1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
|
(* ========================================================================= *)
(* Theory of wellfounded relations. *)
(* *)
(* John Harrison, University of Cambridge Computer Laboratory *)
(* *)
(* (c) Copyright, University of Cambridge 1998 *)
(* (c) Copyright, John Harrison 1998-2007 *)
(* ========================================================================= *)
needs "arith.ml";;
(* ------------------------------------------------------------------------- *)
(* Definition of wellfoundedness for arbitrary (infix) relation << *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("<<",(12,"right"));;
let WF = new_definition
`WF(<<) <=> !P:A->bool. (?x. P(x)) ==> (?x. P(x) /\ !y. y << x ==> ~P(y))`;;
(* ------------------------------------------------------------------------- *)
(* Strengthen it to equality. *)
(* ------------------------------------------------------------------------- *)
let WF_EQ = prove
(`WF(<<) <=> !P:A->bool. (?x. P(x)) <=> (?x. P(x) /\ !y. y << x ==> ~P(y))`,
REWRITE_TAC[WF] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Equivalence of wellfounded induction. *)
(* ------------------------------------------------------------------------- *)
let WF_IND = prove
(`WF(<<) <=> !P:A->bool. (!x. (!y. y << x ==> P(y)) ==> P(x)) ==> !x. P(x)`,
REWRITE_TAC[WF] THEN EQ_TAC THEN DISCH_TAC THEN GEN_TAC THEN
POP_ASSUM(MP_TAC o SPEC `\x:A. ~P(x)`) THEN REWRITE_TAC[] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Equivalence of the "infinite descending chains" version. *)
(* ------------------------------------------------------------------------- *)
let WF_DCHAIN = prove
(`WF(<<) <=> ~(?s:num->A. !n. s(SUC n) << s(n))`,
REWRITE_TAC[WF; TAUT `(a <=> ~b) <=> (~a <=> b)`; NOT_FORALL_THM] THEN
EQ_TAC THEN DISCH_THEN CHOOSE_TAC THENL
[POP_ASSUM(MP_TAC o REWRITE_RULE[NOT_IMP]) THEN
DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `a:A`) ASSUME_TAC) THEN
SUBGOAL_THEN `!x:A. ?y. P(x) ==> P(y) /\ y << x` MP_TAC THENL
[ASM_MESON_TAC[]; REWRITE_TAC[SKOLEM_THM]] THEN
DISCH_THEN(X_CHOOSE_THEN `f:A->A` STRIP_ASSUME_TAC) THEN
CHOOSE_TAC(prove_recursive_functions_exist num_RECURSION
`(s(0) = a:A) /\ (!n. s(SUC n) = f(s n))`) THEN
EXISTS_TAC `s:num->A` THEN ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `!n. P(s n) /\ s(SUC n):A << s(n)`
(fun th -> ASM_MESON_TAC[th]) THEN
INDUCT_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[];
EXISTS_TAC `\y:A. ?n:num. y = s(n)` THEN REWRITE_TAC[] THEN
ASM_MESON_TAC[]]);;
(* ------------------------------------------------------------------------- *)
(* Equivalent to just *uniqueness* part of recursion. *)
(* ------------------------------------------------------------------------- *)
let WF_UREC = prove
(`WF(<<) ==>
!H. (!f g x. (!z. z << x ==> (f z = g z)) ==> (H f x = H g x))
==> !(f:A->B) g. (!x. f x = H f x) /\ (!x. g x = H g x)
==> (f = g)`,
REWRITE_TAC[WF_IND] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN
FIRST_ASSUM MATCH_MP_TAC THEN GEN_TAC THEN
DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN ASM_REWRITE_TAC[]);;
let WF_UREC_WF = prove
(`(!H. (!f g x. (!z. z << x ==> (f z = g z)) ==> (H f x = H g x))
==> !(f:A->bool) g. (!x. f x = H f x) /\ (!x. g x = H g x)
==> (f = g))
==> WF(<<)`,
REWRITE_TAC[WF_IND] THEN DISCH_TAC THEN GEN_TAC THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `\f x. P(x:A) \/ !z:A. z << x ==> f(z)`) THEN
REWRITE_TAC[] THEN
W(C SUBGOAL_THEN (fun t -> REWRITE_TAC[t]) o funpow 2 lhand o snd) THENL
[MESON_TAC[]; DISCH_THEN(MP_TAC o SPECL [`P:A->bool`; `\x:A. T`]) THEN
REWRITE_TAC[FUN_EQ_THM] THEN ASM_MESON_TAC[]]);;
(* ------------------------------------------------------------------------- *)
(* Stronger form of recursion with "inductive invariant" (Krstic/Matthews). *)
(* ------------------------------------------------------------------------- *)
let WF_REC_INVARIANT = prove
(`WF(<<)
==> !H S. (!f g x. (!z. z << x ==> (f z = g z) /\ S z (f z))
==> (H f x = H g x) /\ S x (H f x))
==> ?f:A->B. !x. (f x = H f x)`,
let lemma = prove_inductive_relations_exist
`!f:A->B x. (!z. z << x ==> R z (f z)) ==> R x (H f x)` in
REWRITE_TAC[WF_IND] THEN REPEAT STRIP_TAC THEN
X_CHOOSE_THEN `R:A->B->bool` STRIP_ASSUME_TAC lemma THEN
SUBGOAL_THEN `!x:A. ?!y:B. R x y` (fun th -> ASM_MESON_TAC[th]) THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN REPEAT STRIP_TAC THEN
FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC BINDER_CONV [th]) THEN
SUBGOAL_THEN `!x:A y:B. R x y ==> S x y` MP_TAC THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Equivalent to just *existence* part of recursion. *)
(* ------------------------------------------------------------------------- *)
let WF_REC = prove
(`WF(<<)
==> !H. (!f g x. (!z. z << x ==> (f z = g z)) ==> (H f x = H g x))
==> ?f:A->B. !x. f x = H f x`,
REPEAT STRIP_TAC THEN
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP WF_REC_INVARIANT) THEN
EXISTS_TAC `\x:A y:B. T` THEN ASM_REWRITE_TAC[]);;
let WF_REC_WF = prove
(`(!H. (!f g x. (!z. z << x ==> (f z = g z)) ==> (H f x = H g x))
==> ?f:A->num. !x. f x = H f x)
==> WF(<<)`,
DISCH_TAC THEN REWRITE_TAC[WF_DCHAIN] THEN
DISCH_THEN(X_CHOOSE_TAC `x:num->A`) THEN
SUBGOAL_THEN `!n. (x:num->A)(@m. x(m) << x(n)) << x(n)` ASSUME_TAC THENL
[CONV_TAC(BINDER_CONV SELECT_CONV) THEN ASM_MESON_TAC[]; ALL_TAC] THEN
FIRST_ASSUM(MP_TAC o SPEC
`\f:A->num. \y:A. if ?p:num. y = x(p)
then SUC(f(x(@m. x(m) << y)))
else 0`) THEN
REWRITE_TAC[NOT_IMP] THEN CONJ_TAC THENL
[REPEAT STRIP_TAC THEN COND_CASES_TAC THEN REWRITE_TAC[] THEN
FIRST_ASSUM(X_CHOOSE_THEN `p:num` SUBST_ALL_TAC) THEN
AP_TERM_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
FIRST_ASSUM MATCH_ACCEPT_TAC; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `f:A->num` MP_TAC) THEN
DISCH_THEN(MP_TAC o GEN `n:num` o SPEC `(x:num->A) n`) THEN
SUBGOAL_THEN `!n. ?p. (x:num->A) n = x p` (fun th -> REWRITE_TAC[th]) THENL
[MESON_TAC[]; DISCH_TAC] THEN
SUBGOAL_THEN `!n:num. ?k. f(x(k):A) < f(x(n))` ASSUME_TAC THENL
[GEN_TAC THEN EXISTS_TAC `@m:num. x(m):A << x(n)` THEN
FIRST_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [th]) THEN REWRITE_TAC[LT];
MP_TAC(SPEC `\n:num. ?i:num. n = f(x(i):A)` num_WOP) THEN
REWRITE_TAC[] THEN ASM_MESON_TAC[]]);;
(* ------------------------------------------------------------------------- *)
(* Combine the two versions of the recursion theorem. *)
(* ------------------------------------------------------------------------- *)
let WF_EREC = prove
(`WF(<<) ==>
!H. (!f g x. (!z. z << x ==> (f z = g z)) ==> (H f x = H g x))
==> ?!f:A->B. !x. f x = H f x`,
MESON_TAC[WF_REC; WF_UREC]);;
(* ------------------------------------------------------------------------- *)
(* Some preservation theorems for wellfoundedness. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("<<<",(12,"right"));;
let WF_SUBSET = prove
(`(!(x:A) y. x << y ==> x <<< y) /\ WF(<<<) ==> WF(<<)`,
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[WF] THEN
DISCH_TAC THEN GEN_TAC THEN DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN
UNDISCH_TAC `!(x:A) (y:A). x << y ==> x <<< y` THEN MESON_TAC[]);;
let WF_MEASURE_GEN = prove
(`!m:A->B. WF(<<) ==> WF(\x x'. m x << m x')`,
GEN_TAC THEN REWRITE_TAC[WF_IND] THEN REPEAT STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o SPEC `\y:B. !x:A. (m(x) = y) ==> P x`) THEN
UNDISCH_TAC `!x. (!y. (m:A->B) y << m x ==> P y) ==> P x` THEN
REWRITE_TAC[] THEN MESON_TAC[]);;
let WF_LEX_DEPENDENT = prove
(`!R:A->A->bool S:A->B->B->bool. WF(R) /\ (!a. WF(S a))
==> WF(\(r1,s1) (r2,s2). R r1 r2 \/ (r1 = r2) /\ S r1 s1 s2)`,
REPEAT GEN_TAC THEN REWRITE_TAC[WF] THEN STRIP_TAC THEN
X_GEN_TAC `P:A#B->bool` THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN
MAP_EVERY X_GEN_TAC [`a0:A`; `b0:B`] THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `\a:A. ?b:B. P(a,b)`) THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
DISCH_THEN(MP_TAC o SPECL [`a0:A`; `b0:B`]) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `a:A` (CONJUNCTS_THEN2 MP_TAC ASSUME_TAC)) THEN
DISCH_THEN(X_CHOOSE_TAC `b1:B`) THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`a:A`; `\b. (P:A#B->bool) (a,b)`]) THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
DISCH_THEN(MP_TAC o SPEC `b1:B`) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `b:B` (CONJUNCTS_THEN2 MP_TAC ASSUME_TAC)) THEN
DISCH_TAC THEN EXISTS_TAC `(a:A,b:B)` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[FORALL_PAIR_THM] THEN ASM_MESON_TAC[]);;
let WF_LEX = prove
(`!R:A->A->bool S:B->B->bool. WF(R) /\ WF(S)
==> WF(\(r1,s1) (r2,s2). R r1 r2 \/ (r1 = r2) /\ S s1 s2)`,
SIMP_TAC[WF_LEX_DEPENDENT; ETA_AX]);;
let WF_POINTWISE = prove
(`WF((<<) :A->A->bool) /\ WF((<<<) :B->B->bool)
==> WF(\(x1,y1) (x2,y2). x1 << x2 /\ y1 <<< y2)`,
STRIP_TAC THEN MATCH_MP_TAC(GEN_ALL WF_SUBSET) THEN EXISTS_TAC
`\(x1,y1) (x2,y2). x1 << x2 \/ (x1:A = x2) /\ (y1:B) <<< (y2:B)` THEN
CONJ_TAC THENL
[REWRITE_TAC[FORALL_PAIR_THM] THEN CONV_TAC TAUT;
MATCH_MP_TAC WF_LEX THEN ASM_REWRITE_TAC[]]);;
(* ------------------------------------------------------------------------- *)
(* Wellfoundedness properties of natural numbers. *)
(* ------------------------------------------------------------------------- *)
let WF_num = prove
(`WF(<)`,
REWRITE_TAC[WF_IND; num_WF]);;
let WF_REC_num = prove
(`!H. (!f g n. (!m. m < n ==> (f m = g m)) ==> (H f n = H g n))
==> ?f:num->A. !n. f n = H f n`,
MATCH_ACCEPT_TAC(MATCH_MP WF_REC WF_num));;
(* ------------------------------------------------------------------------- *)
(* Natural number measures (useful in program verification). *)
(* ------------------------------------------------------------------------- *)
let MEASURE = new_definition
`MEASURE m = \x y. m(x) < m(y)`;;
let WF_MEASURE = prove
(`!m:A->num. WF(MEASURE m)`,
REPEAT GEN_TAC THEN REWRITE_TAC[MEASURE] THEN
MATCH_MP_TAC WF_MEASURE_GEN THEN
MATCH_ACCEPT_TAC WF_num);;
let MEASURE_LE = prove
(`(!y. MEASURE m y a ==> MEASURE m y b) <=> m(a) <= m(b)`,
REWRITE_TAC[MEASURE] THEN MESON_TAC[NOT_LE; LTE_TRANS; LT_REFL]);;
(* ------------------------------------------------------------------------- *)
(* Trivially, a WF relation is irreflexive. *)
(* ------------------------------------------------------------------------- *)
let WF_REFL = prove
(`!x:A. WF(<<) ==> ~(x << x)`,
GEN_TAC THEN REWRITE_TAC[WF] THEN
DISCH_THEN(MP_TAC o SPEC `\y:A. y = x`) THEN
REWRITE_TAC[] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Even more trivially, the everywhere-false relation is wellfounded. *)
(* ------------------------------------------------------------------------- *)
let WF_FALSE = prove
(`WF(\x y:A. F)`,
REWRITE_TAC[WF]);;
(* ------------------------------------------------------------------------- *)
(* Tail recursion. *)
(* ------------------------------------------------------------------------- *)
let WF_REC_TAIL = prove
(`!P g h. ?f:A->B. !x. f x = if P(x) then f(g x) else h x`,
let lemma1 = prove
(`~(P 0) ==> ((?n. P(SUC n)) <=> (?n. P(n)))`,
MESON_TAC[num_CASES; NOT_SUC])
and lemma2 = prove
(`(P 0) ==> ((!m. m < n ==> P(SUC m)) <=> (!m. m < SUC n ==> P(m)))`,
REPEAT(DISCH_TAC ORELSE EQ_TAC) THEN INDUCT_TAC THEN
ASM_MESON_TAC[LT_SUC; LT_0]) in
REPEAT GEN_TAC THEN
MP_TAC(GEN `x:A` (ISPECL [`x:A`; `\y:A n:num. g(y):A`] num_RECURSION)) THEN
REWRITE_TAC[SKOLEM_THM; FORALL_AND_THM] THEN
DISCH_THEN(X_CHOOSE_THEN `s:A->num->A` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `\x:A. if ?n:num. ~P(s x n)
then (h:A->B)(@y. ?n. (y = s x n) /\ ~P(s x n) /\
!m. m < n ==> P(s x m))
else something_arbitrary:B` THEN
X_GEN_TAC `x:A` THEN
SUBGOAL_THEN `!n x:A. s (g x) n :A = s x (SUC n)` ASSUME_TAC THENL
[INDUCT_TAC THEN ASM_REWRITE_TAC[];
UNDISCH_THEN `!x:A n. s x (SUC n) :A = g (s x n)` (K ALL_TAC)] THEN
ASM_CASES_TAC `(P:A->bool) x` THEN ASM_REWRITE_TAC[] THENL
[ASM_SIMP_TAC[lemma1] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
CONV_TAC SYM_CONV THEN ASM_SIMP_TAC[lemma2; lemma1];
COND_CASES_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN
AP_TERM_TAC THEN MATCH_MP_TAC SELECT_UNIQUE THEN
REWRITE_TAC[] THEN X_GEN_TAC `y:A` THEN EQ_TAC THENL
[SIMP_TAC[LEFT_IMP_EXISTS_THM] THEN
INDUCT_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[LT_0];
ASM_MESON_TAC[LT]]]);;
(* ------------------------------------------------------------------------- *)
(* A more general mix of tail and wellfounded recursion. *)
(* ------------------------------------------------------------------------- *)
let WF_REC_TAIL_GENERAL = prove
(`!P G H. WF(<<) /\
(!f g x. (!z. z << x ==> (f z = g z))
==> (P f x <=> P g x) /\ G f x = G g x /\ H f x = H g x) /\
(!f g x. (!z. z << x ==> (f z = g z)) ==> (H f x = H g x)) /\
(!f x y. P f x /\ y << G f x ==> y << x)
==> ?f:A->B. !x. f x = if P f x then f(G f x) else H f x`,
REPEAT STRIP_TAC THEN
CHOOSE_THEN MP_TAC
(prove_inductive_relations_exist
`(!x:A. ~(P f x) ==> terminates f x) /\
(!x. P (f:A->B) x /\ terminates f (G f x) ==> terminates f x)`) THEN
REWRITE_TAC[FORALL_AND_THM] THEN
DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN
SUBGOAL_THEN
`?while. !f:A->B x:A. while f x = if P f x then while f (G f x) else x`
(STRIP_ASSUME_TAC o GSYM)
THENL [REWRITE_TAC[GSYM SKOLEM_THM; WF_REC_TAIL]; ALL_TAC] THEN
SUBGOAL_THEN
`?f:A->B. !x. f x = if terminates f x then H f (while f x :A) else anything`
MP_TAC THENL
[FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP WF_REC) THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC(MESON[]
`(a = b) /\ (a /\ b ==> (x = y) /\ (f x = g x))
==> ((if a then f x else d) = (if b then g y else d))`) THEN
REPEAT STRIP_TAC THENL
[SUBGOAL_THEN
`!f g x.
(!x y. P f x /\ y << G (f:A->B) x ==> y << x) /\
(!y:A. (!z:A. z << y ==> z << x)
==> (P f y = P g y) /\ (G f y = G g y))
==> terminates f x ==> terminates g x`
(fun th -> EQ_TAC THEN MATCH_MP_TAC th THEN ASM_MESON_TAC[]) THEN
GEN_TAC THEN GEN_TAC THEN
REWRITE_TAC[RIGHT_FORALL_IMP_THM; IMP_CONJ] THEN DISCH_TAC THEN
ONCE_REWRITE_TAC[TAUT `a ==> b ==> c <=> b ==> a ==> c`] THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_MESON_TAC[];
SUBGOAL_THEN
`!x:A. terminates (f:A->B) x /\
(!y:A. (!z:A. z << y ==> z << x)
==> (P f y <=> P g y) /\ (G f y :A = G g y))
==> (while f x :A = while g x)`
(fun th -> MATCH_MP_TAC th THEN ASM_MESON_TAC[]) THEN
REWRITE_TAC[IMP_CONJ] THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_MESON_TAC[];
FIRST_X_ASSUM MATCH_MP_TAC THEN
SUBGOAL_THEN
`!f:A->B. (!x:A y:A. P f x /\ y << G f x ==> y << x)
==> !x. terminates f x ==> !y. y << while f x ==> y << x`
(fun th -> ASM_MESON_TAC[th]) THEN
GEN_TAC THEN DISCH_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_MESON_TAC[]];
MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN
DISCH_THEN(fun th -> ASSUME_TAC(GSYM th) THEN MP_TAC th) THEN
MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `x:A` THEN
ASM_CASES_TAC `P (f:A->B) (x:A) :bool` THEN ASM_MESON_TAC[]]);;
(* ------------------------------------------------------------------------- *)
(* Tactic to apply WF induction on a free "measured" term in the goal. *)
(* ------------------------------------------------------------------------- *)
let WF_INDUCT_TAC =
let qqconv =
let pth = prove
(`(!x. P x ==> !y. Q x y) <=> !y x. P x ==> Q x y`, MESON_TAC[]) in
GEN_REWRITE_CONV I [pth]
and eqconv =
let pth = prove
(`(!m. P m ==> (m = e) ==> Q) <=> (P e ==> Q)`, MESON_TAC[]) in
REWR_CONV pth in
let rec qqconvs tm =
try (qqconv THENC BINDER_CONV qqconvs) tm
with Failure _ -> eqconv tm in
fun tm (asl,w as gl) ->
let fvs = frees tm
and gv = genvar(type_of tm) in
let pat = list_mk_forall(gv::fvs,mk_imp(mk_eq(gv,tm),w)) in
let th0 = UNDISCH(PART_MATCH rand num_WF pat) in
let th1 = MP (SPECL (tm::fvs) th0) (REFL tm) in
let th2 = CONV_RULE(LAND_CONV qqconvs) (DISCH_ALL th1) in
(MATCH_MP_TAC th2 THEN MAP_EVERY X_GEN_TAC fvs THEN
CONV_TAC(LAND_CONV qqconvs) THEN DISCH_THEN ASSUME_TAC) gl;;
|