File: int.ml

package info (click to toggle)
hol-light 20131026-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 26,264 kB
  • ctags: 4,620
  • sloc: ml: 400,325; cpp: 438; java: 279; lisp: 261; makefile: 256; sh: 190; yacc: 108; perl: 78; ansic: 57; sed: 39
file content (1423 lines) | stat: -rw-r--r-- 62,534 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
(* ========================================================================= *)
(* Theory of integers.                                                       *)
(*                                                                           *)
(* The integers are carved out of the real numbers; hence all the            *)
(* universal theorems can be derived trivially from the real analog.         *)
(*                                                                           *)
(*       John Harrison, University of Cambridge Computer Laboratory          *)
(*                                                                           *)
(*            (c) Copyright, University of Cambridge 1998                    *)
(*              (c) Copyright, John Harrison 1998-2007                       *)
(* ========================================================================= *)

needs "calc_rat.ml";;

(* ------------------------------------------------------------------------- *)
(* Representing predicate. The "is_int" variant is useful for backwards      *)
(* compatibility with former definition of "is_int" constant, now removed.   *)
(* ------------------------------------------------------------------------- *)

let integer = new_definition
  `integer(x) <=> ?n. abs(x) = &n`;;

let is_int = prove
 (`integer(x) <=> ?n. x = &n \/ x = -- &n`,
  REWRITE_TAC[integer] THEN AP_TERM_TAC THEN ABS_TAC THEN REAL_ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Type of integers.                                                         *)
(* ------------------------------------------------------------------------- *)

let int_tybij = new_type_definition "int" ("int_of_real","real_of_int")
 (prove(`?x. integer x`,
       EXISTS_TAC `&0` THEN
       REWRITE_TAC[is_int; REAL_OF_NUM_EQ; EXISTS_OR_THM; GSYM EXISTS_REFL]));;

let int_abstr,int_rep =
  SPEC_ALL(CONJUNCT1 int_tybij),SPEC_ALL(CONJUNCT2 int_tybij);;

let dest_int_rep = prove
 (`!i. ?n. (real_of_int i = &n) \/ (real_of_int i = --(&n))`,
  REWRITE_TAC[GSYM is_int; int_rep; int_abstr]);;

(* ------------------------------------------------------------------------- *)
(* We want the following too.                                                *)
(* ------------------------------------------------------------------------- *)

let int_eq = prove
 (`!x y. (x = y) <=> (real_of_int x = real_of_int y)`,
  REPEAT GEN_TAC THEN EQ_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN
  POP_ASSUM(MP_TAC o AP_TERM `int_of_real`) THEN
  REWRITE_TAC[int_abstr]);;

(* ------------------------------------------------------------------------- *)
(* Set up interface map.                                                     *)
(* ------------------------------------------------------------------------- *)

do_list overload_interface
 ["+",`int_add:int->int->int`; "-",`int_sub:int->int->int`;
  "*",`int_mul:int->int->int`; "<",`int_lt:int->int->bool`;
  "<=",`int_le:int->int->bool`; ">",`int_gt:int->int->bool`;
  ">=",`int_ge:int->int->bool`; "--",`int_neg:int->int`;
  "pow",`int_pow:int->num->int`; "abs",`int_abs:int->int`;
  "max",`int_max:int->int->int`; "min",`int_min:int->int->int`;
  "&",`int_of_num:num->int`];;

let prioritize_int() = prioritize_overload(mk_type("int",[]));;

(* ------------------------------------------------------------------------- *)
(* Definitions and closure derivations of all operations but "inv" and "/".  *)
(* ------------------------------------------------------------------------- *)

let int_le = new_definition
  `x <= y <=> (real_of_int x) <= (real_of_int y)`;;

let int_lt = new_definition
  `x < y <=> (real_of_int x) < (real_of_int y)`;;

let int_ge = new_definition
  `x >= y <=> (real_of_int x) >= (real_of_int y)`;;

let int_gt = new_definition
  `x > y <=> (real_of_int x) > (real_of_int y)`;;

let int_of_num = new_definition
  `&n = int_of_real(real_of_num n)`;;

let int_of_num_th = prove
 (`!n. real_of_int(int_of_num n) = real_of_num n`,
  REWRITE_TAC[int_of_num; GSYM int_rep; is_int] THEN
  REWRITE_TAC[REAL_OF_NUM_EQ; EXISTS_OR_THM; GSYM EXISTS_REFL]);;

let int_neg = new_definition
 `--i = int_of_real(--(real_of_int i))`;;

let int_neg_th = prove
 (`!x. real_of_int(int_neg x) = --(real_of_int x)`,
  REWRITE_TAC[int_neg; GSYM int_rep; is_int] THEN
  GEN_TAC THEN STRIP_ASSUME_TAC(SPEC `x:int` dest_int_rep) THEN
  ASM_REWRITE_TAC[REAL_NEG_NEG; EXISTS_OR_THM; REAL_EQ_NEG2;
    REAL_OF_NUM_EQ; GSYM EXISTS_REFL]);;

let int_add = new_definition
 `x + y = int_of_real((real_of_int x) + (real_of_int y))`;;

let int_add_th = prove
 (`!x y. real_of_int(x + y) = (real_of_int x) + (real_of_int y)`,
  REWRITE_TAC[int_add; GSYM int_rep; is_int] THEN REPEAT GEN_TAC THEN
  X_CHOOSE_THEN `m:num` DISJ_CASES_TAC (SPEC `x:int` dest_int_rep) THEN
  X_CHOOSE_THEN `n:num` DISJ_CASES_TAC (SPEC `y:int` dest_int_rep) THEN
  ASM_REWRITE_TAC[REAL_OF_NUM_ADD; REAL_OF_NUM_EQ; EXISTS_OR_THM] THEN
  REWRITE_TAC[GSYM EXISTS_REFL] THEN
  DISJ_CASES_THEN MP_TAC (SPECL [`m:num`; `n:num`] LE_CASES) THEN
  REWRITE_TAC[LE_EXISTS] THEN DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC) THEN
  REWRITE_TAC[GSYM REAL_OF_NUM_ADD; OR_EXISTS_THM; REAL_NEG_ADD] THEN
  TRY(EXISTS_TAC `d:num` THEN REAL_ARITH_TAC) THEN
  REWRITE_TAC[EXISTS_OR_THM; GSYM REAL_NEG_ADD; REAL_EQ_NEG2;
    REAL_OF_NUM_ADD; REAL_OF_NUM_EQ; GSYM EXISTS_REFL]);;

let int_sub = new_definition
  `x - y = int_of_real(real_of_int x - real_of_int y)`;;

let int_sub_th = prove
 (`!x y. real_of_int(x - y) = (real_of_int x) - (real_of_int y)`,
  REWRITE_TAC[int_sub; real_sub; GSYM int_neg_th; GSYM int_add_th] THEN
  REWRITE_TAC[int_abstr]);;

let int_mul = new_definition
  `x * y = int_of_real ((real_of_int x) * (real_of_int y))`;;

let int_mul_th = prove
 (`!x y. real_of_int(x * y) = (real_of_int x) * (real_of_int y)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[int_mul; GSYM int_rep; is_int] THEN
  X_CHOOSE_THEN `m:num` DISJ_CASES_TAC (SPEC `x:int` dest_int_rep) THEN
  X_CHOOSE_THEN `n:num` DISJ_CASES_TAC (SPEC `y:int` dest_int_rep) THEN
  ASM_REWRITE_TAC[REAL_OF_NUM_ADD; REAL_OF_NUM_EQ; EXISTS_OR_THM] THEN
  REWRITE_TAC[REAL_MUL_LNEG; REAL_MUL_RNEG; REAL_NEG_NEG; REAL_OF_NUM_MUL] THEN
  REWRITE_TAC[REAL_EQ_NEG2; REAL_OF_NUM_EQ; GSYM EXISTS_REFL]);;

let int_abs = new_definition
  `abs x = int_of_real(abs(real_of_int x))`;;

let int_abs_th = prove
 (`!x. real_of_int(abs x) = abs(real_of_int x)`,
  GEN_TAC THEN REWRITE_TAC[int_abs; real_abs] THEN COND_CASES_TAC THEN
  REWRITE_TAC[GSYM int_neg; int_neg_th; int_abstr]);;

let int_sgn = new_definition
  `int_sgn x = int_of_real(real_sgn(real_of_int x))`;;

let int_sgn_th = prove
 (`!x. real_of_int(int_sgn x) = real_sgn(real_of_int x)`,
  GEN_TAC THEN REWRITE_TAC[int_sgn; real_sgn; GSYM int_rep] THEN
  REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN
  MESON_TAC[is_int]);;

let int_max = new_definition
  `int_max x y = int_of_real(max (real_of_int x) (real_of_int y))`;;

let int_max_th = prove
 (`!x y. real_of_int(max x y) = max (real_of_int x) (real_of_int y)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[int_max; real_max] THEN
  COND_CASES_TAC THEN REWRITE_TAC[int_abstr]);;

let int_min = new_definition
  `int_min x y = int_of_real(min (real_of_int x) (real_of_int y))`;;

let int_min_th = prove
 (`!x y. real_of_int(min x y) = min (real_of_int x) (real_of_int y)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[int_min; real_min] THEN
  COND_CASES_TAC THEN REWRITE_TAC[int_abstr]);;

let int_pow = new_definition
  `x pow n = int_of_real((real_of_int x) pow n)`;;

let int_pow_th = prove
 (`!x n. real_of_int(x pow n) = (real_of_int x) pow n`,
  GEN_TAC THEN REWRITE_TAC[int_pow] THEN INDUCT_TAC THEN
  REWRITE_TAC[real_pow] THENL
   [REWRITE_TAC[GSYM int_of_num; int_of_num_th];
    POP_ASSUM(SUBST1_TAC o SYM) THEN
    ASM_REWRITE_TAC[GSYM int_mul; int_mul_th]]);;

(* ------------------------------------------------------------------------- *)
(* A couple of theorems peculiar to the integers.                            *)
(* ------------------------------------------------------------------------- *)

let INT_IMAGE = prove
 (`!x. (?n. x = &n) \/ (?n. x = --(&n))`,
  GEN_TAC THEN
  X_CHOOSE_THEN `n:num` DISJ_CASES_TAC (SPEC `x:int` dest_int_rep) THEN
  POP_ASSUM(MP_TAC o AP_TERM `int_of_real`) THEN REWRITE_TAC[int_abstr] THEN
  DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[int_of_num; int_neg] THENL
   [DISJ1_TAC; DISJ2_TAC] THEN
  EXISTS_TAC `n:num` THEN REWRITE_TAC[int_abstr] THEN
  REWRITE_TAC[GSYM int_of_num; int_of_num_th]);;

let INT_LT_DISCRETE = prove
 (`!x y. x < y <=> (x + &1) <= y`,
  REPEAT GEN_TAC THEN
  REWRITE_TAC[int_le; int_lt; int_add_th] THEN
  DISJ_CASES_THEN(X_CHOOSE_THEN `m:num` SUBST1_TAC )
   (SPEC `x:int` INT_IMAGE) THEN
  DISJ_CASES_THEN(X_CHOOSE_THEN `n:num` SUBST1_TAC )
   (SPEC `y:int` INT_IMAGE) THEN
  REWRITE_TAC[int_neg_th; int_of_num_th] THEN
  REWRITE_TAC[REAL_LE_NEG2; REAL_LT_NEG2] THEN
  REWRITE_TAC[REAL_LE_LNEG; REAL_LT_LNEG; REAL_LE_RNEG; REAL_LT_RNEG] THEN
  REWRITE_TAC[GSYM REAL_ADD_ASSOC] THEN
  ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN
  REWRITE_TAC[GSYM real_sub; REAL_LE_SUB_RADD] THEN
  REWRITE_TAC[REAL_OF_NUM_LE; REAL_OF_NUM_LT; REAL_OF_NUM_ADD] THEN
  REWRITE_TAC[GSYM ADD1; ONCE_REWRITE_RULE[ADD_SYM] (GSYM ADD1)] THEN
  REWRITE_TAC[SYM(REWRITE_CONV[ARITH_SUC] `SUC 0`)] THEN
  REWRITE_TAC[ADD_CLAUSES; LE_SUC_LT; LT_SUC_LE]);;

let INT_GT_DISCRETE = prove
 (`!x y. x > y <=> x >= (y + &1)`,
  REWRITE_TAC[int_gt; int_ge; real_ge; real_gt; GSYM int_le; GSYM int_lt] THEN
  MATCH_ACCEPT_TAC INT_LT_DISCRETE);;

(* ------------------------------------------------------------------------- *)
(* Conversions of integer constants to and from OCaml numbers.               *)
(* ------------------------------------------------------------------------- *)

let is_intconst tm =
  match tm with
    Comb(Const("int_of_num",_),n) -> is_numeral n
  | Comb(Const("int_neg",_),Comb(Const("int_of_num",_),n)) ->
      is_numeral n & not(dest_numeral n = num_0)
  | _ -> false;;

let dest_intconst tm =
  match tm with
    Comb(Const("int_of_num",_),n) -> dest_numeral n
  | Comb(Const("int_neg",_),Comb(Const("int_of_num",_),n)) ->
        let nn = dest_numeral n in
        if nn <>/ num_0 then minus_num(dest_numeral n)
        else failwith "dest_intconst"
  | _ -> failwith "dest_intconst";;

let mk_intconst =
  let cast_tm = `int_of_num` and neg_tm = `int_neg` in
  let mk_numconst n = mk_comb(cast_tm,mk_numeral n) in
  fun x -> if x </ num_0 then mk_comb(neg_tm,mk_numconst(minus_num x))
           else mk_numconst x;;

(* ------------------------------------------------------------------------- *)
(* A simple procedure to lift most universal real theorems to integers.      *)
(* For a more complete procedure, give required term to INT_ARITH (below).   *)
(* ------------------------------------------------------------------------- *)

let INT_OF_REAL_THM =
  let dest = `real_of_int`
  and real_ty = `:real`
  and int_ty = `:int`
  and cond_th = prove
   (`real_of_int(if b then x else y) =
       if b then real_of_int x else real_of_int y`,
    COND_CASES_TAC THEN REWRITE_TAC[]) in
  let thlist = map GSYM
   [int_eq; int_le; int_lt; int_ge; int_gt;
    int_of_num_th; int_neg_th; int_add_th; int_mul_th; int_sgn_th;
    int_sub_th; int_abs_th; int_max_th; int_min_th; int_pow_th; cond_th] in
  let REW_RULE = GEN_REWRITE_RULE DEPTH_CONV thlist in
  let int_tm_of_real_var v =
    let s,ty = dest_var v in
    if ty = real_ty then mk_comb(dest,mk_var(s,int_ty)) else v in
  let int_of_real_var v =
    let s,ty = dest_var v in
    if ty = real_ty then mk_var(s,int_ty) else v in
  let INT_OF_REAL_THM1 th =
    let newavs = subtract (frees (concl th)) (freesl (hyp th)) in
    let avs,bod = strip_forall(concl th) in
    let allavs = newavs@avs in
    let avs' = map int_tm_of_real_var allavs in
    let avs'' = map int_of_real_var avs in
    GENL avs'' (REW_RULE(SPECL avs' (GENL newavs th))) in
  let rec INT_OF_REAL_THM th =
    if is_conj(concl th) then CONJ (INT_OF_REAL_THM (CONJUNCT1 th))
                                   (INT_OF_REAL_THM (CONJUNCT2 th))
    else INT_OF_REAL_THM1 th in
  INT_OF_REAL_THM;;

(* ------------------------------------------------------------------------- *)
(* Collect together all the theorems derived automatically.                  *)
(* ------------------------------------------------------------------------- *)

let INT_ABS_0 = INT_OF_REAL_THM REAL_ABS_0;;
let INT_ABS_1 = INT_OF_REAL_THM REAL_ABS_1;;
let INT_ABS_ABS = INT_OF_REAL_THM REAL_ABS_ABS;;
let INT_ABS_BETWEEN = INT_OF_REAL_THM REAL_ABS_BETWEEN;;
let INT_ABS_BETWEEN1 = INT_OF_REAL_THM REAL_ABS_BETWEEN1;;
let INT_ABS_BETWEEN2 = INT_OF_REAL_THM REAL_ABS_BETWEEN2;;
let INT_ABS_BOUND = INT_OF_REAL_THM REAL_ABS_BOUND;;
let INT_ABS_CASES = INT_OF_REAL_THM REAL_ABS_CASES;;
let INT_ABS_CIRCLE = INT_OF_REAL_THM REAL_ABS_CIRCLE;;
let INT_ABS_LE = INT_OF_REAL_THM REAL_ABS_LE;;
let INT_ABS_MUL = INT_OF_REAL_THM REAL_ABS_MUL;;
let INT_ABS_NEG = INT_OF_REAL_THM REAL_ABS_NEG;;
let INT_ABS_NUM = INT_OF_REAL_THM REAL_ABS_NUM;;
let INT_ABS_NZ = INT_OF_REAL_THM REAL_ABS_NZ;;
let INT_ABS_POS = INT_OF_REAL_THM REAL_ABS_POS;;
let INT_ABS_POW = INT_OF_REAL_THM REAL_ABS_POW;;
let INT_ABS_REFL = INT_OF_REAL_THM REAL_ABS_REFL;;
let INT_ABS_SGN = INT_OF_REAL_THM REAL_ABS_SGN;;
let INT_ABS_SIGN = INT_OF_REAL_THM REAL_ABS_SIGN;;
let INT_ABS_SIGN2 = INT_OF_REAL_THM REAL_ABS_SIGN2;;
let INT_ABS_STILLNZ = INT_OF_REAL_THM REAL_ABS_STILLNZ;;
let INT_ABS_SUB = INT_OF_REAL_THM REAL_ABS_SUB;;
let INT_ABS_SUB_ABS = INT_OF_REAL_THM REAL_ABS_SUB_ABS;;
let INT_ABS_TRIANGLE = INT_OF_REAL_THM REAL_ABS_TRIANGLE;;
let INT_ABS_ZERO = INT_OF_REAL_THM REAL_ABS_ZERO;;
let INT_ADD2_SUB2 = INT_OF_REAL_THM REAL_ADD2_SUB2;;
let INT_ADD_AC = INT_OF_REAL_THM REAL_ADD_AC;;
let INT_ADD_ASSOC = INT_OF_REAL_THM REAL_ADD_ASSOC;;
let INT_ADD_LDISTRIB = INT_OF_REAL_THM REAL_ADD_LDISTRIB;;
let INT_ADD_LID = INT_OF_REAL_THM REAL_ADD_LID;;
let INT_ADD_LINV = INT_OF_REAL_THM REAL_ADD_LINV;;
let INT_ADD_RDISTRIB = INT_OF_REAL_THM REAL_ADD_RDISTRIB;;
let INT_ADD_RID = INT_OF_REAL_THM REAL_ADD_RID;;
let INT_ADD_RINV = INT_OF_REAL_THM REAL_ADD_RINV;;
let INT_ADD_SUB = INT_OF_REAL_THM REAL_ADD_SUB;;
let INT_ADD_SUB2 = INT_OF_REAL_THM REAL_ADD_SUB2;;
let INT_ADD_SYM = INT_OF_REAL_THM REAL_ADD_SYM;;
let INT_BOUNDS_LE = INT_OF_REAL_THM REAL_BOUNDS_LE;;
let INT_BOUNDS_LT = INT_OF_REAL_THM REAL_BOUNDS_LT;;
let INT_DIFFSQ = INT_OF_REAL_THM REAL_DIFFSQ;;
let INT_ENTIRE = INT_OF_REAL_THM REAL_ENTIRE;;
let INT_EQ_ADD_LCANCEL = INT_OF_REAL_THM REAL_EQ_ADD_LCANCEL;;
let INT_EQ_ADD_LCANCEL_0 = INT_OF_REAL_THM REAL_EQ_ADD_LCANCEL_0;;
let INT_EQ_ADD_RCANCEL = INT_OF_REAL_THM REAL_EQ_ADD_RCANCEL;;
let INT_EQ_ADD_RCANCEL_0 = INT_OF_REAL_THM REAL_EQ_ADD_RCANCEL_0;;
let INT_EQ_IMP_LE = INT_OF_REAL_THM REAL_EQ_IMP_LE;;
let INT_EQ_MUL_LCANCEL = INT_OF_REAL_THM REAL_EQ_MUL_LCANCEL;;
let INT_EQ_MUL_RCANCEL = INT_OF_REAL_THM REAL_EQ_MUL_RCANCEL;;
let INT_EQ_NEG2 = INT_OF_REAL_THM REAL_EQ_NEG2;;
let INT_EQ_SQUARE_ABS = INT_OF_REAL_THM REAL_EQ_SQUARE_ABS;;
let INT_EQ_SUB_LADD = INT_OF_REAL_THM REAL_EQ_SUB_LADD;;
let INT_EQ_SUB_RADD = INT_OF_REAL_THM REAL_EQ_SUB_RADD;;
let INT_LET_ADD = INT_OF_REAL_THM REAL_LET_ADD;;
let INT_LET_ADD2 = INT_OF_REAL_THM REAL_LET_ADD2;;
let INT_LET_ANTISYM = INT_OF_REAL_THM REAL_LET_ANTISYM;;
let INT_LET_TOTAL = INT_OF_REAL_THM REAL_LET_TOTAL;;
let INT_LET_TRANS = INT_OF_REAL_THM REAL_LET_TRANS;;
let INT_LE_01 = INT_OF_REAL_THM REAL_LE_01;;
let INT_LE_ADD = INT_OF_REAL_THM REAL_LE_ADD;;
let INT_LE_ADD2 = INT_OF_REAL_THM REAL_LE_ADD2;;
let INT_LE_ADDL = INT_OF_REAL_THM REAL_LE_ADDL;;
let INT_LE_ADDR = INT_OF_REAL_THM REAL_LE_ADDR;;
let INT_LE_ANTISYM = INT_OF_REAL_THM REAL_LE_ANTISYM;;
let INT_LE_DOUBLE = INT_OF_REAL_THM REAL_LE_DOUBLE;;
let INT_LE_LADD = INT_OF_REAL_THM REAL_LE_LADD;;
let INT_LE_LADD_IMP = INT_OF_REAL_THM REAL_LE_LADD_IMP;;
let INT_LE_LMUL = INT_OF_REAL_THM REAL_LE_LMUL;;
let INT_LE_LNEG = INT_OF_REAL_THM REAL_LE_LNEG;;
let INT_LE_LT = INT_OF_REAL_THM REAL_LE_LT;;
let INT_LE_MAX = INT_OF_REAL_THM REAL_LE_MAX;;
let INT_LE_MIN = INT_OF_REAL_THM REAL_LE_MIN;;
let INT_LE_MUL = INT_OF_REAL_THM REAL_LE_MUL;;
let INT_LE_MUL_EQ = INT_OF_REAL_THM REAL_LE_MUL_EQ;;
let INT_LE_NEG = INT_OF_REAL_THM REAL_LE_NEG;;
let INT_LE_NEG2 = INT_OF_REAL_THM REAL_LE_NEG2;;
let INT_LE_NEGL = INT_OF_REAL_THM REAL_LE_NEGL;;
let INT_LE_NEGR = INT_OF_REAL_THM REAL_LE_NEGR;;
let INT_LE_NEGTOTAL = INT_OF_REAL_THM REAL_LE_NEGTOTAL;;
let INT_LE_POW2 = INT_OF_REAL_THM REAL_LE_POW2;;
let INT_LE_RADD = INT_OF_REAL_THM REAL_LE_RADD;;
let INT_LE_REFL = INT_OF_REAL_THM REAL_LE_REFL;;
let INT_LE_RMUL = INT_OF_REAL_THM REAL_LE_RMUL;;
let INT_LE_RNEG = INT_OF_REAL_THM REAL_LE_RNEG;;
let INT_LE_SQUARE = INT_OF_REAL_THM REAL_LE_SQUARE;;
let INT_LE_SQUARE_ABS = INT_OF_REAL_THM REAL_LE_SQUARE_ABS;;
let INT_LE_SUB_LADD = INT_OF_REAL_THM REAL_LE_SUB_LADD;;
let INT_LE_SUB_RADD = INT_OF_REAL_THM REAL_LE_SUB_RADD;;
let INT_LE_TOTAL = INT_OF_REAL_THM REAL_LE_TOTAL;;
let INT_LE_TRANS = INT_OF_REAL_THM REAL_LE_TRANS;;
let INT_LNEG_UNIQ = INT_OF_REAL_THM REAL_LNEG_UNIQ;;
let INT_LTE_ADD = INT_OF_REAL_THM REAL_LTE_ADD;;
let INT_LTE_ADD2 = INT_OF_REAL_THM REAL_LTE_ADD2;;
let INT_LTE_ANTISYM = INT_OF_REAL_THM REAL_LTE_ANTISYM;;
let INT_LTE_TOTAL = INT_OF_REAL_THM REAL_LTE_TOTAL;;
let INT_LTE_TRANS = INT_OF_REAL_THM REAL_LTE_TRANS;;
let INT_LT_01 = INT_OF_REAL_THM REAL_LT_01;;
let INT_LT_ADD = INT_OF_REAL_THM REAL_LT_ADD;;
let INT_LT_ADD1 = INT_OF_REAL_THM REAL_LT_ADD1;;
let INT_LT_ADD2 = INT_OF_REAL_THM REAL_LT_ADD2;;
let INT_LT_ADDL = INT_OF_REAL_THM REAL_LT_ADDL;;
let INT_LT_ADDNEG = INT_OF_REAL_THM REAL_LT_ADDNEG;;
let INT_LT_ADDNEG2 = INT_OF_REAL_THM REAL_LT_ADDNEG2;;
let INT_LT_ADDR = INT_OF_REAL_THM REAL_LT_ADDR;;
let INT_LT_ADD_SUB = INT_OF_REAL_THM REAL_LT_ADD_SUB;;
let INT_LT_ANTISYM = INT_OF_REAL_THM REAL_LT_ANTISYM;;
let INT_LT_GT = INT_OF_REAL_THM REAL_LT_GT;;
let INT_LT_IMP_LE = INT_OF_REAL_THM REAL_LT_IMP_LE;;
let INT_LT_IMP_NE = INT_OF_REAL_THM REAL_LT_IMP_NE;;
let INT_LT_LADD = INT_OF_REAL_THM REAL_LT_LADD;;
let INT_LT_LE = INT_OF_REAL_THM REAL_LT_LE;;
let INT_LT_LMUL_EQ = INT_OF_REAL_THM REAL_LT_LMUL_EQ;;
let INT_LT_MAX = INT_OF_REAL_THM REAL_LT_MAX;;
let INT_LT_MIN = INT_OF_REAL_THM REAL_LT_MIN;;
let INT_LT_MUL = INT_OF_REAL_THM REAL_LT_MUL;;
let INT_LT_MUL_EQ = INT_OF_REAL_THM REAL_LT_MUL_EQ;;
let INT_LT_NEG = INT_OF_REAL_THM REAL_LT_NEG;;
let INT_LT_NEG2 = INT_OF_REAL_THM REAL_LT_NEG2;;
let INT_LT_NEGTOTAL = INT_OF_REAL_THM REAL_LT_NEGTOTAL;;
let INT_LT_POW2 = INT_OF_REAL_THM REAL_LT_POW2;;
let INT_LT_RADD = INT_OF_REAL_THM REAL_LT_RADD;;
let INT_LT_REFL = INT_OF_REAL_THM REAL_LT_REFL;;
let INT_LT_RMUL_EQ = INT_OF_REAL_THM REAL_LT_RMUL_EQ;;
let INT_LT_SQUARE_ABS = INT_OF_REAL_THM REAL_LT_SQUARE_ABS;;
let INT_LT_SUB_LADD = INT_OF_REAL_THM REAL_LT_SUB_LADD;;
let INT_LT_SUB_RADD = INT_OF_REAL_THM REAL_LT_SUB_RADD;;
let INT_LT_TOTAL = INT_OF_REAL_THM REAL_LT_TOTAL;;
let INT_LT_TRANS = INT_OF_REAL_THM REAL_LT_TRANS;;
let INT_MAX_ACI = INT_OF_REAL_THM REAL_MAX_ACI;;
let INT_MAX_ASSOC = INT_OF_REAL_THM REAL_MAX_ASSOC;;
let INT_MAX_LE = INT_OF_REAL_THM REAL_MAX_LE;;
let INT_MAX_LT = INT_OF_REAL_THM REAL_MAX_LT;;
let INT_MAX_MAX = INT_OF_REAL_THM REAL_MAX_MAX;;
let INT_MAX_MIN = INT_OF_REAL_THM REAL_MAX_MIN;;
let INT_MAX_SYM = INT_OF_REAL_THM REAL_MAX_SYM;;
let INT_MIN_ACI = INT_OF_REAL_THM REAL_MIN_ACI;;
let INT_MIN_ASSOC = INT_OF_REAL_THM REAL_MIN_ASSOC;;
let INT_MIN_LE = INT_OF_REAL_THM REAL_MIN_LE;;
let INT_MIN_LT = INT_OF_REAL_THM REAL_MIN_LT;;
let INT_MIN_MAX = INT_OF_REAL_THM REAL_MIN_MAX;;
let INT_MIN_MIN = INT_OF_REAL_THM REAL_MIN_MIN;;
let INT_MIN_SYM = INT_OF_REAL_THM REAL_MIN_SYM;;
let INT_MUL_AC = INT_OF_REAL_THM REAL_MUL_AC;;
let INT_MUL_ASSOC = INT_OF_REAL_THM REAL_MUL_ASSOC;;
let INT_MUL_LID = INT_OF_REAL_THM REAL_MUL_LID;;
let INT_MUL_LNEG = INT_OF_REAL_THM REAL_MUL_LNEG;;
let INT_MUL_LZERO = INT_OF_REAL_THM REAL_MUL_LZERO;;
let INT_MUL_POS_LE = INT_OF_REAL_THM REAL_MUL_POS_LE;;
let INT_MUL_POS_LT = INT_OF_REAL_THM REAL_MUL_POS_LT;;
let INT_MUL_RID = INT_OF_REAL_THM REAL_MUL_RID;;
let INT_MUL_RNEG = INT_OF_REAL_THM REAL_MUL_RNEG;;
let INT_MUL_RZERO = INT_OF_REAL_THM REAL_MUL_RZERO;;
let INT_MUL_SYM = INT_OF_REAL_THM REAL_MUL_SYM;;
let INT_NEGNEG = INT_OF_REAL_THM REAL_NEGNEG;;
let INT_NEG_0 = INT_OF_REAL_THM REAL_NEG_0;;
let INT_NEG_ADD = INT_OF_REAL_THM REAL_NEG_ADD;;
let INT_NEG_EQ = INT_OF_REAL_THM REAL_NEG_EQ;;
let INT_NEG_EQ_0 = INT_OF_REAL_THM REAL_NEG_EQ_0;;
let INT_NEG_GE0 = INT_OF_REAL_THM REAL_NEG_GE0;;
let INT_NEG_GT0 = INT_OF_REAL_THM REAL_NEG_GT0;;
let INT_NEG_LE0 = INT_OF_REAL_THM REAL_NEG_LE0;;
let INT_NEG_LMUL = INT_OF_REAL_THM REAL_NEG_LMUL;;
let INT_NEG_LT0 = INT_OF_REAL_THM REAL_NEG_LT0;;
let INT_NEG_MINUS1 = INT_OF_REAL_THM REAL_NEG_MINUS1;;
let INT_NEG_MUL2 = INT_OF_REAL_THM REAL_NEG_MUL2;;
let INT_NEG_NEG = INT_OF_REAL_THM REAL_NEG_NEG;;
let INT_NEG_RMUL = INT_OF_REAL_THM REAL_NEG_RMUL;;
let INT_NEG_SUB = INT_OF_REAL_THM REAL_NEG_SUB;;
let INT_NOT_EQ = INT_OF_REAL_THM REAL_NOT_EQ;;
let INT_NOT_LE = INT_OF_REAL_THM REAL_NOT_LE;;
let INT_NOT_LT = INT_OF_REAL_THM REAL_NOT_LT;;
let INT_OF_NUM_ADD = INT_OF_REAL_THM REAL_OF_NUM_ADD;;
let INT_OF_NUM_EQ = INT_OF_REAL_THM REAL_OF_NUM_EQ;;
let INT_OF_NUM_GE = INT_OF_REAL_THM REAL_OF_NUM_GE;;
let INT_OF_NUM_GT = INT_OF_REAL_THM REAL_OF_NUM_GT;;
let INT_OF_NUM_LE = INT_OF_REAL_THM REAL_OF_NUM_LE;;
let INT_OF_NUM_LT = INT_OF_REAL_THM REAL_OF_NUM_LT;;
let INT_OF_NUM_MAX = INT_OF_REAL_THM REAL_OF_NUM_MAX;;
let INT_OF_NUM_MIN = INT_OF_REAL_THM REAL_OF_NUM_MIN;;
let INT_OF_NUM_MUL = INT_OF_REAL_THM REAL_OF_NUM_MUL;;
let INT_OF_NUM_POW = INT_OF_REAL_THM REAL_OF_NUM_POW;;
let INT_OF_NUM_SUB = INT_OF_REAL_THM REAL_OF_NUM_SUB;;
let INT_OF_NUM_SUC = INT_OF_REAL_THM REAL_OF_NUM_SUC;;
let INT_POS = INT_OF_REAL_THM REAL_POS;;
let INT_POS_NZ = INT_OF_REAL_THM REAL_POS_NZ;;
let INT_POW2_ABS = INT_OF_REAL_THM REAL_POW2_ABS;;
let INT_POW_1 = INT_OF_REAL_THM REAL_POW_1;;
let INT_POW_1_LE = INT_OF_REAL_THM REAL_POW_1_LE;;
let INT_POW_1_LT = INT_OF_REAL_THM REAL_POW_1_LT;;
let INT_POW_2 = INT_OF_REAL_THM REAL_POW_2;;
let INT_POW_ADD = INT_OF_REAL_THM REAL_POW_ADD;;
let INT_POW_EQ = INT_OF_REAL_THM REAL_POW_EQ;;
let INT_POW_EQ_0 = INT_OF_REAL_THM REAL_POW_EQ_0;;
let INT_POW_EQ_ABS = INT_OF_REAL_THM REAL_POW_EQ_ABS;;
let INT_POW_LE = INT_OF_REAL_THM REAL_POW_LE;;
let INT_POW_LE2 = INT_OF_REAL_THM REAL_POW_LE2;;
let INT_POW_LE2_ODD = INT_OF_REAL_THM REAL_POW_LE2_ODD;;
let INT_POW_LE2_REV = INT_OF_REAL_THM REAL_POW_LE2_REV;;
let INT_POW_LE_1 = INT_OF_REAL_THM REAL_POW_LE_1;;
let INT_POW_LT = INT_OF_REAL_THM REAL_POW_LT;;
let INT_POW_LT2 = INT_OF_REAL_THM REAL_POW_LT2;;
let INT_POW_LT2_REV = INT_OF_REAL_THM REAL_POW_LT2_REV;;
let INT_POW_LT_1 = INT_OF_REAL_THM REAL_POW_LT_1;;
let INT_POW_MONO = INT_OF_REAL_THM REAL_POW_MONO;;
let INT_POW_MONO_LT = INT_OF_REAL_THM REAL_POW_MONO_LT;;
let INT_POW_MUL = INT_OF_REAL_THM REAL_POW_MUL;;
let INT_POW_NEG = INT_OF_REAL_THM REAL_POW_NEG;;
let INT_POW_NZ = INT_OF_REAL_THM REAL_POW_NZ;;
let INT_POW_ONE = INT_OF_REAL_THM REAL_POW_ONE;;
let INT_POW_POW = INT_OF_REAL_THM REAL_POW_POW;;
let INT_POW_ZERO = INT_OF_REAL_THM REAL_POW_ZERO;;
let INT_RNEG_UNIQ = INT_OF_REAL_THM REAL_RNEG_UNIQ;;
let INT_SGN = INT_OF_REAL_THM real_sgn;;
let INT_SGN_0 = INT_OF_REAL_THM REAL_SGN_0;;
let INT_SGN_ABS = INT_OF_REAL_THM REAL_SGN_ABS;;
let INT_SGN_CASES = INT_OF_REAL_THM REAL_SGN_CASES;;
let INT_SGN_EQ = INT_OF_REAL_THM REAL_SGN_EQ;;
let INT_SGN_INEQS = INT_OF_REAL_THM REAL_SGN_INEQS;;
let INT_SGN_MUL = INT_OF_REAL_THM REAL_SGN_MUL;;
let INT_SGN_NEG = INT_OF_REAL_THM REAL_SGN_NEG;;
let INT_SOS_EQ_0 = INT_OF_REAL_THM REAL_SOS_EQ_0;;
let INT_SUB_0 = INT_OF_REAL_THM REAL_SUB_0;;
let INT_SUB_ABS = INT_OF_REAL_THM REAL_SUB_ABS;;
let INT_SUB_ADD = INT_OF_REAL_THM REAL_SUB_ADD;;
let INT_SUB_ADD2 = INT_OF_REAL_THM REAL_SUB_ADD2;;
let INT_SUB_LDISTRIB = INT_OF_REAL_THM REAL_SUB_LDISTRIB;;
let INT_SUB_LE = INT_OF_REAL_THM REAL_SUB_LE;;
let INT_SUB_LNEG = INT_OF_REAL_THM REAL_SUB_LNEG;;
let INT_SUB_LT = INT_OF_REAL_THM REAL_SUB_LT;;
let INT_SUB_LZERO = INT_OF_REAL_THM REAL_SUB_LZERO;;
let INT_SUB_NEG2 = INT_OF_REAL_THM REAL_SUB_NEG2;;
let INT_SUB_RDISTRIB = INT_OF_REAL_THM REAL_SUB_RDISTRIB;;
let INT_SUB_REFL = INT_OF_REAL_THM REAL_SUB_REFL;;
let INT_SUB_RNEG = INT_OF_REAL_THM REAL_SUB_RNEG;;
let INT_SUB_RZERO = INT_OF_REAL_THM REAL_SUB_RZERO;;
let INT_SUB_SUB = INT_OF_REAL_THM REAL_SUB_SUB;;
let INT_SUB_SUB2 = INT_OF_REAL_THM REAL_SUB_SUB2;;
let INT_SUB_TRIANGLE = INT_OF_REAL_THM REAL_SUB_TRIANGLE;;

(* ------------------------------------------------------------------------- *)
(* More useful "image" theorems.                                             *)
(* ------------------------------------------------------------------------- *)

let INT_FORALL_POS = prove
 (`!P. (!n. P(&n)) <=> (!i:int. &0 <= i ==> P(i))`,
  GEN_TAC THEN EQ_TAC THEN DISCH_TAC THEN GEN_TAC THENL
   [DISJ_CASES_THEN (CHOOSE_THEN SUBST1_TAC) (SPEC `i:int` INT_IMAGE) THEN
    ASM_REWRITE_TAC[INT_LE_RNEG; INT_ADD_LID; INT_OF_NUM_LE; LE] THEN
    DISCH_THEN SUBST1_TAC THEN ASM_REWRITE_TAC[INT_NEG_0];
    FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[INT_OF_NUM_LE; LE_0]]);;

let INT_EXISTS_POS = prove
 (`!P. (?n. P(&n)) <=> (?i:int. &0 <= i /\ P(i))`,
  GEN_TAC THEN GEN_REWRITE_TAC I [TAUT `(p <=> q) <=> (~p <=> ~q)`] THEN
  REWRITE_TAC[NOT_EXISTS_THM; INT_FORALL_POS] THEN MESON_TAC[]);;

let INT_FORALL_ABS = prove
 (`!P. (!n. P(&n)) <=> (!x:int. P(abs x))`,
  REWRITE_TAC[INT_FORALL_POS] THEN MESON_TAC[INT_ABS_POS; INT_ABS_REFL]);;

let INT_EXISTS_ABS = prove
 (`!P. (?n. P(&n)) <=> (?x:int. P(abs x))`,
  GEN_TAC THEN GEN_REWRITE_TAC I [TAUT `(p <=> q) <=> (~p <=> ~q)`] THEN
  REWRITE_TAC[NOT_EXISTS_THM; INT_FORALL_ABS] THEN MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Sometimes handy in number-theoretic applications.                         *)
(* ------------------------------------------------------------------------- *)

let INT_ABS_MUL_1 = prove
 (`!x y. (abs(x * y) = &1) <=> (abs(x) = &1) /\ (abs(y) = &1)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[INT_ABS_MUL] THEN
  MP_TAC(SPEC `y:int` INT_ABS_POS) THEN SPEC_TAC(`abs(y)`,`b:int`) THEN
  MP_TAC(SPEC `x:int` INT_ABS_POS) THEN SPEC_TAC(`abs(x)`,`a:int`) THEN
  REWRITE_TAC[GSYM INT_FORALL_POS; INT_OF_NUM_MUL; INT_OF_NUM_EQ; MULT_EQ_1]);;

let INT_WOP = prove
 (`(?x. &0 <= x /\ P x) <=>
   (?x. &0 <= x /\ P x /\ !y. &0 <= y /\ P y ==> x <= y)`,
  ONCE_REWRITE_TAC[MESON[] `(?x. P x /\ Q x) <=> ~(!x. P x ==> ~Q x)`] THEN
  REWRITE_TAC[IMP_CONJ; GSYM INT_FORALL_POS; INT_OF_NUM_LE] THEN
  REWRITE_TAC[NOT_FORALL_THM] THEN GEN_REWRITE_TAC LAND_CONV [num_WOP] THEN
  REWRITE_TAC[GSYM NOT_LE; CONTRAPOS_THM]);;

(* ------------------------------------------------------------------------- *)
(* A few "pseudo definitions".                                               *)
(* ------------------------------------------------------------------------- *)

let INT_POW = prove
 (`(x pow 0 = &1) /\
   (!n. x pow (SUC n) = x * x pow n)`,
  REWRITE_TAC(map INT_OF_REAL_THM (CONJUNCTS real_pow)));;

let INT_ABS = prove
 (`!x. abs(x) = if &0 <= x then x else --x`,
  GEN_TAC THEN MP_TAC(INT_OF_REAL_THM(SPEC `x:real` real_abs)) THEN
  COND_CASES_TAC THEN REWRITE_TAC[int_eq]);;

let INT_GE = prove
 (`!x y. x >= y <=> y <= x`,
  REWRITE_TAC[int_ge; int_le; real_ge]);;

let INT_GT = prove
 (`!x y. x > y <=> y < x`,
  REWRITE_TAC[int_gt; int_lt; real_gt]);;

let INT_LT = prove
 (`!x y. x < y <=> ~(y <= x)`,
  REWRITE_TAC[int_lt; int_le; real_lt]);;

(* ------------------------------------------------------------------------- *)
(* Now a decision procedure for the integers.                                *)
(* ------------------------------------------------------------------------- *)

let INT_ARITH =
  let atom_CONV =
    let pth = prove
      (`(~(x <= y) <=> y + &1 <= x) /\
        (~(x < y) <=> y <= x) /\
        (~(x = y) <=> x + &1 <= y \/ y + &1 <= x) /\
        (x < y <=> x + &1 <= y)`,
       REWRITE_TAC[INT_NOT_LE; INT_NOT_LT; INT_NOT_EQ; INT_LT_DISCRETE]) in
    GEN_REWRITE_CONV I [pth]
  and bub_CONV = GEN_REWRITE_CONV TOP_SWEEP_CONV
   [int_eq; int_le; int_lt; int_ge; int_gt;
    int_of_num_th; int_neg_th; int_add_th; int_mul_th;
    int_sub_th; int_pow_th; int_abs_th; int_max_th; int_min_th] in
  let base_CONV = TRY_CONV atom_CONV THENC bub_CONV in
  let NNF_NORM_CONV = GEN_NNF_CONV false
   (base_CONV,fun t -> base_CONV t,base_CONV(mk_neg t)) in
  let init_CONV =
    TOP_DEPTH_CONV BETA_CONV THENC
    PRESIMP_CONV THENC
    GEN_REWRITE_CONV DEPTH_CONV [INT_GT; INT_GE] THENC
    NNF_CONV THENC DEPTH_BINOP_CONV `(\/)` CONDS_ELIM_CONV THENC
    NNF_NORM_CONV in
  let p_tm = `p:bool`
  and not_tm = `(~)` in
  let pth = TAUT(mk_eq(mk_neg(mk_neg p_tm),p_tm)) in
  fun tm ->
    let th0 = INST [tm,p_tm] pth
    and th1 = init_CONV (mk_neg tm) in
    let th2 = REAL_ARITH(mk_neg(rand(concl th1))) in
    EQ_MP th0 (EQ_MP (AP_TERM not_tm (SYM th1)) th2);;

let INT_ARITH_TAC = CONV_TAC(EQT_INTRO o INT_ARITH);;

let ASM_INT_ARITH_TAC =
  REPEAT(FIRST_X_ASSUM(MP_TAC o check (not o is_forall o concl))) THEN
  INT_ARITH_TAC;;

(* ------------------------------------------------------------------------- *)
(* Some pseudo-definitions.                                                  *)
(* ------------------------------------------------------------------------- *)

let INT_SUB = INT_ARITH `!x y. x - y = x + --y`;;

let INT_MAX = INT_ARITH `!x y. max x y = if x <= y then y else x`;;

let INT_MIN = INT_ARITH `!x y. min x y = if x <= y then x else y`;;

(* ------------------------------------------------------------------------- *)
(* Another useful lemma.                                                     *)
(* ------------------------------------------------------------------------- *)

let INT_OF_NUM_EXISTS = prove
 (`!x:int. (?n. x = &n) <=> &0 <= x`,
  GEN_TAC THEN EQ_TAC THEN STRIP_TAC THEN ASM_SIMP_TAC[INT_POS] THEN
  MP_TAC(ISPEC `x:int` INT_IMAGE) THEN
  REWRITE_TAC[OR_EXISTS_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN
  ASM_INT_ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Archimedian property for the integers.                                    *)
(* ------------------------------------------------------------------------- *)

let INT_ARCH = prove
 (`!x d. ~(d = &0) ==> ?c. x < c * d`,
  SUBGOAL_THEN `!x. &0 <= x ==> ?n. x <= &n` ASSUME_TAC THENL
   [REWRITE_TAC[GSYM INT_FORALL_POS; INT_OF_NUM_LE] THEN MESON_TAC[LE_REFL];
    ALL_TAC] THEN
  SUBGOAL_THEN `!x. ?n. x <= &n` ASSUME_TAC THENL
   [ASM_MESON_TAC[INT_LE_TOTAL]; ALL_TAC] THEN
  SUBGOAL_THEN `!x d. &0 < d ==> ?c. x < c * d` ASSUME_TAC THENL
   [REPEAT GEN_TAC THEN REWRITE_TAC[INT_LT_DISCRETE; INT_ADD_LID] THEN
    ASM_MESON_TAC[INT_POS; INT_LE_LMUL; INT_ARITH
        `x + &1 <= &n /\ &n * &1 <= &n * d ==> x + &1 <= &n * d`];
    ALL_TAC] THEN
  SUBGOAL_THEN `!x d. ~(d = &0) ==> ?c. x < c * d` ASSUME_TAC THENL
   [ASM_MESON_TAC[INT_ARITH `--x * y = x * --y`;
                  INT_ARITH `~(d = &0) ==> &0 < d \/ &0 < --d`];
    ALL_TAC] THEN
  ASM_MESON_TAC[INT_ARITH `--x * y = x * --y`;
                INT_ARITH `~(d = &0) ==> &0 < d \/ &0 < --d`]);;

(* ------------------------------------------------------------------------- *)
(* Definitions of ("Euclidean") integer division and remainder.              *)
(* ------------------------------------------------------------------------- *)

let INT_DIVMOD_EXIST_0 = prove
 (`!m n:int. ?q r. if n = &0 then q = &0 /\ r = m
                   else &0 <= r /\ r < abs(n) /\ m = q * n + r`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `n = &0` THEN
  ASM_REWRITE_TAC[RIGHT_EXISTS_AND_THM; EXISTS_REFL] THEN
  GEN_REWRITE_TAC I [SWAP_EXISTS_THM] THEN
  SUBGOAL_THEN `?r. &0 <= r /\ ?q:int. m = n * q + r` MP_TAC THENL
   [FIRST_ASSUM(MP_TAC o SPEC `--m:int` o MATCH_MP INT_ARCH) THEN
    DISCH_THEN(X_CHOOSE_TAC `s:int`) THEN
    EXISTS_TAC `m + s * n:int` THEN CONJ_TAC THENL
     [ASM_INT_ARITH_TAC; EXISTS_TAC `--s:int` THEN INT_ARITH_TAC];
    GEN_REWRITE_TAC LAND_CONV [INT_WOP] THEN
    MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `r:int` THEN
    REWRITE_TAC[LEFT_AND_EXISTS_THM; RIGHT_AND_EXISTS_THM] THEN
    MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `q:int` THEN STRIP_TAC THEN
    ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o SPEC `r - abs n`) THEN
    REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
    DISCH_THEN(MP_TAC o SPEC `if &0 <= n then q + &1 else q - &1`) THEN
    ASM_INT_ARITH_TAC]);;

parse_as_infix("div",(22,"left"));;
parse_as_infix("rem",(22,"left"));;

let INT_DIVISION_0 =  new_specification ["div"; "rem"]
  (REWRITE_RULE[SKOLEM_THM] INT_DIVMOD_EXIST_0);;

let INT_DIVISION = prove
 (`!m n. ~(n = &0)
         ==> m = m div n * n + m rem n /\ &0 <= m rem n /\ m rem n < abs n`,
  MESON_TAC[INT_DIVISION_0]);;

(* ------------------------------------------------------------------------- *)
(* Arithmetic operations on integers. Essentially a clone of stuff for reals *)
(* in the file "calc_int.ml", except for div and rem, which are more like N. *)
(* ------------------------------------------------------------------------- *)

let INT_LE_CONV,INT_LT_CONV,INT_GE_CONV,INT_GT_CONV,INT_EQ_CONV =
  let tth =
    TAUT `(F /\ F <=> F) /\ (F /\ T <=> F) /\
          (T /\ F <=> F) /\ (T /\ T <=> T)` in
  let nth = TAUT `(~T <=> F) /\ (~F <=> T)` in
  let NUM2_EQ_CONV = BINOP_CONV NUM_EQ_CONV THENC GEN_REWRITE_CONV I [tth] in
  let NUM2_NE_CONV =
    RAND_CONV NUM2_EQ_CONV THENC
    GEN_REWRITE_CONV I [nth] in
  let [pth_le1; pth_le2a; pth_le2b; pth_le3] = (CONJUNCTS o prove)
   (`(--(&m) <= &n <=> T) /\
     (&m <= &n <=> m <= n) /\
     (--(&m) <= --(&n) <=> n <= m) /\
     (&m <= --(&n) <=> (m = 0) /\ (n = 0))`,
    REWRITE_TAC[INT_LE_NEG2] THEN
    REWRITE_TAC[INT_LE_LNEG; INT_LE_RNEG] THEN
    REWRITE_TAC[INT_OF_NUM_ADD; INT_OF_NUM_LE; LE_0] THEN
    REWRITE_TAC[LE; ADD_EQ_0]) in
  let INT_LE_CONV = FIRST_CONV
   [GEN_REWRITE_CONV I [pth_le1];
    GEN_REWRITE_CONV I [pth_le2a; pth_le2b] THENC NUM_LE_CONV;
    GEN_REWRITE_CONV I [pth_le3] THENC NUM2_EQ_CONV] in
  let [pth_lt1; pth_lt2a; pth_lt2b; pth_lt3] = (CONJUNCTS o prove)
   (`(&m < --(&n) <=> F) /\
     (&m < &n <=> m < n) /\
     (--(&m) < --(&n) <=> n < m) /\
     (--(&m) < &n <=> ~((m = 0) /\ (n = 0)))`,
    REWRITE_TAC[pth_le1; pth_le2a; pth_le2b; pth_le3;
                GSYM NOT_LE; INT_LT] THEN
    CONV_TAC TAUT) in
  let INT_LT_CONV = FIRST_CONV
   [GEN_REWRITE_CONV I [pth_lt1];
    GEN_REWRITE_CONV I [pth_lt2a; pth_lt2b] THENC NUM_LT_CONV;
    GEN_REWRITE_CONV I [pth_lt3] THENC NUM2_NE_CONV] in
  let [pth_ge1; pth_ge2a; pth_ge2b; pth_ge3] = (CONJUNCTS o prove)
   (`(&m >= --(&n) <=> T) /\
     (&m >= &n <=> n <= m) /\
     (--(&m) >= --(&n) <=> m <= n) /\
     (--(&m) >= &n <=> (m = 0) /\ (n = 0))`,
    REWRITE_TAC[pth_le1; pth_le2a; pth_le2b; pth_le3; INT_GE] THEN
    CONV_TAC TAUT) in
  let INT_GE_CONV = FIRST_CONV
   [GEN_REWRITE_CONV I [pth_ge1];
    GEN_REWRITE_CONV I [pth_ge2a; pth_ge2b] THENC NUM_LE_CONV;
    GEN_REWRITE_CONV I [pth_ge3] THENC NUM2_EQ_CONV] in
  let [pth_gt1; pth_gt2a; pth_gt2b; pth_gt3] = (CONJUNCTS o prove)
   (`(--(&m) > &n <=> F) /\
     (&m > &n <=> n < m) /\
     (--(&m) > --(&n) <=> m < n) /\
     (&m > --(&n) <=> ~((m = 0) /\ (n = 0)))`,
    REWRITE_TAC[pth_lt1; pth_lt2a; pth_lt2b; pth_lt3; INT_GT] THEN
    CONV_TAC TAUT) in
  let INT_GT_CONV = FIRST_CONV
   [GEN_REWRITE_CONV I [pth_gt1];
    GEN_REWRITE_CONV I [pth_gt2a; pth_gt2b] THENC NUM_LT_CONV;
    GEN_REWRITE_CONV I [pth_gt3] THENC NUM2_NE_CONV] in
  let [pth_eq1a; pth_eq1b; pth_eq2a; pth_eq2b] = (CONJUNCTS o prove)
   (`((&m = &n) <=> (m = n)) /\
     ((--(&m) = --(&n)) <=> (m = n)) /\
     ((--(&m) = &n) <=> (m = 0) /\ (n = 0)) /\
     ((&m = --(&n)) <=> (m = 0) /\ (n = 0))`,
    REWRITE_TAC[GSYM INT_LE_ANTISYM; GSYM LE_ANTISYM] THEN
    REWRITE_TAC[pth_le1; pth_le2a; pth_le2b; pth_le3; LE; LE_0] THEN
    CONV_TAC TAUT) in
  let INT_EQ_CONV = FIRST_CONV
   [GEN_REWRITE_CONV I [pth_eq1a; pth_eq1b] THENC NUM_EQ_CONV;
    GEN_REWRITE_CONV I [pth_eq2a; pth_eq2b] THENC NUM2_EQ_CONV] in
  INT_LE_CONV,INT_LT_CONV,
  INT_GE_CONV,INT_GT_CONV,INT_EQ_CONV;;

let INT_NEG_CONV =
  let pth = prove
   (`(--(&0) = &0) /\
     (--(--(&x)) = &x)`,
    REWRITE_TAC[INT_NEG_NEG; INT_NEG_0]) in
  GEN_REWRITE_CONV I [pth];;

let INT_MUL_CONV =
  let pth0 = prove
   (`(&0 * &x = &0) /\
     (&0 * --(&x) = &0) /\
     (&x * &0 = &0) /\
     (--(&x) * &0 = &0)`,
    REWRITE_TAC[INT_MUL_LZERO; INT_MUL_RZERO])
  and pth1,pth2 = (CONJ_PAIR o prove)
   (`((&m * &n = &(m * n)) /\
      (--(&m) * --(&n) = &(m * n))) /\
     ((--(&m) * &n = --(&(m * n))) /\
      (&m * --(&n) = --(&(m * n))))`,
    REWRITE_TAC[INT_MUL_LNEG; INT_MUL_RNEG; INT_NEG_NEG] THEN
    REWRITE_TAC[INT_OF_NUM_MUL]) in
  FIRST_CONV
   [GEN_REWRITE_CONV I [pth0];
    GEN_REWRITE_CONV I [pth1] THENC RAND_CONV NUM_MULT_CONV;
    GEN_REWRITE_CONV I [pth2] THENC RAND_CONV(RAND_CONV NUM_MULT_CONV)];;

let INT_ADD_CONV =
  let neg_tm = `(--)` in
  let amp_tm = `&` in
  let add_tm = `(+)` in
  let dest = dest_binop `(+)` in
  let m_tm = `m:num` and n_tm = `n:num` in
  let pth0 = prove
   (`(--(&m) + &m = &0) /\
     (&m + --(&m) = &0)`,
    REWRITE_TAC[INT_ADD_LINV; INT_ADD_RINV]) in
  let [pth1; pth2; pth3; pth4; pth5; pth6] = (CONJUNCTS o prove)
   (`(--(&m) + --(&n) = --(&(m + n))) /\
     (--(&m) + &(m + n) = &n) /\
     (--(&(m + n)) + &m = --(&n)) /\
     (&(m + n) + --(&m) = &n) /\
     (&m + --(&(m + n)) = --(&n)) /\
     (&m + &n = &(m + n))`,
    REWRITE_TAC[GSYM INT_OF_NUM_ADD; INT_NEG_ADD] THEN
    REWRITE_TAC[INT_ADD_ASSOC; INT_ADD_LINV; INT_ADD_LID] THEN
    REWRITE_TAC[INT_ADD_RINV; INT_ADD_LID] THEN
    ONCE_REWRITE_TAC[INT_ADD_SYM] THEN
    REWRITE_TAC[INT_ADD_ASSOC; INT_ADD_LINV; INT_ADD_LID] THEN
    REWRITE_TAC[INT_ADD_RINV; INT_ADD_LID]) in
  GEN_REWRITE_CONV I [pth0] ORELSEC
  (fun tm ->
    try let l,r = dest tm in
        if rator l = neg_tm then
          if rator r = neg_tm then
            let th1 = INST [rand(rand l),m_tm; rand(rand r),n_tm] pth1 in
            let tm1 = rand(rand(rand(concl th1))) in
            let th2 = AP_TERM neg_tm (AP_TERM amp_tm (NUM_ADD_CONV tm1)) in
            TRANS th1 th2
          else
            let m = rand(rand l) and n = rand r in
            let m' = dest_numeral m and n' = dest_numeral n in
            if m' <=/ n' then
              let p = mk_numeral (n' -/ m') in
              let th1 = INST [m,m_tm; p,n_tm] pth2 in
              let th2 = NUM_ADD_CONV (rand(rand(lhand(concl th1)))) in
              let th3 = AP_TERM (rator tm) (AP_TERM amp_tm (SYM th2)) in
              TRANS th3 th1
            else
              let p = mk_numeral (m' -/ n') in
              let th1 = INST [n,m_tm; p,n_tm] pth3 in
              let th2 = NUM_ADD_CONV (rand(rand(lhand(lhand(concl th1))))) in
              let th3 = AP_TERM neg_tm (AP_TERM amp_tm (SYM th2)) in
              let th4 = AP_THM (AP_TERM add_tm th3) (rand tm) in
              TRANS th4 th1
        else
          if rator r = neg_tm then
            let m = rand l and n = rand(rand r) in
            let m' = dest_numeral m and n' = dest_numeral n in
            if n' <=/ m' then
              let p = mk_numeral (m' -/ n') in
              let th1 = INST [n,m_tm; p,n_tm] pth4 in
              let th2 = NUM_ADD_CONV (rand(lhand(lhand(concl th1)))) in
              let th3 = AP_TERM add_tm (AP_TERM amp_tm (SYM th2)) in
              let th4 = AP_THM th3 (rand tm) in
              TRANS th4 th1
            else
             let p = mk_numeral (n' -/ m') in
             let th1 = INST [m,m_tm; p,n_tm] pth5 in
             let th2 = NUM_ADD_CONV (rand(rand(rand(lhand(concl th1))))) in
             let th3 = AP_TERM neg_tm (AP_TERM amp_tm (SYM th2)) in
             let th4 = AP_TERM (rator tm) th3 in
             TRANS th4 th1
          else
            let th1 = INST [rand l,m_tm; rand r,n_tm] pth6 in
            let tm1 = rand(rand(concl th1)) in
            let th2 = AP_TERM amp_tm (NUM_ADD_CONV tm1) in
            TRANS th1 th2
    with Failure _ -> failwith "INT_ADD_CONV");;

let INT_SUB_CONV =
  GEN_REWRITE_CONV I [INT_SUB] THENC
  TRY_CONV(RAND_CONV INT_NEG_CONV) THENC
  INT_ADD_CONV;;

let INT_POW_CONV =
  let pth1,pth2 = (CONJ_PAIR o prove)
   (`(&x pow n = &(x EXP n)) /\
     ((--(&x)) pow n = if EVEN n then &(x EXP n) else --(&(x EXP n)))`,
    REWRITE_TAC[INT_OF_NUM_POW; INT_POW_NEG]) in
  let tth = prove
   (`((if T then x:int else y) = x) /\ ((if F then x:int else y) = y)`,
    REWRITE_TAC[]) in
  let neg_tm = `(--)` in
  (GEN_REWRITE_CONV I [pth1] THENC RAND_CONV NUM_EXP_CONV) ORELSEC
  (GEN_REWRITE_CONV I [pth2] THENC
   RATOR_CONV(RATOR_CONV(RAND_CONV NUM_EVEN_CONV)) THENC
   GEN_REWRITE_CONV I [tth] THENC
   (fun tm -> if rator tm = neg_tm then RAND_CONV(RAND_CONV NUM_EXP_CONV) tm
              else RAND_CONV NUM_EXP_CONV  tm));;

let INT_ABS_CONV =
  let pth = prove
   (`(abs(--(&x)) = &x) /\
     (abs(&x) = &x)`,
    REWRITE_TAC[INT_ABS_NEG; INT_ABS_NUM]) in
  GEN_REWRITE_CONV I [pth];;

let INT_MAX_CONV =
  REWR_CONV INT_MAX THENC
  RATOR_CONV(RATOR_CONV(RAND_CONV INT_LE_CONV)) THENC
  GEN_REWRITE_CONV I [COND_CLAUSES];;

let INT_MIN_CONV =
  REWR_CONV INT_MIN THENC
  RATOR_CONV(RATOR_CONV(RAND_CONV INT_LE_CONV)) THENC
  GEN_REWRITE_CONV I [COND_CLAUSES];;

(* ------------------------------------------------------------------------- *)
(* Instantiate the normalizer.                                               *)
(* ------------------------------------------------------------------------- *)

let INT_POLY_CONV =
  let sth = prove
   (`(!x y z. x + (y + z) = (x + y) + z) /\
     (!x y. x + y = y + x) /\
     (!x. &0 + x = x) /\
     (!x y z. x * (y * z) = (x * y) * z) /\
     (!x y. x * y = y * x) /\
     (!x. &1 * x = x) /\
     (!x. &0 * x = &0) /\
     (!x y z. x * (y + z) = x * y + x * z) /\
     (!x. x pow 0 = &1) /\
     (!x n. x pow (SUC n) = x * x pow n)`,
    REWRITE_TAC[INT_POW] THEN INT_ARITH_TAC)
  and rth = prove
   (`(!x. --x = --(&1) * x) /\
     (!x y. x - y = x + --(&1) * y)`,
    INT_ARITH_TAC)
  and is_semiring_constant = is_intconst
  and SEMIRING_ADD_CONV = INT_ADD_CONV
  and SEMIRING_MUL_CONV = INT_MUL_CONV
  and SEMIRING_POW_CONV = INT_POW_CONV in
  let _,_,_,_,_,INT_POLY_CONV =
    SEMIRING_NORMALIZERS_CONV sth rth
     (is_semiring_constant,
      SEMIRING_ADD_CONV,SEMIRING_MUL_CONV,SEMIRING_POW_CONV)
     (<) in
  INT_POLY_CONV;;

(* ------------------------------------------------------------------------- *)
(* Instantiate the ring and ideal procedures.                                *)
(* ------------------------------------------------------------------------- *)

let INT_RING,int_ideal_cofactors =
  let INT_INTEGRAL = prove
   (`(!x. &0 * x = &0) /\
     (!x y z. (x + y = x + z) <=> (y = z)) /\
     (!w x y z. (w * y + x * z = w * z + x * y) <=> (w = x) \/ (y = z))`,
    REWRITE_TAC[MULT_CLAUSES; EQ_ADD_LCANCEL] THEN
    REWRITE_TAC[GSYM INT_OF_NUM_EQ;
                GSYM INT_OF_NUM_ADD; GSYM INT_OF_NUM_MUL] THEN
    ONCE_REWRITE_TAC[GSYM INT_SUB_0] THEN
    REWRITE_TAC[GSYM INT_ENTIRE] THEN INT_ARITH_TAC)
  and int_ty = `:int` in
  let pure,ideal =
  RING_AND_IDEAL_CONV
      (dest_intconst,mk_intconst,INT_EQ_CONV,
       `(--):int->int`,`(+):int->int->int`,`(-):int->int->int`,
       genvar bool_ty,`(*):int->int->int`,genvar bool_ty,
       `(pow):int->num->int`,
       INT_INTEGRAL,TRUTH,INT_POLY_CONV) in
  pure,
  (fun tms tm -> if forall (fun t -> type_of t = int_ty) (tm::tms)
                 then ideal tms tm
                 else failwith
                  "int_ideal_cofactors: not all terms have type :int");;

(* ------------------------------------------------------------------------- *)
(* Arithmetic operations also on div and rem, hence the whole lot.           *)
(* ------------------------------------------------------------------------- *)

let INT_DIVMOD_UNIQ = prove
 (`!m n q r:int. m = q * n + r /\ &0 <= r /\ r < abs n
                 ==> m div n = q /\ m rem n = r`,
  REPEAT GEN_TAC THEN STRIP_TAC THEN
  SUBGOAL_THEN `~(n = &0)` MP_TAC THENL [ASM_INT_ARITH_TAC; ALL_TAC] THEN
  DISCH_THEN(STRIP_ASSUME_TAC o SPEC `m:int` o MATCH_MP INT_DIVISION) THEN
  ASM_CASES_TAC `m div n = q` THENL
   [REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC INT_RING; ALL_TAC] THEN
  SUBGOAL_THEN `abs(m rem n - r) < abs n` MP_TAC THENL
   [ASM_INT_ARITH_TAC; MATCH_MP_TAC(TAUT `~p ==> p ==> q`)] THEN
  MATCH_MP_TAC(INT_ARITH
   `&1 * abs n <= abs(q - m div n) * abs n /\
    abs(m rem n - r) = abs((q - m div n) * n)
    ==> ~(abs(m rem n - r) < abs n)`) THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC INT_LE_RMUL THEN ASM_INT_ARITH_TAC;
    AP_TERM_TAC THEN REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC INT_RING]);;

let INT_DIV_CONV,INT_REM_CONV =
  let pth = prove
   (`q * n + r = m ==> &0 <= r ==> r < abs n ==> m div n = q /\ m rem n = r`,
    MESON_TAC[INT_DIVMOD_UNIQ])
  and m = `m:int` and n = `n:int` and q = `q:int` and r = `r:int`
  and dtm = `(div)` and mtm = `(rem)` in
  let emod_num x y =
    let r = mod_num x y in
    if r </ Int 0 then r +/ abs_num y else r in
  let equo_num x y = quo_num (x -/ emod_num x y) y in
  let INT_DIVMOD_CONV x y =
    let k = equo_num x y
    and l = emod_num x y in
    let th0 = INST [mk_intconst x,m; mk_intconst y,n;
                    mk_intconst k,q; mk_intconst l,r] pth in
    let tm0 = lhand(lhand(concl th0)) in
    let th1 = (LAND_CONV INT_MUL_CONV THENC INT_ADD_CONV) tm0 in
    let th2 = MP th0 th1 in
    let tm2 = lhand(concl th2) in
    let th3 = MP th2 (EQT_ELIM(INT_LE_CONV tm2)) in
    let tm3 = lhand(concl th3) in
    MP th3 (EQT_ELIM((RAND_CONV INT_ABS_CONV THENC INT_LT_CONV) tm3)) in
  (fun tm -> try let l,r = dest_binop dtm tm in
                 CONJUNCT1(INT_DIVMOD_CONV (dest_intconst l) (dest_intconst r))
             with Failure _ -> failwith "INT_DIV_CONV"),
  (fun tm -> try let l,r = dest_binop mtm tm in
                 CONJUNCT2(INT_DIVMOD_CONV (dest_intconst l) (dest_intconst r))
             with Failure _ -> failwith "INT_MOD_CONV");;

let INT_RED_CONV =
  let gconv_net = itlist (uncurry net_of_conv)
    [`x <= y`,INT_LE_CONV;
     `x < y`,INT_LT_CONV;
     `x >= y`,INT_GE_CONV;
     `x > y`,INT_GT_CONV;
     `x:int = y`,INT_EQ_CONV;
     `--x`,CHANGED_CONV INT_NEG_CONV;
     `abs(x)`,INT_ABS_CONV;
     `x + y`,INT_ADD_CONV;
     `x - y`,INT_SUB_CONV;
     `x * y`,INT_MUL_CONV;
     `x div y`,INT_DIV_CONV;
     `x rem y`,INT_REM_CONV;
     `x pow n`,INT_POW_CONV;
     `max x y`,INT_MAX_CONV;
     `min x y`,INT_MIN_CONV]
    (basic_net()) in
  REWRITES_CONV gconv_net;;

let INT_REDUCE_CONV = DEPTH_CONV INT_RED_CONV;;

(* ------------------------------------------------------------------------- *)
(* Set up overloading so we can use same symbols for N, Z and even R.        *)
(* ------------------------------------------------------------------------- *)

make_overloadable "divides" `:A->A->bool`;;
make_overloadable "mod" `:A->A->A->bool`;;
make_overloadable "coprime" `:A#A->bool`;;
make_overloadable "gcd" `:A#A->A`;;

(* ------------------------------------------------------------------------- *)
(* The general notion of congruence: just syntax for equivalence relation.   *)
(* ------------------------------------------------------------------------- *)

parse_as_infix("==",(10,"right"));;

let cong = new_definition
  `(x == y) (rel:A->A->bool) <=> rel x y`;;

(* ------------------------------------------------------------------------- *)
(* Get real moduli defined and out of the way first.                         *)
(* ------------------------------------------------------------------------- *)

let real_mod = new_definition
  `real_mod n (x:real) y = ?q. integer q /\ x - y = q * n`;;

overload_interface ("mod",`real_mod`);;

(* ------------------------------------------------------------------------- *)
(* Integer divisibility.                                                     *)
(* ------------------------------------------------------------------------- *)

parse_as_infix("divides",(12,"right"));;
overload_interface("divides",`int_divides:int->int->bool`);;

let int_divides = new_definition
  `a divides b <=> ?x. b = a * x`;;

(* ------------------------------------------------------------------------- *)
(* Integer congruences.                                                      *)
(* ------------------------------------------------------------------------- *)

parse_as_prefix "mod";;
overload_interface ("mod",`int_mod:int->int->int->bool`);;

let int_mod = new_definition
  `(mod n) x y = n divides (x - y)`;;

let int_congruent = prove
 (`!x y n. (x == y) (mod n) <=> ?d. x - y = n * d`,
  REWRITE_TAC[int_mod; cong; int_divides]);;

(* ------------------------------------------------------------------------- *)
(* Integer coprimality.                                                      *)
(* ------------------------------------------------------------------------- *)

overload_interface("coprime",`int_coprime:int#int->bool`);;

let int_coprime = new_definition
 `!a b. coprime(a,b) <=> ?x y. a * x + b * y = &1`;;

(* ------------------------------------------------------------------------- *)
(* A tactic for simple divisibility/congruence/coprimality goals.            *)
(* ------------------------------------------------------------------------- *)

let INTEGER_TAC =
  let int_ty = `:int` in
  let INT_POLYEQ_CONV =
    GEN_REWRITE_CONV I [GSYM INT_SUB_0] THENC LAND_CONV INT_POLY_CONV in
  let ISOLATE_VARIABLE =
    let pth = INT_ARITH `!a x. a = &0 <=> x = x + a` in
    let is_defined v t =
      let mons = striplist(dest_binary "int_add") t in
      mem v mons & forall (fun m -> v = m or not(free_in v m)) mons in
    fun vars tm ->
      let th = INT_POLYEQ_CONV tm
      and th' = (SYM_CONV THENC INT_POLYEQ_CONV) tm in
      let v,th1 =
          try find (fun v -> is_defined v (lhand(rand(concl th)))) vars,th'
          with Failure _ ->
              find (fun v -> is_defined v (lhand(rand(concl th')))) vars,th in
      let th2 = TRANS th1 (SPECL [lhs(rand(concl th1)); v] pth) in
      CONV_RULE(RAND_CONV(RAND_CONV INT_POLY_CONV)) th2 in
  let UNWIND_POLYS_CONV tm =
    let vars,bod = strip_exists tm in
    let cjs = conjuncts bod in
    let th1 = tryfind (ISOLATE_VARIABLE vars) cjs in
    let eq = lhand(concl th1) in
    let bod' = list_mk_conj(eq::(subtract cjs [eq])) in
    let th2 = CONJ_ACI_RULE(mk_eq(bod,bod')) in
    let th3 = TRANS th2 (MK_CONJ th1 (REFL(rand(rand(concl th2))))) in
    let v = lhs(lhand(rand(concl th3))) in
    let vars' = (subtract vars [v]) @ [v] in
    let th4 = CONV_RULE(RAND_CONV(REWR_CONV UNWIND_THM2)) (MK_EXISTS v th3) in
    let IMP_RULE v v' =
     DISCH_ALL(itlist SIMPLE_CHOOSE v (itlist SIMPLE_EXISTS v' (ASSUME bod))) in
    let th5 = IMP_ANTISYM_RULE (IMP_RULE vars vars') (IMP_RULE vars' vars) in
    TRANS th5 (itlist MK_EXISTS (subtract vars [v]) th4) in
  let zero_tm = `&0` and one_tm = `&1` in
  let isolate_monomials =
    let mul_tm = `(int_mul)` and add_tm = `(int_add)`
    and neg_tm = `(int_neg)` in
    let dest_mul = dest_binop mul_tm
    and dest_add = dest_binop add_tm
    and mk_mul = mk_binop mul_tm
    and mk_add = mk_binop add_tm in
    let scrub_var v m =
      let ps = striplist dest_mul m in
      let ps' = subtract ps [v] in
      if ps' = [] then one_tm else end_itlist mk_mul ps' in
    let find_multipliers v mons =
      let mons1 = filter (fun m -> free_in v m) mons in
      let mons2 = map (scrub_var v) mons1 in
      if mons2 = [] then zero_tm else end_itlist mk_add mons2 in
    fun vars tm ->
      let cmons,vmons =
         partition (fun m -> intersect (frees m) vars = [])
                   (striplist dest_add tm) in
      let cofactors = map (fun v -> find_multipliers v vmons) vars
      and cnc = if cmons = [] then zero_tm
                else mk_comb(neg_tm,end_itlist mk_add cmons) in
      cofactors,cnc in
  let isolate_variables evs ps eq =
    let vars = filter (fun v -> vfree_in v eq) evs in
    let qs,p = isolate_monomials vars eq in
    let rs = filter (fun t -> type_of t = int_ty) (qs @ ps) in
    let rs = int_ideal_cofactors rs p in
    eq,zip (fst(chop_list(length qs) rs)) vars in
  let subst_in_poly i p = rhs(concl(INT_POLY_CONV (vsubst i p))) in
  let rec solve_idealism evs ps eqs =
    if evs = [] then [] else
    let eq,cfs = tryfind (isolate_variables evs ps) eqs in
    let evs' = subtract evs (map snd cfs)
    and eqs' = map (subst_in_poly cfs) (subtract eqs [eq]) in
    cfs @ solve_idealism evs' ps eqs' in
  let rec GENVAR_EXISTS_CONV tm =
    if not(is_exists tm) then REFL tm else
    let ev,bod = dest_exists tm in
    let gv = genvar(type_of ev) in
    (GEN_ALPHA_CONV gv THENC BINDER_CONV GENVAR_EXISTS_CONV) tm in
  let EXISTS_POLY_TAC (asl,w as gl) =
    let evs,bod = strip_exists w
    and ps = mapfilter (check (fun t -> type_of t = int_ty) o
                        lhs o concl o snd) asl in
    let cfs = solve_idealism evs ps (map lhs (conjuncts bod)) in
    (MAP_EVERY EXISTS_TAC(map (fun v -> rev_assocd v cfs zero_tm) evs) THEN
     REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC INT_RING) gl in
  let SCRUB_NEQ_TAC = MATCH_MP_TAC o MATCH_MP (MESON[]
    `~(x = y) ==> x = y \/ p ==> p`) in
  REWRITE_TAC[int_coprime; int_congruent; int_divides] THEN
  REPEAT(STRIP_TAC ORELSE EQ_TAC) THEN
  REWRITE_TAC[LEFT_AND_EXISTS_THM; RIGHT_AND_EXISTS_THM;
              LEFT_OR_EXISTS_THM; RIGHT_OR_EXISTS_THM] THEN
  CONV_TAC(REPEATC UNWIND_POLYS_CONV) THEN
  REPEAT(FIRST_X_ASSUM SCRUB_NEQ_TAC) THEN
  REWRITE_TAC[LEFT_AND_EXISTS_THM; RIGHT_AND_EXISTS_THM;
              LEFT_OR_EXISTS_THM; RIGHT_OR_EXISTS_THM] THEN
  REPEAT(FIRST_X_ASSUM(MP_TAC o SYM)) THEN
  CONV_TAC(ONCE_DEPTH_CONV INT_POLYEQ_CONV) THEN
  REWRITE_TAC[GSYM INT_ENTIRE;
              TAUT `a \/ (b /\ c) <=> (a \/ b) /\ (a \/ c)`] THEN
  POP_ASSUM_LIST(K ALL_TAC) THEN
  REPEAT DISCH_TAC THEN CONV_TAC GENVAR_EXISTS_CONV THEN
  CONV_TAC(ONCE_DEPTH_CONV INT_POLYEQ_CONV) THEN EXISTS_POLY_TAC;;

let INTEGER_RULE tm = prove(tm,INTEGER_TAC);;

(* ------------------------------------------------------------------------- *)
(* Existence of integer gcd, and the Bezout identity.                        *)
(* ------------------------------------------------------------------------- *)

let WF_INT_MEASURE = prove
 (`!P m. (!x. &0 <= m(x)) /\ (!x. (!y. m(y) < m(x) ==> P(y)) ==> P(x))
         ==> !x:A. P(x)`,
  REPEAT STRIP_TAC THEN SUBGOAL_THEN `!n x:A. m(x) = &n ==> P(x)` MP_TAC THENL
   [MATCH_MP_TAC num_WF; ALL_TAC] THEN
  REWRITE_TAC[GSYM INT_OF_NUM_LT; INT_FORALL_POS] THEN ASM_MESON_TAC[]);;

let WF_INT_MEASURE_2 = prove
 (`!P m. (!x y. &0 <= m x y) /\
         (!x y. (!x' y'. m x' y' < m x y ==> P x' y') ==> P x y)
         ==> !x:A y:B. P x y`,
  REWRITE_TAC[FORALL_UNCURRY; GSYM FORALL_PAIR_THM; WF_INT_MEASURE]);;

let INT_GCD_EXISTS = prove
 (`!a b. ?d. d divides a /\ d divides b /\ ?x y. d = a * x + b * y`,
  let INT_GCD_EXISTS_CASES = INT_ARITH
   `(a = &0 \/ b = &0) \/
    abs(a - b) + abs b < abs a + abs b \/ abs(a + b) + abs b < abs a + abs b \/
    abs a + abs(b - a) < abs a + abs b \/ abs a + abs(b + a) < abs a + abs b` in
  MATCH_MP_TAC WF_INT_MEASURE_2 THEN EXISTS_TAC `\x y. abs(x) + abs(y)` THEN
  REWRITE_TAC[] THEN REPEAT STRIP_TAC THENL [INT_ARITH_TAC; ALL_TAC] THEN
  DISJ_CASES_THEN MP_TAC INT_GCD_EXISTS_CASES THENL
   [STRIP_TAC THEN ASM_REWRITE_TAC[INTEGER_RULE `d divides &0`] THEN
    REWRITE_TAC[INT_MUL_LZERO; INT_ADD_LID; INT_ADD_RID] THEN
    MESON_TAC[INTEGER_RULE `d divides d`; INT_MUL_RID];
    DISCH_THEN(REPEAT_TCL DISJ_CASES_THEN (ANTE_RES_THEN MP_TAC)) THEN
    MATCH_MP_TAC MONO_EXISTS THEN INTEGER_TAC]);;

let INT_GCD_EXISTS_POS = prove
 (`!a b. ?d. &0 <= d /\ d divides a /\ d divides b /\ ?x y. d = a * x + b * y`,
  REPEAT GEN_TAC THEN
  X_CHOOSE_TAC `d:int` (SPECL [`a:int`; `b:int`] INT_GCD_EXISTS) THEN
  DISJ_CASES_TAC(SPEC `d:int` INT_LE_NEGTOTAL) THEN
  ASM_MESON_TAC[INTEGER_RULE `(--d) divides x <=> d divides x`;
                INT_ARITH `a * --x + b * --y = --(a * x + b * y)`]);;

(* ------------------------------------------------------------------------- *)
(* Hence define (positive) gcd function; add elimination to INTEGER_TAC.      *)
(* ------------------------------------------------------------------------- *)

overload_interface("gcd",`int_gcd:int#int->int`);;

let int_gcd = new_specification ["int_gcd"]
 (REWRITE_RULE[EXISTS_UNCURRY; SKOLEM_THM] INT_GCD_EXISTS_POS);;

let INTEGER_TAC =
  let GCD_ELIM_TAC =
    let gcd_tm = `gcd` in
    let dest_gcd tm =
      let l,r = dest_comb tm in
      if l = gcd_tm then dest_pair r else failwith "dest_gcd" in
    REPEAT GEN_TAC THEN
    W(fun (asl,w) ->
          let gts = find_terms (can dest_gcd) w in
          let ths = map
           (fun tm -> let a,b = dest_gcd tm in SPECL [a;b] int_gcd) gts in
          MAP_EVERY MP_TAC ths THEN
          MAP_EVERY SPEC_TAC (zip gts (map (genvar o type_of) gts))) in
  REPEAT(GEN_TAC ORELSE CONJ_TAC) THEN GCD_ELIM_TAC THEN INTEGER_TAC;;

let INTEGER_RULE tm = prove(tm,INTEGER_TAC);;

(* ------------------------------------------------------------------------- *)
(* Mapping from nonnegative integers back to natural numbers.                *)
(* ------------------------------------------------------------------------- *)

let num_of_int = new_definition
  `num_of_int x = @n. &n = x`;;

let NUM_OF_INT_OF_NUM = prove
 (`!n. num_of_int(&n) = n`,
  REWRITE_TAC[num_of_int; INT_OF_NUM_EQ; SELECT_UNIQUE]);;

let INT_OF_NUM_OF_INT = prove
 (`!x. &0 <= x ==> &(num_of_int x) = x`,
  REWRITE_TAC[GSYM INT_FORALL_POS; num_of_int] THEN
  GEN_TAC THEN CONV_TAC SELECT_CONV THEN MESON_TAC[]);;

let NUM_OF_INT = prove
 (`!x. &0 <= x <=> (&(num_of_int x) = x)`,
  MESON_TAC[INT_OF_NUM_OF_INT; INT_POS]);;

(* ------------------------------------------------------------------------- *)
(* Now define similar notions over the natural numbers.                      *)
(* ------------------------------------------------------------------------- *)

overload_interface("divides",`num_divides:num->num->bool`);;
overload_interface ("mod",`num_mod:num->num->num->bool`);;
overload_interface("coprime",`num_coprime:num#num->bool`);;
overload_interface("gcd",`num_gcd:num#num->num`);;

let num_divides = new_definition
 `a divides b <=> &a divides &b`;;

let num_mod = new_definition
  `(mod n) x y <=> (mod &n) (&x) (&y)`;;

let num_congruent = prove
 (`!x y n. (x == y) (mod n) <=> (&x == &y) (mod &n)`,
  REWRITE_TAC[cong; num_mod]);;

let num_coprime = new_definition
 `coprime(a,b) <=> coprime(&a,&b)`;;

let num_gcd = new_definition
 `gcd(a,b) = num_of_int(gcd(&a,&b))`;;

(* ------------------------------------------------------------------------- *)
(* Map an assertion over N to an integer equivalent.                         *)
(* To make this work nicely, all variables of type num should be quantified. *)
(* ------------------------------------------------------------------------- *)

let NUM_TO_INT_CONV =
  let pth_relativize = prove
   (`((!n. P(&n)) <=> (!i. ~(&0 <= i) \/ P i)) /\
     ((?n. P(&n)) <=> (?i. &0 <= i /\ P i))`,
    REWRITE_TAC[INT_EXISTS_POS; INT_FORALL_POS] THEN MESON_TAC[]) in
  let relation_conv = (GEN_REWRITE_CONV TOP_SWEEP_CONV o map GSYM)
   [INT_OF_NUM_EQ; INT_OF_NUM_LE; INT_OF_NUM_LT; INT_OF_NUM_GE; INT_OF_NUM_GT;
    INT_OF_NUM_SUC; INT_OF_NUM_ADD; INT_OF_NUM_MUL; INT_OF_NUM_POW]
  and quantifier_conv = GEN_REWRITE_CONV DEPTH_CONV [pth_relativize] in
  NUM_SIMPLIFY_CONV THENC relation_conv THENC quantifier_conv;;

(* ------------------------------------------------------------------------- *)
(* Linear decision procedure for the naturals at last!                       *)
(* ------------------------------------------------------------------------- *)

let ARITH_RULE =
  let init_conv =
    NUM_SIMPLIFY_CONV THENC
    GEN_REWRITE_CONV DEPTH_CONV [ADD1] THENC
    PROP_ATOM_CONV (BINOP_CONV NUM_NORMALIZE_CONV) THENC
    PRENEX_CONV THENC
    (GEN_REWRITE_CONV TOP_SWEEP_CONV o map GSYM)
      [INT_OF_NUM_EQ; INT_OF_NUM_LE; INT_OF_NUM_LT; INT_OF_NUM_GE;
       INT_OF_NUM_GT; INT_OF_NUM_ADD; SPEC `NUMERAL k` INT_OF_NUM_MUL;
       INT_OF_NUM_MAX; INT_OF_NUM_MIN]
  and is_numimage t =
    match t with
      Comb(Const("int_of_num",_),n) when not(is_numeral n) -> true
    | _ -> false in
  fun tm ->
    let th1 = init_conv tm in
    let tm1 = rand(concl th1) in
    let avs,bod = strip_forall tm1 in
    let nim = setify(find_terms is_numimage bod) in
    let gvs = map (genvar o type_of) nim in
    let pths = map (fun v -> SPEC (rand v) INT_POS) nim in
    let ibod = itlist (curry mk_imp o concl) pths bod in
    let gbod = subst (zip gvs nim) ibod in
    let th2 = INST (zip nim gvs) (INT_ARITH gbod) in
    let th3 = GENL avs (rev_itlist (C MP) pths th2) in
    EQ_MP (SYM th1) th3;;

let ARITH_TAC = CONV_TAC(EQT_INTRO o ARITH_RULE);;

let ASM_ARITH_TAC =
  REPEAT(FIRST_X_ASSUM(MP_TAC o check (not o is_forall o concl))) THEN
  ARITH_TAC;;

(* ------------------------------------------------------------------------- *)
(* Also a similar divisibility procedure for natural numbers.                *)
(* ------------------------------------------------------------------------- *)

let NUM_GCD = prove
 (`!a b. &(gcd(a,b)) = gcd(&a,&b)`,
  REWRITE_TAC[num_gcd; GSYM NUM_OF_INT; int_gcd]);;

let NUMBER_TAC =
  let pth_relativize = prove
   (`((!n. P(&n)) <=> (!i. &0 <= i ==> P i)) /\
     ((?n. P(&n)) <=> (?i. &0 <= i /\ P i))`,
    GEN_REWRITE_TAC RAND_CONV [TAUT `(a <=> b) <=> (~a <=> ~b)`] THEN
    REWRITE_TAC[NOT_EXISTS_THM; INT_FORALL_POS] THEN MESON_TAC[]) in
  let relation_conv =
   GEN_REWRITE_CONV TOP_SWEEP_CONV
    (num_divides::num_congruent::num_coprime::NUM_GCD::(map GSYM
    [INT_OF_NUM_EQ; INT_OF_NUM_LE; INT_OF_NUM_LT; INT_OF_NUM_GE; INT_OF_NUM_GT;
     INT_OF_NUM_SUC; INT_OF_NUM_ADD; INT_OF_NUM_MUL; INT_OF_NUM_POW]))
  and quantifier_conv = GEN_REWRITE_CONV DEPTH_CONV [pth_relativize] in
  W(fun (_,w) -> MAP_EVERY (fun v -> SPEC_TAC(v,v)) (frees w)) THEN
  CONV_TAC(relation_conv THENC quantifier_conv) THEN
  REWRITE_TAC[RIGHT_IMP_FORALL_THM] THEN REPEAT GEN_TAC THEN
  INTEGER_TAC;;

let NUMBER_RULE tm = prove(tm,NUMBER_TAC);;

(* ------------------------------------------------------------------------- *)
(* Make sure we give priority to N.                                          *)
(* ------------------------------------------------------------------------- *)

prioritize_num();;