File: theorems.ml

package info (click to toggle)
hol-light 20131026-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 26,264 kB
  • ctags: 4,620
  • sloc: ml: 400,325; cpp: 438; java: 279; lisp: 261; makefile: 256; sh: 190; yacc: 108; perl: 78; ansic: 57; sed: 39
file content (477 lines) | stat: -rw-r--r-- 17,581 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
(* ========================================================================= *)
(* Additional theorems, mainly about quantifiers, and additional tactics.    *)
(*                                                                           *)
(*       John Harrison, University of Cambridge Computer Laboratory          *)
(*                                                                           *)
(*            (c) Copyright, University of Cambridge 1998                    *)
(*              (c) Copyright, John Harrison 1998-2007                       *)
(*                 (c) Copyright, Marco Maggesi 2012                         *)
(* ========================================================================= *)

needs "simp.ml";;

(* ------------------------------------------------------------------------- *)
(* More stuff about equality.                                                *)
(* ------------------------------------------------------------------------- *)

let EQ_REFL = prove
 (`!x:A. x = x`,
  GEN_TAC THEN REFL_TAC);;

let REFL_CLAUSE = prove
 (`!x:A. (x = x) <=> T`,
  GEN_TAC THEN MATCH_ACCEPT_TAC(EQT_INTRO(SPEC_ALL EQ_REFL)));;

let EQ_SYM = prove
 (`!(x:A) y. (x = y) ==> (y = x)`,
  REPEAT GEN_TAC THEN DISCH_THEN(ACCEPT_TAC o SYM));;

let EQ_SYM_EQ = prove
 (`!(x:A) y. (x = y) <=> (y = x)`,
  REPEAT GEN_TAC THEN EQ_TAC THEN MATCH_ACCEPT_TAC EQ_SYM);;

let EQ_TRANS = prove
 (`!(x:A) y z. (x = y) /\ (y = z) ==> (x = z)`,
  REPEAT STRIP_TAC THEN PURE_ASM_REWRITE_TAC[] THEN REFL_TAC);;

(* ------------------------------------------------------------------------- *)
(* The following is a common special case of ordered rewriting.              *)
(* ------------------------------------------------------------------------- *)

let AC acsuite = EQT_ELIM o PURE_REWRITE_CONV[acsuite; REFL_CLAUSE];;

(* ------------------------------------------------------------------------- *)
(* A couple of theorems about beta reduction.                                *)
(* ------------------------------------------------------------------------- *)

let BETA_THM = prove
 (`!(f:A->B) y. (\x. (f:A->B) x) y = f y`,
  REPEAT GEN_TAC THEN BETA_TAC THEN REFL_TAC);;

let ABS_SIMP = prove
 (`!(t1:A) (t2:B). (\x. t1) t2 = t1`,
  REPEAT GEN_TAC THEN REWRITE_TAC[BETA_THM; REFL_CLAUSE]);;

(* ------------------------------------------------------------------------- *)
(* A few "big name" intuitionistic tautologies.                              *)
(* ------------------------------------------------------------------------- *)

let CONJ_ASSOC = prove
 (`!t1 t2 t3. t1 /\ t2 /\ t3 <=> (t1 /\ t2) /\ t3`,
  ITAUT_TAC);;

let CONJ_SYM = prove
 (`!t1 t2. t1 /\ t2 <=> t2 /\ t1`,
  ITAUT_TAC);;

let CONJ_ACI = prove
 (`(p /\ q <=> q /\ p) /\
   ((p /\ q) /\ r <=> p /\ (q /\ r)) /\
   (p /\ (q /\ r) <=> q /\ (p /\ r)) /\
   (p /\ p <=> p) /\
   (p /\ (p /\ q) <=> p /\ q)`,
  ITAUT_TAC);;

let DISJ_ASSOC = prove
 (`!t1 t2 t3. t1 \/ t2 \/ t3 <=> (t1 \/ t2) \/ t3`,
  ITAUT_TAC);;

let DISJ_SYM = prove
 (`!t1 t2. t1 \/ t2 <=> t2 \/ t1`,
  ITAUT_TAC);;

let DISJ_ACI = prove
 (`(p \/ q <=> q \/ p) /\
   ((p \/ q) \/ r <=> p \/ (q \/ r)) /\
   (p \/ (q \/ r) <=> q \/ (p \/ r)) /\
   (p \/ p <=> p) /\
   (p \/ (p \/ q) <=> p \/ q)`,
  ITAUT_TAC);;

let IMP_CONJ = prove
 (`p /\ q ==> r <=> p ==> q ==> r`,
  ITAUT_TAC);;

let IMP_IMP = GSYM IMP_CONJ;;

let IMP_CONJ_ALT = prove
 (`p /\ q ==> r <=> q ==> p ==> r`,
  ITAUT_TAC);;

(* ------------------------------------------------------------------------- *)
(* A couple of "distribution" tautologies are useful.                        *)
(* ------------------------------------------------------------------------- *)

let LEFT_OR_DISTRIB = prove
 (`!p q r. p /\ (q \/ r) <=> p /\ q \/ p /\ r`,
  ITAUT_TAC);;

let RIGHT_OR_DISTRIB = prove
 (`!p q r. (p \/ q) /\ r <=> p /\ r \/ q /\ r`,
  ITAUT_TAC);;

(* ------------------------------------------------------------------------- *)
(* Degenerate cases of quantifiers.                                          *)
(* ------------------------------------------------------------------------- *)

let FORALL_SIMP = prove
 (`!t. (!x:A. t) = t`,
  ITAUT_TAC);;

let EXISTS_SIMP = prove
 (`!t. (?x:A. t) = t`,
  ITAUT_TAC);;

(* ------------------------------------------------------------------------- *)
(* I also use this a lot (as a prelude to congruence reasoning).             *)
(* ------------------------------------------------------------------------- *)

let EQ_IMP = ITAUT `(a <=> b) ==> a ==> b`;;

(* ------------------------------------------------------------------------- *)
(* Start building up the basic rewrites; we add a few more later.            *)
(* ------------------------------------------------------------------------- *)

let EQ_CLAUSES = prove
 (`!t. ((T <=> t) <=> t) /\ ((t <=> T) <=> t) /\
       ((F <=> t) <=> ~t) /\ ((t <=> F) <=> ~t)`,
  ITAUT_TAC);;

let NOT_CLAUSES_WEAK = prove
 (`(~T <=> F) /\ (~F <=> T)`,
  ITAUT_TAC);;

let AND_CLAUSES = prove
 (`!t. (T /\ t <=> t) /\ (t /\ T <=> t) /\ (F /\ t <=> F) /\
       (t /\ F <=> F) /\ (t /\ t <=> t)`,
  ITAUT_TAC);;

let OR_CLAUSES = prove
 (`!t. (T \/ t <=> T) /\ (t \/ T <=> T) /\ (F \/ t <=> t) /\
       (t \/ F <=> t) /\ (t \/ t <=> t)`,
  ITAUT_TAC);;

let IMP_CLAUSES = prove
 (`!t. (T ==> t <=> t) /\ (t ==> T <=> T) /\ (F ==> t <=> T) /\
       (t ==> t <=> T) /\ (t ==> F <=> ~t)`,
  ITAUT_TAC);;

extend_basic_rewrites
  [REFL_CLAUSE;
   EQ_CLAUSES;
   NOT_CLAUSES_WEAK;
   AND_CLAUSES;
   OR_CLAUSES;
   IMP_CLAUSES;
   FORALL_SIMP;
   EXISTS_SIMP;
   BETA_THM;
   let IMP_EQ_CLAUSE = prove
    (`((x = x) ==> p) <=> p`,
     REWRITE_TAC[EQT_INTRO(SPEC_ALL EQ_REFL); IMP_CLAUSES]) in
   IMP_EQ_CLAUSE];;

extend_basic_congs
  [ITAUT `(p <=> p') ==> (p' ==> (q <=> q')) ==> (p ==> q <=> p' ==> q')`];;

(* ------------------------------------------------------------------------- *)
(* Rewrite rule for unique existence.                                        *)
(* ------------------------------------------------------------------------- *)

let EXISTS_UNIQUE_THM = prove
 (`!P. (?!x:A. P x) <=> (?x. P x) /\ (!x x'. P x /\ P x' ==> (x = x'))`,
  GEN_TAC THEN REWRITE_TAC[EXISTS_UNIQUE_DEF]);;

(* ------------------------------------------------------------------------- *)
(* Trivial instances of existence.                                           *)
(* ------------------------------------------------------------------------- *)

let EXISTS_REFL = prove
 (`!a:A. ?x. x = a`,
  GEN_TAC THEN EXISTS_TAC `a:A` THEN REFL_TAC);;

let EXISTS_UNIQUE_REFL = prove
 (`!a:A. ?!x. x = a`,
  GEN_TAC THEN REWRITE_TAC[EXISTS_UNIQUE_THM] THEN
  REPEAT(EQ_TAC ORELSE STRIP_TAC) THENL
   [EXISTS_TAC `a:A`; ASM_REWRITE_TAC[]] THEN
  REFL_TAC);;

(* ------------------------------------------------------------------------- *)
(* Unwinding.                                                                *)
(* ------------------------------------------------------------------------- *)

let UNWIND_THM1 = prove
 (`!P (a:A). (?x. a = x /\ P x) <=> P a`,
  REPEAT GEN_TAC THEN EQ_TAC THENL
   [DISCH_THEN(CHOOSE_THEN (CONJUNCTS_THEN2 SUBST1_TAC ACCEPT_TAC));
    DISCH_TAC THEN EXISTS_TAC `a:A` THEN
    CONJ_TAC THEN TRY(FIRST_ASSUM MATCH_ACCEPT_TAC) THEN
    REFL_TAC]);;

let UNWIND_THM2 = prove
 (`!P (a:A). (?x. x = a /\ P x) <=> P a`,
  REPEAT GEN_TAC THEN CONV_TAC(LAND_CONV(ONCE_DEPTH_CONV SYM_CONV)) THEN
  MATCH_ACCEPT_TAC UNWIND_THM1);;

let FORALL_UNWIND_THM2 = prove
 (`!P (a:A). (!x. x = a ==> P x) <=> P a`,
  REPEAT GEN_TAC THEN EQ_TAC THENL
   [DISCH_THEN(MP_TAC o SPEC `a:A`) THEN REWRITE_TAC[];
    DISCH_TAC THEN GEN_TAC THEN DISCH_THEN SUBST1_TAC THEN
    ASM_REWRITE_TAC[]]);;

let FORALL_UNWIND_THM1 = prove
 (`!P a. (!x. a = x ==> P x) <=> P a`,
  REPEAT GEN_TAC THEN CONV_TAC(LAND_CONV(ONCE_DEPTH_CONV SYM_CONV)) THEN
  MATCH_ACCEPT_TAC FORALL_UNWIND_THM2);;

(* ------------------------------------------------------------------------- *)
(* Permuting quantifiers.                                                    *)
(* ------------------------------------------------------------------------- *)

let SWAP_FORALL_THM = prove
 (`!P:A->B->bool. (!x y. P x y) <=> (!y x. P x y)`,
  ITAUT_TAC);;

let SWAP_EXISTS_THM = prove
 (`!P:A->B->bool. (?x y. P x y) <=> (?y x. P x y)`,
  ITAUT_TAC);;

(* ------------------------------------------------------------------------- *)
(* Universal quantifier and conjunction.                                     *)
(* ------------------------------------------------------------------------- *)

let FORALL_AND_THM = prove
 (`!P Q. (!x:A. P x /\ Q x) <=> (!x. P x) /\ (!x. Q x)`,
  ITAUT_TAC);;

let AND_FORALL_THM = prove
 (`!P Q. (!x. P x) /\ (!x. Q x) <=> (!x:A. P x /\ Q x)`,
  ITAUT_TAC);;

let LEFT_AND_FORALL_THM = prove
 (`!P Q. (!x:A. P x) /\ Q <=> (!x:A. P x /\ Q)`,
  ITAUT_TAC);;

let RIGHT_AND_FORALL_THM = prove
 (`!P Q. P /\ (!x:A. Q x) <=> (!x. P /\ Q x)`,
  ITAUT_TAC);;

(* ------------------------------------------------------------------------- *)
(* Existential quantifier and disjunction.                                   *)
(* ------------------------------------------------------------------------- *)

let EXISTS_OR_THM = prove
 (`!P Q. (?x:A. P x \/ Q x) <=> (?x. P x) \/ (?x. Q x)`,
  ITAUT_TAC);;

let OR_EXISTS_THM = prove
 (`!P Q. (?x. P x) \/ (?x. Q x) <=> (?x:A. P x \/ Q x)`,
  ITAUT_TAC);;

let LEFT_OR_EXISTS_THM = prove
 (`!P Q. (?x. P x) \/ Q <=> (?x:A. P x \/ Q)`,
  ITAUT_TAC);;

let RIGHT_OR_EXISTS_THM = prove
 (`!P Q. P \/ (?x. Q x) <=> (?x:A. P \/ Q x)`,
  ITAUT_TAC);;

(* ------------------------------------------------------------------------- *)
(* Existential quantifier and conjunction.                                   *)
(* ------------------------------------------------------------------------- *)

let LEFT_EXISTS_AND_THM = prove
 (`!P Q. (?x:A. P x /\ Q) <=> (?x:A. P x) /\ Q`,
  ITAUT_TAC);;

let RIGHT_EXISTS_AND_THM = prove
 (`!P Q. (?x:A. P /\ Q x) <=> P /\ (?x:A. Q x)`,
  ITAUT_TAC);;

let TRIV_EXISTS_AND_THM = prove
 (`!P Q. (?x:A. P /\ Q) <=> (?x:A. P) /\ (?x:A. Q)`,
  ITAUT_TAC);;

let LEFT_AND_EXISTS_THM = prove
 (`!P Q. (?x:A. P x) /\ Q <=> (?x:A. P x /\ Q)`,
  ITAUT_TAC);;

let RIGHT_AND_EXISTS_THM = prove
 (`!P Q. P /\ (?x:A. Q x) <=> (?x:A. P /\ Q x)`,
  ITAUT_TAC);;

let TRIV_AND_EXISTS_THM = prove
 (`!P Q. (?x:A. P) /\ (?x:A. Q) <=> (?x:A. P /\ Q)`,
  ITAUT_TAC);;

(* ------------------------------------------------------------------------- *)
(* Only trivial instances of universal quantifier and disjunction.           *)
(* ------------------------------------------------------------------------- *)

let TRIV_FORALL_OR_THM = prove
 (`!P Q. (!x:A. P \/ Q) <=> (!x:A. P) \/ (!x:A. Q)`,
  ITAUT_TAC);;

let TRIV_OR_FORALL_THM = prove
 (`!P Q. (!x:A. P) \/ (!x:A. Q) <=> (!x:A. P \/ Q)`,
  ITAUT_TAC);;

(* ------------------------------------------------------------------------- *)
(* Implication and quantifiers.                                              *)
(* ------------------------------------------------------------------------- *)

let RIGHT_IMP_FORALL_THM = prove
 (`!P Q. (P ==> !x:A. Q x) <=> (!x. P ==> Q x)`,
  ITAUT_TAC);;

let RIGHT_FORALL_IMP_THM = prove
 (`!P Q. (!x. P ==> Q x) <=> (P ==> !x:A. Q x)`,
  ITAUT_TAC);;

let LEFT_IMP_EXISTS_THM = prove
 (`!P Q. ((?x:A. P x) ==> Q) <=> (!x. P x ==> Q)`,
  ITAUT_TAC);;

let LEFT_FORALL_IMP_THM = prove
 (`!P Q. (!x. P x ==> Q) <=> ((?x:A. P x) ==> Q)`,
  ITAUT_TAC);;

let TRIV_FORALL_IMP_THM = prove
 (`!P Q. (!x:A. P ==> Q) <=> ((?x:A. P) ==> (!x:A. Q))`,
  ITAUT_TAC);;

let TRIV_EXISTS_IMP_THM = prove
 (`!P Q. (?x:A. P ==> Q) <=> ((!x:A. P) ==> (?x:A. Q))`,
  ITAUT_TAC);;

(* ------------------------------------------------------------------------- *)
(* Alternative versions of unique existence.                                 *)
(* ------------------------------------------------------------------------- *)

let EXISTS_UNIQUE_ALT = prove
 (`!P:A->bool. (?!x. P x) <=> (?x. !y. P y <=> (x = y))`,
  GEN_TAC THEN REWRITE_TAC[EXISTS_UNIQUE_THM] THEN EQ_TAC THENL
   [DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `x:A`) ASSUME_TAC) THEN
    EXISTS_TAC `x:A` THEN GEN_TAC THEN EQ_TAC THENL
     [DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[];
      DISCH_THEN(SUBST1_TAC o SYM) THEN FIRST_ASSUM MATCH_ACCEPT_TAC];
    DISCH_THEN(X_CHOOSE_TAC `x:A`) THEN
    ASM_REWRITE_TAC[GSYM EXISTS_REFL] THEN REPEAT GEN_TAC THEN
    DISCH_THEN(CONJUNCTS_THEN (SUBST1_TAC o SYM)) THEN REFL_TAC]);;

let EXISTS_UNIQUE = prove
 (`!P:A->bool. (?!x. P x) <=> (?x. P x /\ !y. P y ==> (y = x))`,
  GEN_TAC THEN REWRITE_TAC[EXISTS_UNIQUE_ALT] THEN
  AP_TERM_TAC THEN ABS_TAC THEN
  GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV)
   [ITAUT `(a <=> b) <=> (a ==> b) /\ (b ==> a)`] THEN
  GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [EQ_SYM_EQ] THEN
  REWRITE_TAC[FORALL_AND_THM] THEN SIMP_TAC[] THEN
  REWRITE_TAC[LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN
  REWRITE_TAC[CONJ_ACI]);;

(* ------------------------------------------------------------------------- *)
(* DESTRUCT_TAC, FIX_TAC and INTRO_TAC, giving more brief and elegant ways   *)
(* of naming introduced variables and assumptions (from Marco Maggesi).      *)
(* ------------------------------------------------------------------------- *)

let DESTRUCT_TAC,FIX_TAC,INTRO_TAC =
  let NAME_GEN_TAC s gl =
    let ty = (snd o dest_var o fst o dest_forall o snd) gl  in
    X_GEN_TAC (mk_var(s,ty)) gl
  and OBTAIN_THEN v ttac th =
    let ty = (snd o dest_var o fst o dest_exists o concl) th in
    X_CHOOSE_THEN (mk_var(v,ty)) ttac th
  and CONJ_LIST_TAC = end_itlist (fun t1 t2 -> CONJ_TAC THENL [t1; t2])
  and NUM_DISJ_TAC n =
    if n <= 0 then failwith "NUM_DISJ_TAC" else
    REPLICATE_TAC (n-1) DISJ2_TAC THEN REPEAT DISJ1_TAC
  and NAME_PULL_FORALL_CONV =
    let SWAP_FORALL_CONV = REWR_CONV SWAP_FORALL_THM
    and AND_FORALL_CONV = GEN_REWRITE_CONV I [AND_FORALL_THM]
    and RIGHT_IMP_FORALL_CONV = GEN_REWRITE_CONV I [RIGHT_IMP_FORALL_THM] in
    fun s ->
      let rec PULL_FORALL tm =
          if is_forall tm then
            if name_of(fst(dest_forall tm)) = s then REFL tm else
              (BINDER_CONV PULL_FORALL THENC SWAP_FORALL_CONV) tm
          else if is_imp tm then
            (RAND_CONV PULL_FORALL THENC RIGHT_IMP_FORALL_CONV) tm
          else if is_conj tm then
            (BINOP_CONV PULL_FORALL THENC AND_FORALL_CONV) tm
          else
            fail () in
      PULL_FORALL in
  let parse_fix =
    let ident = function
        Ident s::rest when isalpha s -> s,rest
      | _ -> raise Noparse in
    let rename =
      let old_name = possibly (a(Ident "/") ++ ident >> snd) in
      (a(Resword "[") ++ ident >> snd) ++ old_name ++ a(Resword "]") >> fst in
    let mk_var v = CONV_TAC (NAME_PULL_FORALL_CONV v) THEN GEN_TAC
    and mk_rename =
      function u,[v] -> CONV_TAC (NAME_PULL_FORALL_CONV v) THEN NAME_GEN_TAC u
             | u,_   -> NAME_GEN_TAC u in
    let vars = many (rename >> mk_rename || ident >> mk_var) >> EVERY
    and star = possibly (a (Ident "*") >> K (REPEAT GEN_TAC)) in
    vars ++ star >> function tac,[] -> tac | tac,_ -> tac THEN REPEAT GEN_TAC
  and parse_destruct =
    let OBTAINL_THEN : string list -> thm_tactical =
      EVERY_TCL o map OBTAIN_THEN in
    let ident p = function
        Ident s::rest when p s -> s,rest
      | _ -> raise Noparse in
    let rec destruct inp = disj inp
    and disj inp =
      let DISJ_CASES_LIST = end_itlist DISJ_CASES_THEN2 in
      (listof conj (a(Resword "|")) "Disjunction" >> DISJ_CASES_LIST) inp
    and conj inp = (atleast 1 atom >> end_itlist CONJUNCTS_THEN2) inp
    and obtain inp =
      let obtain_prfx =
        let var_list = atleast 1 (ident isalpha) in
        (a(Ident "@") ++ var_list >> snd) ++ a(Resword ".") >> fst in
      (obtain_prfx ++ destruct >> uncurry OBTAINL_THEN) inp
    and atom inp =
      let label = ident isalnum >> LABEL_TAC in
      let paren =
       (a(Resword "(") ++ destruct >> snd) ++ a(Resword ")") >> fst in
      (label || obtain || paren) inp in
    destruct in
  let parse_intro =
    let number = function
        Ident s::rest ->
          (try
             let n = int_of_string s in
             if n < 1 then raise Noparse else n,rest
           with Failure _ -> raise Noparse)
      | _ -> raise Noparse
    and pa_fix = a(Ident "!") ++ parse_fix >> snd
    and pa_dest = parse_destruct >> DISCH_THEN in
    let pa_prefix =
      elistof (pa_fix || pa_dest) (a(Resword ";")) "Prefix intro pattern" in
    let rec pa_intro toks =
      (pa_prefix ++ possibly pa_postfix >> uncurry (@) >> EVERY) toks
    and pa_postfix toks = (pa_conj || pa_disj) toks
    and pa_conj toks =
      let conjs =
        listof pa_intro (a(Ident "&")) "Intro pattern" >> CONJ_LIST_TAC in
      ((a(Resword "{") ++ conjs >> snd) ++ a(Resword "}") >> fst) toks
    and pa_disj toks =
      let disj = number >> NUM_DISJ_TAC in
      ((a(Ident "#") ++ disj >> snd) ++ pa_intro >> uncurry (THEN)) toks in
    pa_intro in
  let DESTRUCT_TAC s =
    let tac,rest =
      (fix "Destruct pattern" parse_destruct o lex o explode) s in
    if rest=[] then tac else failwith "Garbage after destruct pattern"
  and INTRO_TAC s =
    let tac,rest =
      (fix "Introduction pattern" parse_intro o lex o explode) s in
    if rest=[] then tac else failwith "Garbage after intro pattern"
  and FIX_TAC s =
    let tac,rest = (parse_fix o lex o explode) s in
    if rest=[] then tac else failwith "FIX_TAC: invalid pattern" in
  DESTRUCT_TAC,FIX_TAC,INTRO_TAC;;