1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
(* ========================================================================= *)
(* Complex transcendental functions. *)
(* ========================================================================= *)
needs "Library/transc.ml";;
needs "Library/floor.ml";;
needs "Complex/complexnumbers.ml";;
unparse_as_infix "exp";;
remove_interface "exp";;
(* ------------------------------------------------------------------------- *)
(* Complex square roots. *)
(* ------------------------------------------------------------------------- *)
let csqrt = new_definition
`csqrt(z) = if Im(z) = &0 then
if &0 <= Re(z) then complex(sqrt(Re(z)),&0)
else complex(&0,sqrt(--Re(z)))
else complex(sqrt((norm(z) + Re(z)) / &2),
(Im(z) / abs(Im(z))) *
sqrt((norm(z) - Re(z)) / &2))`;;
let COMPLEX_NORM_GE_RE_IM = prove
(`!z. abs(Re(z)) <= norm(z) /\ abs(Im(z)) <= norm(z)`,
GEN_TAC THEN ONCE_REWRITE_TAC[GSYM POW_2_SQRT_ABS] THEN
REWRITE_TAC[complex_norm] THEN
CONJ_TAC THEN
MATCH_MP_TAC SQRT_MONO_LE THEN
ASM_SIMP_TAC[REAL_LE_ADDR; REAL_LE_ADDL; REAL_POW_2; REAL_LE_SQUARE]);;
let CSQRT = prove
(`!z. csqrt(z) pow 2 = z`,
GEN_TAC THEN REWRITE_TAC[COMPLEX_POW_2; csqrt] THEN COND_CASES_TAC THENL
[COND_CASES_TAC THEN
ASM_REWRITE_TAC[CX_DEF; complex_mul; RE; IM; REAL_MUL_RZERO; REAL_MUL_LZERO;
REAL_SUB_LZERO; REAL_SUB_RZERO; REAL_ADD_LID; COMPLEX_EQ] THEN
REWRITE_TAC[REAL_NEG_EQ; GSYM REAL_POW_2] THEN
ASM_SIMP_TAC[SQRT_POW_2; REAL_ARITH `~(&0 <= x) ==> &0 <= --x`];
ALL_TAC] THEN
REWRITE_TAC[complex_mul; RE; IM] THEN
ONCE_REWRITE_TAC[REAL_ARITH
`(s * s - (i * s') * (i * s') = s * s - (i * i) * (s' * s')) /\
(s * i * s' + (i * s')* s = &2 * i * s * s')`] THEN
REWRITE_TAC[GSYM REAL_POW_2] THEN
SUBGOAL_THEN `&0 <= norm(z) + Re(z) /\ &0 <= norm(z) - Re(z)`
STRIP_ASSUME_TAC THENL
[MP_TAC(SPEC `z:complex` COMPLEX_NORM_GE_RE_IM) THEN REAL_ARITH_TAC;
ALL_TAC] THEN
ASM_SIMP_TAC[REAL_LE_DIV; REAL_POS; GSYM SQRT_MUL; SQRT_POW_2] THEN
REWRITE_TAC[COMPLEX_EQ; RE; IM] THEN CONJ_TAC THENL
[ASM_SIMP_TAC[REAL_POW_DIV; REAL_POW2_ABS;
REAL_POW_EQ_0; REAL_DIV_REFL] THEN
REWRITE_TAC[real_div; REAL_MUL_LID; GSYM REAL_SUB_RDISTRIB] THEN
REWRITE_TAC[REAL_ARITH `(m + r) - (m - r) = r * &2`] THEN
REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN
REWRITE_TAC[REAL_MUL_RID]; ALL_TAC] THEN
REWRITE_TAC[real_div] THEN
ONCE_REWRITE_TAC[AC REAL_MUL_AC
`(a * b) * a' * b = (a * a') * (b * b:real)`] THEN
REWRITE_TAC[REAL_DIFFSQ] THEN
REWRITE_TAC[complex_norm; GSYM REAL_POW_2] THEN
SIMP_TAC[SQRT_POW_2; REAL_LE_ADD;
REWRITE_RULE[GSYM REAL_POW_2] REAL_LE_SQUARE] THEN
REWRITE_TAC[REAL_ADD_SUB; GSYM REAL_POW_MUL] THEN
REWRITE_TAC[POW_2_SQRT_ABS] THEN
REWRITE_TAC[REAL_ABS_MUL; REAL_ABS_INV; REAL_ABS_NUM] THEN
ONCE_REWRITE_TAC[AC REAL_MUL_AC
`&2 * (i * a') * a * h = i * (&2 * h) * a * a'`] THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN
REWRITE_TAC[REAL_MUL_LID; GSYM real_div] THEN
ASM_SIMP_TAC[REAL_DIV_REFL; REAL_ABS_ZERO; REAL_MUL_RID]);;
(* ------------------------------------------------------------------------- *)
(* Complex exponential. *)
(* ------------------------------------------------------------------------- *)
let cexp = new_definition
`cexp z = Cx(exp(Re z)) * complex(cos(Im z),sin(Im z))`;;
let CX_CEXP = prove
(`!x. Cx(exp x) = cexp(Cx x)`,
REWRITE_TAC[cexp; CX_DEF; RE; IM; SIN_0; COS_0] THEN
REWRITE_TAC[GSYM CX_DEF; GSYM CX_MUL; REAL_MUL_RID]);;
let CEXP_0 = prove
(`cexp(Cx(&0)) = Cx(&1)`,
REWRITE_TAC[GSYM CX_CEXP; REAL_EXP_0]);;
let CEXP_ADD = prove
(`!w z. cexp(w + z) = cexp(w) * cexp(z)`,
REWRITE_TAC[COMPLEX_EQ; cexp; complex_mul; complex_add; RE; IM; CX_DEF] THEN
REWRITE_TAC[REAL_EXP_ADD; SIN_ADD; COS_ADD] THEN CONV_TAC REAL_RING);;
let CEXP_MUL = prove
(`!n z. cexp(Cx(&n) * z) = cexp(z) pow n`,
INDUCT_TAC THEN REWRITE_TAC[complex_pow] THEN
REWRITE_TAC[COMPLEX_MUL_LZERO; CEXP_0] THEN
REWRITE_TAC[GSYM REAL_OF_NUM_SUC; COMPLEX_ADD_RDISTRIB; CX_ADD] THEN
ASM_REWRITE_TAC[CEXP_ADD; COMPLEX_MUL_LID] THEN
REWRITE_TAC[COMPLEX_MUL_AC]);;
let CEXP_NONZERO = prove
(`!z. ~(cexp z = Cx(&0))`,
GEN_TAC THEN REWRITE_TAC[cexp; COMPLEX_ENTIRE; CX_INJ; REAL_EXP_NZ] THEN
REWRITE_TAC[CX_DEF; RE; IM; COMPLEX_EQ] THEN
MP_TAC(SPEC `Im z` SIN_CIRCLE) THEN CONV_TAC REAL_RING);;
let CEXP_NEG_LMUL = prove
(`!z. cexp(--z) * cexp(z) = Cx(&1)`,
REWRITE_TAC[GSYM CEXP_ADD; COMPLEX_ADD_LINV; CEXP_0]);;
let CEXP_NEG_RMUL = prove
(`!z. cexp(z) * cexp(--z) = Cx(&1)`,
REWRITE_TAC[GSYM CEXP_ADD; COMPLEX_ADD_RINV; CEXP_0]);;
let CEXP_NEG = prove
(`!z. cexp(--z) = inv(cexp z)`,
MESON_TAC[CEXP_NEG_LMUL; COMPLEX_MUL_LINV_UNIQ]);;
let CEXP_SUB = prove
(`!w z. cexp(w - z) = cexp(w) / cexp(z)`,
REWRITE_TAC[complex_sub; complex_div; CEXP_NEG; CEXP_ADD]);;
(* ------------------------------------------------------------------------- *)
(* Complex trig functions. *)
(* ------------------------------------------------------------------------- *)
let ccos = new_definition
`ccos z = (cexp(ii * z) + cexp(--ii * z)) / Cx(&2)`;;
let csin = new_definition
`csin z = (cexp(ii * z) - cexp(--ii * z)) / (Cx(&2) * ii)`;;
let CX_CSIN,CX_CCOS = (CONJ_PAIR o prove)
(`(!x. Cx(sin x) = csin(Cx x)) /\ (!x. Cx(cos x) = ccos(Cx x))`,
REWRITE_TAC[csin; ccos; cexp; CX_DEF; ii; RE; IM; complex_mul; complex_add;
REAL_MUL_RZERO; REAL_MUL_LZERO; REAL_SUB_RZERO;
REAL_MUL_LID; complex_neg; REAL_EXP_0; REAL_ADD_LID;
REAL_MUL_LNEG; REAL_NEG_0; REAL_ADD_RID; complex_sub;
SIN_NEG; COS_NEG; GSYM REAL_MUL_2; GSYM real_sub;
complex_div; REAL_SUB_REFL; complex_inv; REAL_SUB_RNEG] THEN
CONJ_TAC THEN GEN_TAC THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN
REWRITE_TAC[REAL_MUL_RZERO] THEN
AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN CONV_TAC REAL_RING);;
let CSIN_0 = prove
(`csin(Cx(&0)) = Cx(&0)`,
REWRITE_TAC[GSYM CX_CSIN; SIN_0]);;
let CCOS_0 = prove
(`ccos(Cx(&0)) = Cx(&1)`,
REWRITE_TAC[GSYM CX_CCOS; COS_0]);;
let CSIN_CIRCLE = prove
(`!z. csin(z) pow 2 + ccos(z) pow 2 = Cx(&1)`,
GEN_TAC THEN REWRITE_TAC[csin; ccos] THEN
MP_TAC(SPEC `ii * z` CEXP_NEG_LMUL) THEN
MP_TAC COMPLEX_POW_II_2 THEN REWRITE_TAC[COMPLEX_MUL_LNEG] THEN
CONV_TAC COMPLEX_FIELD);;
let CSIN_ADD = prove
(`!w z. csin(w + z) = csin(w) * ccos(z) + ccos(w) * csin(z)`,
REPEAT GEN_TAC THEN
REWRITE_TAC[csin; ccos; COMPLEX_ADD_LDISTRIB; CEXP_ADD] THEN
MP_TAC COMPLEX_POW_II_2 THEN CONV_TAC COMPLEX_FIELD);;
let CCOS_ADD = prove
(`!w z. ccos(w + z) = ccos(w) * ccos(z) - csin(w) * csin(z)`,
REPEAT GEN_TAC THEN
REWRITE_TAC[csin; ccos; COMPLEX_ADD_LDISTRIB; CEXP_ADD] THEN
MP_TAC COMPLEX_POW_II_2 THEN CONV_TAC COMPLEX_FIELD);;
let CSIN_NEG = prove
(`!z. csin(--z) = --(csin(z))`,
REWRITE_TAC[csin; COMPLEX_MUL_LNEG; COMPLEX_MUL_RNEG; COMPLEX_NEG_NEG] THEN
GEN_TAC THEN MP_TAC COMPLEX_POW_II_2 THEN
CONV_TAC COMPLEX_FIELD);;
let CCOS_NEG = prove
(`!z. ccos(--z) = ccos(z)`,
REWRITE_TAC[ccos; COMPLEX_MUL_LNEG; COMPLEX_MUL_RNEG; COMPLEX_NEG_NEG] THEN
GEN_TAC THEN MP_TAC COMPLEX_POW_II_2 THEN
CONV_TAC COMPLEX_FIELD);;
let CSIN_DOUBLE = prove
(`!z. csin(Cx(&2) * z) = Cx(&2) * csin(z) * ccos(z)`,
REWRITE_TAC[COMPLEX_RING `Cx(&2) * x = x + x`; CSIN_ADD] THEN
CONV_TAC COMPLEX_RING);;
let CCOS_DOUBLE = prove
(`!z. ccos(Cx(&2) * z) = (ccos(z) pow 2) - (csin(z) pow 2)`,
REWRITE_TAC[COMPLEX_RING `Cx(&2) * x = x + x`; CCOS_ADD] THEN
CONV_TAC COMPLEX_RING);;
(* ------------------------------------------------------------------------- *)
(* Euler and de Moivre formulas. *)
(* ------------------------------------------------------------------------- *)
let CEXP_EULER = prove
(`!z. cexp(ii * z) = ccos(z) + ii * csin(z)`,
REWRITE_TAC[ccos; csin] THEN MP_TAC COMPLEX_POW_II_2 THEN
CONV_TAC COMPLEX_FIELD);;
let DEMOIVRE = prove
(`!z n. (ccos z + ii * csin z) pow n =
ccos(Cx(&n) * z) + ii * csin(Cx(&n) * z)`,
REWRITE_TAC[GSYM CEXP_EULER; GSYM CEXP_MUL] THEN
REWRITE_TAC[COMPLEX_MUL_AC]);;
(* ------------------------------------------------------------------------- *)
(* Some lemmas. *)
(* ------------------------------------------------------------------------- *)
let EXISTS_COMPLEX = prove
(`!P. (?z. P (Re z) (Im z)) <=> ?x y. P x y`,
MESON_TAC[RE; IM; COMPLEX]);;
let COMPLEX_UNIMODULAR_POLAR = prove
(`!z. (norm z = &1) ==> ?x. z = complex(cos(x),sin(x))`,
GEN_TAC THEN
DISCH_THEN(MP_TAC o C AP_THM `2` o AP_TERM `(pow):real->num->real`) THEN
REWRITE_TAC[complex_norm] THEN
SIMP_TAC[REAL_POW_2; REWRITE_RULE[REAL_POW_2] SQRT_POW_2;
REAL_LE_SQUARE; REAL_LE_ADD] THEN
REWRITE_TAC[GSYM REAL_POW_2; REAL_MUL_LID] THEN
DISCH_THEN(X_CHOOSE_TAC `t:real` o MATCH_MP CIRCLE_SINCOS) THEN
EXISTS_TAC `t:real` THEN ASM_REWRITE_TAC[COMPLEX_EQ; RE; IM]);;
let SIN_INTEGER_2PI = prove
(`!n. integer n ==> sin((&2 * pi) * n) = &0`,
REWRITE_TAC[integer; REAL_ARITH `abs(x) = &n <=> x = &n \/ x = -- &n`] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[REAL_MUL_RNEG; SIN_NEG] THEN
REWRITE_TAC[GSYM REAL_MUL_ASSOC; SIN_DOUBLE] THEN
REWRITE_TAC[REAL_ARITH `pi * &n = &n * pi`; SIN_NPI] THEN
REWRITE_TAC[REAL_MUL_LZERO; REAL_MUL_RZERO; REAL_NEG_0]);;
let COS_INTEGER_2PI = prove
(`!n. integer n ==> cos((&2 * pi) * n) = &1`,
REWRITE_TAC[integer; REAL_ARITH `abs(x) = &n <=> x = &n \/ x = -- &n`] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[REAL_MUL_RNEG; COS_NEG] THEN
REWRITE_TAC[GSYM REAL_MUL_ASSOC; COS_DOUBLE] THEN
REWRITE_TAC[REAL_ARITH `pi * &n = &n * pi`; SIN_NPI; COS_NPI] THEN
REWRITE_TAC[REAL_POW_POW] THEN ONCE_REWRITE_TAC[MULT_SYM] THEN
REWRITE_TAC[GSYM REAL_POW_POW; REAL_POW_2] THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN
REWRITE_TAC[REAL_POW_ONE; REAL_SUB_RZERO]);;
let SINCOS_PRINCIPAL_VALUE = prove
(`!x. ?y. (--pi < y /\ y <= pi) /\ (sin(y) = sin(x) /\ cos(y) = cos(x))`,
GEN_TAC THEN EXISTS_TAC `pi - (&2 * pi) * frac((pi - x) / (&2 * pi))` THEN
CONJ_TAC THENL
[SIMP_TAC[REAL_ARITH `--p < p - x <=> x < (&2 * p) * &1`;
REAL_ARITH `p - x <= p <=> (&2 * p) * &0 <= x`;
REAL_LT_LMUL_EQ; REAL_LE_LMUL_EQ; REAL_LT_MUL;
PI_POS; REAL_OF_NUM_LT; ARITH; FLOOR_FRAC];
REWRITE_TAC[FRAC_FLOOR; REAL_SUB_LDISTRIB] THEN
SIMP_TAC[REAL_DIV_LMUL; REAL_ENTIRE; REAL_OF_NUM_EQ; ARITH; REAL_LT_IMP_NZ;
PI_POS; REAL_ARITH `a - (a - b - c):real = b + c`; SIN_ADD; COS_ADD] THEN
SIMP_TAC[FLOOR_FRAC; SIN_INTEGER_2PI; COS_INTEGER_2PI] THEN
CONV_TAC REAL_RING]);;
(* ------------------------------------------------------------------------- *)
(* Complex logarithms (the conventional principal value). *)
(* ------------------------------------------------------------------------- *)
let clog = new_definition
`clog z = @w. cexp(w) = z /\ --pi < Im(w) /\ Im(w) <= pi`;;
let CLOG_WORKS = prove
(`!z. ~(z = Cx(&0))
==> cexp(clog z) = z /\ --pi < Im(clog z) /\ Im(clog z) <= pi`,
GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[clog] THEN CONV_TAC SELECT_CONV THEN
REWRITE_TAC[cexp; EXISTS_COMPLEX] THEN
EXISTS_TAC `ln(norm(z:complex))` THEN
SUBGOAL_THEN `exp(ln(norm(z:complex))) = norm(z)` SUBST1_TAC THENL
[ASM_MESON_TAC[REAL_EXP_LN; COMPLEX_NORM_NZ]; ALL_TAC] THEN
MP_TAC(SPEC `z / Cx(norm z)` COMPLEX_UNIMODULAR_POLAR) THEN ANTS_TAC THENL
[ASM_SIMP_TAC[COMPLEX_NORM_DIV; COMPLEX_NORM_CX] THEN
ASM_SIMP_TAC[COMPLEX_ABS_NORM; REAL_DIV_REFL; COMPLEX_NORM_ZERO];
ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `x:real` STRIP_ASSUME_TAC) THEN
MP_TAC(SPEC `x:real` SINCOS_PRINCIPAL_VALUE) THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `y:real` THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[CX_INJ; COMPLEX_DIV_LMUL; COMPLEX_NORM_ZERO]);;
let CEXP_CLOG = prove
(`!z. ~(z = Cx(&0)) ==> cexp(clog z) = z`,
SIMP_TAC[CLOG_WORKS]);;
(* ------------------------------------------------------------------------- *)
(* Unwinding number. *)
(* ------------------------------------------------------------------------- *)
let unwinding = new_definition
`unwinding(z) = (z - clog(cexp z)) / (Cx(&2 * pi) * ii)`;;
let COMPLEX_II_NZ = prove
(`~(ii = Cx(&0))`,
MP_TAC COMPLEX_POW_II_2 THEN CONV_TAC COMPLEX_RING);;
let UNWINDING_2PI = prove
(`Cx(&2 * pi) * ii * unwinding(z) = z - clog(cexp z)`,
REWRITE_TAC[unwinding; COMPLEX_MUL_ASSOC] THEN
MATCH_MP_TAC COMPLEX_DIV_LMUL THEN
REWRITE_TAC[COMPLEX_ENTIRE; CX_INJ; COMPLEX_II_NZ] THEN
MP_TAC PI_POS THEN REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* An example of how to get nice identities with unwinding number. *)
(* ------------------------------------------------------------------------- *)
let CLOG_MUL = prove
(`!w z. ~(w = Cx(&0)) /\ ~(z = Cx(&0))
==> clog(w * z) =
clog(w) + clog(z) -
Cx(&2 * pi) * ii * unwinding(clog w + clog z)`,
REWRITE_TAC[UNWINDING_2PI;
COMPLEX_RING `w + z - ((w + z) - c) = c:complex`] THEN
ASM_SIMP_TAC[CEXP_ADD; CEXP_CLOG]);;
|