1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
|
(* ========================================================================= *)
(* Syntax sugaring; theory of pairing, with a bit of support. *)
(* *)
(* John Harrison, University of Cambridge Computer Laboratory *)
(* *)
(* (c) Copyright, University of Cambridge 1998 *)
(* (c) Copyright, John Harrison 1998-2007 *)
(* ========================================================================= *)
needs "quot.ml";;
(* ------------------------------------------------------------------------- *)
(* Constants implementing (or at least tagging) syntactic sugar. *)
(* ------------------------------------------------------------------------- *)
let LET_DEF = new_definition
`LET (f:A->B) x = f x`;;
let LET_END_DEF = new_definition
`LET_END (t:A) = t`;;
let GABS_DEF = new_definition
`GABS (P:A->bool) = (@) P`;;
let GEQ_DEF = new_definition
`GEQ a b = (a:A = b)`;;
let _SEQPATTERN = new_definition
`_SEQPATTERN = \r s x. if ?y. r x y then r x else s x`;;
let _UNGUARDED_PATTERN = new_definition
`_UNGUARDED_PATTERN = \p r. p /\ r`;;
let _GUARDED_PATTERN = new_definition
`_GUARDED_PATTERN = \p g r. p /\ g /\ r`;;
let _MATCH = new_definition
`_MATCH = \e r. if (?!) (r e) then (@) (r e) else @z. F`;;
let _FUNCTION = new_definition
`_FUNCTION = \r x. if (?!) (r x) then (@) (r x) else @z. F`;;
(* ------------------------------------------------------------------------- *)
(* Pair type. *)
(* ------------------------------------------------------------------------- *)
let mk_pair_def = new_definition
`mk_pair (x:A) (y:B) = \a b. (a = x) /\ (b = y)`;;
let PAIR_EXISTS_THM = prove
(`?x. ?(a:A) (b:B). x = mk_pair a b`,
MESON_TAC[]);;
let prod_tybij = new_type_definition
"prod" ("ABS_prod","REP_prod") PAIR_EXISTS_THM;;
let REP_ABS_PAIR = prove
(`!(x:A) (y:B). REP_prod (ABS_prod (mk_pair x y)) = mk_pair x y`,
MESON_TAC[prod_tybij]);;
parse_as_infix (",",(14,"right"));;
let COMMA_DEF = new_definition
`(x:A),(y:B) = ABS_prod(mk_pair x y)`;;
let FST_DEF = new_definition
`FST (p:A#B) = @x. ?y. p = x,y`;;
let SND_DEF = new_definition
`SND (p:A#B) = @y. ?x. p = x,y`;;
let PAIR_EQ = prove
(`!(x:A) (y:B) a b. (x,y = a,b) <=> (x = a) /\ (y = b)`,
REPEAT GEN_TAC THEN EQ_TAC THENL
[REWRITE_TAC[COMMA_DEF] THEN
DISCH_THEN(MP_TAC o AP_TERM `REP_prod:A#B->A->B->bool`) THEN
REWRITE_TAC[REP_ABS_PAIR] THEN REWRITE_TAC[mk_pair_def; FUN_EQ_THM];
ALL_TAC] THEN
MESON_TAC[]);;
let PAIR_SURJECTIVE = prove
(`!p:A#B. ?x y. p = x,y`,
GEN_TAC THEN REWRITE_TAC[COMMA_DEF] THEN
MP_TAC(SPEC `REP_prod p :A->B->bool` (CONJUNCT2 prod_tybij)) THEN
REWRITE_TAC[CONJUNCT1 prod_tybij] THEN
DISCH_THEN(X_CHOOSE_THEN `a:A` (X_CHOOSE_THEN `b:B` MP_TAC)) THEN
DISCH_THEN(MP_TAC o AP_TERM `ABS_prod:(A->B->bool)->A#B`) THEN
REWRITE_TAC[CONJUNCT1 prod_tybij] THEN DISCH_THEN SUBST1_TAC THEN
MAP_EVERY EXISTS_TAC [`a:A`; `b:B`] THEN REFL_TAC);;
let FST = prove
(`!(x:A) (y:B). FST(x,y) = x`,
REPEAT GEN_TAC THEN REWRITE_TAC[FST_DEF] THEN
MATCH_MP_TAC SELECT_UNIQUE THEN GEN_TAC THEN BETA_TAC THEN
REWRITE_TAC[PAIR_EQ] THEN EQ_TAC THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
EXISTS_TAC `y:B` THEN ASM_REWRITE_TAC[]);;
let SND = prove
(`!(x:A) (y:B). SND(x,y) = y`,
REPEAT GEN_TAC THEN REWRITE_TAC[SND_DEF] THEN
MATCH_MP_TAC SELECT_UNIQUE THEN GEN_TAC THEN BETA_TAC THEN
REWRITE_TAC[PAIR_EQ] THEN EQ_TAC THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
EXISTS_TAC `x:A` THEN ASM_REWRITE_TAC[]);;
let PAIR = prove
(`!x:A#B. FST x,SND x = x`,
GEN_TAC THEN
(X_CHOOSE_THEN `a:A` (X_CHOOSE_THEN `b:B` SUBST1_TAC)
(SPEC `x:A#B` PAIR_SURJECTIVE)) THEN
REWRITE_TAC[FST; SND]);;
let pair_INDUCT = prove
(`!P. (!x y. P (x,y)) ==> !p. P p`,
REPEAT STRIP_TAC THEN
GEN_REWRITE_TAC RAND_CONV [GSYM PAIR] THEN
FIRST_ASSUM MATCH_ACCEPT_TAC);;
let pair_RECURSION = prove
(`!PAIR'. ?fn:A#B->C. !a0 a1. fn (a0,a1) = PAIR' a0 a1`,
GEN_TAC THEN EXISTS_TAC `\p. (PAIR':A->B->C) (FST p) (SND p)` THEN
REWRITE_TAC[FST; SND]);;
(* ------------------------------------------------------------------------- *)
(* Syntax operations. *)
(* ------------------------------------------------------------------------- *)
let is_pair = is_binary ",";;
let dest_pair = dest_binary ",";;
let mk_pair =
let ptm = mk_const(",",[]) in
fun (l,r) -> mk_comb(mk_comb(inst [type_of l,aty; type_of r,bty] ptm,l),r);;
(* ------------------------------------------------------------------------- *)
(* Extend basic rewrites; extend new_definition to allow paired varstructs. *)
(* ------------------------------------------------------------------------- *)
extend_basic_rewrites [FST; SND; PAIR];;
(* ------------------------------------------------------------------------- *)
(* Extend definitions to paired varstructs with benignity checking. *)
(* ------------------------------------------------------------------------- *)
let the_definitions = ref
[SND_DEF; FST_DEF; COMMA_DEF; mk_pair_def; GEQ_DEF; GABS_DEF;
LET_END_DEF; LET_DEF; one_DEF; I_DEF; o_DEF; COND_DEF; _FALSITY_;
EXISTS_UNIQUE_DEF; NOT_DEF; F_DEF; OR_DEF; EXISTS_DEF; FORALL_DEF; IMP_DEF;
AND_DEF; T_DEF];;
let new_definition =
let depair =
let rec depair gv arg =
try let l,r = dest_pair arg in
(depair (list_mk_icomb "FST" [gv]) l) @
(depair (list_mk_icomb "SND" [gv]) r)
with Failure _ -> [gv,arg] in
fun arg -> let gv = genvar(type_of arg) in
gv,depair gv arg in
fun tm ->
let avs,def = strip_forall tm in
try let th,th' = tryfind (fun th -> th,PART_MATCH I th def)
(!the_definitions) in
ignore(PART_MATCH I th' (snd(strip_forall(concl th))));
warn true "Benign redefinition"; GEN_ALL (GENL avs th')
with Failure _ ->
let l,r = dest_eq def in
let fn,args = strip_comb l in
let gargs,reps = (I F_F unions) (unzip(map depair args)) in
let l' = list_mk_comb(fn,gargs) and r' = subst reps r in
let th1 = new_definition (mk_eq(l',r')) in
let slist = zip args gargs in
let th2 = INST slist (SPEC_ALL th1) in
let xreps = map (subst slist o fst) reps in
let threps = map (SYM o PURE_REWRITE_CONV[FST; SND]) xreps in
let th3 = TRANS th2 (SYM(SUBS_CONV threps r)) in
let th4 = GEN_ALL (GENL avs th3) in
the_definitions := th4::(!the_definitions); th4;;
(* ------------------------------------------------------------------------- *)
(* A few more useful definitions. *)
(* ------------------------------------------------------------------------- *)
let CURRY_DEF = new_definition
`CURRY(f:A#B->C) x y = f(x,y)`;;
let UNCURRY_DEF = new_definition
`!f x y. UNCURRY(f:A->B->C)(x,y) = f x y`;;
let PASSOC_DEF = new_definition
`!f x y z. PASSOC (f:(A#B)#C->D) (x,y,z) = f ((x,y),z)`;;
(* ------------------------------------------------------------------------- *)
(* Analog of ABS_CONV for generalized abstraction. *)
(* ------------------------------------------------------------------------- *)
let GABS_CONV conv tm =
if is_abs tm then ABS_CONV conv tm else
let gabs,bod = dest_comb tm in
let f,qtm = dest_abs bod in
let xs,bod = strip_forall qtm in
AP_TERM gabs (ABS f (itlist MK_FORALL xs (RAND_CONV conv bod)));;
(* ------------------------------------------------------------------------- *)
(* General beta-conversion over linear pattern of nested constructors. *)
(* ------------------------------------------------------------------------- *)
let GEN_BETA_CONV =
let projection_cache = ref [] in
let create_projections conname =
try assoc conname (!projection_cache) with Failure _ ->
let genty = get_const_type conname in
let conty = fst(dest_type(repeat (snd o dest_fun_ty) genty)) in
let _,_,rth = assoc conty (!inductive_type_store) in
let sth = SPEC_ALL rth in
let evs,bod = strip_exists(concl sth) in
let cjs = conjuncts bod in
let ourcj = find ((=)conname o fst o dest_const o fst o strip_comb o
rand o lhand o snd o strip_forall) cjs in
let n = index ourcj cjs in
let avs,eqn = strip_forall ourcj in
let con',args = strip_comb(rand eqn) in
let aargs,zargs = chop_list (length avs) args in
let gargs = map (genvar o type_of) zargs in
let gcon = genvar(itlist (mk_fun_ty o type_of) avs (type_of(rand eqn))) in
let bth =
INST [list_mk_abs(aargs @ gargs,list_mk_comb(gcon,avs)),con'] sth in
let cth = el n (CONJUNCTS(ASSUME(snd(strip_exists(concl bth))))) in
let dth = CONV_RULE (funpow (length avs) BINDER_CONV
(RAND_CONV(BETAS_CONV))) cth in
let eth = SIMPLE_EXISTS (rator(lhand(snd(strip_forall(concl dth))))) dth in
let fth = PROVE_HYP bth (itlist SIMPLE_CHOOSE evs eth) in
let zty = type_of (rand(snd(strip_forall(concl dth)))) in
let mk_projector a =
let ity = type_of a in
let th = BETA_RULE(PINST [ity,zty] [list_mk_abs(avs,a),gcon] fth) in
SYM(SPEC_ALL(SELECT_RULE th)) in
let ths = map mk_projector avs in
(projection_cache := (conname,ths)::(!projection_cache); ths) in
let GEQ_CONV = REWR_CONV(GSYM GEQ_DEF)
and DEGEQ_RULE = CONV_RULE(REWR_CONV GEQ_DEF) in
let GABS_RULE =
let pth = prove
(`(?) P ==> P (GABS P)`,
SIMP_TAC[GABS_DEF; SELECT_AX; ETA_AX]) in
MATCH_MP pth in
let rec create_iterated_projections tm =
if frees tm = [] then []
else if is_var tm then [REFL tm] else
let con,args = strip_comb tm in
let prjths = create_projections (fst(dest_const con)) in
let atm = rand(rand(concl(hd prjths))) in
let instn = term_match [] atm tm in
let arths = map (INSTANTIATE instn) prjths in
let ths = map (fun arth ->
let sths = create_iterated_projections (lhand(concl arth)) in
map (CONV_RULE(RAND_CONV(SUBS_CONV[arth]))) sths) arths in
unions' equals_thm ths in
let GEN_BETA_CONV tm =
try BETA_CONV tm with Failure _ ->
let l,r = dest_comb tm in
let vstr,bod = dest_gabs l in
let instn = term_match [] vstr r in
let prjs = create_iterated_projections vstr in
let th1 = SUBS_CONV prjs bod in
let bod' = rand(concl th1) in
let gv = genvar(type_of vstr) in
let pat = mk_abs(gv,subst[gv,vstr] bod') in
let th2 = TRANS (BETA_CONV (mk_comb(pat,vstr))) (SYM th1) in
let avs = fst(strip_forall(body(rand l))) in
let th3 = GENL (fst(strip_forall(body(rand l)))) th2 in
let efn = genvar(type_of pat) in
let th4 = EXISTS(mk_exists(efn,subst[efn,pat] (concl th3)),pat) th3 in
let th5 = CONV_RULE(funpow (length avs + 1) BINDER_CONV GEQ_CONV) th4 in
let th6 = CONV_RULE BETA_CONV (GABS_RULE th5) in
INSTANTIATE instn (DEGEQ_RULE (SPEC_ALL th6)) in
GEN_BETA_CONV;;
(* ------------------------------------------------------------------------- *)
(* Add this to the basic "rewrites" and pairs to the inductive type store. *)
(* ------------------------------------------------------------------------- *)
extend_basic_convs("GEN_BETA_CONV",(`GABS (\a. b) c`,GEN_BETA_CONV));;
inductive_type_store :=
("prod",(1,pair_INDUCT,pair_RECURSION))::(!inductive_type_store);;
(* ------------------------------------------------------------------------- *)
(* Convenient rules to eliminate binders over pairs. *)
(* ------------------------------------------------------------------------- *)
let FORALL_PAIR_THM = prove
(`!P. (!p. P p) <=> (!p1 p2. P(p1,p2))`,
MESON_TAC[PAIR]);;
let EXISTS_PAIR_THM = prove
(`!P. (?p. P p) <=> ?p1 p2. P(p1,p2)`,
MESON_TAC[PAIR]);;
let LAMBDA_PAIR_THM = prove
(`!t. (\p. t p) = (\(x,y). t(x,y))`,
REWRITE_TAC[FORALL_PAIR_THM; FUN_EQ_THM]);;
let PAIRED_ETA_THM = prove
(`(!f. (\(x,y). f (x,y)) = f) /\
(!f. (\(x,y,z). f (x,y,z)) = f) /\
(!f. (\(w,x,y,z). f (w,x,y,z)) = f)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[FUN_EQ_THM; FORALL_PAIR_THM]);;
let FORALL_UNCURRY = prove
(`!P. (!f:A->B->C. P f) <=> (!f. P (\a b. f(a,b)))`,
GEN_TAC THEN EQ_TAC THEN SIMP_TAC[] THEN DISCH_TAC THEN
X_GEN_TAC `f:A->B->C` THEN
FIRST_ASSUM(MP_TAC o SPEC `\(a,b). (f:A->B->C) a b`) THEN SIMP_TAC[ETA_AX]);;
let EXISTS_UNCURRY = prove
(`!P. (?f:A->B->C. P f) <=> (?f. P (\a b. f(a,b)))`,
ONCE_REWRITE_TAC[MESON[] `(?x. P x) <=> ~(!x. ~P x)`] THEN
REWRITE_TAC[FORALL_UNCURRY]);;
let EXISTS_CURRY = prove
(`!P. (?f. P f) <=> (?f. P (\(a,b). f a b))`,
REWRITE_TAC[EXISTS_UNCURRY; PAIRED_ETA_THM]);;
let FORALL_CURRY = prove
(`!P. (!f. P f) <=> (!f. P (\(a,b). f a b))`,
REWRITE_TAC[FORALL_UNCURRY; PAIRED_ETA_THM]);;
(* ------------------------------------------------------------------------- *)
(* Related theorems for explicitly paired quantifiers. *)
(* ------------------------------------------------------------------------- *)
let FORALL_PAIRED_THM = prove
(`!P. (!(x,y). P x y) <=> (!x y. P x y)`,
GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o RATOR_CONV) [FORALL_DEF] THEN
REWRITE_TAC[FUN_EQ_THM; FORALL_PAIR_THM]);;
let EXISTS_PAIRED_THM = prove
(`!P. (?(x,y). P x y) <=> (?x y. P x y)`,
GEN_TAC THEN MATCH_MP_TAC(TAUT `(~p <=> ~q) ==> (p <=> q)`) THEN
REWRITE_TAC[REWRITE_RULE[ETA_AX] NOT_EXISTS_THM; FORALL_PAIR_THM]);;
(* ------------------------------------------------------------------------- *)
(* Likewise for tripled quantifiers (could continue with the same proof). *)
(* ------------------------------------------------------------------------- *)
let FORALL_TRIPLED_THM = prove
(`!P. (!(x,y,z). P x y z) <=> (!x y z. P x y z)`,
GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o RATOR_CONV) [FORALL_DEF] THEN
REWRITE_TAC[FUN_EQ_THM; FORALL_PAIR_THM]);;
let EXISTS_TRIPLED_THM = prove
(`!P. (?(x,y,z). P x y z) <=> (?x y z. P x y z)`,
GEN_TAC THEN MATCH_MP_TAC(TAUT `(~p <=> ~q) ==> (p <=> q)`) THEN
REWRITE_TAC[REWRITE_RULE[ETA_AX] NOT_EXISTS_THM; FORALL_PAIR_THM]);;
(* ------------------------------------------------------------------------- *)
(* Expansion of a let-term. *)
(* ------------------------------------------------------------------------- *)
let let_CONV =
let let1_CONV = REWR_CONV LET_DEF THENC GEN_BETA_CONV
and lete_CONV = REWR_CONV LET_END_DEF in
let rec EXPAND_BETAS_CONV tm =
let tm' = rator tm in
try let1_CONV tm with Failure _ ->
let th1 = AP_THM (EXPAND_BETAS_CONV tm') (rand tm) in
let th2 = GEN_BETA_CONV (rand(concl th1)) in
TRANS th1 th2 in
fun tm ->
let ltm,pargs = strip_comb tm in
if fst(dest_const ltm) <> "LET" or pargs = [] then failwith "let_CONV" else
let abstm = hd pargs in
let vs,bod = strip_gabs abstm in
let es = tl pargs in
let n = length es in
if length vs <> n then failwith "let_CONV" else
(EXPAND_BETAS_CONV THENC lete_CONV) tm;;
let (LET_TAC:tactic) =
let is_trivlet tm =
try let assigs,bod = dest_let tm in
forall (uncurry (=)) assigs
with Failure _ -> false
and PROVE_DEPAIRING_EXISTS =
let pth = prove
(`((x,y) = a) <=> (x = FST a) /\ (y = SND a)`,
MESON_TAC[PAIR; PAIR_EQ]) in
let rewr1_CONV = GEN_REWRITE_CONV TOP_DEPTH_CONV [pth]
and rewr2_RULE = GEN_REWRITE_RULE (LAND_CONV o DEPTH_CONV)
[TAUT `(x = x) <=> T`; TAUT `a /\ T <=> a`] in
fun tm ->
let th1 = rewr1_CONV tm in
let tm1 = rand(concl th1) in
let cjs = conjuncts tm1 in
let vars = map lhand cjs in
let th2 = EQ_MP (SYM th1) (ASSUME tm1) in
let th3 = DISCH_ALL (itlist SIMPLE_EXISTS vars th2) in
let th4 = INST (map (fun t -> rand t,lhand t) cjs) th3 in
MP (rewr2_RULE th4) TRUTH in
fun (asl,w as gl) ->
let path = try find_path is_trivlet w
with Failure _ -> find_path is_let w in
let tm = follow_path path w in
let assigs,bod = dest_let tm in
let abbrevs =
mapfilter (fun (x,y) -> if x = y then fail() else mk_eq(x,y)) assigs in
let lvars = itlist (union o frees o lhs) abbrevs []
and avoids = itlist (union o thm_frees o snd) asl (frees w) in
let rename = vsubst (zip (variants avoids lvars) lvars) in
let abbrevs' = map (fun eq -> let l,r = dest_eq eq in mk_eq(rename l,r))
abbrevs in
let deprths = map PROVE_DEPAIRING_EXISTS abbrevs' in
(MAP_EVERY (REPEAT_TCL CHOOSE_THEN
(fun th -> let th' = SYM th in
SUBST_ALL_TAC th' THEN ASSUME_TAC th')) deprths THEN
W(fun (asl',w') ->
let tm' = follow_path path w' in
CONV_TAC(PATH_CONV path (K(let_CONV tm'))))) gl;;
|