1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
|
(* ========================================================================= *)
(* Properties of complex polynomials (not canonically represented). *)
(* ========================================================================= *)
needs "Complex/complexnumbers.ml";;
prioritize_complex();;
parse_as_infix("++",(16,"right"));;
parse_as_infix("**",(20,"right"));;
parse_as_infix("##",(20,"right"));;
parse_as_infix("divides",(14,"right"));;
parse_as_infix("exp",(22,"right"));;
do_list override_interface
["++",`poly_add:complex list->complex list->complex list`;
"**",`poly_mul:complex list->complex list->complex list`;
"##",`poly_cmul:complex->complex list->complex list`;
"neg",`poly_neg:complex list->complex list`;
"divides",`poly_divides:complex list->complex list->bool`;
"exp",`poly_exp:complex list -> num -> complex list`;
"diff",`poly_diff:complex list->complex list`];;
let SIMPLE_COMPLEX_ARITH tm = prove(tm,SIMPLE_COMPLEX_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Polynomials. *)
(* ------------------------------------------------------------------------- *)
let poly = new_recursive_definition list_RECURSION
`(poly [] x = Cx(&0)) /\
(poly (CONS h t) x = h + x * poly t x)`;;
(* ------------------------------------------------------------------------- *)
(* Arithmetic operations on polynomials. *)
(* ------------------------------------------------------------------------- *)
let poly_add = new_recursive_definition list_RECURSION
`([] ++ l2 = l2) /\
((CONS h t) ++ l2 =
(if l2 = [] then CONS h t
else CONS (h + HD l2) (t ++ TL l2)))`;;
let poly_cmul = new_recursive_definition list_RECURSION
`(c ## [] = []) /\
(c ## (CONS h t) = CONS (c * h) (c ## t))`;;
let poly_neg = new_definition
`neg = (##) (--(Cx(&1)))`;;
let poly_mul = new_recursive_definition list_RECURSION
`([] ** l2 = []) /\
((CONS h t) ** l2 =
if t = [] then h ## l2
else (h ## l2) ++ CONS (Cx(&0)) (t ** l2))`;;
let poly_exp = new_recursive_definition num_RECURSION
`(p exp 0 = [Cx(&1)]) /\
(p exp (SUC n) = p ** p exp n)`;;
(* ------------------------------------------------------------------------- *)
(* Useful clausifications. *)
(* ------------------------------------------------------------------------- *)
let POLY_ADD_CLAUSES = prove
(`([] ++ p2 = p2) /\
(p1 ++ [] = p1) /\
((CONS h1 t1) ++ (CONS h2 t2) = CONS (h1 + h2) (t1 ++ t2))`,
REWRITE_TAC[poly_add; NOT_CONS_NIL; HD; TL] THEN
SPEC_TAC(`p1:complex list`,`p1:complex list`) THEN
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[poly_add]);;
let POLY_CMUL_CLAUSES = prove
(`(c ## [] = []) /\
(c ## (CONS h t) = CONS (c * h) (c ## t))`,
REWRITE_TAC[poly_cmul]);;
let POLY_NEG_CLAUSES = prove
(`(neg [] = []) /\
(neg (CONS h t) = CONS (--h) (neg t))`,
REWRITE_TAC[poly_neg; POLY_CMUL_CLAUSES;
COMPLEX_MUL_LNEG; COMPLEX_MUL_LID]);;
let POLY_MUL_CLAUSES = prove
(`([] ** p2 = []) /\
([h1] ** p2 = h1 ## p2) /\
((CONS h1 (CONS k1 t1)) ** p2 =
h1 ## p2 ++ CONS (Cx(&0)) (CONS k1 t1 ** p2))`,
REWRITE_TAC[poly_mul; NOT_CONS_NIL]);;
(* ------------------------------------------------------------------------- *)
(* Various natural consequences of syntactic definitions. *)
(* ------------------------------------------------------------------------- *)
let POLY_ADD = prove
(`!p1 p2 x. poly (p1 ++ p2) x = poly p1 x + poly p2 x`,
LIST_INDUCT_TAC THEN REWRITE_TAC[poly_add; poly; COMPLEX_ADD_LID] THEN
LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[NOT_CONS_NIL; HD; TL; poly; COMPLEX_ADD_RID] THEN
SIMPLE_COMPLEX_ARITH_TAC);;
let POLY_CMUL = prove
(`!p c x. poly (c ## p) x = c * poly p x`,
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[poly; poly_cmul] THEN
SIMPLE_COMPLEX_ARITH_TAC);;
let POLY_NEG = prove
(`!p x. poly (neg p) x = --(poly p x)`,
REWRITE_TAC[poly_neg; POLY_CMUL] THEN
SIMPLE_COMPLEX_ARITH_TAC);;
let POLY_MUL = prove
(`!x p1 p2. poly (p1 ** p2) x = poly p1 x * poly p2 x`,
GEN_TAC THEN LIST_INDUCT_TAC THEN
REWRITE_TAC[poly_mul; poly; COMPLEX_MUL_LZERO; POLY_CMUL; POLY_ADD] THEN
SPEC_TAC(`h:complex`,`h:complex`) THEN
SPEC_TAC(`t:complex list`,`t:complex list`) THEN
LIST_INDUCT_TAC THEN
REWRITE_TAC[poly_mul; POLY_CMUL; POLY_ADD; poly; POLY_CMUL;
COMPLEX_MUL_RZERO; COMPLEX_ADD_RID; NOT_CONS_NIL] THEN
ASM_REWRITE_TAC[POLY_ADD; POLY_CMUL; poly] THEN
SIMPLE_COMPLEX_ARITH_TAC);;
let POLY_EXP = prove
(`!p n x. poly (p exp n) x = (poly p x) pow n`,
GEN_TAC THEN INDUCT_TAC THEN
ASM_REWRITE_TAC[poly_exp; complex_pow; POLY_MUL] THEN
REWRITE_TAC[poly] THEN SIMPLE_COMPLEX_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Lemmas. *)
(* ------------------------------------------------------------------------- *)
let POLY_ADD_RZERO = prove
(`!p. poly (p ++ []) = poly p`,
REWRITE_TAC[FUN_EQ_THM; POLY_ADD; poly; COMPLEX_ADD_RID]);;
let POLY_MUL_ASSOC = prove
(`!p q r. poly (p ** (q ** r)) = poly ((p ** q) ** r)`,
REWRITE_TAC[FUN_EQ_THM; POLY_MUL; COMPLEX_MUL_ASSOC]);;
let POLY_EXP_ADD = prove
(`!d n p. poly(p exp (n + d)) = poly(p exp n ** p exp d)`,
REWRITE_TAC[FUN_EQ_THM; POLY_MUL] THEN
INDUCT_TAC THEN ASM_REWRITE_TAC[POLY_MUL; ADD_CLAUSES; poly_exp; poly] THEN
SIMPLE_COMPLEX_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Key property that f(a) = 0 ==> (x - a) divides p(x). Very delicate! *)
(* ------------------------------------------------------------------------- *)
let POLY_LINEAR_REM = prove
(`!t h. ?q r. CONS h t = [r] ++ [--a; Cx(&1)] ** q`,
LIST_INDUCT_TAC THEN REWRITE_TAC[] THENL
[GEN_TAC THEN EXISTS_TAC `[]:complex list` THEN
EXISTS_TAC `h:complex` THEN
REWRITE_TAC[poly_add; poly_mul; poly_cmul; NOT_CONS_NIL] THEN
REWRITE_TAC[HD; TL; COMPLEX_ADD_RID];
X_GEN_TAC `k:complex` THEN
POP_ASSUM(STRIP_ASSUME_TAC o SPEC `h:complex`) THEN
EXISTS_TAC `CONS (r:complex) q` THEN EXISTS_TAC `r * a + k` THEN
ASM_REWRITE_TAC[POLY_ADD_CLAUSES; POLY_MUL_CLAUSES; poly_cmul] THEN
REWRITE_TAC[CONS_11] THEN CONJ_TAC THENL
[SIMPLE_COMPLEX_ARITH_TAC; ALL_TAC] THEN
SPEC_TAC(`q:complex list`,`q:complex list`) THEN
LIST_INDUCT_TAC THEN
REWRITE_TAC[POLY_ADD_CLAUSES; POLY_MUL_CLAUSES; poly_cmul] THEN
REWRITE_TAC[COMPLEX_ADD_RID; COMPLEX_MUL_LID] THEN
REWRITE_TAC[COMPLEX_ADD_AC]]);;
let POLY_LINEAR_DIVIDES = prove
(`!a p. (poly p a = Cx(&0)) <=> (p = []) \/ ?q. p = [--a; Cx(&1)] ** q`,
GEN_TAC THEN LIST_INDUCT_TAC THENL
[REWRITE_TAC[poly]; ALL_TAC] THEN
EQ_TAC THEN STRIP_TAC THENL
[DISJ2_TAC THEN STRIP_ASSUME_TAC(SPEC_ALL POLY_LINEAR_REM) THEN
EXISTS_TAC `q:complex list` THEN ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `r = Cx(&0)` SUBST_ALL_TAC THENL
[UNDISCH_TAC `poly (CONS h t) a = Cx(&0)` THEN
ASM_REWRITE_TAC[] THEN REWRITE_TAC[POLY_ADD; POLY_MUL] THEN
REWRITE_TAC[poly; COMPLEX_MUL_RZERO; COMPLEX_ADD_RID;
COMPLEX_MUL_RID] THEN
REWRITE_TAC[COMPLEX_ADD_LINV] THEN SIMPLE_COMPLEX_ARITH_TAC;
REWRITE_TAC[poly_mul] THEN REWRITE_TAC[NOT_CONS_NIL] THEN
SPEC_TAC(`q:complex list`,`q:complex list`) THEN LIST_INDUCT_TAC THENL
[REWRITE_TAC[poly_cmul; poly_add; NOT_CONS_NIL;
HD; TL; COMPLEX_ADD_LID];
REWRITE_TAC[poly_cmul; poly_add; NOT_CONS_NIL;
HD; TL; COMPLEX_ADD_LID]]];
ASM_REWRITE_TAC[] THEN REWRITE_TAC[poly];
ASM_REWRITE_TAC[] THEN REWRITE_TAC[poly] THEN
REWRITE_TAC[POLY_MUL] THEN REWRITE_TAC[poly] THEN
REWRITE_TAC[poly; COMPLEX_MUL_RZERO; COMPLEX_ADD_RID; COMPLEX_MUL_RID] THEN
REWRITE_TAC[COMPLEX_ADD_LINV] THEN SIMPLE_COMPLEX_ARITH_TAC]);;
(* ------------------------------------------------------------------------- *)
(* Thanks to the finesse of the above, we can use length rather than degree. *)
(* ------------------------------------------------------------------------- *)
let POLY_LENGTH_MUL = prove
(`!q. LENGTH([--a; Cx(&1)] ** q) = SUC(LENGTH q)`,
let lemma = prove
(`!p h k a. LENGTH (k ## p ++ CONS h (a ## p)) = SUC(LENGTH p)`,
LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[poly_cmul; POLY_ADD_CLAUSES; LENGTH]) in
REWRITE_TAC[poly_mul; NOT_CONS_NIL; lemma]);;
(* ------------------------------------------------------------------------- *)
(* Thus a nontrivial polynomial of degree n has no more than n roots. *)
(* ------------------------------------------------------------------------- *)
let POLY_ROOTS_INDEX_LEMMA = prove
(`!n. !p. ~(poly p = poly []) /\ (LENGTH p = n)
==> ?i. !x. (poly p x = Cx(&0)) ==> ?m. m <= n /\ (x = i m)`,
INDUCT_TAC THENL
[REWRITE_TAC[LENGTH_EQ_NIL] THEN MESON_TAC[];
REPEAT STRIP_TAC THEN ASM_CASES_TAC `?a. poly p a = Cx(&0)` THENL
[UNDISCH_TAC `?a. poly p a = Cx(&0)` THEN
DISCH_THEN(CHOOSE_THEN MP_TAC) THEN
GEN_REWRITE_TAC LAND_CONV [POLY_LINEAR_DIVIDES] THEN
DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `q:complex list` SUBST_ALL_TAC) THEN
FIRST_ASSUM(UNDISCH_TAC o check is_forall o concl) THEN
UNDISCH_TAC `~(poly ([-- a; Cx(&1)] ** q) = poly [])` THEN
POP_ASSUM MP_TAC THEN REWRITE_TAC[POLY_LENGTH_MUL; SUC_INJ] THEN
DISCH_TAC THEN ASM_CASES_TAC `poly q = poly []` THENL
[ASM_REWRITE_TAC[POLY_MUL; poly; COMPLEX_MUL_RZERO; FUN_EQ_THM];
DISCH_THEN(K ALL_TAC)] THEN
DISCH_THEN(MP_TAC o SPEC `q:complex list`) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_TAC `i:num->complex`) THEN
EXISTS_TAC `\m. if m = SUC n then a:complex else i m` THEN
REWRITE_TAC[POLY_MUL; LE; COMPLEX_ENTIRE] THEN
X_GEN_TAC `x:complex` THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL
[DISCH_THEN(fun th -> EXISTS_TAC `SUC n` THEN MP_TAC th) THEN
REWRITE_TAC[poly] THEN SIMPLE_COMPLEX_ARITH_TAC;
DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `m:num` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `m:num` THEN ASM_REWRITE_TAC[] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
UNDISCH_TAC `m:num <= n` THEN ASM_REWRITE_TAC[] THEN ARITH_TAC];
UNDISCH_TAC `~(?a. poly p a = Cx(&0))` THEN
REWRITE_TAC[NOT_EXISTS_THM] THEN DISCH_TAC THEN ASM_REWRITE_TAC[]]]);;
let POLY_ROOTS_INDEX_LENGTH = prove
(`!p. ~(poly p = poly [])
==> ?i. !x. (poly p(x) = Cx(&0)) ==> ?n. n <= LENGTH p /\ (x = i n)`,
MESON_TAC[POLY_ROOTS_INDEX_LEMMA]);;
let POLY_ROOTS_FINITE_LEMMA = prove
(`!p. ~(poly p = poly [])
==> ?N i. !x. (poly p(x) = Cx(&0)) ==> ?n:num. n < N /\ (x = i n)`,
MESON_TAC[POLY_ROOTS_INDEX_LENGTH; LT_SUC_LE]);;
let FINITE_LEMMA = prove
(`!i N P. (!x. P x ==> ?n:num. n < N /\ (x = i n))
==> ?a. !x. P x ==> norm(x) < a`,
GEN_TAC THEN ONCE_REWRITE_TAC[RIGHT_IMP_EXISTS_THM] THEN INDUCT_TAC THENL
[REWRITE_TAC[LT] THEN MESON_TAC[]; ALL_TAC] THEN
X_GEN_TAC `P:complex->bool` THEN
POP_ASSUM(MP_TAC o SPEC `\z. P z /\ ~(z = (i:num->complex) N)`) THEN
DISCH_THEN(X_CHOOSE_TAC `a:real`) THEN
EXISTS_TAC `abs(a) + norm(i(N:num)) + &1` THEN
POP_ASSUM MP_TAC THEN REWRITE_TAC[LT] THEN
SUBGOAL_THEN `(!x. norm(x) < abs(a) + norm(x) + &1) /\
(!x y. norm(x) < a ==> norm(x) < abs(a) + norm(y) + &1)`
(fun th -> MP_TAC th THEN MESON_TAC[]) THEN
CONJ_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN
REPEAT GEN_TAC THEN MP_TAC(SPEC `y:complex` COMPLEX_NORM_POS) THEN
REAL_ARITH_TAC);;
let POLY_ROOTS_FINITE = prove
(`!p. ~(poly p = poly []) <=>
?N i. !x. (poly p(x) = Cx(&0)) ==> ?n:num. n < N /\ (x = i n)`,
GEN_TAC THEN EQ_TAC THEN REWRITE_TAC[POLY_ROOTS_FINITE_LEMMA] THEN
REWRITE_TAC[FUN_EQ_THM; LEFT_IMP_EXISTS_THM; NOT_FORALL_THM; poly] THEN
MP_TAC(GENL [`i:num->complex`; `N:num`]
(SPECL [`i:num->complex`; `N:num`; `\x. poly p x = Cx(&0)`]
FINITE_LEMMA)) THEN
REWRITE_TAC[] THEN MESON_TAC[REAL_ARITH `~(abs(x) < x)`; COMPLEX_NORM_CX]);;
(* ------------------------------------------------------------------------- *)
(* Hence get entirety and cancellation for polynomials. *)
(* ------------------------------------------------------------------------- *)
let POLY_ENTIRE_LEMMA = prove
(`!p q. ~(poly p = poly []) /\ ~(poly q = poly [])
==> ~(poly (p ** q) = poly [])`,
REPEAT GEN_TAC THEN REWRITE_TAC[POLY_ROOTS_FINITE] THEN
DISCH_THEN(CONJUNCTS_THEN MP_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `N2:num` (X_CHOOSE_TAC `i2:num->complex`)) THEN
DISCH_THEN(X_CHOOSE_THEN `N1:num` (X_CHOOSE_TAC `i1:num->complex`)) THEN
EXISTS_TAC `N1 + N2:num` THEN
EXISTS_TAC `\n:num. if n < N1 then i1(n):complex else i2(n - N1)` THEN
X_GEN_TAC `x:complex` THEN REWRITE_TAC[COMPLEX_ENTIRE; POLY_MUL] THEN
DISCH_THEN(DISJ_CASES_THEN (ANTE_RES_THEN (X_CHOOSE_TAC `n:num`))) THENL
[EXISTS_TAC `n:num` THEN ASM_REWRITE_TAC[] THEN
FIRST_ASSUM(MP_TAC o CONJUNCT1) THEN ARITH_TAC;
EXISTS_TAC `N1 + n:num` THEN ASM_REWRITE_TAC[LT_ADD_LCANCEL] THEN
REWRITE_TAC[ARITH_RULE `~(m + n < m:num)`] THEN
AP_TERM_TAC THEN ARITH_TAC]);;
let POLY_ENTIRE = prove
(`!p q. (poly (p ** q) = poly []) <=>
(poly p = poly []) \/ (poly q = poly [])`,
REPEAT GEN_TAC THEN EQ_TAC THENL
[MESON_TAC[POLY_ENTIRE_LEMMA];
REWRITE_TAC[FUN_EQ_THM; POLY_MUL] THEN
STRIP_TAC THEN
ASM_REWRITE_TAC[COMPLEX_MUL_RZERO; COMPLEX_MUL_LZERO; poly]]);;
let POLY_MUL_LCANCEL = prove
(`!p q r. (poly (p ** q) = poly (p ** r)) <=>
(poly p = poly []) \/ (poly q = poly r)`,
let lemma1 = prove
(`!p q. (poly (p ++ neg q) = poly []) <=> (poly p = poly q)`,
REWRITE_TAC[FUN_EQ_THM; POLY_ADD; POLY_NEG; poly] THEN
REWRITE_TAC[SIMPLE_COMPLEX_ARITH `(p + --q = Cx(&0)) <=> (p = q)`]) in
let lemma2 = prove
(`!p q r. poly (p ** q ++ neg(p ** r)) = poly (p ** (q ++ neg(r)))`,
REWRITE_TAC[FUN_EQ_THM; POLY_ADD; POLY_NEG; POLY_MUL] THEN
SIMPLE_COMPLEX_ARITH_TAC) in
ONCE_REWRITE_TAC[GSYM lemma1] THEN
REWRITE_TAC[lemma2; POLY_ENTIRE] THEN
REWRITE_TAC[lemma1]);;
let POLY_EXP_EQ_0 = prove
(`!p n. (poly (p exp n) = poly []) <=> (poly p = poly []) /\ ~(n = 0)`,
REPEAT GEN_TAC THEN REWRITE_TAC[FUN_EQ_THM; poly] THEN
REWRITE_TAC[LEFT_AND_FORALL_THM] THEN AP_TERM_TAC THEN ABS_TAC THEN
SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THEN
REWRITE_TAC[poly_exp; poly; COMPLEX_MUL_RZERO; COMPLEX_ADD_RID;
CX_INJ; REAL_OF_NUM_EQ; ARITH; NOT_SUC] THEN
ASM_REWRITE_TAC[POLY_MUL; poly; COMPLEX_ENTIRE] THEN
CONV_TAC TAUT);;
let POLY_PRIME_EQ_0 = prove
(`!a. ~(poly [a ; Cx(&1)] = poly [])`,
GEN_TAC THEN REWRITE_TAC[FUN_EQ_THM; poly] THEN
DISCH_THEN(MP_TAC o SPEC `Cx(&1) - a`) THEN
SIMPLE_COMPLEX_ARITH_TAC);;
let POLY_EXP_PRIME_EQ_0 = prove
(`!a n. ~(poly ([a ; Cx(&1)] exp n) = poly [])`,
MESON_TAC[POLY_EXP_EQ_0; POLY_PRIME_EQ_0]);;
(* ------------------------------------------------------------------------- *)
(* Can also prove a more "constructive" notion of polynomial being trivial. *)
(* ------------------------------------------------------------------------- *)
let POLY_ZERO_LEMMA = prove
(`!h t. (poly (CONS h t) = poly []) ==> (h = Cx(&0)) /\ (poly t = poly [])`,
let lemma = REWRITE_RULE[FUN_EQ_THM; poly] POLY_ROOTS_FINITE in
REPEAT GEN_TAC THEN REWRITE_TAC[FUN_EQ_THM; poly] THEN
ASM_CASES_TAC `h = Cx(&0)` THEN ASM_REWRITE_TAC[] THENL
[REWRITE_TAC[COMPLEX_ADD_LID];
DISCH_THEN(MP_TAC o SPEC `Cx(&0)`) THEN
POP_ASSUM MP_TAC THEN SIMPLE_COMPLEX_ARITH_TAC] THEN
CONV_TAC CONTRAPOS_CONV THEN
DISCH_THEN(MP_TAC o REWRITE_RULE[lemma]) THEN
DISCH_THEN(X_CHOOSE_THEN `N:num` (X_CHOOSE_TAC `i:num->complex`)) THEN
MP_TAC(SPECL
[`i:num->complex`; `N:num`; `\x. poly t x = Cx(&0)`] FINITE_LEMMA) THEN
ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_TAC `a:real`) THEN
DISCH_THEN(MP_TAC o SPEC `Cx(abs(a) + &1)`) THEN
REWRITE_TAC[COMPLEX_ENTIRE; DE_MORGAN_THM] THEN CONJ_TAC THENL
[REWRITE_TAC[CX_INJ] THEN REAL_ARITH_TAC;
DISCH_THEN(MP_TAC o MATCH_MP
(ASSUME `!x. (poly t x = Cx(&0)) ==> norm(x) < a`)) THEN
REWRITE_TAC[COMPLEX_NORM_CX] THEN REAL_ARITH_TAC]);;
let POLY_ZERO = prove
(`!p. (poly p = poly []) <=> ALL (\c. c = Cx(&0)) p`,
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ALL] THEN EQ_TAC THENL
[DISCH_THEN(MP_TAC o MATCH_MP POLY_ZERO_LEMMA) THEN ASM_REWRITE_TAC[];
POP_ASSUM(SUBST1_TAC o SYM) THEN STRIP_TAC THEN
ASM_REWRITE_TAC[FUN_EQ_THM; poly] THEN SIMPLE_COMPLEX_ARITH_TAC]);;
(* ------------------------------------------------------------------------- *)
(* Basics of divisibility. *)
(* ------------------------------------------------------------------------- *)
let divides = new_definition
`p1 divides p2 <=> ?q. poly p2 = poly (p1 ** q)`;;
let POLY_PRIMES = prove
(`!a p q. [a; Cx(&1)] divides (p ** q) <=>
[a; Cx(&1)] divides p \/ [a; Cx(&1)] divides q`,
REPEAT GEN_TAC THEN REWRITE_TAC[divides; POLY_MUL; FUN_EQ_THM; poly] THEN
REWRITE_TAC[COMPLEX_MUL_RZERO; COMPLEX_ADD_RID; COMPLEX_MUL_RID] THEN
EQ_TAC THENL
[DISCH_THEN(X_CHOOSE_THEN `r:complex list` (MP_TAC o SPEC `--a`)) THEN
REWRITE_TAC[COMPLEX_ENTIRE; GSYM complex_sub;
COMPLEX_SUB_REFL; COMPLEX_MUL_LZERO] THEN
DISCH_THEN DISJ_CASES_TAC THENL [DISJ1_TAC; DISJ2_TAC] THEN
(POP_ASSUM(MP_TAC o REWRITE_RULE[POLY_LINEAR_DIVIDES]) THEN
REWRITE_TAC[COMPLEX_NEG_NEG] THEN
DISCH_THEN(DISJ_CASES_THEN2 SUBST_ALL_TAC
(X_CHOOSE_THEN `s:complex list` SUBST_ALL_TAC)) THENL
[EXISTS_TAC `[]:complex list` THEN REWRITE_TAC[poly; COMPLEX_MUL_RZERO];
EXISTS_TAC `s:complex list` THEN GEN_TAC THEN
REWRITE_TAC[POLY_MUL; poly] THEN SIMPLE_COMPLEX_ARITH_TAC]);
DISCH_THEN(DISJ_CASES_THEN(X_CHOOSE_TAC `s:complex list`)) THEN
ASM_REWRITE_TAC[] THENL
[EXISTS_TAC `s ** q`; EXISTS_TAC `p ** s`] THEN
GEN_TAC THEN REWRITE_TAC[POLY_MUL] THEN SIMPLE_COMPLEX_ARITH_TAC]);;
let POLY_DIVIDES_REFL = prove
(`!p. p divides p`,
GEN_TAC THEN REWRITE_TAC[divides] THEN EXISTS_TAC `[Cx(&1)]` THEN
REWRITE_TAC[FUN_EQ_THM; POLY_MUL; poly] THEN SIMPLE_COMPLEX_ARITH_TAC);;
let POLY_DIVIDES_TRANS = prove
(`!p q r. p divides q /\ q divides r ==> p divides r`,
REPEAT GEN_TAC THEN REWRITE_TAC[divides] THEN
DISCH_THEN(CONJUNCTS_THEN MP_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `s:complex list` ASSUME_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `t:complex list` ASSUME_TAC) THEN
EXISTS_TAC `t ** s` THEN
ASM_REWRITE_TAC[FUN_EQ_THM; POLY_MUL; COMPLEX_MUL_ASSOC]);;
let POLY_DIVIDES_EXP = prove
(`!p m n. m <= n ==> (p exp m) divides (p exp n)`,
REPEAT GEN_TAC THEN REWRITE_TAC[LE_EXISTS] THEN
DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC) THEN
SPEC_TAC(`d:num`,`d:num`) THEN INDUCT_TAC THEN
REWRITE_TAC[ADD_CLAUSES; POLY_DIVIDES_REFL] THEN
MATCH_MP_TAC POLY_DIVIDES_TRANS THEN
EXISTS_TAC `p exp (m + d)` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[divides] THEN EXISTS_TAC `p:complex list` THEN
REWRITE_TAC[poly_exp; FUN_EQ_THM; POLY_MUL] THEN
SIMPLE_COMPLEX_ARITH_TAC);;
let POLY_EXP_DIVIDES = prove
(`!p q m n. (p exp n) divides q /\ m <= n ==> (p exp m) divides q`,
MESON_TAC[POLY_DIVIDES_TRANS; POLY_DIVIDES_EXP]);;
let POLY_DIVIDES_ADD = prove
(`!p q r. p divides q /\ p divides r ==> p divides (q ++ r)`,
REPEAT GEN_TAC THEN REWRITE_TAC[divides] THEN
DISCH_THEN(CONJUNCTS_THEN MP_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `s:complex list` ASSUME_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `t:complex list` ASSUME_TAC) THEN
EXISTS_TAC `t ++ s` THEN
ASM_REWRITE_TAC[FUN_EQ_THM; POLY_ADD; POLY_MUL] THEN
SIMPLE_COMPLEX_ARITH_TAC);;
let POLY_DIVIDES_SUB = prove
(`!p q r. p divides q /\ p divides (q ++ r) ==> p divides r`,
REPEAT GEN_TAC THEN REWRITE_TAC[divides] THEN
DISCH_THEN(CONJUNCTS_THEN MP_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `s:complex list` ASSUME_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `t:complex list` ASSUME_TAC) THEN
EXISTS_TAC `s ++ neg(t)` THEN
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN
REWRITE_TAC[FUN_EQ_THM; POLY_ADD; POLY_MUL; POLY_NEG] THEN
DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN
REWRITE_TAC[COMPLEX_ADD_LDISTRIB; COMPLEX_MUL_RNEG] THEN
ASM_REWRITE_TAC[] THEN SIMPLE_COMPLEX_ARITH_TAC);;
let POLY_DIVIDES_SUB2 = prove
(`!p q r. p divides r /\ p divides (q ++ r) ==> p divides q`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC POLY_DIVIDES_SUB THEN
EXISTS_TAC `r:complex list` THEN ASM_REWRITE_TAC[] THEN
UNDISCH_TAC `p divides (q ++ r)` THEN
REWRITE_TAC[divides; POLY_ADD; FUN_EQ_THM; POLY_MUL] THEN
DISCH_THEN(X_CHOOSE_TAC `s:complex list`) THEN
EXISTS_TAC `s:complex list` THEN
X_GEN_TAC `x:complex` THEN POP_ASSUM(MP_TAC o SPEC `x:complex`) THEN
SIMPLE_COMPLEX_ARITH_TAC);;
let POLY_DIVIDES_ZERO = prove
(`!p q. (poly p = poly []) ==> q divides p`,
REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[divides] THEN
EXISTS_TAC `[]:complex list` THEN
ASM_REWRITE_TAC[FUN_EQ_THM; POLY_MUL; poly; COMPLEX_MUL_RZERO]);;
(* ------------------------------------------------------------------------- *)
(* At last, we can consider the order of a root. *)
(* ------------------------------------------------------------------------- *)
let POLY_ORDER_EXISTS = prove
(`!a d. !p. (LENGTH p = d) /\ ~(poly p = poly [])
==> ?n. ([--a; Cx(&1)] exp n) divides p /\
~(([--a; Cx(&1)] exp (SUC n)) divides p)`,
GEN_TAC THEN
(STRIP_ASSUME_TAC o prove_recursive_functions_exist num_RECURSION)
`(!p q. mulexp 0 p q = q) /\
(!p q n. mulexp (SUC n) p q = p ** (mulexp n p q))` THEN
SUBGOAL_THEN
`!d. !p. (LENGTH p = d) /\ ~(poly p = poly [])
==> ?n q. (p = mulexp (n:num) [--a; Cx(&1)] q) /\
~(poly q a = Cx(&0))`
MP_TAC THENL
[INDUCT_TAC THENL
[REWRITE_TAC[LENGTH_EQ_NIL] THEN MESON_TAC[]; ALL_TAC] THEN
X_GEN_TAC `p:complex list` THEN
ASM_CASES_TAC `poly p a = Cx(&0)` THENL
[STRIP_TAC THEN UNDISCH_TAC `poly p a = Cx(&0)` THEN
DISCH_THEN(MP_TAC o REWRITE_RULE[POLY_LINEAR_DIVIDES]) THEN
DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `q:complex list` SUBST_ALL_TAC) THEN
UNDISCH_TAC
`!p. (LENGTH p = d) /\ ~(poly p = poly [])
==> ?n q. (p = mulexp (n:num) [--a; Cx(&1)] q) /\
~(poly q a = Cx(&0))` THEN
DISCH_THEN(MP_TAC o SPEC `q:complex list`) THEN
RULE_ASSUM_TAC(REWRITE_RULE[POLY_LENGTH_MUL; POLY_ENTIRE;
DE_MORGAN_THM; SUC_INJ]) THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `n:num`
(X_CHOOSE_THEN `s:complex list` STRIP_ASSUME_TAC)) THEN
EXISTS_TAC `SUC n` THEN EXISTS_TAC `s:complex list` THEN
ASM_REWRITE_TAC[];
STRIP_TAC THEN EXISTS_TAC `0` THEN EXISTS_TAC `p:complex list` THEN
ASM_REWRITE_TAC[]];
DISCH_TAC THEN REPEAT GEN_TAC THEN
DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `n:num`
(X_CHOOSE_THEN `s:complex list` STRIP_ASSUME_TAC)) THEN
EXISTS_TAC `n:num` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[divides] THEN CONJ_TAC THENL
[EXISTS_TAC `s:complex list` THEN
SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THEN
ASM_REWRITE_TAC[poly_exp; FUN_EQ_THM; POLY_MUL; poly] THEN
SIMPLE_COMPLEX_ARITH_TAC;
DISCH_THEN(X_CHOOSE_THEN `r:complex list` MP_TAC) THEN
SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THEN
ASM_REWRITE_TAC[] THENL
[UNDISCH_TAC `~(poly s a = Cx(&0))` THEN CONV_TAC CONTRAPOS_CONV THEN
REWRITE_TAC[] THEN DISCH_THEN SUBST1_TAC THEN
REWRITE_TAC[poly; poly_exp; POLY_MUL] THEN SIMPLE_COMPLEX_ARITH_TAC;
REWRITE_TAC[] THEN ONCE_ASM_REWRITE_TAC[] THEN
ONCE_REWRITE_TAC[poly_exp] THEN
REWRITE_TAC[GSYM POLY_MUL_ASSOC; POLY_MUL_LCANCEL] THEN
REWRITE_TAC[DE_MORGAN_THM] THEN CONJ_TAC THENL
[REWRITE_TAC[FUN_EQ_THM] THEN
DISCH_THEN(MP_TAC o SPEC `a + Cx(&1)`) THEN
REWRITE_TAC[poly] THEN SIMPLE_COMPLEX_ARITH_TAC;
DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN REWRITE_TAC[]]]]]);;
let POLY_ORDER = prove
(`!p a. ~(poly p = poly [])
==> ?!n. ([--a; Cx(&1)] exp n) divides p /\
~(([--a; Cx(&1)] exp (SUC n)) divides p)`,
MESON_TAC[POLY_ORDER_EXISTS; POLY_EXP_DIVIDES; LE_SUC_LT; LT_CASES]);;
(* ------------------------------------------------------------------------- *)
(* Definition of order. *)
(* ------------------------------------------------------------------------- *)
let order = new_definition
`order a p = @n. ([--a; Cx(&1)] exp n) divides p /\
~(([--a; Cx(&1)] exp (SUC n)) divides p)`;;
let ORDER = prove
(`!p a n. ([--a; Cx(&1)] exp n) divides p /\
~(([--a; Cx(&1)] exp (SUC n)) divides p) <=>
(n = order a p) /\
~(poly p = poly [])`,
REPEAT GEN_TAC THEN REWRITE_TAC[order] THEN
EQ_TAC THEN STRIP_TAC THENL
[SUBGOAL_THEN `~(poly p = poly [])` ASSUME_TAC THENL
[FIRST_ASSUM(UNDISCH_TAC o check is_neg o concl) THEN
CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[divides] THEN
DISCH_THEN SUBST1_TAC THEN EXISTS_TAC `[]:complex list` THEN
REWRITE_TAC[FUN_EQ_THM; POLY_MUL; poly; COMPLEX_MUL_RZERO];
ASM_REWRITE_TAC[] THEN CONV_TAC SYM_CONV THEN
MATCH_MP_TAC SELECT_UNIQUE THEN REWRITE_TAC[]];
ONCE_ASM_REWRITE_TAC[] THEN CONV_TAC SELECT_CONV] THEN
ASM_MESON_TAC[POLY_ORDER]);;
let ORDER_THM = prove
(`!p a. ~(poly p = poly [])
==> ([--a; Cx(&1)] exp (order a p)) divides p /\
~(([--a; Cx(&1)] exp (SUC(order a p))) divides p)`,
MESON_TAC[ORDER]);;
let ORDER_UNIQUE = prove
(`!p a n. ~(poly p = poly []) /\
([--a; Cx(&1)] exp n) divides p /\
~(([--a; Cx(&1)] exp (SUC n)) divides p)
==> (n = order a p)`,
MESON_TAC[ORDER]);;
let ORDER_POLY = prove
(`!p q a. (poly p = poly q) ==> (order a p = order a q)`,
REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC[order; divides; FUN_EQ_THM; POLY_MUL]);;
let ORDER_ROOT = prove
(`!p a. (poly p a = Cx(&0)) <=> (poly p = poly []) \/ ~(order a p = 0)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `poly p = poly []` THEN
ASM_REWRITE_TAC[poly] THEN EQ_TAC THENL
[DISCH_THEN(MP_TAC o REWRITE_RULE[POLY_LINEAR_DIVIDES]) THEN
ASM_CASES_TAC `p:complex list = []` THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `q:complex list` SUBST_ALL_TAC) THEN DISCH_TAC THEN
FIRST_ASSUM(MP_TAC o SPEC `a:complex` o MATCH_MP ORDER_THM) THEN
ASM_REWRITE_TAC[poly_exp; DE_MORGAN_THM] THEN DISJ2_TAC THEN
REWRITE_TAC[divides] THEN EXISTS_TAC `q:complex list` THEN
REWRITE_TAC[FUN_EQ_THM; POLY_MUL; poly] THEN SIMPLE_COMPLEX_ARITH_TAC;
DISCH_TAC THEN
FIRST_ASSUM(MP_TAC o SPEC `a:complex` o MATCH_MP ORDER_THM) THEN
UNDISCH_TAC `~(order a p = 0)` THEN
SPEC_TAC(`order a p`,`n:num`) THEN
INDUCT_TAC THEN ASM_REWRITE_TAC[poly_exp; NOT_SUC] THEN
DISCH_THEN(MP_TAC o CONJUNCT1) THEN REWRITE_TAC[divides] THEN
DISCH_THEN(X_CHOOSE_THEN `s:complex list` SUBST1_TAC) THEN
REWRITE_TAC[POLY_MUL; poly] THEN SIMPLE_COMPLEX_ARITH_TAC]);;
let ORDER_DIVIDES = prove
(`!p a n. ([--a; Cx(&1)] exp n) divides p <=>
(poly p = poly []) \/ n <= order a p`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `poly p = poly []` THEN
ASM_REWRITE_TAC[] THENL
[ASM_REWRITE_TAC[divides] THEN EXISTS_TAC `[]:complex list` THEN
REWRITE_TAC[FUN_EQ_THM; POLY_MUL; poly; COMPLEX_MUL_RZERO];
ASM_MESON_TAC[ORDER_THM; POLY_EXP_DIVIDES; NOT_LE; LE_SUC_LT]]);;
let ORDER_DECOMP = prove
(`!p a. ~(poly p = poly [])
==> ?q. (poly p = poly (([--a; Cx(&1)] exp (order a p)) ** q)) /\
~([--a; Cx(&1)] divides q)`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP ORDER_THM) THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC o SPEC `a:complex`) THEN
DISCH_THEN(X_CHOOSE_TAC `q:complex list` o REWRITE_RULE[divides]) THEN
EXISTS_TAC `q:complex list` THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_TAC `r: complex list` o REWRITE_RULE[divides]) THEN
UNDISCH_TAC `~([-- a; Cx(&1)] exp SUC (order a p) divides p)` THEN
ASM_REWRITE_TAC[] THEN REWRITE_TAC[divides] THEN
EXISTS_TAC `r:complex list` THEN
ASM_REWRITE_TAC[POLY_MUL; FUN_EQ_THM; poly_exp] THEN
SIMPLE_COMPLEX_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Important composition properties of orders. *)
(* ------------------------------------------------------------------------- *)
let ORDER_MUL = prove
(`!a p q. ~(poly (p ** q) = poly []) ==>
(order a (p ** q) = order a p + order a q)`,
REPEAT GEN_TAC THEN
DISCH_THEN(fun th -> ASSUME_TAC th THEN MP_TAC th) THEN
REWRITE_TAC[POLY_ENTIRE; DE_MORGAN_THM] THEN STRIP_TAC THEN
SUBGOAL_THEN `(order a p + order a q = order a (p ** q)) /\
~(poly (p ** q) = poly [])`
MP_TAC THENL [ALL_TAC; MESON_TAC[]] THEN
REWRITE_TAC[GSYM ORDER] THEN CONJ_TAC THENL
[MP_TAC(CONJUNCT1 (SPEC `a:complex`
(MATCH_MP ORDER_THM (ASSUME `~(poly p = poly [])`)))) THEN
DISCH_THEN(X_CHOOSE_TAC `r: complex list` o REWRITE_RULE[divides]) THEN
MP_TAC(CONJUNCT1 (SPEC `a:complex`
(MATCH_MP ORDER_THM (ASSUME `~(poly q = poly [])`)))) THEN
DISCH_THEN(X_CHOOSE_TAC `s: complex list` o REWRITE_RULE[divides]) THEN
REWRITE_TAC[divides; FUN_EQ_THM] THEN EXISTS_TAC `s ** r` THEN
ASM_REWRITE_TAC[POLY_MUL; POLY_EXP_ADD] THEN SIMPLE_COMPLEX_ARITH_TAC;
X_CHOOSE_THEN `r: complex list` STRIP_ASSUME_TAC
(SPEC `a:complex` (MATCH_MP ORDER_DECOMP
(ASSUME `~(poly p = poly [])`))) THEN
X_CHOOSE_THEN `s: complex list` STRIP_ASSUME_TAC
(SPEC `a:complex` (MATCH_MP ORDER_DECOMP
(ASSUME `~(poly q = poly [])`))) THEN
ASM_REWRITE_TAC[divides; FUN_EQ_THM; POLY_EXP_ADD; POLY_MUL; poly_exp] THEN
DISCH_THEN(X_CHOOSE_THEN `t:complex list` STRIP_ASSUME_TAC) THEN
SUBGOAL_THEN `[--a; Cx(&1)] divides (r ** s)` MP_TAC THENL
[ALL_TAC; ASM_REWRITE_TAC[POLY_PRIMES]] THEN
REWRITE_TAC[divides] THEN EXISTS_TAC `t:complex list` THEN
SUBGOAL_THEN `poly ([-- a; Cx(&1)] exp (order a p) ** r ** s) =
poly ([-- a; Cx(&1)] exp (order a p) **
([-- a; Cx(&1)] ** t))`
MP_TAC THENL
[ALL_TAC; MESON_TAC[POLY_MUL_LCANCEL; POLY_EXP_PRIME_EQ_0]] THEN
SUBGOAL_THEN `poly ([-- a; Cx(&1)] exp (order a q) **
[-- a; Cx(&1)] exp (order a p) ** r ** s) =
poly ([-- a; Cx(&1)] exp (order a q) **
[-- a; Cx(&1)] exp (order a p) **
[-- a; Cx(&1)] ** t)`
MP_TAC THENL
[ALL_TAC; MESON_TAC[POLY_MUL_LCANCEL; POLY_EXP_PRIME_EQ_0]] THEN
REWRITE_TAC[FUN_EQ_THM; POLY_MUL; POLY_ADD] THEN
FIRST_ASSUM(UNDISCH_TAC o check is_forall o concl) THEN
REWRITE_TAC[COMPLEX_MUL_AC]]);;
(* ------------------------------------------------------------------------- *)
(* Normalization of a polynomial. *)
(* ------------------------------------------------------------------------- *)
let normalize = new_recursive_definition list_RECURSION
`(normalize [] = []) /\
(normalize (CONS h t) =
if normalize t = [] then if h = Cx(&0) then [] else [h]
else CONS h (normalize t))`;;
let POLY_NORMALIZE = prove
(`!p. poly (normalize p) = poly p`,
LIST_INDUCT_TAC THEN REWRITE_TAC[normalize; poly] THEN
ASM_CASES_TAC `h = Cx(&0)` THEN ASM_REWRITE_TAC[] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[poly; FUN_EQ_THM] THEN
UNDISCH_TAC `poly (normalize t) = poly t` THEN
DISCH_THEN(SUBST1_TAC o SYM) THEN ASM_REWRITE_TAC[poly] THEN
REWRITE_TAC[COMPLEX_MUL_RZERO; COMPLEX_ADD_LID]);;
let LENGTH_NORMALIZE_LE = prove
(`!p. LENGTH(normalize p) <= LENGTH p`,
LIST_INDUCT_TAC THEN REWRITE_TAC[LENGTH; normalize; LE_REFL] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[LENGTH; LE_SUC] THEN
COND_CASES_TAC THEN REWRITE_TAC[LENGTH] THEN ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* The degree of a polynomial. *)
(* ------------------------------------------------------------------------- *)
let degree = new_definition
`degree p = PRE(LENGTH(normalize p))`;;
let DEGREE_ZERO = prove
(`!p. (poly p = poly []) ==> (degree p = 0)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[degree] THEN
SUBGOAL_THEN `normalize p = []` SUBST1_TAC THENL
[POP_ASSUM MP_TAC THEN SPEC_TAC(`p:complex list`,`p:complex list`) THEN
REWRITE_TAC[POLY_ZERO] THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[normalize; ALL] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `normalize t = []` (fun th -> REWRITE_TAC[th]) THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[];
REWRITE_TAC[LENGTH; PRE]]);;
(* ------------------------------------------------------------------------- *)
(* Show that the degree is welldefined. *)
(* ------------------------------------------------------------------------- *)
let POLY_CONS_EQ = prove
(`(poly (CONS h1 t1) = poly (CONS h2 t2)) <=>
(h1 = h2) /\ (poly t1 = poly t2)`,
REWRITE_TAC[FUN_EQ_THM] THEN EQ_TAC THENL [ALL_TAC; SIMP_TAC[poly]] THEN
ONCE_REWRITE_TAC[SIMPLE_COMPLEX_ARITH `(a = b) <=> (a + --b = Cx(&0))`] THEN
REWRITE_TAC[GSYM POLY_NEG; GSYM POLY_ADD] THEN DISCH_TAC THEN
SUBGOAL_THEN `poly (CONS h1 t1 ++ neg(CONS h2 t2)) = poly []` MP_TAC THENL
[ASM_REWRITE_TAC[poly; FUN_EQ_THM]; ALL_TAC] THEN
REWRITE_TAC[poly_neg; poly_cmul; poly_add; NOT_CONS_NIL; HD; TL] THEN
DISCH_THEN(MP_TAC o MATCH_MP POLY_ZERO_LEMMA) THEN
SIMP_TAC[poly; COMPLEX_MUL_LNEG; COMPLEX_MUL_LID]);;
let POLY_NORMALIZE_ZERO = prove
(`!p. (poly p = poly []) <=> (normalize p = [])`,
REWRITE_TAC[POLY_ZERO] THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[ALL; normalize] THEN
ASM_CASES_TAC `normalize t = []` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[NOT_CONS_NIL] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[NOT_CONS_NIL]);;
let POLY_NORMALIZE_EQ_LEMMA = prove
(`!p q. (poly p = poly q) ==> (normalize p = normalize q)`,
LIST_INDUCT_TAC THENL
[MESON_TAC[POLY_NORMALIZE_ZERO]; ALL_TAC] THEN
LIST_INDUCT_TAC THENL
[MESON_TAC[POLY_NORMALIZE_ZERO]; ALL_TAC] THEN
REWRITE_TAC[POLY_CONS_EQ] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[normalize] THEN
FIRST_X_ASSUM(MP_TAC o SPEC `t':complex list`) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN SUBST1_TAC THEN REFL_TAC);;
let POLY_NORMALIZE_EQ = prove
(`!p q. (poly p = poly q) <=> (normalize p = normalize q)`,
MESON_TAC[POLY_NORMALIZE_EQ_LEMMA; POLY_NORMALIZE]);;
let DEGREE_WELLDEF = prove
(`!p q. (poly p = poly q) ==> (degree p = degree q)`,
SIMP_TAC[degree; POLY_NORMALIZE_EQ]);;
(* ------------------------------------------------------------------------- *)
(* Degree of a product with a power of linear terms. *)
(* ------------------------------------------------------------------------- *)
let NORMALIZE_EQ = prove
(`!p. ~(LAST p = Cx(&0)) ==> (normalize p = p)`,
MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[NOT_CONS_NIL] THEN
REWRITE_TAC[normalize; LAST] THEN REPEAT GEN_TAC THEN
REPEAT(COND_CASES_TAC THEN ASM_SIMP_TAC[normalize]));;
let NORMAL_DEGREE = prove
(`!p. ~(LAST p = Cx(&0)) ==> (degree p = LENGTH p - 1)`,
SIMP_TAC[degree; NORMALIZE_EQ] THEN REPEAT STRIP_TAC THEN ARITH_TAC);;
let LAST_LINEAR_MUL_LEMMA = prove
(`!p a b x.
LAST(a ## p ++ CONS x (b ## p)) = if p = [] then x else b * LAST(p)`,
LIST_INDUCT_TAC THEN
REWRITE_TAC[poly_cmul; poly_add; LAST; HD; TL; NOT_CONS_NIL] THEN
REPEAT GEN_TAC THEN
SUBGOAL_THEN `~(a ## t ++ CONS (b * h) (b ## t) = [])`
ASSUME_TAC THENL
[SPEC_TAC(`t:complex list`,`t:complex list`) THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[poly_cmul; poly_add; NOT_CONS_NIL];
ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[]);;
let LAST_LINEAR_MUL = prove
(`!p. ~(p = []) ==> (LAST([a; Cx(&1)] ** p) = LAST p)`,
SIMP_TAC[poly_mul; NOT_CONS_NIL; LAST_LINEAR_MUL_LEMMA; COMPLEX_MUL_LID]);;
let NORMAL_NORMALIZE = prove
(`!p. ~(normalize p = []) ==> ~(LAST(normalize p) = Cx(&0))`,
LIST_INDUCT_TAC THEN REWRITE_TAC[normalize] THEN
POP_ASSUM MP_TAC THEN ASM_CASES_TAC `normalize t = []` THEN
ASM_REWRITE_TAC[LAST; NOT_CONS_NIL] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[LAST]);;
let LINEAR_MUL_DEGREE = prove
(`!p a. ~(poly p = poly []) ==> (degree([a; Cx(&1)] ** p) = degree(p) + 1)`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `degree([a; Cx(&1)] ** normalize p) = degree(normalize p) + 1`
MP_TAC THENL
[FIRST_ASSUM(ASSUME_TAC o
GEN_REWRITE_RULE RAND_CONV [POLY_NORMALIZE_ZERO]) THEN
FIRST_ASSUM(MP_TAC o MATCH_MP NORMAL_NORMALIZE) THEN
FIRST_ASSUM(MP_TAC o MATCH_MP LAST_LINEAR_MUL) THEN
SIMP_TAC[NORMAL_DEGREE] THEN REPEAT STRIP_TAC THEN
SUBST1_TAC(SYM(SPEC `a:complex` COMPLEX_NEG_NEG)) THEN
REWRITE_TAC[POLY_LENGTH_MUL] THEN
UNDISCH_TAC `~(normalize p = [])` THEN
SPEC_TAC(`normalize p`,`p:complex list`) THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[NOT_CONS_NIL; LENGTH] THEN ARITH_TAC;
MATCH_MP_TAC EQ_IMP THEN BINOP_TAC THEN
TRY(AP_THM_TAC THEN AP_TERM_TAC) THEN MATCH_MP_TAC DEGREE_WELLDEF THEN
REWRITE_TAC[FUN_EQ_THM; POLY_MUL; POLY_NORMALIZE]]);;
let LINEAR_POW_MUL_DEGREE = prove
(`!n a p. degree([a; Cx(&1)] exp n ** p) =
if poly p = poly [] then 0 else degree p + n`,
INDUCT_TAC THEN REWRITE_TAC[poly_exp] THENL
[GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL
[MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `degree(p)` THEN CONJ_TAC THENL
[MATCH_MP_TAC DEGREE_WELLDEF THEN
REWRITE_TAC[FUN_EQ_THM; POLY_MUL; poly; COMPLEX_MUL_RZERO;
COMPLEX_ADD_RID; COMPLEX_MUL_LID];
MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `degree []` THEN CONJ_TAC THENL
[MATCH_MP_TAC DEGREE_WELLDEF THEN ASM_REWRITE_TAC[];
REWRITE_TAC[degree; LENGTH; normalize; ARITH]]];
REWRITE_TAC[ADD_CLAUSES] THEN MATCH_MP_TAC DEGREE_WELLDEF THEN
REWRITE_TAC[FUN_EQ_THM; POLY_MUL; poly; COMPLEX_MUL_RZERO;
COMPLEX_ADD_RID; COMPLEX_MUL_LID]];
ALL_TAC] THEN
REPEAT GEN_TAC THEN MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC `degree([a; Cx (&1)] exp n ** ([a; Cx (&1)] ** p))` THEN
CONJ_TAC THENL
[MATCH_MP_TAC DEGREE_WELLDEF THEN
REWRITE_TAC[FUN_EQ_THM; POLY_MUL; COMPLEX_MUL_AC]; ALL_TAC] THEN
ASM_REWRITE_TAC[POLY_ENTIRE] THEN
ASM_CASES_TAC `poly p = poly []` THEN ASM_REWRITE_TAC[] THEN
ASM_SIMP_TAC[LINEAR_MUL_DEGREE] THEN
SUBGOAL_THEN `~(poly [a; Cx (&1)] = poly [])`
(fun th -> REWRITE_TAC[th] THEN ARITH_TAC) THEN
REWRITE_TAC[POLY_NORMALIZE_EQ] THEN
REWRITE_TAC[normalize; CX_INJ; REAL_OF_NUM_EQ; ARITH; NOT_CONS_NIL]);;
(* ------------------------------------------------------------------------- *)
(* Show that the order of a root (or nonroot!) is bounded by degree. *)
(* ------------------------------------------------------------------------- *)
let ORDER_DEGREE = prove
(`!a p. ~(poly p = poly []) ==> order a p <= degree p`,
REPEAT STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o SPEC `a:complex` o MATCH_MP ORDER_THM) THEN
DISCH_THEN(MP_TAC o REWRITE_RULE[divides] o CONJUNCT1) THEN
DISCH_THEN(X_CHOOSE_THEN `q:complex list` ASSUME_TAC) THEN
FIRST_ASSUM(SUBST1_TAC o MATCH_MP DEGREE_WELLDEF) THEN
ASM_REWRITE_TAC[LINEAR_POW_MUL_DEGREE] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [FUN_EQ_THM]) THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[POLY_MUL] THENL
[UNDISCH_TAC `~(poly p = poly [])` THEN
SIMP_TAC[FUN_EQ_THM; POLY_MUL; poly; COMPLEX_MUL_RZERO];
DISCH_TAC THEN ARITH_TAC]);;
(* ------------------------------------------------------------------------- *)
(* Tidier versions of finiteness of roots. *)
(* ------------------------------------------------------------------------- *)
let POLY_ROOTS_FINITE_SET = prove
(`!p. ~(poly p = poly []) ==> FINITE { x | poly p x = Cx(&0)}`,
GEN_TAC THEN REWRITE_TAC[POLY_ROOTS_FINITE] THEN
DISCH_THEN(X_CHOOSE_THEN `N:num` MP_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `i:num->complex` ASSUME_TAC) THEN
MATCH_MP_TAC FINITE_SUBSET THEN
EXISTS_TAC `{x:complex | ?n:num. n < N /\ (x = i n)}` THEN
CONJ_TAC THENL
[SPEC_TAC(`N:num`,`N:num`) THEN POP_ASSUM_LIST(K ALL_TAC) THEN
INDUCT_TAC THENL
[SUBGOAL_THEN `{x:complex | ?n. n < 0 /\ (x = i n)} = {}`
(fun th -> REWRITE_TAC[th; FINITE_RULES]) THEN
REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY; LT];
SUBGOAL_THEN `{x:complex | ?n. n < SUC N /\ (x = i n)} =
(i N) INSERT {x:complex | ?n. n < N /\ (x = i n)}`
SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT; LT] THEN MESON_TAC[];
MATCH_MP_TAC(CONJUNCT2 FINITE_RULES) THEN ASM_REWRITE_TAC[]]];
ASM_REWRITE_TAC[SUBSET; IN_ELIM_THM]]);;
(* ------------------------------------------------------------------------- *)
(* Conversions to perform operations if coefficients are rational constants. *)
(* ------------------------------------------------------------------------- *)
let COMPLEX_RAT_MUL_CONV =
GEN_REWRITE_CONV I [GSYM CX_MUL] THENC RAND_CONV REAL_RAT_MUL_CONV;;
let COMPLEX_RAT_ADD_CONV =
GEN_REWRITE_CONV I [GSYM CX_ADD] THENC RAND_CONV REAL_RAT_ADD_CONV;;
let COMPLEX_RAT_EQ_CONV =
GEN_REWRITE_CONV I [CX_INJ] THENC REAL_RAT_EQ_CONV;;
let POLY_CMUL_CONV =
let cmul_conv0 = GEN_REWRITE_CONV I [CONJUNCT1 poly_cmul]
and cmul_conv1 = GEN_REWRITE_CONV I [CONJUNCT2 poly_cmul] in
let rec POLY_CMUL_CONV tm =
(cmul_conv0 ORELSEC
(cmul_conv1 THENC
LAND_CONV COMPLEX_RAT_MUL_CONV THENC
RAND_CONV POLY_CMUL_CONV)) tm in
POLY_CMUL_CONV;;
let POLY_ADD_CONV =
let add_conv0 = GEN_REWRITE_CONV I (butlast (CONJUNCTS POLY_ADD_CLAUSES))
and add_conv1 = GEN_REWRITE_CONV I [last (CONJUNCTS POLY_ADD_CLAUSES)] in
let rec POLY_ADD_CONV tm =
(add_conv0 ORELSEC
(add_conv1 THENC
LAND_CONV COMPLEX_RAT_ADD_CONV THENC
RAND_CONV POLY_ADD_CONV)) tm in
POLY_ADD_CONV;;
let POLY_MUL_CONV =
let mul_conv0 = GEN_REWRITE_CONV I [CONJUNCT1 POLY_MUL_CLAUSES]
and mul_conv1 = GEN_REWRITE_CONV I [CONJUNCT1(CONJUNCT2 POLY_MUL_CLAUSES)]
and mul_conv2 = GEN_REWRITE_CONV I [CONJUNCT2(CONJUNCT2 POLY_MUL_CLAUSES)] in
let rec POLY_MUL_CONV tm =
(mul_conv0 ORELSEC
(mul_conv1 THENC POLY_CMUL_CONV) ORELSEC
(mul_conv2 THENC
LAND_CONV POLY_CMUL_CONV THENC
RAND_CONV(RAND_CONV POLY_MUL_CONV) THENC
POLY_ADD_CONV)) tm in
POLY_MUL_CONV;;
let POLY_NORMALIZE_CONV =
let pth = prove
(`normalize (CONS h t) =
(\n. if n = [] then if h = Cx(&0) then [] else [h] else CONS h n)
(normalize t)`,
REWRITE_TAC[normalize]) in
let norm_conv0 = GEN_REWRITE_CONV I [CONJUNCT1 normalize]
and norm_conv1 = GEN_REWRITE_CONV I [pth]
and norm_conv2 = GEN_REWRITE_CONV DEPTH_CONV
[COND_CLAUSES; NOT_CONS_NIL; EQT_INTRO(SPEC_ALL EQ_REFL)] in
let rec POLY_NORMALIZE_CONV tm =
(norm_conv0 ORELSEC
(norm_conv1 THENC
RAND_CONV POLY_NORMALIZE_CONV THENC
BETA_CONV THENC
RATOR_CONV(RAND_CONV(RATOR_CONV(LAND_CONV COMPLEX_RAT_EQ_CONV))) THENC
norm_conv2)) tm in
POLY_NORMALIZE_CONV;;
(* ------------------------------------------------------------------------- *)
(* Now we're finished with polynomials... *)
(* ------------------------------------------------------------------------- *)
(************** keep this for now
do_list reduce_interface
["divides",`poly_divides:complex list->complex list->bool`;
"exp",`poly_exp:complex list -> num -> complex list`;
"diff",`poly_diff:complex list->complex list`];;
unparse_as_infix "exp";;
****************)
|