_OF_NUM_EQ; EXISTS_OR_THM] THEN
REWRITE_TAC[GSYM EXISTS_REFL] THEN
DISJ_CASES_THEN MP_TAC (SPECL [`m:num`; `n:num`] LE_CASES) THEN
REWRITE_TAC[LE_EXISTS] THEN DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC) THEN
REWRITE_TAC[GSYM REAL_OF_NUM_ADD; OR_EXISTS_THM; REAL_NEG_ADD] THEN
TRY(EXISTS_TAC `d:num` THEN REAL_ARITH_TAC) THEN
REWRITE_TAC[EXISTS_OR_THM; GSYM REAL_NEG_ADD; REAL_EQ_NEG2;
REAL_OF_NUM_ADD; REAL_OF_NUM_EQ; GSYM EXISTS_REFL]);;
let int_sub = new_definition
`x - y = int_of_real(real_of_int x - real_of_int y)`;;
let int_sub_th = prove
(`!x y. real_of_int(x - y) = (real_of_int x) - (real_of_int y)`,
REWRITE_TAC[int_sub; real_sub; GSYM int_neg_th; GSYM int_add_th] THEN
REWRITE_TAC[int_abstr]);;
let int_mul = new_definition
`x * y = int_of_real ((real_of_int x) * (real_of_int y))`;;
let int_mul_th = prove
(`!x y. real_of_int(x * y) = (real_of_int x) * (real_of_int y)`,
REPEAT GEN_TAC THEN REWRITE_TAC[int_mul; GSYM int_rep; is_int] THEN
X_CHOOSE_THEN `m:num` DISJ_CASES_TAC (SPEC `x:int` dest_int_rep) THEN
X_CHOOSE_THEN `n:num` DISJ_CASES_TAC (SPEC `y:int` dest_int_rep) THEN
ASM_REWRITE_TAC[REAL_OF_NUM_ADD; REAL_OF_NUM_EQ; EXISTS_OR_THM] THEN
REWRITE_TAC[REAL_MUL_LNEG; REAL_MUL_RNEG; REAL_NEG_NEG; REAL_OF_NUM_MUL] THEN
REWRITE_TAC[REAL_EQ_NEG2; REAL_OF_NUM_EQ; GSYM EXISTS_REFL]);;
let int_abs = new_definition
`abs x = int_of_real(abs(real_of_int x))`;;
let int_abs_th = prove
(`!x. real_of_int(abs x) = abs(real_of_int x)`,
GEN_TAC THEN REWRITE_TAC[int_abs; real_abs] THEN COND_CASES_TAC THEN
REWRITE_TAC[GSYM int_neg; int_neg_th; int_abstr]);;
let int_sgn = new_definition
`int_sgn x = int_of_real(real_sgn(real_of_int x))`;;
let int_sgn_th = prove
(`!x. real_of_int(int_sgn x) = real_sgn(real_of_int x)`,
GEN_TAC THEN REWRITE_TAC[int_sgn; real_sgn; GSYM int_rep] THEN
REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN
MESON_TAC[is_int]);;
let int_max = new_definition
`int_max x y = int_of_real(max (real_of_int x) (real_of_int y))`;;
let int_max_th = prove
(`!x y. real_of_int(max x y) = max (real_of_int x) (real_of_int y)`,
REPEAT GEN_TAC THEN REWRITE_TAC[int_max; real_max] THEN
COND_CASES_TAC THEN REWRITE_TAC[int_abstr]);;
let int_min = new_definition
`int_min x y = int_of_real(min (real_of_int x) (real_of_int y))`;;
let int_min_th = prove
(`!x y. real_of_int(min x y) = min (real_of_int x) (real_of_int y)`,
REPEAT GEN_TAC THEN REWRITE_TAC[int_min; real_min] THEN
COND_CASES_TAC THEN REWRITE_TAC[int_abstr]);;
let int_pow = new_definition
`x pow n = int_of_real((real_of_int x) pow n)`;;
let int_pow_th = prove
(`!x n. real_of_int(x pow n) = (real_of_int x) pow n`,
GEN_TAC THEN REWRITE_TAC[int_pow] THEN INDUCT_TAC THEN
REWRITE_TAC[real_pow] THENL
[REWRITE_TAC[GSYM int_of_num; int_of_num_th];
POP_ASSUM(SUBST1_TAC o SYM) THEN
ASM_REWRITE_TAC[GSYM int_mul; int_mul_th]]);;
(* ------------------------------------------------------------------------- *)
(* A couple of theorems peculiar to the integers. *)
(* ------------------------------------------------------------------------- *)
let INT_IMAGE = prove
(`!x. (?n. x = &n) \/ (?n. x = --(&n))`,
GEN_TAC THEN
X_CHOOSE_THEN `n:num` DISJ_CASES_TAC (SPEC `x:int` dest_int_rep) THEN
POP_ASSUM(MP_TAC o AP_TERM `int_of_real`) THEN REWRITE_TAC[int_abstr] THEN
DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[int_of_num; int_neg] THENL
[DISJ1_TAC; DISJ2_TAC] THEN
EXISTS_TAC `n:num` THEN REWRITE_TAC[int_abstr] THEN
REWRITE_TAC[GSYM int_of_num; int_of_num_th]);;
let INT_LT_DISCRETE = prove
(`!x y. x < y <=> (x + &1) <= y`,
REPEAT GEN_TAC THEN
REWRITE_TAC[int_le; int_lt; int_add_th] THEN
DISJ_CASES_THEN(X_CHOOSE_THEN `m:num` SUBST1_TAC )
(SPEC `x:int` INT_IMAGE) THEN
DISJ_CASES_THEN(X_CHOOSE_THEN `n:num` SUBST1_TAC )
(SPEC `y:int` INT_IMAGE) THEN
REWRITE_TAC[int_neg_th; int_of_num_th] THEN
REWRITE_TAC[REAL_LE_NEG2; REAL_LT_NEG2] THEN
REWRITE_TAC[REAL_LE_LNEG; REAL_LT_LNEG; REAL_LE_RNEG; REAL_LT_RNEG] THEN
REWRITE_TAC[GSYM REAL_ADD_ASSOC] THEN
ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN
REWRITE_TAC[GSYM real_sub; REAL_LE_SUB_RADD] THEN
REWRITE_TAC[REAL_OF_NUM_LE; REAL_OF_NUM_LT; REAL_OF_NUM_ADD] THEN
REWRITE_TAC[GSYM ADD1; ONCE_REWRITE_RULE[ADD_SYM] (GSYM ADD1)] THEN
REWRITE_TAC[SYM(REWRITE_CONV[ARITH_SUC] `SUC 0`)] THEN
REWRITE_TAC[ADD_CLAUSES; LE_SUC_LT; LT_SUC_LE]);;
let INT_GT_DISCRETE = prove
(`!x y. x > y <=> x >= (y + &1)`,
REWRITE_TAC[int_gt; int_ge; real_ge; real_gt; GSYM int_le; GSYM int_lt] THEN
MATCH_ACCEPT_TAC INT_LT_DISCRETE);;
(* ------------------------------------------------------------------------- *)
(* Conversions of integer constants to and from OCaml numbers. *)
(* ------------------------------------------------------------------------- *)
let is_intconst tm =
match tm with
Comb(Const("int_of_num",_),n) -> is_numeral n
| Comb(Const("int_neg",_),Comb(Const("int_of_num",_),n)) ->
is_numeral n & not(dest_numeral n = num_0)
| _ -> false;;
let dest_intconst tm =
match tm with
Comb(Const("int_of_num",_),n) -> dest_numeral n
| Comb(Const("int_neg",_),Comb(Const("int_of_num",_),n)) ->
let nn = dest_numeral n in
if nn <>/ num_0 then minus_num(dest_numeral n)
else failwith "dest_intconst"
| _ -> failwith "dest_intconst";;
let mk_intconst =
let cast_tm = `int_of_num` and neg_tm = `int_neg` in
let mk_numconst n = mk_comb(cast_tm,mk_numeral n) in
fun x -> if x </ num_0 then mk_comb(neg_tm,mk_numconst(minus_num x))
else mk_numconst x;;
(* ------------------------------------------------------------------------- *)
(* A simple procedure to lift most universal real theorems to integers. *)
(* For a more complete procedure, give required term to INT_ARITH (below). *)
(* ------------------------------------------------------------------------- *)
let INT_OF_REAL_THM =
let dest = `real_of_int`
and real_ty = `:real`
and int_ty = `:int`
and cond_th = prove
(`real_of_int(if b then x else y) =
if b then real_of_int x else real_of_int y`,
COND_CASES_TAC THEN REWRITE_TAC[]) in
let thlist = map GSYM
[int_eq; int_le; int_lt; int_ge; int_gt;
int_of_num_th; int_neg_th; int_add_th; int_mul_th; int_sgn_th;
int_sub_th; int_abs_th; int_max_th; int_min_th; int_pow_th; cond_th] in
let REW_RULE = GEN_REWRITE_RULE DEPTH_CONV thlist in
let int_tm_of_real_var v =
let s,ty = dest_var v in
if ty = real_ty then mk_comb(dest,mk_var(s,int_ty)) else v in
let int_of_real_var v =
let s,ty = dest_var v in
if ty = real_ty then mk_var(s,int_ty) else v in
let INT_OF_REAL_THM1 th =
let newavs = subtract (frees (concl th)) (freesl (hyp th)) in
let avs,bod = strip_forall(concl th) in
let allavs = newavs@avs in
let avs' = map int_tm_of_real_var allavs in
let avs'' = map int_of_real_var avs in
GENL avs'' (REW_RULE(SPECL avs' (GENL newavs th))) in
let rec INT_OF_REAL_THM th =
if is_conj(concl th) then CONJ (INT_OF_REAL_THM (CONJUNCT1 th))
(INT_OF_REAL_THM (CONJUNCT2 th))
else INT_OF_REAL_THM1 th in
INT_OF_REAL_THM;;
(* ------------------------------------------------------------------------- *)
(* Collect together all the theorems derived automatically. *)
(* ------------------------------------------------------------------------- *)
let INT_ABS_0 = INT_OF_REAL_THM REAL_ABS_0;;
let INT_ABS_1 = INT_OF_REAL_THM REAL_ABS_1;;
let INT_ABS_ABS = INT_OF_REAL_THM REAL_ABS_ABS;;
let INT_ABS_BETWEEN = INT_OF_REAL_THM REAL_ABS_BETWEEN;;
let INT_ABS_BETWEEN1 = INT_OF_REAL_THM REAL_ABS_BETWEEN1;;
let INT_ABS_BETWEEN2 = INT_OF_REAL_THM REAL_ABS_BETWEEN2;;
let INT_ABS_BOUND = INT_OF_REAL_THM REAL_ABS_BOUND;;
let INT_ABS_CASES = INT_OF_REAL_THM REAL_ABS_CASES;;
let INT_ABS_CIRCLE = INT_OF_REAL_THM REAL_ABS_CIRCLE;;
let INT_ABS_LE = INT_OF_REAL_THM REAL_ABS_LE;;
let INT_ABS_MUL = INT_OF_REAL_THM REAL_ABS_MUL;;
let INT_ABS_NEG = INT_OF_REAL_THM REAL_ABS_NEG;;
let INT_ABS_NUM = INT_OF_REAL_THM REAL_ABS_NUM;;
let INT_ABS_NZ = INT_OF_REAL_THM REAL_ABS_NZ;;
let INT_ABS_POS = INT_OF_REAL_THM REAL_ABS_POS;;
let INT_ABS_POW = INT_OF_REAL_THM REAL_ABS_POW;;
let INT_ABS_REFL = INT_OF_REAL_THM REAL_ABS_REFL;;
let INT_ABS_SGN = INT_OF_REAL_THM REAL_ABS_SGN;;
let INT_ABS_SIGN = INT_OF_REAL_THM REAL_ABS_SIGN;;
let INT_ABS_SIGN2 = INT_OF_REAL_THM REAL_ABS_SIGN2;;
let INT_ABS_STILLNZ = INT_OF_REAL_THM REAL_ABS_STILLNZ;;
let INT_ABS_SUB = INT_OF_REAL_THM REAL_ABS_SUB;;
let INT_ABS_SUB_ABS = INT_OF_REAL_THM REAL_ABS_SUB_ABS;;
let INT_ABS_TRIANGLE = INT_OF_REAL_THM REAL_ABS_TRIANGLE;;
let INT_ABS_ZERO = INT_OF_REAL_THM REAL_ABS_ZERO;;
let INT_ADD2_SUB2 = INT_OF_REAL_THM REAL_ADD2_SUB2;;
let INT_ADD_AC = INT_OF_REAL_THM REAL_ADD_AC;;
let INT_ADD_ASSOC = INT_OF_REAL_THM REAL_ADD_ASSOC;;
let INT_ADD_LDISTRIB = INT_OF_REAL_THM REAL_ADD_LDISTRIB;;
let INT_ADD_LID = INT_OF_REAL_THM REAL_ADD_LID;;
let INT_ADD_LINV = INT_OF_REAL_THM REAL_ADD_LINV;;
let INT_ADD_RDISTRIB = INT_OF_REAL_THM REAL_ADD_RDISTRIB;;
let INT_ADD_RID = INT_OF_REAL_THM REAL_ADD_RID;;
let INT_ADD_RINV = INT_OF_REAL_THM REAL_ADD_RINV;;
let INT_ADD_SUB = INT_OF_REAL_THM REAL_ADD_SUB;;
let INT_ADD_SUB2 = INT_OF_REAL_THM REAL_ADD_SUB2;;
let INT_ADD_SYM = INT_OF_REAL_THM REAL_ADD_SYM;;
let INT_BOUNDS_LE = INT_OF_REAL_THM REAL_BOUNDS_LE;;
let INT_BOUNDS_LT = INT_OF_REAL_THM REAL_BOUNDS_LT;;
let INT_DIFFSQ = INT_OF_REAL_THM REAL_DIFFSQ;;
let INT_ENTIRE = INT_OF_REAL_THM REAL_ENTIRE;;
let INT_EQ_ADD_LCANCEL = INT_OF_REAL_THM REAL_EQ_ADD_LCANCEL;;
let INT_EQ_ADD_LCANCEL_0 = INT_OF_REAL_THM REAL_EQ_ADD_LCANCEL_0;;
let INT_EQ_ADD_RCANCEL = INT_OF_REAL_THM REAL_EQ_ADD_RCANCEL;;
let INT_EQ_ADD_RCANCEL_0 = INT_OF_REAL_THM REAL_EQ_ADD_RCANCEL_0;;
let INT_EQ_IMP_LE = INT_OF_REAL_THM REAL_EQ_IMP_LE;;
let INT_EQ_MUL_LCANCEL = INT_OF_REAL_THM REAL_EQ_MUL_LCANCEL;;
let INT_EQ_MUL_RCANCEL = INT_OF_REAL_THM REAL_EQ_MUL_RCANCEL;;
let INT_EQ_NEG2 = INT_OF_REAL_THM REAL_EQ_NEG2;;
let INT_EQ_SQUARE_ABS = INT_OF_REAL_THM REAL_EQ_SQUARE_ABS;;
let INT_EQ_SUB_LADD = INT_OF_REAL_THM REAL_EQ_SUB_LADD;;
let INT_EQ_SUB_RADD = INT_OF_REAL_THM REAL_EQ_SUB_RADD;;
let INT_LET_ADD = INT_OF_REAL_THM REAL_LET_ADD;;
let INT_LET_ADD2 = INT_OF_REAL_THM REAL_LET_ADD2;;
let INT_LET_ANTISYM = INT_OF_REAL_THM REAL_LET_ANTISYM;;
let INT_LET_TOTAL = INT_OF_REAL_THM REAL_LET_TOTAL;;
let INT_LET_TRANS = INT_OF_REAL_THM REAL_LET_TRANS;;
let INT_LE_01 = INT_OF_REAL_THM REAL_LE_01;;
let INT_LE_ADD = INT_OF_REAL_THM REAL_LE_ADD;;
let INT_LE_ADD2 = INT_OF_REAL_THM REAL_LE_ADD2;;
let INT_LE_ADDL = INT_OF_REAL_THM REAL_LE_ADDL;;
let INT_LE_ADDR = INT_OF_REAL_THM REAL_LE_ADDR;;
let INT_LE_ANTISYM = INT_OF_REAL_THM REAL_LE_ANTISYM;;
let INT_LE_DOUBLE = INT_OF_REAL_THM REAL_LE_DOUBLE;;
let INT_LE_LADD = INT_OF_REAL_THM REAL_LE_LADD;;
let INT_LE_LADD_IMP = INT_OF_REAL_THM REAL_LE_LADD_IMP;;
let INT_LE_LMUL = INT_OF_REAL_THM REAL_LE_LMUL;;
let INT_LE_LNEG = INT_OF_REAL_THM REAL_LE_LNEG;;
let INT_LE_LT = INT_OF_REAL_THM REAL_LE_LT;;
let INT_LE_MAX = INT_OF_REAL_THM REAL_LE_MAX;;
let INT_LE_MIN = INT_OF_REAL_THM REAL_LE_MIN;;
let INT_LE_MUL = INT_OF_REAL_THM REAL_LE_MUL;;
let INT_LE_MUL_EQ = INT_OF_REAL_THM REAL_LE_MUL_EQ;;
let INT_LE_NEG = INT_OF_REAL_THM REAL_LE_NEG;;
let INT_LE_NEG2 = INT_OF_REAL_THM REAL_LE_NEG2;;
let INT_LE_NEGL = INT_OF_REAL_THM REAL_LE_NEGL;;
let INT_LE_NEGR = INT_OF_REAL_THM REAL_LE_NEGR;;
let INT_LE_NEGTOTAL = INT_OF_REAL_THM REAL_LE_NEGTOTAL;;
let INT_LE_POW2 = INT_OF_REAL_THM REAL_LE_POW2;;
let INT_LE_RADD = INT_OF_REAL_THM REAL_LE_RADD;;
let INT_LE_REFL = INT_OF_REAL_THM REAL_LE_REFL;;
let INT_LE_RMUL = INT_OF_REAL_THM REAL_LE_RMUL;;
let INT_LE_RNEG = INT_OF_REAL_THM REAL_LE_RNEG;;
let INT_LE_SQUARE = INT_OF_REAL_THM REAL_LE_SQUARE;;
let INT_LE_SQUARE_ABS = INT_OF_REAL_THM REAL_LE_SQUARE_ABS;;
let INT_LE_SUB_LADD = INT_OF_REAL_THM REAL_LE_SUB_LADD;;
let INT_LE_SUB_RADD = INT_OF_REAL_THM REAL_LE_SUB_RADD;;
let INT_LE_TOTAL = INT_OF_REAL_THM REAL_LE_TOTAL;;
let INT_LE_TRANS = INT_OF_REAL_THM REAL_LE_TRANS;;
let INT_LNEG_UNIQ = INT_OF_REAL_THM REAL_LNEG_UNIQ;;
let INT_LTE_ADD = INT_OF_REAL_THM REAL_LTE_ADD;;
let INT_LTE_ADD2 = INT_OF_REAL_THM REAL_LTE_ADD2;;
let INT_LTE_ANTISYM = INT_OF_REAL_THM REAL_LTE_ANTISYM;;
let INT_LTE_TOTAL = INT_OF_REAL_THM REAL_LTE_TOTAL;;
let INT_LTE_TRANS = INT_OF_REAL_THM REAL_LTE_TRANS;;
let INT_LT_01 = INT_OF_REAL_THM REAL_LT_01;;
let INT_LT_ADD = INT_OF_REAL_THM REAL_LT_ADD;;
let INT_LT_ADD1 = INT_OF_REAL_THM REAL_LT_ADD1;;
let INT_LT_ADD2 = INT_OF_REAL_THM REAL_LT_ADD2;;
let INT_LT_ADDL = INT_OF_REAL_THM REAL_LT_ADDL;;
let INT_LT_ADDNEG = INT_OF_REAL_THM REAL_LT_ADDNEG;;
let INT_LT_ADDNEG2 = INT_OF_REAL_THM REAL_LT_ADDNEG2;;
let INT_LT_ADDR = INT_OF_REAL_THM REAL_LT_ADDR;;
let INT_LT_ADD_SUB = INT_OF_REAL_THM REAL_LT_ADD_SUB;;
let INT_LT_ANTISYM = INT_OF_REAL_THM REAL_LT_ANTISYM;;
let INT_LT_GT = INT_OF_REAL_THM REAL_LT_GT;;
let INT_LT_IMP_LE = INT_OF_REAL_THM REAL_LT_IMP_LE;;
let INT_LT_IMP_NE = INT_OF_REAL_THM REAL_LT_IMP_NE;;
let INT_LT_LADD = INT_OF_REAL_THM REAL_LT_LADD;;
let INT_LT_LE = INT_OF_REAL_THM REAL_LT_LE;;
let INT_LT_LMUL_EQ = INT_OF_REAL_THM REAL_LT_LMUL_EQ;;
let INT_LT_MAX = INT_OF_REAL_THM REAL_LT_MAX;;
let INT_LT_MIN = INT_OF_REAL_THM REAL_LT_MIN;;
let INT_LT_MUL = INT_OF_REAL_THM REAL_LT_MUL;;
let INT_LT_MUL_EQ = INT_OF_REAL_THM REAL_LT_MUL_EQ;;
let INT_LT_NEG = INT_OF_REAL_THM REAL_LT_NEG;;
let INT_LT_NEG2 = INT_OF_REAL_THM REAL_LT_NEG2;;
let INT_LT_NEGTOTAL = INT_OF_REAL_THM REAL_LT_NEGTOTAL;;
let INT_LT_POW2 = INT_OF_REAL_THM REAL_LT_POW2;;
let INT_LT_RADD = INT_OF_REAL_THM REAL_LT_RADD;;
let INT_LT_REFL = INT_OF_REAL_THM REAL_LT_REFL;;
let INT_LT_RMUL_EQ = INT_OF_REAL_THM REAL_LT_RMUL_EQ;;
let INT_LT_SQUARE_ABS = INT_OF_REAL_THM REAL_LT_SQUARE_ABS;;
let INT_LT_SUB_LADD = INT_OF_REAL_THM REAL_LT_SUB_LADD;;
let INT_LT_SUB_RADD = INT_OF_REAL_THM REAL_LT_SUB_RADD;;
let INT_LT_TOTAL = INT_OF_REAL_THM REAL_LT_TOTAL;;
let INT_LT_TRANS = INT_OF_REAL_THM REAL_LT_TRANS;;
let INT_MAX_ACI = INT_OF_REAL_THM REAL_MAX_ACI;;
let INT_MAX_ASSOC = INT_OF_REAL_THM REAL_MAX_ASSOC;;
let INT_MAX_LE = INT_OF_REAL_THM REAL_MAX_LE;;
let INT_MAX_LT = INT_OF_REAL_THM REAL_MAX_LT;;
let INT_MAX_MAX = INT_OF_REAL_THM REAL_MAX_MAX;;
let INT_MAX_MIN = INT_OF_REAL_THM REAL_MAX_MIN;;
let INT_MAX_SYM = INT_OF_REAL_THM REAL_MAX_SYM;;
let INT_MIN_ACI = INT_OF_REAL_THM REAL_MIN_ACI;;
let INT_MIN_ASSOC = INT_OF_REAL_THM REAL_MIN_ASSOC;;
let INT_MIN_LE = INT_OF_REAL_THM REAL_MIN_LE;;
let INT_MIN_LT = INT_OF_REAL_THM REAL_MIN_LT;;
let INT_MIN_MAX = INT_OF_REAL_THM REAL_MIN_MAX;;
let INT_MIN_MIN = INT_OF_REAL_THM REAL_MIN_MIN;;
let INT_MIN_SYM = INT_OF_REAL_THM REAL_MIN_SYM;;
let INT_MUL_AC = INT_OF_REAL_THM REAL_MUL_AC;;
let INT_MUL_ASSOC = INT_OF_REAL_THM REAL_MUL_ASSOC;;
let INT_MUL_LID = INT_OF_REAL_THM REAL_MUL_LID;;
let INT_MUL_LNEG = INT_OF_REAL_THM REAL_MUL_LNEG;;
let INT_MUL_LZERO = INT_OF_REAL_THM REAL_MUL_LZERO;;
let INT_MUL_POS_LE = INT_OF_REAL_THM REAL_MUL_POS_LE;;
let INT_MUL_POS_LT = INT_OF_REAL_THM REAL_MUL_POS_LT;;
let INT_MUL_RID = INT_OF_REAL_THM REAL_MUL_RID;;
let INT_MUL_RNEG = INT_OF_REAL_THM REAL_MUL_RNEG;;
let INT_MUL_RZERO = INT_OF_REAL_THM REAL_MUL_RZERO;;
let INT_MUL_SYM = INT_OF_REAL_THM REAL_MUL_SYM;;
let INT_NEGNEG = INT_OF_REAL_THM REAL_NEGNEG;;
let INT_NEG_0 = INT_OF_REAL_THM REAL_NEG_0;;
let INT_NEG_ADD = INT_OF_REAL_THM REAL_NEG_ADD;;
let INT_NEG_EQ = INT_OF_REAL_THM REAL_NEG_EQ;;
let INT_NEG_EQ_0 = INT_OF_REAL_THM REAL_NEG_EQ_0;;
let INT_NEG_GE0 = INT_OF_REAL_THM REAL_NEG_GE0;;
let INT_NEG_GT0 = INT_OF_REAL_THM REAL_NEG_GT0;;
let INT_NEG_LE0 = INT_OF_REAL_THM REAL_NEG_LE0;;
let INT_NEG_LMUL = INT_OF_REAL_THM REAL_NEG_LMUL;;
let INT_NEG_LT0 = INT_OF_REAL_THM REAL_NEG_LT0;;
let INT_NEG_MINUS1 = INT_OF_REAL_THM REAL_NEG_MINUS1;;
let INT_NEG_MUL2 = INT_OF_REAL_THM REAL_NEG_MUL2;;
let INT_NEG_NEG = INT_OF_REAL_THM REAL_NEG_NEG;;
let INT_NEG_RMUL = INT_OF_REAL_THM REAL_NEG_RMUL;;
let INT_NEG_SUB = INT_OF_REAL_THM REAL_NEG_SUB;;
let INT_NOT_EQ = INT_OF_REAL_THM REAL_NOT_EQ;;
let INT_NOT_LE = INT_OF_REAL_THM REAL_NOT_LE;;
let INT_NOT_LT = INT_OF_REAL_THM REAL_NOT_LT;;
let INT_OF_NUM_ADD = INT_OF_REAL_THM REAL_OF_NUM_ADD;;
let INT_OF_NUM_EQ = INT_OF_REAL_THM REAL_OF_NUM_EQ;;
let INT_OF_NUM_GE = INT_OF_REAL_THM REAL_OF_NUM_GE;;
let INT_OF_NUM_GT = INT_OF_REAL_THM REAL_OF_NUM_GT;;
let INT_OF_NUM_LE = INT_OF_REAL_THM REAL_OF_NUM_LE;;
let INT_OF_NUM_LT = INT_OF_REAL_THM REAL_OF_NUM_LT;;
let INT_OF_NUM_MAX = INT_OF_REAL_THM REAL_OF_NUM_MAX;;
let INT_OF_NUM_MIN = INT_OF_REAL_THM REAL_OF_NUM_MIN;;
let INT_OF_NUM_MUL = INT_OF_REAL_THM REAL_OF_NUM_MUL;;
let INT_OF_NUM_POW = INT_OF_REAL_THM REAL_OF_NUM_POW;;
let INT_OF_NUM_SUB = INT_OF_REAL_THM REAL_OF_NUM_SUB;;
let INT_OF_NUM_SUC = INT_OF_REAL_THM REAL_OF_NUM_SUC;;
let INT_POS = INT_OF_REAL_THM REAL_POS;;
let INT_POS_NZ = INT_OF_REAL_THM REAL_POS_NZ;;
let INT_POW2_ABS = INT_OF_REAL_THM REAL_POW2_ABS;;
let INT_POW_1 = INT_OF_REAL_THM REAL_POW_1;;
let INT_POW_1_LE = INT_OF_REAL_THM REAL_POW_1_LE;;
let INT_POW_1_LT = INT_OF_REAL_THM REAL_POW_1_LT;;
let INT_POW_2 = INT_OF_REAL_THM REAL_POW_2;;
let INT_POW_ADD = INT_OF_REAL_THM REAL_POW_ADD;;
let INT_POW_EQ = INT_OF_REAL_THM REAL_POW_EQ;;
let INT_POW_EQ_0 = INT_OF_REAL_THM REAL_POW_EQ_0;;
let INT_POW_EQ_ABS = INT_OF_REAL_THM REAL_POW_EQ_ABS;;
let INT_POW_LE = INT_OF_REAL_THM REAL_POW_LE;;
let INT_POW_LE2 = INT_OF_REAL_THM REAL_POW_LE2;;
let INT_POW_LE2_ODD = INT_OF_REAL_THM REAL_POW_LE2_ODD;;
let INT_POW_LE2_REV = INT_OF_REAL_THM REAL_POW_LE2_REV;;
let INT_POW_LE_1 = INT_OF_REAL_THM REAL_POW_LE_1;;
let INT_POW_LT = INT_OF_REAL_THM REAL_POW_LT;;
let INT_POW_LT2 = INT_OF_REAL_THM REAL_POW_LT2;;
let INT_POW_LT2_REV = INT_OF_REAL_THM REAL_POW_LT2_REV;;
let INT_POW_LT_1 = INT_OF_REAL_THM REAL_POW_LT_1;;
let INT_POW_MONO = INT_OF_REAL_THM REAL_POW_MONO;;
let INT_POW_MONO_LT = INT_OF_REAL_THM REAL_POW_MONO_LT;;
let INT_POW_MUL = INT_OF_REAL_THM REAL_POW_MUL;;
let INT_POW_NEG = INT_OF_REAL_THM REAL_POW_NEG;;
let INT_POW_NZ = INT_OF_REAL_THM REAL_POW_NZ;;
let INT_POW_ONE = INT_OF_REAL_THM REAL_POW_ONE;;
let INT_POW_POW = INT_OF_REAL_THM REAL_POW_POW;;
let INT_POW_ZERO = INT_OF_REAL_THM REAL_POW_ZERO;;
let INT_RNEG_UNIQ = INT_OF_REAL_THM REAL_RNEG_UNIQ;;
let INT_SGN = INT_OF_REAL_THM real_sgn;;
let INT_SGN_0 = INT_OF_REAL_THM REAL_SGN_0;;
let INT_SGN_ABS = INT_OF_REAL_THM REAL_SGN_ABS;;
let INT_SGN_CASES = INT_OF_REAL_THM REAL_SGN_CASES;;
let INT_SGN_EQ = INT_OF_REAL_THM REAL_SGN_EQ;;
let INT_SGN_INEQS = INT_OF_REAL_THM REAL_SGN_INEQS;;
let INT_SGN_MUL = INT_OF_REAL_THM REAL_SGN_MUL;;
let INT_SGN_NEG = INT_OF_REAL_THM REAL_SGN_NEG;;
let INT_SOS_EQ_0 = INT_OF_REAL_THM REAL_SOS_EQ_0;;
let INT_SUB_0 = INT_OF_REAL_THM REAL_SUB_0;;
let INT_SUB_ABS = INT_OF_REAL_THM REAL_SUB_ABS;;
let INT_SUB_ADD = INT_OF_REAL_THM REAL_SUB_ADD;;
let INT_SUB_ADD2 = INT_OF_REAL_THM REAL_SUB_ADD2;;
let INT_SUB_LDISTRIB = INT_OF_REAL_THM REAL_SUB_LDISTRIB;;
let INT_SUB_LE = INT_OF_REAL_THM REAL_SUB_LE;;
let INT_SUB_LNEG = INT_OF_REAL_THM REAL_SUB_LNEG;;
let INT_SUB_LT = INT_OF_REAL_THM REAL_SUB_LT;;
let INT_SUB_LZERO = INT_OF_REAL_THM REAL_SUB_LZERO;;
let INT_SUB_NEG2 = INT_OF_REAL_THM REAL_SUB_NEG2;;
let INT_SUB_RDISTRIB = INT_OF_REAL_THM REAL_SUB_RDISTRIB;;
let INT_SUB_REFL = INT_OF_REAL_THM REAL_SUB_REFL;;
let INT_SUB_RNEG = INT_OF_REAL_THM REAL_SUB_RNEG;;
let INT_SUB_RZERO = INT_OF_REAL_THM REAL_SUB_RZERO;;
let INT_SUB_SUB = INT_OF_REAL_THM REAL_SUB_SUB;;
let INT_SUB_SUB2 = INT_OF_REAL_THM REAL_SUB_SUB2;;
let INT_SUB_TRIANGLE = INT_OF_REAL_THM REAL_SUB_TRIANGLE;;
(* ------------------------------------------------------------------------- *)
(* More useful "image" theorems. *)
(* ------------------------------------------------------------------------- *)
let INT_FORALL_POS = prove
(`!P. (!n. P(&n)) <=> (!i:int. &0 <= i ==> P(i))`,
GEN_TAC THEN EQ_TAC THEN DISCH_TAC THEN GEN_TAC THENL
[DISJ_CASES_THEN (CHOOSE_THEN SUBST1_TAC) (SPEC `i:int` INT_IMAGE) THEN
ASM_REWRITE_TAC[INT_LE_RNEG; INT_ADD_LID; INT_OF_NUM_LE; LE] THEN
DISCH_THEN SUBST1_TAC THEN ASM_REWRITE_TAC[INT_NEG_0];
FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[INT_OF_NUM_LE; LE_0]]);;
let INT_EXISTS_POS = prove
(`!P. (?n. P(&n)) <=> (?i:int. &0 <= i /\ P(i))`,
GEN_TAC THEN GEN_REWRITE_TAC I [TAUT `(p <=> q) <=> (~p <=> ~q)`] THEN
REWRITE_TAC[NOT_EXISTS_THM; INT_FORALL_POS] THEN MESON_TAC[]);;
let INT_FORALL_ABS = prove
(`!P. (!n. P(&n)) <=> (!x:int. P(abs x))`,
REWRITE_TAC[INT_FORALL_POS] THEN MESON_TAC[INT_ABS_POS; INT_ABS_REFL]);;
let INT_EXISTS_ABS = prove
(`!P. (?n. P(&n)) <=> (?x:int. P(abs x))`,
GEN_TAC THEN GEN_REWRITE_TAC I [TAUT `(p <=> q) <=> (~p <=> ~q)`] THEN
REWRITE_TAC[NOT_EXISTS_THM; INT_FORALL_ABS] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Sometimes handy in number-theoretic applications. *)
(* ------------------------------------------------------------------------- *)
let INT_ABS_MUL_1 = prove
(`!x y. (abs(x * y) = &1) <=> (abs(x) = &1) /\ (abs(y) = &1)`,
REPEAT GEN_TAC THEN REWRITE_TAC[INT_ABS_MUL] THEN
MP_TAC(SPEC `y:int` INT_ABS_POS) THEN SPEC_TAC(`abs(y)`,`b:int`) THEN
MP_TAC(SPEC `x:int` INT_ABS_POS) THEN SPEC_TAC(`abs(x)`,`a:int`) THEN
REWRITE_TAC[GSYM INT_FORALL_POS; INT_OF_NUM_MUL; INT_OF_NUM_EQ; MULT_EQ_1]);;
let INT_WOP = prove
(`(?x. &0 <= x /\ P x) <=>
(?x. &0 <= x /\ P x /\ !y. &0 <= y /\ P y ==> x <= y)`,
ONCE_REWRITE_TAC[MESON[] `(?x. P x /\ Q x) <=> ~(!x. P x ==> ~Q x)`] THEN
REWRITE_TAC[IMP_CONJ; GSYM INT_FORALL_POS; INT_OF_NUM_LE] THEN
REWRITE_TAC[NOT_FORALL_THM] THEN GEN_REWRITE_TAC LAND_CONV [num_WOP] THEN
REWRITE_TAC[GSYM NOT_LE; CONTRAPOS_THM]);;
(* ------------------------------------------------------------------------- *)
(* A few "pseudo definitions". *)
(* ------------------------------------------------------------------------- *)
let INT_POW = prove
(`(x pow 0 = &1) /\
(!n. x pow (SUC n) = x * x pow n)`,
REWRITE_TAC(map INT_OF_REAL_THM (CONJUNCTS real_pow)));;
let INT_ABS = prove
(`!x. abs(x) = if &0 <= x then x else --x`,
GEN_TAC THEN MP_TAC(INT_OF_REAL_THM(SPEC `x:real` real_abs)) THEN
COND_CASES_TAC THEN REWRITE_TAC[int_eq]);;
let INT_GE = prove
(`!x y. x >= y <=> y <= x`,
REWRITE_TAC[int_ge; int_le; real_ge]);;
let INT_GT = prove
(`!x y. x > y <=> y < x`,
REWRITE_TAC[int_gt; int_lt; real_gt]);;
let INT_LT = prove
(`!x y. x < y <=> ~(y <= x)`,
REWRITE_TAC[int_lt; int_le; real_lt]);;
(* ------------------------------------------------------------------------- *)
(* Now a decision procedure for the integers. *)
(* ------------------------------------------------------------------------- *)
let INT_ARITH =
let atom_CONV =
let pth = prove
(`(~(x <= y) <=> y + &1 <= x) /\
(~(x < y) <=> y <= x) /\
(~(x = y) <=> x + &1 <= y \/ y + &1 <= x) /\
(x < y <=> x + &1 <= y)`,
REWRITE_TAC[INT_NOT_LE; INT_NOT_LT; INT_NOT_EQ; INT_LT_DISCRETE]) in
GEN_REWRITE_CONV I [pth]
and bub_CONV = GEN_REWRITE_CONV TOP_SWEEP_CONV
[int_eq; int_le; int_lt; int_ge; int_gt;
int_of_num_th; int_neg_th; int_add_th; int_mul_th;
int_sub_th; int_pow_th; int_abs_th; int_max_th; int_min_th] in
let base_CONV = TRY_CONV atom_CONV THENC bub_CONV in
let NNF_NORM_CONV = GEN_NNF_CONV false
(base_CONV,fun t -> base_CONV t,base_CONV(mk_neg t)) in
let init_CONV =
TOP_DEPTH_CONV BETA_CONV THENC
PRESIMP_CONV THENC
GEN_REWRITE_CONV DEPTH_CONV [INT_GT; INT_GE] THENC
NNF_CONV THENC DEPTH_BINOP_CONV `(\/)` CONDS_ELIM_CONV THENC
NNF_NORM_CONV in
let p_tm = `p:bool`
and not_tm = `(~)` in
let pth = TAUT(mk_eq(mk_neg(mk_neg p_tm),p_tm)) in
fun tm ->
let th0 = INST [tm,p_tm] pth
and th1 = init_CONV (mk_neg tm) in
let th2 = REAL_ARITH(mk_neg(rand(concl th1))) in
EQ_MP th0 (EQ_MP (AP_TERM not_tm (SYM th1)) th2);;
let INT_ARITH_TAC = CONV_TAC(EQT_INTRO o INT_ARITH);;
let ASM_INT_ARITH_TAC =
REPEAT(FIRST_X_ASSUM(MP_TAC o check (not o is_forall o concl))) THEN
INT_ARITH_TAC;;
(* ------------------------------------------------------------------------- *)
(* Some pseudo-definitions. *)
(* ------------------------------------------------------------------------- *)
let INT_SUB = INT_ARITH `!x y. x - y = x + --y`;;
let INT_MAX = INT_ARITH `!x y. max x y = if x <= y then y else x`;;
let INT_MIN = INT_ARITH `!x y. min x y = if x <= y then x else y`;;
(* ------------------------------------------------------------------------- *)
(* Another useful lemma. *)
(* ------------------------------------------------------------------------- *)
let INT_OF_NUM_EXISTS = prove
(`!x:int. (?n. x = &n) <=> &0 <= x`,
GEN_TAC THEN EQ_TAC THEN STRIP_TAC THEN ASM_SIMP_TAC[INT_POS] THEN
MP_TAC(ISPEC `x:int` INT_IMAGE) THEN
REWRITE_TAC[OR_EXISTS_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN
ASM_INT_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Archimedian property for the integers. *)
(* ------------------------------------------------------------------------- *)
let INT_ARCH = prove
(`!x d. ~(d = &0) ==> ?c. x < c * d`,
SUBGOAL_THEN `!x. &0 <= x ==> ?n. x <= &n` ASSUME_TAC THENL
[REWRITE_TAC[GSYM INT_FORALL_POS; INT_OF_NUM_LE] THEN MESON_TAC[LE_REFL];
ALL_TAC] THEN
SUBGOAL_THEN `!x. ?n. x <= &n` ASSUME_TAC THENL
[ASM_MESON_TAC[INT_LE_TOTAL]; ALL_TAC] THEN
SUBGOAL_THEN `!x d. &0 < d ==> ?c. x < c * d` ASSUME_TAC THENL
[REPEAT GEN_TAC THEN REWRITE_TAC[INT_LT_DISCRETE; INT_ADD_LID] THEN
ASM_MESON_TAC[INT_POS; INT_LE_LMUL; INT_ARITH
`x + &1 <= &n /\ &n * &1 <= &n * d ==> x + &1 <= &n * d`];
ALL_TAC] THEN
SUBGOAL_THEN `!x d. ~(d = &0) ==> ?c. x < c * d` ASSUME_TAC THENL
[ASM_MESON_TAC[INT_ARITH `--x * y = x * --y`;
INT_ARITH `~(d = &0) ==> &0 < d \/ &0 < --d`];
ALL_TAC] THEN
ASM_MESON_TAC[INT_ARITH `--x * y = x * --y`;
INT_ARITH `~(d = &0) ==> &0 < d \/ &0 < --d`]);;
(* ------------------------------------------------------------------------- *)
(* Definitions of ("Euclidean") integer division and remainder. *)
(* ------------------------------------------------------------------------- *)
let INT_DIVMOD_EXIST_0 = prove
(`!m n:int. ?q r. if n = &0 then q = &0 /\ r = m
else &0 <= r /\ r < abs(n) /\ m = q * n + r`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `n = &0` THEN
ASM_REWRITE_TAC[RIGHT_EXISTS_AND_THM; EXISTS_REFL] THEN
GEN_REWRITE_TAC I [SWAP_EXISTS_THM] THEN
SUBGOAL_THEN `?r. &0 <= r /\ ?q:int. m = n * q + r` MP_TAC THENL
[FIRST_ASSUM(MP_TAC o SPEC `--m:int` o MATCH_MP INT_ARCH) THEN
DISCH_THEN(X_CHOOSE_TAC `s:int`) THEN
EXISTS_TAC `m + s * n:int` THEN CONJ_TAC THENL
[ASM_INT_ARITH_TAC; EXISTS_TAC `--s:int` THEN INT_ARITH_TAC];
GEN_REWRITE_TAC LAND_CONV [INT_WOP] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `r:int` THEN
REWRITE_TAC[LEFT_AND_EXISTS_THM; RIGHT_AND_EXISTS_THM] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `q:int` THEN STRIP_TAC THEN
ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o SPEC `r - abs n`) THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
DISCH_THEN(MP_TAC o SPEC `if &0 <= n then q + &1 else q - &1`) THEN
ASM_INT_ARITH_TAC]);;
parse_as_infix("div",(22,"left"));;
parse_as_infix("rem",(22,"left"));;
let INT_DIVISION_0 = new_specification ["div"; "rem"]
(REWRITE_RULE[SKOLEM_THM] INT_DIVMOD_EXIST_0);;
let INT_DIVISION = prove
(`!m n. ~(n = &0)
==> m = m div n * n + m rem n /\ &0 <= m rem n /\ m rem n < abs n`,
MESON_TAC[INT_DIVISION_0]);;
(* ------------------------------------------------------------------------- *)
(* Arithmetic operations on integers. Essentially a clone of stuff for reals *)
(* in the file "calc_int.ml", except for div and rem, which are more like N. *)
(* ------------------------------------------------------------------------- *)
let INT_LE_CONV,INT_LT_CONV,INT_GE_CONV,INT_GT_CONV,INT_EQ_CONV =
let tth =
TAUT `(F /\ F <=> F) /\ (F /\ T <=> F) /\
(T /\ F <=> F) /\ (T /\ T <=> T)` in
let nth = TAUT `(~T <=> F) /\ (~F <=> T)` in
let NUM2_EQ_CONV = BINOP_CONV NUM_EQ_CONV THENC GEN_REWRITE_CONV I [tth] in
let NUM2_NE_CONV =
RAND_CONV NUM2_EQ_CONV THENC
GEN_REWRITE_CONV I [nth] in
let [pth_le1; pth_le2a; pth_le2b; pth_le3] = (CONJUNCTS o prove)
(`(--(&m) <= &n <=> T) /\
(&m <= &n <=> m <= n) /\
(--(&m) <= --(&n) <=> n <= m) /\
(&m <= --(&n) <=> (m = 0) /\ (n = 0))`,
REWRITE_TAC[INT_LE_NEG2] THEN
REWRITE_TAC[INT_LE_LNEG; INT_LE_RNEG] THEN
REWRITE_TAC[INT_OF_NUM_ADD; INT_OF_NUM_LE; LE_0] THEN
REWRITE_TAC[LE; ADD_EQ_0]) in
let INT_LE_CONV = FIRST_CONV
[GEN_REWRITE_CONV I [pth_le1];
GEN_REWRITE_CONV I [pth_le2a; pth_le2b] THENC NUM_LE_CONV;
GEN_REWRITE_CONV I [pth_le3] THENC NUM2_EQ_CONV] in
let [pth_lt1; pth_lt2a; pth_lt2b; pth_lt3] = (CONJUNCTS o prove)
(`(&m < --(&n) <=> F) /\
(&m < &n <=> m < n) /\
(--(&m) < --(&n) <=> n < m) /\
(--(&m) < &n <=> ~((m = 0) /\ (n = 0)))`,
REWRITE_TAC[pth_le1; pth_le2a; pth_le2b; pth_le3;
GSYM NOT_LE; INT_LT] THEN
CONV_TAC TAUT) in
let INT_LT_CONV = FIRST_CONV
[GEN_REWRITE_CONV I [pth_lt1];
GEN_REWRITE_CONV I [pth_lt2a; pth_lt2b] THENC NUM_LT_CONV;
GEN_REWRITE_CONV I [pth_lt3] THENC NUM2_NE_CONV] in
let [pth_ge1; pth_ge2a; pth_ge2b; pth_ge3] = (CONJUNCTS o prove)
(`(&m >= --(&n) <=> T) /\
(&m >= &n <=> n <= m) /\
(--(&m) >= --(&n) <=> m <= n) /\
(--(&m) >= &n <=> (m = 0) /\ (n = 0))`,
REWRITE_TAC[pth_le1; pth_le2a; pth_le2b; pth_le3; INT_GE] THEN
CONV_TAC TAUT) in
let INT_GE_CONV = FIRST_CONV
[GEN_REWRITE_CONV I [pth_ge1];
GEN_REWRITE_CONV I [pth_ge2a; pth_ge2b] THENC NUM_LE_CONV;
GEN_REWRITE_CONV I [pth_ge3] THENC NUM2_EQ_CONV] in
let [pth_gt1; pth_gt2a; pth_gt2b; pth_gt3] = (CONJUNCTS o prove)
(`(--(&m) > &n <=> F) /\
(&m > &n <=> n < m) /\
(--(&m) > --(&n) <=> m < n) /\
(&m > --(&n) <=> ~((m = 0) /\ (n = 0)))`,
REWRITE_TAC[pth_lt1; pth_lt2a; pth_lt2b; pth_lt3; INT_GT] THEN
CONV_TAC TAUT) in
let INT_GT_CONV = FIRST_CONV
[GEN_REWRITE_CONV I [pth_gt1];
GEN_REWRITE_CONV I [pth_gt2a; pth_gt2b] THENC NUM_LT_CONV;
GEN_REWRITE_CONV I [pth_gt3] THENC NUM2_NE_CONV] in
let [pth_eq1a; pth_eq1b; pth_eq2a; pth_eq2b] = (CONJUNCTS o prove)
(`((&m = &n) <=> (m = n)) /\
((--(&m) = --(&n)) <=> (m = n)) /\
((--(&m) = &n) <=> (m = 0) /\ (n = 0)) /\
((&m = --(&n)) <=> (m = 0) /\ (n = 0))`,
REWRITE_TAC[GSYM INT_LE_ANTISYM; GSYM LE_ANTISYM] THEN
REWRITE_TAC[pth_le1; pth_le2a; pth_le2b; pth_le3; LE; LE_0] THEN
CONV_TAC TAUT) in
let INT_EQ_CONV = FIRST_CONV
[GEN_REWRITE_CONV I [pth_eq1a; pth_eq1b] THENC NUM_EQ_CONV;
GEN_REWRITE_CONV I [pth_eq2a; pth_eq2b] THENC NUM2_EQ_CONV] in
INT_LE_CONV,INT_LT_CONV,
INT_GE_CONV,INT_GT_CONV,INT_EQ_CONV;;
let INT_NEG_CONV =
let pth = prove
(`(--(&0) = &0) /\
(--(--(&x)) = &x)`,
REWRITE_TAC[INT_NEG_NEG; INT_NEG_0]) in
GEN_REWRITE_CONV I [pth];;
let INT_MUL_CONV =
let pth0 = prove
(`(&0 * &x = &0) /\
(&0 * --(&x) = &0) /\
(&x * &0 = &0) /\
(--(&x) * &0 = &0)`,
REWRITE_TAC[INT_MUL_LZERO; INT_MUL_RZERO])
and pth1,pth2 = (CONJ_PAIR o prove)
(`((&m * &n = &(m * n)) /\
(--(&m) * --(&n) = &(m * n))) /\
((--(&m) * &n = --(&(m * n))) /\
(&m * --(&n) = --(&(m * n))))`,
REWRITE_TAC[INT_MUL_LNEG; INT_MUL_RNEG; INT_NEG_NEG] THEN
REWRITE_TAC[INT_OF_NUM_MUL]) in
FIRST_CONV
[GEN_REWRITE_CONV I [pth0];
GEN_REWRITE_CONV I [pth1] THENC RAND_CONV NUM_MULT_CONV;
GEN_REWRITE_CONV I [pth2] THENC RAND_CONV(RAND_CONV NUM_MULT_CONV)];;
let INT_ADD_CONV =
let neg_tm = `(--)` in
let amp_tm = `&` in
let add_tm = `(+)` in
let dest = dest_binop `(+)` in
let m_tm = `m:num` and n_tm = `n:num` in
let pth0 = prove
(`(--(&m) + &m = &0) /\
(&m + --(&m) = &0)`,
REWRITE_TAC[INT_ADD_LINV; INT_ADD_RINV]) in
let [pth1; pth2; pth3; pth4; pth5; pth6] = (CONJUNCTS o prove)
(`(--(&m) + --(&n) = --(&(m + n))) /\
(--(&m) + &(m + n) = &n) /\
(--(&(m + n)) + &m = --(&n)) /\
(&(m + n) + --(&m) = &n) /\
(&m + --(&(m + n)) = --(&n)) /\
(&m + &n = &(m + n))`,
REWRITE_TAC[GSYM INT_OF_NUM_ADD; INT_NEG_ADD] THEN
REWRITE_TAC[INT_ADD_ASSOC; INT_ADD_LINV; INT_ADD_LID] THEN
REWRITE_TAC[INT_ADD_RINV; INT_ADD_LID] THEN
ONCE_REWRITE_TAC[INT_ADD_SYM] THEN
REWRITE_TAC[INT_ADD_ASSOC; INT_ADD_LINV; INT_ADD_LID] THEN
REWRITE_TAC[INT_ADD_RINV; INT_ADD_LID]) in
GEN_REWRITE_CONV I [pth0] ORELSEC
(fun tm ->
try let l,r = dest tm in
if rator l = neg_tm then
if rator r = neg_tm then
let th1 = INST [rand(rand l),m_tm; rand(rand r),n_tm] pth1 in
let tm1 = rand(rand(rand(concl th1))) in
let th2 = AP_TERM neg_tm (AP_TERM amp_tm (NUM_ADD_CONV tm1)) in
TRANS th1 th2
else
let m = rand(rand l) and n = rand r in
let m' = dest_numeral m and n' = dest_numeral n in
if m' <=/ n' then
let p = mk_numeral (n' -/ m') in
let th1 = INST [m,m_tm; p,n_tm] pth2 in
let th2 = NUM_ADD_CONV (rand(rand(lhand(concl th1)))) in
let th3 = AP_TERM (rator tm) (AP_TERM amp_tm (SYM th2)) in
TRANS th3 th1
else
let p = mk_numeral (m' -/ n') in
let th1 = INST [n,m_tm; p,n_tm] pth3 in
let th2 = NUM_ADD_CONV (rand(rand(lhand(lhand(concl th1))))) in
let th3 = AP_TERM neg_tm (AP_TERM amp_tm (SYM th2)) in
let th4 = AP_THM (AP_TERM add_tm th3) (rand tm) in
TRANS th4 th1
else
if rator r = neg_tm then
let m = rand l and n = rand(rand r) in
let m' = dest_numeral m and n' = dest_numeral n in
if n' <=/ m' then
let p = mk_numeral (m' -/ n') in
let th1 = INST [n,m_tm; p,n_tm] pth4 in
let th2 = NUM_ADD_CONV (rand(lhand(lhand(concl th1)))) in
let th3 = AP_TERM add_tm (AP_TERM amp_tm (SYM th2)) in
let th4 = AP_THM th3 (rand tm) in
TRANS th4 th1
else
let p = mk_numeral (n' -/ m') in
let th1 = INST [m,m_tm; p,n_tm] pth5 in
let th2 = NUM_ADD_CONV (rand(rand(rand(lhand(concl th1))))) in
let th3 = AP_TERM neg_tm (AP_TERM amp_tm (SYM th2)) in
let th4 = AP_TERM (rator tm) th3 in
TRANS th4 th1
else
let th1 = INST [rand l,m_tm; rand r,n_tm] pth6 in
let tm1 = rand(rand(concl th1)) in
let th2 = AP_TERM amp_tm (NUM_ADD_CONV tm1) in
TRANS th1 th2
with Failure _ -> failwith "INT_ADD_CONV");;
let INT_SUB_CONV =
GEN_REWRITE_CONV I [INT_SUB] THENC
TRY_CONV(RAND_CONV INT_NEG_CONV) THENC
INT_ADD_CONV;;
let INT_POW_CONV =
let pth1,pth2 = (CONJ_PAIR o prove)
(`(&x pow n = &(x EXP n)) /\
((--(&x)) pow n = if EVEN n then &(x EXP n) else --(&(x EXP n)))`,
REWRITE_TAC[INT_OF_NUM_POW; INT_POW_NEG]) in
let tth = prove
(`((if T then x:int else y) = x) /\ ((if F then x:int else y) = y)`,
REWRITE_TAC[]) in
let neg_tm = `(--)` in
(GEN_REWRITE_CONV I [pth1] THENC RAND_CONV NUM_EXP_CONV) ORELSEC
(GEN_REWRITE_CONV I [pth2] THENC
RATOR_CONV(RATOR_CONV(RAND_CONV NUM_EVEN_CONV)) THENC
GEN_REWRITE_CONV I [tth] THENC
(fun tm -> if rator tm = neg_tm then RAND_CONV(RAND_CONV NUM_EXP_CONV) tm
else RAND_CONV NUM_EXP_CONV tm));;
let INT_ABS_CONV =
let pth = prove
(`(abs(--(&x)) = &x) /\
(abs(&x) = &x)`,
REWRITE_TAC[INT_ABS_NEG; INT_ABS_NUM]) in
GEN_REWRITE_CONV I [pth];;
let INT_MAX_CONV =
REWR_CONV INT_MAX THENC
RATOR_CONV(RATOR_CONV(RAND_CONV INT_LE_CONV)) THENC
GEN_REWRITE_CONV I [COND_CLAUSES];;
let INT_MIN_CONV =
REWR_CONV INT_MIN THENC
RATOR_CONV(RATOR_CONV(RAND_CONV INT_LE_CONV)) THENC
GEN_REWRITE_CONV I [COND_CLAUSES];;
(* ------------------------------------------------------------------------- *)
(* Instantiate the normalizer. *)
(* ------------------------------------------------------------------------- *)
let INT_POLY_CONV =
let sth = prove
(`(!x y z. x + (y + z) = (x + y) + z) /\
(!x y. x + y = y + x) /\
(!x. &0 + x = x) /\
(!x y z. x * (y * z) = (x * y) * z) /\
(!x y. x * y = y * x) /\
(!x. &1 * x = x) /\
(!x. &0 * x = &0) /\
(!x y z. x * (y + z) = x * y + x * z) /\
(!x. x pow 0 = &1) /\
(!x n. x pow (SUC n) = x * x pow n)`,
REWRITE_TAC[INT_POW] THEN INT_ARITH_TAC)
and rth = prove
(`(!x. --x = --(&1) * x) /\
(!x y. x - y = x + --(&1) * y)`,
INT_ARITH_TAC)
and is_semiring_constant = is_intconst
and SEMIRING_ADD_CONV = INT_ADD_CONV
and SEMIRING_MUL_CONV = INT_MUL_CONV
and SEMIRING_POW_CONV = INT_POW_CONV in
let _,_,_,_,_,INT_POLY_CONV =
SEMIRING_NORMALIZERS_CONV sth rth
(is_semiring_constant,
SEMIRING_ADD_CONV,SEMIRING_MUL_CONV,SEMIRING_POW_CONV)
(<) in
INT_POLY_CONV;;
(* ------------------------------------------------------------------------- *)
(* Instantiate the ring and ideal procedures. *)
(* ------------------------------------------------------------------------- *)
let INT_RING,int_ideal_cofactors =
let INT_INTEGRAL = prove
(`(!x. &0 * x = &0) /\
(!x y z. (x + y = x + z) <=> (y = z)) /\
(!w x y z. (w * y + x * z = w * z + x * y) <=> (w = x) \/ (y = z))`,
REWRITE_TAC[MULT_CLAUSES; EQ_ADD_LCANCEL] THEN
REWRITE_TAC[GSYM INT_OF_NUM_EQ;
GSYM INT_OF_NUM_ADD; GSYM INT_OF_NUM_MUL] THEN
ONCE_REWRITE_TAC[GSYM INT_SUB_0] THEN
REWRITE_TAC[GSYM INT_ENTIRE] THEN INT_ARITH_TAC)
and int_ty = `:int` in
let pure,ideal =
RING_AND_IDEAL_CONV
(dest_intconst,mk_intconst,INT_EQ_CONV,
`(--):int->int`,`(+):int->int->int`,`(-):int->int->int`,
genvar bool_ty,`(*):int->int->int`,genvar bool_ty,
`(pow):int->num->int`,
INT_INTEGRAL,TRUTH,INT_POLY_CONV) in
pure,
(fun tms tm -> if forall (fun t -> type_of t = int_ty) (tm::tms)
then ideal tms tm
else failwith
"int_ideal_cofactors: not all terms have type :int");;
(* ------------------------------------------------------------------------- *)
(* Arithmetic operations also on div and rem, hence the whole lot. *)
(* ------------------------------------------------------------------------- *)
let INT_DIVMOD_UNIQ = prove
(`!m n q r:int. m = q * n + r /\ &0 <= r /\ r < abs n
==> m div n = q /\ m rem n = r`,
REPEAT GEN_TAC THEN STRIP_TAC THEN
SUBGOAL_THEN `~(n = &0)` MP_TAC THENL [ASM_INT_ARITH_TAC; ALL_TAC] THEN
DISCH_THEN(STRIP_ASSUME_TAC o SPEC `m:int` o MATCH_MP INT_DIVISION) THEN
ASM_CASES_TAC `m div n = q` THENL
[REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC INT_RING; ALL_TAC] THEN
SUBGOAL_THEN `abs(m rem n - r) < abs n` MP_TAC THENL
[ASM_INT_ARITH_TAC; MATCH_MP_TAC(TAUT `~p ==> p ==> q`)] THEN
MATCH_MP_TAC(INT_ARITH
`&1 * abs n <= abs(q - m div n) * abs n /\
abs(m rem n - r) = abs((q - m div n) * n)
==> ~(abs(m rem n - r) < abs n)`) THEN
CONJ_TAC THENL
[MATCH_MP_TAC INT_LE_RMUL THEN ASM_INT_ARITH_TAC;
AP_TERM_TAC THEN REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC INT_RING]);;
let INT_DIV_CONV,INT_REM_CONV =
let pth = prove
(`q * n + r = m ==> &0 <= r ==> r < abs n ==> m div n = q /\ m rem n = r`,
MESON_TAC[INT_DIVMOD_UNIQ])
and m = `m:int` and n = `n:int` and q = `q:int` and r = `r:int`
and dtm = `(div)` and mtm = `(rem)` in
let emod_num x y =
let r = mod_num x y in
if r </ Int 0 then r +/ abs_num y else r in
let equo_num x y = quo_num (x -/ emod_num x y) y in
let INT_DIVMOD_CONV x y =
let k = equo_num x y
and l = emod_num x y in
let th0 = INST [mk_intconst x,m; mk_intconst y,n;
mk_intconst k,q; mk_intconst l,r] pth in
let tm0 = lhand(lhand(concl th0)) in
let th1 = (LAND_CONV INT_MUL_CONV THENC INT_ADD_CONV) tm0 in
let th2 = MP th0 th1 in
let tm2 = lhand(concl th2) in
let th3 = MP th2 (EQT_ELIM(INT_LE_CONV tm2)) in
let tm3 = lhand(concl th3) in
MP th3 (EQT_ELIM((RAND_CONV INT_ABS_CONV THENC INT_LT_CONV) tm3)) in
(fun tm -> try let l,r = dest_binop dtm tm in
CONJUNCT1(INT_DIVMOD_CONV (dest_intconst l) (dest_intconst r))
with Failure _ -> failwith "INT_DIV_CONV"),
(fun tm -> try let l,r = dest_binop mtm tm in
CONJUNCT2(INT_DIVMOD_CONV (dest_intconst l) (dest_intconst r))
with Failure _ -> failwith "INT_MOD_CONV");;
let INT_RED_CONV =
let gconv_net = itlist (uncurry net_of_conv)
[`x <= y`,INT_LE_CONV;
`x < y`,INT_LT_CONV;
`x >= y`,INT_GE_CONV;
`x > y`,INT_GT_CONV;
`x:int = y`,INT_EQ_CONV;
`--x`,CHANGED_CONV INT_NEG_CONV;
`abs(x)`,INT_ABS_CONV;
`x + y`,INT_ADD_CONV;
`x - y`,INT_SUB_CONV;
`x * y`,INT_MUL_CONV;
`x div y`,INT_DIV_CONV;
`x rem y`,INT_REM_CONV;
`x pow n`,INT_POW_CONV;
`max x y`,INT_MAX_CONV;
`min x y`,INT_MIN_CONV]
(basic_net()) in
REWRITES_CONV gconv_net;;
let INT_REDUCE_CONV = DEPTH_CONV INT_RED_CONV;;
(* ------------------------------------------------------------------------- *)
(* Set up overloading so we can use same symbols for N, Z and even R. *)
(* ------------------------------------------------------------------------- *)
make_overloadable "divides" `:A->A->bool`;;
make_overloadable "mod" `:A->A->A->bool`;;
make_overloadable "coprime" `:A#A->bool`;;
make_overloadable "gcd" `:A#A->A`;;
(* ------------------------------------------------------------------------- *)
(* The general notion of congruence: just syntax for equivalence relation. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("==",(10,"right"));;
let cong = new_definition
`(x == y) (rel:A->A->bool) <=> rel x y`;;
(* ------------------------------------------------------------------------- *)
(* Get real moduli defined and out of the way first. *)
(* ------------------------------------------------------------------------- *)
let real_mod = new_definition
`real_mod n (x:real) y = ?q. integer q /\ x - y = q * n`;;
overload_interface ("mod",`real_mod`);;
(* ------------------------------------------------------------------------- *)
(* Integer divisibility. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("divides",(12,"right"));;
overload_interface("divides",`int_divides:int->int->bool`);;
let int_divides = new_definition
`a divides b <=> ?x. b = a * x`;;
(* ------------------------------------------------------------------------- *)
(* Integer congruences. *)
(* ------------------------------------------------------------------------- *)
parse_as_prefix "mod";;
overload_interface ("mod",`int_mod:int->int->int->bool`);;
let int_mod = new_definition
`(mod n) x y = n divides (x - y)`;;
let int_congruent = prove
(`!x y n. (x == y) (mod n) <=> ?d. x - y = n * d`,
REWRITE_TAC[int_mod; cong; int_divides]);;
(* ------------------------------------------------------------------------- *)
(* Integer coprimality. *)
(* ------------------------------------------------------------------------- *)
overload_interface("coprime",`int_coprime:int#int->bool`);;
let int_coprime = new_definition
`!a b. coprime(a,b) <=> ?x y. a * x + b * y = &1`;;
(* ------------------------------------------------------------------------- *)
(* A tactic for simple divisibility/congruence/coprimality goals. *)
(* ------------------------------------------------------------------------- *)
let INTEGER_TAC =
let int_ty = `:int` in
let INT_POLYEQ_CONV =
GEN_REWRITE_CONV I [GSYM INT_SUB_0] THENC LAND_CONV INT_POLY_CONV in
let ISOLATE_VARIABLE =
let pth = INT_ARITH `!a x. a = &0 <=> x = x + a` in
let is_defined v t =
let mons = striplist(dest_binary "int_add") t in
mem v mons & forall (fun m -> v = m or not(free_in v m)) mons in
fun vars tm ->
let th = INT_POLYEQ_CONV tm
and th' = (SYM_CONV THENC INT_POLYEQ_CONV) tm in
let v,th1 =
try find (fun v -> is_defined v (lhand(rand(concl th)))) vars,th'
with Failure _ ->
find (fun v -> is_defined v (lhand(rand(concl th')))) vars,th in
let th2 = TRANS th1 (SPECL [lhs(rand(concl th1)); v] pth) in
CONV_RULE(RAND_CONV(RAND_CONV INT_POLY_CONV)) th2 in
let UNWIND_POLYS_CONV tm =
let vars,bod = strip_exists tm in
let cjs = conjuncts bod in
let th1 = tryfind (ISOLATE_VARIABLE vars) cjs in
let eq = lhand(concl th1) in
let bod' = list_mk_conj(eq::(subtract cjs [eq])) in
let th2 = CONJ_ACI_RULE(mk_eq(bod,bod')) in
let th3 = TRANS th2 (MK_CONJ th1 (REFL(rand(rand(concl th2))))) in
let v = lhs(lhand(rand(concl th3))) in
let vars' = (subtract vars [v]) @ [v] in
let th4 = CONV_RULE(RAND_CONV(REWR_CONV UNWIND_THM2)) (MK_EXISTS v th3) in
let IMP_RULE v v' =
DISCH_ALL(itlist SIMPLE_CHOOSE v (itlist SIMPLE_EXISTS v' (ASSUME bod))) in
let th5 = IMP_ANTISYM_RULE (IMP_RULE vars vars') (IMP_RULE vars' vars) in
TRANS th5 (itlist MK_EXISTS (subtract vars [v]) th4) in
let zero_tm = `&0` and one_tm = `&1` in
let isolate_monomials =
let mul_tm = `(int_mul)` and add_tm = `(int_add)`
and neg_tm = `(int_neg)` in
let dest_mul = dest_binop mul_tm
and dest_add = dest_binop add_tm
and mk_mul = mk_binop mul_tm
and mk_add = mk_binop add_tm in
let scrub_var v m =
let ps = striplist dest_mul m in
let ps' = subtract ps [v] in
if ps' = [] then one_tm else end_itlist mk_mul ps' in
let find_multipliers v mons =
let mons1 = filter (fun m -> free_in v m) mons in
let mons2 = map (scrub_var v) mons1 in
if mons2 = [] then zero_tm else end_itlist mk_add mons2 in
fun vars tm ->
let cmons,vmons =
partition (fun m -> intersect (frees m) vars = [])
(striplist dest_add tm) in
let cofactors = map (fun v -> find_multipliers v vmons) vars
and cnc = if cmons = [] then zero_tm
else mk_comb(neg_tm,end_itlist mk_add cmons) in
cofactors,cnc in
let isolate_variables evs ps eq =
let vars = filter (fun v -> vfree_in v eq) evs in
let qs,p = isolate_monomials vars eq in
let rs = filter (fun t -> type_of t = int_ty) (qs @ ps) in
let rs = int_ideal_cofactors rs p in
eq,zip (fst(chop_list(length qs) rs)) vars in
let subst_in_poly i p = rhs(concl(INT_POLY_CONV (vsubst i p))) in
let rec solve_idealism evs ps eqs =
if evs = [] then [] else
let eq,cfs = tryfind (isolate_variables evs ps) eqs in
let evs' = subtract evs (map snd cfs)
and eqs' = map (subst_in_poly cfs) (subtract eqs [eq]) in
cfs @ solve_idealism evs' ps eqs' in
let rec GENVAR_EXISTS_CONV tm =
if not(is_exists tm) then REFL tm else
let ev,bod = dest_exists tm in
let gv = genvar(type_of ev) in
(GEN_ALPHA_CONV gv THENC BINDER_CONV GENVAR_EXISTS_CONV) tm in
let EXISTS_POLY_TAC (asl,w as gl) =
let evs,bod = strip_exists w
and ps = mapfilter (check (fun t -> type_of t = int_ty) o
lhs o concl o snd) asl in
let cfs = solve_idealism evs ps (map lhs (conjuncts bod)) in
(MAP_EVERY EXISTS_TAC(map (fun v -> rev_assocd v cfs zero_tm) evs) THEN
REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC INT_RING) gl in
let SCRUB_NEQ_TAC = MATCH_MP_TAC o MATCH_MP (MESON[]
`~(x = y) ==> x = y \/ p ==> p`) in
REWRITE_TAC[int_coprime; int_congruent; int_divides] THEN
REPEAT(STRIP_TAC ORELSE EQ_TAC) THEN
REWRITE_TAC[LEFT_AND_EXISTS_THM; RIGHT_AND_EXISTS_THM;
LEFT_OR_EXISTS_THM; RIGHT_OR_EXISTS_THM] THEN
CONV_TAC(REPEATC UNWIND_POLYS_CONV) THEN
REPEAT(FIRST_X_ASSUM SCRUB_NEQ_TAC) THEN
REWRITE_TAC[LEFT_AND_EXISTS_THM; RIGHT_AND_EXISTS_THM;
LEFT_OR_EXISTS_THM; RIGHT_OR_EXISTS_THM] THEN
REPEAT(FIRST_X_ASSUM(MP_TAC o SYM)) THEN
CONV_TAC(ONCE_DEPTH_CONV INT_POLYEQ_CONV) THEN
REWRITE_TAC[GSYM INT_ENTIRE;
TAUT `a \/ (b /\ c) <=> (a \/ b) /\ (a \/ c)`] THEN
POP_ASSUM_LIST(K ALL_TAC) THEN
REPEAT DISCH_TAC THEN CONV_TAC GENVAR_EXISTS_CONV THEN
CONV_TAC(ONCE_DEPTH_CONV INT_POLYEQ_CONV) THEN EXISTS_POLY_TAC;;
let INTEGER_RULE tm = prove(tm,INTEGER_TAC);;
(* ------------------------------------------------------------------------- *)
(* Existence of integer gcd, and the Bezout identity. *)
(* ------------------------------------------------------------------------- *)
let WF_INT_MEASURE = prove
(`!P m. (!x. &0 <= m(x)) /\ (!x. (!y. m(y) < m(x) ==> P(y)) ==> P(x))
==> !x:A. P(x)`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `!n x:A. m(x) = &n ==> P(x)` MP_TAC THENL
[MATCH_MP_TAC num_WF; ALL_TAC] THEN
REWRITE_TAC[GSYM INT_OF_NUM_LT; INT_FORALL_POS] THEN ASM_MESON_TAC[]);;
let WF_INT_MEASURE_2 = prove
(`!P m. (!x y. &0 <= m x y) /\
(!x y. (!x' y'. m x' y' < m x y ==> P x' y') ==> P x y)
==> !x:A y:B. P x y`,
REWRITE_TAC[FORALL_UNCURRY; GSYM FORALL_PAIR_THM; WF_INT_MEASURE]);;
let INT_GCD_EXISTS = prove
(`!a b. ?d. d divides a /\ d divides b /\ ?x y. d = a * x + b * y`,
let INT_GCD_EXISTS_CASES = INT_ARITH
`(a = &0 \/ b = &0) \/
abs(a - b) + abs b < abs a + abs b \/ abs(a + b) + abs b < abs a + abs b \/
abs a + abs(b - a) < abs a + abs b \/ abs a + abs(b + a) < abs a + abs b` in
MATCH_MP_TAC WF_INT_MEASURE_2 THEN EXISTS_TAC `\x y. abs(x) + abs(y)` THEN
REWRITE_TAC[] THEN REPEAT STRIP_TAC THENL [INT_ARITH_TAC; ALL_TAC] THEN
DISJ_CASES_THEN MP_TAC INT_GCD_EXISTS_CASES THENL
[STRIP_TAC THEN ASM_REWRITE_TAC[INTEGER_RULE `d divides &0`] THEN
REWRITE_TAC[INT_MUL_LZERO; INT_ADD_LID; INT_ADD_RID] THEN
MESON_TAC[INTEGER_RULE `d divides d`; INT_MUL_RID];
DISCH_THEN(REPEAT_TCL DISJ_CASES_THEN (ANTE_RES_THEN MP_TAC)) THEN
MATCH_MP_TAC MONO_EXISTS THEN INTEGER_TAC]);;
let INT_GCD_EXISTS_POS = prove
(`!a b. ?d. &0 <= d /\ d divides a /\ d divides b /\ ?x y. d = a * x + b * y`,
REPEAT GEN_TAC THEN
X_CHOOSE_TAC `d:int` (SPECL [`a:int`; `b:int`] INT_GCD_EXISTS) THEN
DISJ_CASES_TAC(SPEC `d:int` INT_LE_NEGTOTAL) THEN
ASM_MESON_TAC[INTEGER_RULE `(--d) divides x <=> d divides x`;
INT_ARITH `a * --x + b * --y = --(a * x + b * y)`]);;
(* ------------------------------------------------------------------------- *)
(* Hence define (positive) gcd function; add elimination to INTEGER_TAC. *)
(* ------------------------------------------------------------------------- *)
overload_interface("gcd",`int_gcd:int#int->int`);;
let int_gcd = new_specification ["int_gcd"]
(REWRITE_RULE[EXISTS_UNCURRY; SKOLEM_THM] INT_GCD_EXISTS_POS);;
let INTEGER_TAC =
let GCD_ELIM_TAC =
let gcd_tm = `gcd` in
let dest_gcd tm =
let l,r = dest_comb tm in
if l = gcd_tm then dest_pair r else failwith "dest_gcd" in
REPEAT GEN_TAC THEN
W(fun (asl,w) ->
let gts = find_terms (can dest_gcd) w in
let ths = map
(fun tm -> let a,b = dest_gcd tm in SPECL [a;b] int_gcd) gts in
MAP_EVERY MP_TAC ths THEN
MAP_EVERY SPEC_TAC (zip gts (map (genvar o type_of) gts))) in
REPEAT(GEN_TAC ORELSE CONJ_TAC) THEN GCD_ELIM_TAC THEN INTEGER_TAC;;
let INTEGER_RULE tm = prove(tm,INTEGER_TAC);;
(* ------------------------------------------------------------------------- *)
(* Mapping from nonnegative integers back to natural numbers. *)
(* ------------------------------------------------------------------------- *)
let num_of_int = new_definition
`num_of_int x = @n. &n = x`;;
let NUM_OF_INT_OF_NUM = prove
(`!n. num_of_int(&n) = n`,
REWRITE_TAC[num_of_int; INT_OF_NUM_EQ; SELECT_UNIQUE]);;
let INT_OF_NUM_OF_INT = prove
(`!x. &0 <= x ==> &(num_of_int x) = x`,
REWRITE_TAC[GSYM INT_FORALL_POS; num_of_int] THEN
GEN_TAC THEN CONV_TAC SELECT_CONV THEN MESON_TAC[]);;
let NUM_OF_INT = prove
(`!x. &0 <= x <=> (&(num_of_int x) = x)`,
MESON_TAC[INT_OF_NUM_OF_INT; INT_POS]);;
(* ------------------------------------------------------------------------- *)
(* Now define similar notions over the natural numbers. *)
(* ------------------------------------------------------------------------- *)
overload_interface("divides",`num_divides:num->num->bool`);;
overload_interface ("mod",`num_mod:num->num->num->bool`);;
overload_interface("coprime",`num_coprime:num#num->bool`);;
overload_interface("gcd",`num_gcd:num#num->num`);;
let num_divides = new_definition
`a divides b <=> &a divides &b`;;
let num_mod = new_definition
`(mod n) x y <=> (mod &n) (&x) (&y)`;;
let num_congruent = prove
(`!x y n. (x == y) (mod n) <=> (&x == &y) (mod &n)`,
REWRITE_TAC[cong; num_mod]);;
let num_coprime = new_definition
`coprime(a,b) <=> coprime(&a,&b)`;;
let num_gcd = new_definition
`gcd(a,b) = num_of_int(gcd(&a,&b))`;;
(* ------------------------------------------------------------------------- *)
(* Map an assertion over N to an integer equivalent. *)
(* To make this work nicely, all variables of type num should be quantified. *)
(* ------------------------------------------------------------------------- *)
let NUM_TO_INT_CONV =
let pth_relativize = prove
(`((!n. P(&n)) <=> (!i. ~(&0 <= i) \/ P i)) /\
((?n. P(&n)) <=> (?i. &0 <= i /\ P i))`,
REWRITE_TAC[INT_EXISTS_POS; INT_FORALL_POS] THEN MESON_TAC[]) in
let relation_conv = (GEN_REWRITE_CONV TOP_SWEEP_CONV o map GSYM)
[INT_OF_NUM_EQ; INT_OF_NUM_LE; INT_OF_NUM_LT; INT_OF_NUM_GE; INT_OF_NUM_GT;
INT_OF_NUM_SUC; INT_OF_NUM_ADD; INT_OF_NUM_MUL; INT_OF_NUM_POW]
and quantifier_conv = GEN_REWRITE_CONV DEPTH_CONV [pth_relativize] in
NUM_SIMPLIFY_CONV THENC relation_conv THENC quantifier_conv;;
(* ------------------------------------------------------------------------- *)
(* Linear decision procedure for the naturals at last! *)
(* ------------------------------------------------------------------------- *)
let ARITH_RULE =
let init_conv =
NUM_SIMPLIFY_CONV THENC
GEN_REWRITE_CONV DEPTH_CONV [ADD1] THENC
PROP_ATOM_CONV (BINOP_CONV NUM_NORMALIZE_CONV) THENC
PRENEX_CONV THENC
(GEN_REWRITE_CONV TOP_SWEEP_CONV o map GSYM)
[INT_OF_NUM_EQ; INT_OF_NUM_LE; INT_OF_NUM_LT; INT_OF_NUM_GE;
INT_OF_NUM_GT; INT_OF_NUM_ADD; SPEC `NUMERAL k` INT_OF_NUM_MUL;
INT_OF_NUM_MAX; INT_OF_NUM_MIN]
and is_numimage t =
match t with
Comb(Const("int_of_num",_),n) when not(is_numeral n) -> true
| _ -> false in
fun tm ->
let th1 = init_conv tm in
let tm1 = rand(concl th1) in
let avs,bod = strip_forall tm1 in
let nim = setify(find_terms is_numimage bod) in
let gvs = map (genvar o type_of) nim in
let pths = map (fun v -> SPEC (rand v) INT_POS) nim in
let ibod = itlist (curry mk_imp o concl) pths bod in
let gbod = subst (zip gvs nim) ibod in
let th2 = INST (zip nim gvs) (INT_ARITH gbod) in
let th3 = GENL avs (rev_itlist (C MP) pths th2) in
EQ_MP (SYM th1) th3;;
let ARITH_TAC = CONV_TAC(EQT_INTRO o ARITH_RULE);;
let ASM_ARITH_TAC =
REPEAT(FIRST_X_ASSUM(MP_TAC o check (not o is_forall o concl))) THEN
ARITH_TAC;;
(* ------------------------------------------------------------------------- *)
(* Also a similar divisibility procedure for natural numbers. *)
(* ------------------------------------------------------------------------- *)
let NUM_GCD = prove
(`!a b. &(gcd(a,b)) = gcd(&a,&b)`,
REWRITE_TAC[num_gcd; GSYM NUM_OF_INT; int_gcd]);;
let NUMBER_TAC =
let pth_relativize = prove
(`((!n. P(&n)) <=> (!i. &0 <= i ==> P i)) /\
((?n. P(&n)) <=> (?i. &0 <= i /\ P i))`,
GEN_REWRITE_TAC RAND_CONV [TAUT `(a <=> b) <=> (~a <=> ~b)`] THEN
REWRITE_TAC[NOT_EXISTS_THM; INT_FORALL_POS] THEN MESON_TAC[]) in
let relation_conv =
GEN_REWRITE_CONV TOP_SWEEP_CONV
(num_divides::num_congruent::num_coprime::NUM_GCD::(map GSYM
[INT_OF_NUM_EQ; INT_OF_NUM_LE; INT_OF_NUM_LT; INT_OF_NUM_GE; INT_OF_NUM_GT;
INT_OF_NUM_SUC; INT_OF_NUM_ADD; INT_OF_NUM_MUL; INT_OF_NUM_POW]))
and quantifier_conv = GEN_REWRITE_CONV DEPTH_CONV [pth_relativize] in
W(fun (_,w) -> MAP_EVERY (fun v -> SPEC_TAC(v,v)) (frees w)) THEN
CONV_TAC(relation_conv THENC quantifier_conv) THEN
REWRITE_TAC[RIGHT_IMP_FORALL_THM] THEN REPEAT GEN_TAC THEN
INTEGER_TAC;;
let NUMBER_RULE tm = prove(tm,NUMBER_TAC);;
(* ------------------------------------------------------------------------- *)
(* Make sure we give priority to N. *)
(* ------------------------------------------------------------------------- *)
prioritize_num();;
|