File: cpoly.ml

package info (click to toggle)
hol-light 20170109-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 36,568 kB
  • ctags: 8,549
  • sloc: ml: 540,018; cpp: 439; lisp: 286; java: 279; makefile: 262; sh: 229; yacc: 108; perl: 78; ansic: 57; sed: 39
file content (977 lines) | stat: -rw-r--r-- 44,257 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
(* ========================================================================= *)
(* Properties of complex polynomials (not canonically represented).          *)
(* ========================================================================= *)

needs "Complex/complexnumbers.ml";;

prioritize_complex();;

parse_as_infix("++",(16,"right"));;
parse_as_infix("**",(20,"right"));;
parse_as_infix("##",(20,"right"));;
parse_as_infix("divides",(14,"right"));;
parse_as_infix("exp",(22,"right"));;

do_list override_interface
  ["++",`poly_add:complex list->complex list->complex list`;
   "**",`poly_mul:complex list->complex list->complex list`;
   "##",`poly_cmul:complex->complex list->complex list`;
   "neg",`poly_neg:complex list->complex list`;
   "divides",`poly_divides:complex list->complex list->bool`;
   "exp",`poly_exp:complex list -> num -> complex list`;
   "diff",`poly_diff:complex list->complex list`];;

let SIMPLE_COMPLEX_ARITH tm = prove(tm,SIMPLE_COMPLEX_ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Polynomials.                                                              *)
(* ------------------------------------------------------------------------- *)

let poly = new_recursive_definition list_RECURSION
  `(poly [] x = Cx(&0)) /\
   (poly (CONS h t) x = h + x * poly t x)`;;

(* ------------------------------------------------------------------------- *)
(* Arithmetic operations on polynomials.                                     *)
(* ------------------------------------------------------------------------- *)

let poly_add = new_recursive_definition list_RECURSION
  `([] ++ l2 = l2) /\
   ((CONS h t) ++ l2 =
        (if l2 = [] then CONS h t
                    else CONS (h + HD l2) (t ++ TL l2)))`;;

let poly_cmul = new_recursive_definition list_RECURSION
  `(c ## [] = []) /\
   (c ## (CONS h t) = CONS (c * h) (c ## t))`;;

let poly_neg = new_definition
  `neg = (##) (--(Cx(&1)))`;;

let poly_mul = new_recursive_definition list_RECURSION
  `([] ** l2 = []) /\
   ((CONS h t) ** l2 =
        if t = [] then h ## l2
        else (h ## l2) ++ CONS (Cx(&0)) (t ** l2))`;;

let poly_exp = new_recursive_definition num_RECURSION
  `(p exp 0 = [Cx(&1)]) /\
   (p exp (SUC n) = p ** p exp n)`;;

(* ------------------------------------------------------------------------- *)
(* Useful clausifications.                                                   *)
(* ------------------------------------------------------------------------- *)

let POLY_ADD_CLAUSES = prove
 (`([] ++ p2 = p2) /\
   (p1 ++ [] = p1) /\
   ((CONS h1 t1) ++ (CONS h2 t2) = CONS (h1 + h2) (t1 ++ t2))`,
  REWRITE_TAC[poly_add; NOT_CONS_NIL; HD; TL] THEN
  SPEC_TAC(`p1:complex list`,`p1:complex list`) THEN
  LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[poly_add]);;

let POLY_CMUL_CLAUSES = prove
 (`(c ## [] = []) /\
   (c ## (CONS h t) = CONS (c * h) (c ## t))`,
  REWRITE_TAC[poly_cmul]);;

let POLY_NEG_CLAUSES = prove
 (`(neg [] = []) /\
   (neg (CONS h t) = CONS (--h) (neg t))`,
  REWRITE_TAC[poly_neg; POLY_CMUL_CLAUSES;
              COMPLEX_MUL_LNEG; COMPLEX_MUL_LID]);;

let POLY_MUL_CLAUSES = prove
 (`([] ** p2 = []) /\
   ([h1] ** p2 = h1 ## p2) /\
   ((CONS h1 (CONS k1 t1)) ** p2 =
        h1 ## p2 ++ CONS (Cx(&0)) (CONS k1 t1 ** p2))`,
  REWRITE_TAC[poly_mul; NOT_CONS_NIL]);;

(* ------------------------------------------------------------------------- *)
(* Various natural consequences of syntactic definitions.                    *)
(* ------------------------------------------------------------------------- *)

let POLY_ADD = prove
 (`!p1 p2 x. poly (p1 ++ p2) x = poly p1 x + poly p2 x`,
  LIST_INDUCT_TAC THEN REWRITE_TAC[poly_add; poly; COMPLEX_ADD_LID] THEN
  LIST_INDUCT_TAC THEN
  ASM_REWRITE_TAC[NOT_CONS_NIL; HD; TL; poly; COMPLEX_ADD_RID] THEN
  SIMPLE_COMPLEX_ARITH_TAC);;

let POLY_CMUL = prove
 (`!p c x. poly (c ## p) x = c * poly p x`,
  LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[poly; poly_cmul] THEN
  SIMPLE_COMPLEX_ARITH_TAC);;

let POLY_NEG = prove
 (`!p x. poly (neg p) x = --(poly p x)`,
  REWRITE_TAC[poly_neg; POLY_CMUL] THEN
  SIMPLE_COMPLEX_ARITH_TAC);;

let POLY_MUL = prove
 (`!x p1 p2. poly (p1 ** p2) x = poly p1 x * poly p2 x`,
  GEN_TAC THEN LIST_INDUCT_TAC THEN
  REWRITE_TAC[poly_mul; poly; COMPLEX_MUL_LZERO; POLY_CMUL; POLY_ADD] THEN
  SPEC_TAC(`h:complex`,`h:complex`) THEN
  SPEC_TAC(`t:complex list`,`t:complex list`) THEN
  LIST_INDUCT_TAC THEN
  REWRITE_TAC[poly_mul; POLY_CMUL; POLY_ADD; poly; POLY_CMUL;
    COMPLEX_MUL_RZERO; COMPLEX_ADD_RID; NOT_CONS_NIL] THEN
  ASM_REWRITE_TAC[POLY_ADD; POLY_CMUL; poly] THEN
  SIMPLE_COMPLEX_ARITH_TAC);;

let POLY_EXP = prove
 (`!p n x. poly (p exp n) x = (poly p x) pow n`,
  GEN_TAC THEN INDUCT_TAC THEN
  ASM_REWRITE_TAC[poly_exp; complex_pow; POLY_MUL] THEN
  REWRITE_TAC[poly] THEN SIMPLE_COMPLEX_ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Lemmas.                                                                   *)
(* ------------------------------------------------------------------------- *)

let POLY_ADD_RZERO = prove
 (`!p. poly (p ++ []) = poly p`,
  REWRITE_TAC[FUN_EQ_THM; POLY_ADD; poly; COMPLEX_ADD_RID]);;

let POLY_MUL_ASSOC = prove
 (`!p q r. poly (p ** (q ** r)) = poly ((p ** q) ** r)`,
  REWRITE_TAC[FUN_EQ_THM; POLY_MUL; COMPLEX_MUL_ASSOC]);;

let POLY_EXP_ADD = prove
 (`!d n p. poly(p exp (n + d)) = poly(p exp n ** p exp d)`,
  REWRITE_TAC[FUN_EQ_THM; POLY_MUL] THEN
  INDUCT_TAC THEN ASM_REWRITE_TAC[POLY_MUL; ADD_CLAUSES; poly_exp; poly] THEN
  SIMPLE_COMPLEX_ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Key property that f(a) = 0 ==> (x - a) divides p(x). Very delicate!       *)
(* ------------------------------------------------------------------------- *)

let POLY_LINEAR_REM = prove
 (`!t h. ?q r. CONS h t = [r] ++ [--a; Cx(&1)] ** q`,
  LIST_INDUCT_TAC THEN REWRITE_TAC[] THENL
   [GEN_TAC THEN EXISTS_TAC `[]:complex list` THEN
    EXISTS_TAC `h:complex` THEN
    REWRITE_TAC[poly_add; poly_mul; poly_cmul; NOT_CONS_NIL] THEN
    REWRITE_TAC[HD; TL; COMPLEX_ADD_RID];
    X_GEN_TAC `k:complex` THEN
    POP_ASSUM(STRIP_ASSUME_TAC o SPEC `h:complex`) THEN
    EXISTS_TAC `CONS (r:complex) q` THEN EXISTS_TAC `r * a + k` THEN
    ASM_REWRITE_TAC[POLY_ADD_CLAUSES; POLY_MUL_CLAUSES; poly_cmul] THEN
    REWRITE_TAC[CONS_11] THEN CONJ_TAC THENL
     [SIMPLE_COMPLEX_ARITH_TAC; ALL_TAC] THEN
    SPEC_TAC(`q:complex list`,`q:complex list`) THEN
    LIST_INDUCT_TAC THEN
    REWRITE_TAC[POLY_ADD_CLAUSES; POLY_MUL_CLAUSES; poly_cmul] THEN
    REWRITE_TAC[COMPLEX_ADD_RID; COMPLEX_MUL_LID] THEN
    REWRITE_TAC[COMPLEX_ADD_AC]]);;

let POLY_LINEAR_DIVIDES = prove
 (`!a p. (poly p a = Cx(&0)) <=> (p = []) \/ ?q. p = [--a; Cx(&1)] ** q`,
  GEN_TAC THEN LIST_INDUCT_TAC THENL
   [REWRITE_TAC[poly]; ALL_TAC] THEN
  EQ_TAC THEN STRIP_TAC THENL
   [DISJ2_TAC THEN STRIP_ASSUME_TAC(SPEC_ALL POLY_LINEAR_REM) THEN
    EXISTS_TAC `q:complex list` THEN ASM_REWRITE_TAC[] THEN
    SUBGOAL_THEN `r = Cx(&0)` SUBST_ALL_TAC THENL
     [UNDISCH_TAC `poly (CONS h t) a = Cx(&0)` THEN
      ASM_REWRITE_TAC[] THEN REWRITE_TAC[POLY_ADD; POLY_MUL] THEN
      REWRITE_TAC[poly; COMPLEX_MUL_RZERO; COMPLEX_ADD_RID;
                  COMPLEX_MUL_RID] THEN
      REWRITE_TAC[COMPLEX_ADD_LINV] THEN SIMPLE_COMPLEX_ARITH_TAC;
      REWRITE_TAC[poly_mul] THEN REWRITE_TAC[NOT_CONS_NIL] THEN
      SPEC_TAC(`q:complex list`,`q:complex list`) THEN LIST_INDUCT_TAC THENL
       [REWRITE_TAC[poly_cmul; poly_add; NOT_CONS_NIL;
                    HD; TL; COMPLEX_ADD_LID];
        REWRITE_TAC[poly_cmul; poly_add; NOT_CONS_NIL;
                    HD; TL; COMPLEX_ADD_LID]]];
    ASM_REWRITE_TAC[] THEN REWRITE_TAC[poly];
    ASM_REWRITE_TAC[] THEN REWRITE_TAC[poly] THEN
    REWRITE_TAC[POLY_MUL] THEN REWRITE_TAC[poly] THEN
    REWRITE_TAC[poly; COMPLEX_MUL_RZERO; COMPLEX_ADD_RID; COMPLEX_MUL_RID] THEN
    REWRITE_TAC[COMPLEX_ADD_LINV] THEN SIMPLE_COMPLEX_ARITH_TAC]);;

(* ------------------------------------------------------------------------- *)
(* Thanks to the finesse of the above, we can use length rather than degree. *)
(* ------------------------------------------------------------------------- *)

let POLY_LENGTH_MUL = prove
 (`!q. LENGTH([--a; Cx(&1)] ** q) = SUC(LENGTH q)`,
  let lemma = prove
   (`!p h k a. LENGTH (k ## p ++ CONS h (a ## p)) = SUC(LENGTH p)`,
    LIST_INDUCT_TAC THEN
    ASM_REWRITE_TAC[poly_cmul; POLY_ADD_CLAUSES; LENGTH]) in
  REWRITE_TAC[poly_mul; NOT_CONS_NIL; lemma]);;

(* ------------------------------------------------------------------------- *)
(* Thus a nontrivial polynomial of degree n has no more than n roots.        *)
(* ------------------------------------------------------------------------- *)

let POLY_ROOTS_INDEX_LEMMA = prove
 (`!n. !p. ~(poly p = poly []) /\ (LENGTH p = n)
           ==> ?i. !x. (poly p x = Cx(&0)) ==> ?m. m <= n /\ (x = i m)`,
  INDUCT_TAC THENL
   [REWRITE_TAC[LENGTH_EQ_NIL] THEN MESON_TAC[];
    REPEAT STRIP_TAC THEN ASM_CASES_TAC `?a. poly p a = Cx(&0)` THENL
     [UNDISCH_TAC `?a. poly p a = Cx(&0)` THEN
      DISCH_THEN(CHOOSE_THEN MP_TAC) THEN
      GEN_REWRITE_TAC LAND_CONV [POLY_LINEAR_DIVIDES] THEN
      DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
      DISCH_THEN(X_CHOOSE_THEN `q:complex list` SUBST_ALL_TAC) THEN
      FIRST_ASSUM(UNDISCH_TAC o check is_forall o concl) THEN
      UNDISCH_TAC `~(poly ([-- a; Cx(&1)] ** q) = poly [])` THEN
      POP_ASSUM MP_TAC THEN REWRITE_TAC[POLY_LENGTH_MUL; SUC_INJ] THEN
      DISCH_TAC THEN ASM_CASES_TAC `poly q = poly []` THENL
       [ASM_REWRITE_TAC[POLY_MUL; poly; COMPLEX_MUL_RZERO; FUN_EQ_THM];
        DISCH_THEN(K ALL_TAC)] THEN
      DISCH_THEN(MP_TAC o SPEC `q:complex list`) THEN ASM_REWRITE_TAC[] THEN
      DISCH_THEN(X_CHOOSE_TAC `i:num->complex`) THEN
      EXISTS_TAC `\m. if m = SUC n then a:complex else i m` THEN
      REWRITE_TAC[POLY_MUL; LE; COMPLEX_ENTIRE] THEN
      X_GEN_TAC `x:complex` THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL
       [DISCH_THEN(fun th -> EXISTS_TAC `SUC n` THEN MP_TAC th) THEN
        REWRITE_TAC[poly] THEN SIMPLE_COMPLEX_ARITH_TAC;
        DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN
        DISCH_THEN(X_CHOOSE_THEN `m:num` STRIP_ASSUME_TAC) THEN
        EXISTS_TAC `m:num` THEN ASM_REWRITE_TAC[] THEN
        COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
        UNDISCH_TAC `m:num <= n` THEN ASM_REWRITE_TAC[] THEN ARITH_TAC];
      UNDISCH_TAC `~(?a. poly p a = Cx(&0))` THEN
      REWRITE_TAC[NOT_EXISTS_THM] THEN DISCH_TAC THEN ASM_REWRITE_TAC[]]]);;

let POLY_ROOTS_INDEX_LENGTH = prove
 (`!p. ~(poly p = poly [])
       ==> ?i. !x. (poly p(x) = Cx(&0)) ==> ?n. n <= LENGTH p /\ (x = i n)`,
  MESON_TAC[POLY_ROOTS_INDEX_LEMMA]);;

let POLY_ROOTS_FINITE_LEMMA = prove
 (`!p. ~(poly p = poly [])
       ==> ?N i. !x. (poly p(x) = Cx(&0)) ==> ?n:num. n < N /\ (x = i n)`,
  MESON_TAC[POLY_ROOTS_INDEX_LENGTH; LT_SUC_LE]);;

let FINITE_LEMMA = prove
 (`!i N P. (!x. P x ==> ?n:num. n < N /\ (x = i n))
           ==> ?a. !x. P x ==> norm(x) < a`,
  GEN_TAC THEN ONCE_REWRITE_TAC[RIGHT_IMP_EXISTS_THM] THEN INDUCT_TAC THENL
   [REWRITE_TAC[LT] THEN MESON_TAC[]; ALL_TAC] THEN
  X_GEN_TAC `P:complex->bool` THEN
  POP_ASSUM(MP_TAC o SPEC `\z. P z /\ ~(z = (i:num->complex) N)`) THEN
  DISCH_THEN(X_CHOOSE_TAC `a:real`) THEN
  EXISTS_TAC `abs(a) + norm(i(N:num)) + &1` THEN
  POP_ASSUM MP_TAC THEN REWRITE_TAC[LT] THEN
  SUBGOAL_THEN `(!x. norm(x) < abs(a) + norm(x) + &1) /\
                (!x y. norm(x) < a ==> norm(x) < abs(a) + norm(y) + &1)`
   (fun th -> MP_TAC th THEN MESON_TAC[]) THEN
  CONJ_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN
  REPEAT GEN_TAC THEN MP_TAC(SPEC `y:complex` COMPLEX_NORM_POS) THEN
  REAL_ARITH_TAC);;

let POLY_ROOTS_FINITE = prove
 (`!p. ~(poly p = poly []) <=>
       ?N i. !x. (poly p(x) = Cx(&0)) ==> ?n:num. n < N /\ (x = i n)`,
  GEN_TAC THEN EQ_TAC THEN REWRITE_TAC[POLY_ROOTS_FINITE_LEMMA] THEN
  REWRITE_TAC[FUN_EQ_THM; LEFT_IMP_EXISTS_THM; NOT_FORALL_THM; poly] THEN
  MP_TAC(GENL [`i:num->complex`; `N:num`]
   (SPECL [`i:num->complex`; `N:num`; `\x. poly p x = Cx(&0)`]
         FINITE_LEMMA)) THEN
  REWRITE_TAC[] THEN MESON_TAC[REAL_ARITH `~(abs(x) < x)`; COMPLEX_NORM_CX]);;

(* ------------------------------------------------------------------------- *)
(* Hence get entirety and cancellation for polynomials.                      *)
(* ------------------------------------------------------------------------- *)

let POLY_ENTIRE_LEMMA = prove
 (`!p q. ~(poly p = poly []) /\ ~(poly q = poly [])
         ==> ~(poly (p ** q) = poly [])`,
  REPEAT GEN_TAC THEN REWRITE_TAC[POLY_ROOTS_FINITE] THEN
  DISCH_THEN(CONJUNCTS_THEN MP_TAC) THEN
  DISCH_THEN(X_CHOOSE_THEN `N2:num` (X_CHOOSE_TAC `i2:num->complex`)) THEN
  DISCH_THEN(X_CHOOSE_THEN `N1:num` (X_CHOOSE_TAC `i1:num->complex`)) THEN
  EXISTS_TAC `N1 + N2:num` THEN
  EXISTS_TAC `\n:num. if n < N1 then i1(n):complex else i2(n - N1)` THEN
  X_GEN_TAC `x:complex` THEN REWRITE_TAC[COMPLEX_ENTIRE; POLY_MUL] THEN
  DISCH_THEN(DISJ_CASES_THEN (ANTE_RES_THEN (X_CHOOSE_TAC `n:num`))) THENL
   [EXISTS_TAC `n:num` THEN ASM_REWRITE_TAC[] THEN
    FIRST_ASSUM(MP_TAC o CONJUNCT1) THEN ARITH_TAC;
    EXISTS_TAC `N1 + n:num` THEN ASM_REWRITE_TAC[LT_ADD_LCANCEL] THEN
    REWRITE_TAC[ARITH_RULE `~(m + n < m:num)`] THEN
    AP_TERM_TAC THEN ARITH_TAC]);;

let POLY_ENTIRE = prove
 (`!p q. (poly (p ** q) = poly []) <=>
         (poly p = poly []) \/ (poly q = poly [])`,
  REPEAT GEN_TAC THEN EQ_TAC THENL
   [MESON_TAC[POLY_ENTIRE_LEMMA];
    REWRITE_TAC[FUN_EQ_THM; POLY_MUL] THEN
    STRIP_TAC THEN
    ASM_REWRITE_TAC[COMPLEX_MUL_RZERO; COMPLEX_MUL_LZERO; poly]]);;

let POLY_MUL_LCANCEL = prove
 (`!p q r. (poly (p ** q) = poly (p ** r)) <=>
           (poly p = poly []) \/ (poly q = poly r)`,
  let lemma1 = prove
   (`!p q. (poly (p ++ neg q) = poly []) <=> (poly p = poly q)`,
    REWRITE_TAC[FUN_EQ_THM; POLY_ADD; POLY_NEG; poly] THEN
    REWRITE_TAC[SIMPLE_COMPLEX_ARITH `(p + --q = Cx(&0)) <=> (p = q)`]) in
  let lemma2 = prove
   (`!p q r. poly (p ** q ++ neg(p ** r)) = poly (p ** (q ++ neg(r)))`,
    REWRITE_TAC[FUN_EQ_THM; POLY_ADD; POLY_NEG; POLY_MUL] THEN
    SIMPLE_COMPLEX_ARITH_TAC) in
  ONCE_REWRITE_TAC[GSYM lemma1] THEN
  REWRITE_TAC[lemma2; POLY_ENTIRE] THEN
  REWRITE_TAC[lemma1]);;

let POLY_EXP_EQ_0 = prove
 (`!p n. (poly (p exp n) = poly []) <=> (poly p = poly []) /\ ~(n = 0)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[FUN_EQ_THM; poly] THEN
  REWRITE_TAC[LEFT_AND_FORALL_THM] THEN AP_TERM_TAC THEN ABS_TAC THEN
  SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THEN
  REWRITE_TAC[poly_exp; poly; COMPLEX_MUL_RZERO; COMPLEX_ADD_RID;
    CX_INJ; REAL_OF_NUM_EQ; ARITH; NOT_SUC] THEN
  ASM_REWRITE_TAC[POLY_MUL; poly; COMPLEX_ENTIRE] THEN
  CONV_TAC TAUT);;

let POLY_PRIME_EQ_0 = prove
 (`!a. ~(poly [a ; Cx(&1)] = poly [])`,
  GEN_TAC THEN REWRITE_TAC[FUN_EQ_THM; poly] THEN
  DISCH_THEN(MP_TAC o SPEC `Cx(&1) - a`) THEN
  SIMPLE_COMPLEX_ARITH_TAC);;

let POLY_EXP_PRIME_EQ_0 = prove
 (`!a n. ~(poly ([a ; Cx(&1)] exp n) = poly [])`,
  MESON_TAC[POLY_EXP_EQ_0; POLY_PRIME_EQ_0]);;

(* ------------------------------------------------------------------------- *)
(* Can also prove a more "constructive" notion of polynomial being trivial.  *)
(* ------------------------------------------------------------------------- *)

let POLY_ZERO_LEMMA = prove
 (`!h t. (poly (CONS h t) = poly []) ==> (h = Cx(&0)) /\ (poly t = poly [])`,
  let lemma = REWRITE_RULE[FUN_EQ_THM; poly] POLY_ROOTS_FINITE in
  REPEAT GEN_TAC THEN REWRITE_TAC[FUN_EQ_THM; poly] THEN
  ASM_CASES_TAC `h = Cx(&0)` THEN ASM_REWRITE_TAC[] THENL
   [REWRITE_TAC[COMPLEX_ADD_LID];
    DISCH_THEN(MP_TAC o SPEC `Cx(&0)`) THEN
    POP_ASSUM MP_TAC THEN SIMPLE_COMPLEX_ARITH_TAC] THEN
  CONV_TAC CONTRAPOS_CONV THEN
  DISCH_THEN(MP_TAC o REWRITE_RULE[lemma]) THEN
  DISCH_THEN(X_CHOOSE_THEN `N:num` (X_CHOOSE_TAC `i:num->complex`)) THEN
  MP_TAC(SPECL
    [`i:num->complex`; `N:num`; `\x. poly t x = Cx(&0)`] FINITE_LEMMA) THEN
  ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_TAC `a:real`) THEN
  DISCH_THEN(MP_TAC o SPEC `Cx(abs(a) + &1)`) THEN
  REWRITE_TAC[COMPLEX_ENTIRE; DE_MORGAN_THM] THEN CONJ_TAC THENL
   [REWRITE_TAC[CX_INJ] THEN REAL_ARITH_TAC;
    DISCH_THEN(MP_TAC o MATCH_MP
     (ASSUME `!x. (poly t x = Cx(&0)) ==> norm(x) < a`)) THEN
    REWRITE_TAC[COMPLEX_NORM_CX] THEN REAL_ARITH_TAC]);;

let POLY_ZERO = prove
 (`!p. (poly p = poly []) <=> ALL (\c. c = Cx(&0)) p`,
  LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ALL] THEN EQ_TAC THENL
   [DISCH_THEN(MP_TAC o MATCH_MP POLY_ZERO_LEMMA) THEN ASM_REWRITE_TAC[];
    POP_ASSUM(SUBST1_TAC o SYM) THEN STRIP_TAC THEN
    ASM_REWRITE_TAC[FUN_EQ_THM; poly] THEN SIMPLE_COMPLEX_ARITH_TAC]);;

(* ------------------------------------------------------------------------- *)
(* Basics of divisibility.                                                   *)
(* ------------------------------------------------------------------------- *)

let divides = new_definition
  `p1 divides p2 <=> ?q. poly p2 = poly (p1 ** q)`;;

let POLY_PRIMES = prove
 (`!a p q. [a; Cx(&1)] divides (p ** q) <=>
           [a; Cx(&1)] divides p \/ [a; Cx(&1)] divides q`,
  REPEAT GEN_TAC THEN REWRITE_TAC[divides; POLY_MUL; FUN_EQ_THM; poly] THEN
  REWRITE_TAC[COMPLEX_MUL_RZERO; COMPLEX_ADD_RID; COMPLEX_MUL_RID] THEN
  EQ_TAC THENL
   [DISCH_THEN(X_CHOOSE_THEN `r:complex list` (MP_TAC o SPEC `--a`)) THEN
    REWRITE_TAC[COMPLEX_ENTIRE; GSYM complex_sub;
                COMPLEX_SUB_REFL; COMPLEX_MUL_LZERO] THEN
    DISCH_THEN DISJ_CASES_TAC THENL [DISJ1_TAC; DISJ2_TAC] THEN
    (POP_ASSUM(MP_TAC o REWRITE_RULE[POLY_LINEAR_DIVIDES]) THEN
     REWRITE_TAC[COMPLEX_NEG_NEG] THEN
     DISCH_THEN(DISJ_CASES_THEN2 SUBST_ALL_TAC
        (X_CHOOSE_THEN `s:complex list` SUBST_ALL_TAC)) THENL
      [EXISTS_TAC `[]:complex list` THEN REWRITE_TAC[poly; COMPLEX_MUL_RZERO];
       EXISTS_TAC `s:complex list` THEN GEN_TAC THEN
       REWRITE_TAC[POLY_MUL; poly] THEN SIMPLE_COMPLEX_ARITH_TAC]);
    DISCH_THEN(DISJ_CASES_THEN(X_CHOOSE_TAC `s:complex list`)) THEN
    ASM_REWRITE_TAC[] THENL
     [EXISTS_TAC `s ** q`; EXISTS_TAC `p ** s`] THEN
    GEN_TAC THEN REWRITE_TAC[POLY_MUL] THEN SIMPLE_COMPLEX_ARITH_TAC]);;

let POLY_DIVIDES_REFL = prove
 (`!p. p divides p`,
  GEN_TAC THEN REWRITE_TAC[divides] THEN EXISTS_TAC `[Cx(&1)]` THEN
  REWRITE_TAC[FUN_EQ_THM; POLY_MUL; poly] THEN SIMPLE_COMPLEX_ARITH_TAC);;

let POLY_DIVIDES_TRANS = prove
 (`!p q r. p divides q /\ q divides r ==> p divides r`,
  REPEAT GEN_TAC THEN REWRITE_TAC[divides] THEN
  DISCH_THEN(CONJUNCTS_THEN MP_TAC) THEN
  DISCH_THEN(X_CHOOSE_THEN `s:complex list` ASSUME_TAC) THEN
  DISCH_THEN(X_CHOOSE_THEN `t:complex list` ASSUME_TAC) THEN
  EXISTS_TAC `t ** s` THEN
  ASM_REWRITE_TAC[FUN_EQ_THM; POLY_MUL; COMPLEX_MUL_ASSOC]);;

let POLY_DIVIDES_EXP = prove
 (`!p m n. m <= n ==> (p exp m) divides (p exp n)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[LE_EXISTS] THEN
  DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC) THEN
  SPEC_TAC(`d:num`,`d:num`) THEN INDUCT_TAC THEN
  REWRITE_TAC[ADD_CLAUSES; POLY_DIVIDES_REFL] THEN
  MATCH_MP_TAC POLY_DIVIDES_TRANS THEN
  EXISTS_TAC `p exp (m + d)` THEN ASM_REWRITE_TAC[] THEN
  REWRITE_TAC[divides] THEN EXISTS_TAC `p:complex list` THEN
  REWRITE_TAC[poly_exp; FUN_EQ_THM; POLY_MUL] THEN
  SIMPLE_COMPLEX_ARITH_TAC);;

let POLY_EXP_DIVIDES = prove
 (`!p q m n. (p exp n) divides q /\ m <= n ==> (p exp m) divides q`,
  MESON_TAC[POLY_DIVIDES_TRANS; POLY_DIVIDES_EXP]);;

let POLY_DIVIDES_ADD = prove
 (`!p q r. p divides q /\ p divides r ==> p divides (q ++ r)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[divides] THEN
  DISCH_THEN(CONJUNCTS_THEN MP_TAC) THEN
  DISCH_THEN(X_CHOOSE_THEN `s:complex list` ASSUME_TAC) THEN
  DISCH_THEN(X_CHOOSE_THEN `t:complex list` ASSUME_TAC) THEN
  EXISTS_TAC `t ++ s` THEN
  ASM_REWRITE_TAC[FUN_EQ_THM; POLY_ADD; POLY_MUL] THEN
  SIMPLE_COMPLEX_ARITH_TAC);;

let POLY_DIVIDES_SUB = prove
 (`!p q r. p divides q /\ p divides (q ++ r) ==> p divides r`,
  REPEAT GEN_TAC THEN REWRITE_TAC[divides] THEN
  DISCH_THEN(CONJUNCTS_THEN MP_TAC) THEN
  DISCH_THEN(X_CHOOSE_THEN `s:complex list` ASSUME_TAC) THEN
  DISCH_THEN(X_CHOOSE_THEN `t:complex list` ASSUME_TAC) THEN
  EXISTS_TAC `s ++ neg(t)` THEN
  POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN
  REWRITE_TAC[FUN_EQ_THM; POLY_ADD; POLY_MUL; POLY_NEG] THEN
  DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN
  REWRITE_TAC[COMPLEX_ADD_LDISTRIB; COMPLEX_MUL_RNEG] THEN
  ASM_REWRITE_TAC[] THEN SIMPLE_COMPLEX_ARITH_TAC);;

let POLY_DIVIDES_SUB2 = prove
 (`!p q r. p divides r /\ p divides (q ++ r) ==> p divides q`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC POLY_DIVIDES_SUB THEN
  EXISTS_TAC `r:complex list` THEN ASM_REWRITE_TAC[] THEN
  UNDISCH_TAC `p divides (q ++ r)` THEN
  REWRITE_TAC[divides; POLY_ADD; FUN_EQ_THM; POLY_MUL] THEN
  DISCH_THEN(X_CHOOSE_TAC `s:complex list`) THEN
  EXISTS_TAC `s:complex list` THEN
  X_GEN_TAC `x:complex` THEN POP_ASSUM(MP_TAC o SPEC `x:complex`) THEN
  SIMPLE_COMPLEX_ARITH_TAC);;

let POLY_DIVIDES_ZERO = prove
 (`!p q. (poly p = poly []) ==> q divides p`,
  REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[divides] THEN
  EXISTS_TAC `[]:complex list` THEN
  ASM_REWRITE_TAC[FUN_EQ_THM; POLY_MUL; poly; COMPLEX_MUL_RZERO]);;

(* ------------------------------------------------------------------------- *)
(* At last, we can consider the order of a root.                             *)
(* ------------------------------------------------------------------------- *)

let POLY_ORDER_EXISTS = prove
 (`!a d. !p. (LENGTH p = d) /\ ~(poly p = poly [])
             ==> ?n. ([--a; Cx(&1)] exp n) divides p /\
                     ~(([--a; Cx(&1)] exp (SUC n)) divides p)`,
  GEN_TAC THEN
  (STRIP_ASSUME_TAC o prove_recursive_functions_exist num_RECURSION)
    `(!p q. mulexp 0 p q = q) /\
     (!p q n. mulexp (SUC n) p q = p ** (mulexp n p q))` THEN
  SUBGOAL_THEN
   `!d. !p. (LENGTH p = d) /\ ~(poly p = poly [])
           ==> ?n q. (p = mulexp (n:num) [--a; Cx(&1)] q) /\
                     ~(poly q a = Cx(&0))`
  MP_TAC THENL
   [INDUCT_TAC THENL
     [REWRITE_TAC[LENGTH_EQ_NIL] THEN MESON_TAC[]; ALL_TAC] THEN
    X_GEN_TAC `p:complex list` THEN
    ASM_CASES_TAC `poly p a = Cx(&0)` THENL
     [STRIP_TAC THEN UNDISCH_TAC `poly p a = Cx(&0)` THEN
      DISCH_THEN(MP_TAC o REWRITE_RULE[POLY_LINEAR_DIVIDES]) THEN
      DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
      DISCH_THEN(X_CHOOSE_THEN `q:complex list` SUBST_ALL_TAC) THEN
      UNDISCH_TAC
       `!p. (LENGTH p = d) /\ ~(poly p = poly [])
            ==> ?n q. (p = mulexp (n:num) [--a; Cx(&1)] q) /\
                      ~(poly q a = Cx(&0))` THEN
      DISCH_THEN(MP_TAC o SPEC `q:complex list`) THEN
      RULE_ASSUM_TAC(REWRITE_RULE[POLY_LENGTH_MUL; POLY_ENTIRE;
        DE_MORGAN_THM; SUC_INJ]) THEN
      ASM_REWRITE_TAC[] THEN
      DISCH_THEN(X_CHOOSE_THEN `n:num`
       (X_CHOOSE_THEN `s:complex list` STRIP_ASSUME_TAC)) THEN
      EXISTS_TAC `SUC n` THEN EXISTS_TAC `s:complex list` THEN
      ASM_REWRITE_TAC[];
      STRIP_TAC THEN EXISTS_TAC `0` THEN EXISTS_TAC `p:complex list` THEN
      ASM_REWRITE_TAC[]];
    DISCH_TAC THEN REPEAT GEN_TAC THEN
    DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN
    DISCH_THEN(X_CHOOSE_THEN `n:num`
       (X_CHOOSE_THEN `s:complex list` STRIP_ASSUME_TAC)) THEN
    EXISTS_TAC `n:num` THEN ASM_REWRITE_TAC[] THEN
    REWRITE_TAC[divides] THEN CONJ_TAC THENL
     [EXISTS_TAC `s:complex list` THEN
      SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THEN
      ASM_REWRITE_TAC[poly_exp; FUN_EQ_THM; POLY_MUL; poly] THEN
      SIMPLE_COMPLEX_ARITH_TAC;
      DISCH_THEN(X_CHOOSE_THEN `r:complex list` MP_TAC) THEN
      SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THEN
      ASM_REWRITE_TAC[] THENL
       [UNDISCH_TAC `~(poly s a = Cx(&0))` THEN CONV_TAC CONTRAPOS_CONV THEN
        REWRITE_TAC[] THEN DISCH_THEN SUBST1_TAC THEN
        REWRITE_TAC[poly; poly_exp; POLY_MUL] THEN SIMPLE_COMPLEX_ARITH_TAC;
        REWRITE_TAC[] THEN ONCE_ASM_REWRITE_TAC[] THEN
        ONCE_REWRITE_TAC[poly_exp] THEN
        REWRITE_TAC[GSYM POLY_MUL_ASSOC; POLY_MUL_LCANCEL] THEN
        REWRITE_TAC[DE_MORGAN_THM] THEN CONJ_TAC THENL
         [REWRITE_TAC[FUN_EQ_THM] THEN
          DISCH_THEN(MP_TAC o SPEC `a + Cx(&1)`) THEN
          REWRITE_TAC[poly] THEN SIMPLE_COMPLEX_ARITH_TAC;
          DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN REWRITE_TAC[]]]]]);;

let POLY_ORDER = prove
 (`!p a. ~(poly p = poly [])
         ==> ?!n. ([--a; Cx(&1)] exp n) divides p /\
                      ~(([--a; Cx(&1)] exp (SUC n)) divides p)`,
  MESON_TAC[POLY_ORDER_EXISTS; POLY_EXP_DIVIDES; LE_SUC_LT; LT_CASES]);;

(* ------------------------------------------------------------------------- *)
(* Definition of order.                                                      *)
(* ------------------------------------------------------------------------- *)

let order = new_definition
  `order a p = @n. ([--a; Cx(&1)] exp n) divides p /\
                   ~(([--a; Cx(&1)] exp (SUC n)) divides p)`;;

let ORDER = prove
 (`!p a n. ([--a; Cx(&1)] exp n) divides p /\
           ~(([--a; Cx(&1)] exp (SUC n)) divides p) <=>
           (n = order a p) /\
           ~(poly p = poly [])`,
  REPEAT GEN_TAC THEN REWRITE_TAC[order] THEN
  EQ_TAC THEN STRIP_TAC THENL
   [SUBGOAL_THEN `~(poly p = poly [])` ASSUME_TAC THENL
     [FIRST_ASSUM(UNDISCH_TAC o check is_neg o concl) THEN
      CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[divides] THEN
      DISCH_THEN SUBST1_TAC THEN EXISTS_TAC `[]:complex list` THEN
      REWRITE_TAC[FUN_EQ_THM; POLY_MUL; poly; COMPLEX_MUL_RZERO];
      ASM_REWRITE_TAC[] THEN CONV_TAC SYM_CONV THEN
      MATCH_MP_TAC SELECT_UNIQUE THEN REWRITE_TAC[]];
    ONCE_ASM_REWRITE_TAC[] THEN CONV_TAC SELECT_CONV] THEN
  ASM_MESON_TAC[POLY_ORDER]);;

let ORDER_THM = prove
 (`!p a. ~(poly p = poly [])
         ==> ([--a; Cx(&1)] exp (order a p)) divides p /\
             ~(([--a; Cx(&1)] exp (SUC(order a p))) divides p)`,
  MESON_TAC[ORDER]);;

let ORDER_UNIQUE = prove
 (`!p a n. ~(poly p = poly []) /\
           ([--a; Cx(&1)] exp n) divides p /\
           ~(([--a; Cx(&1)] exp (SUC n)) divides p)
           ==> (n = order a p)`,
  MESON_TAC[ORDER]);;

let ORDER_POLY = prove
 (`!p q a. (poly p = poly q) ==> (order a p = order a q)`,
  REPEAT STRIP_TAC THEN
  ASM_REWRITE_TAC[order; divides; FUN_EQ_THM; POLY_MUL]);;

let ORDER_ROOT = prove
 (`!p a. (poly p a = Cx(&0)) <=> (poly p = poly []) \/ ~(order a p = 0)`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `poly p = poly []` THEN
  ASM_REWRITE_TAC[poly] THEN EQ_TAC THENL
   [DISCH_THEN(MP_TAC o REWRITE_RULE[POLY_LINEAR_DIVIDES]) THEN
    ASM_CASES_TAC `p:complex list = []` THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
    ASM_REWRITE_TAC[] THEN
    DISCH_THEN(X_CHOOSE_THEN `q:complex list` SUBST_ALL_TAC) THEN DISCH_TAC THEN
    FIRST_ASSUM(MP_TAC o SPEC `a:complex` o MATCH_MP ORDER_THM) THEN
    ASM_REWRITE_TAC[poly_exp; DE_MORGAN_THM] THEN DISJ2_TAC THEN
    REWRITE_TAC[divides] THEN EXISTS_TAC `q:complex list` THEN
    REWRITE_TAC[FUN_EQ_THM; POLY_MUL; poly] THEN SIMPLE_COMPLEX_ARITH_TAC;
    DISCH_TAC THEN
    FIRST_ASSUM(MP_TAC o SPEC `a:complex` o MATCH_MP ORDER_THM) THEN
    UNDISCH_TAC `~(order a p = 0)` THEN
    SPEC_TAC(`order a p`,`n:num`) THEN
    INDUCT_TAC THEN ASM_REWRITE_TAC[poly_exp; NOT_SUC] THEN
    DISCH_THEN(MP_TAC o CONJUNCT1) THEN REWRITE_TAC[divides] THEN
    DISCH_THEN(X_CHOOSE_THEN `s:complex list` SUBST1_TAC) THEN
    REWRITE_TAC[POLY_MUL; poly] THEN SIMPLE_COMPLEX_ARITH_TAC]);;

let ORDER_DIVIDES = prove
 (`!p a n. ([--a; Cx(&1)] exp n) divides p <=>
           (poly p = poly []) \/ n <= order a p`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `poly p = poly []` THEN
  ASM_REWRITE_TAC[] THENL
   [ASM_REWRITE_TAC[divides] THEN EXISTS_TAC `[]:complex list` THEN
    REWRITE_TAC[FUN_EQ_THM; POLY_MUL; poly; COMPLEX_MUL_RZERO];
    ASM_MESON_TAC[ORDER_THM; POLY_EXP_DIVIDES; NOT_LE; LE_SUC_LT]]);;

let ORDER_DECOMP = prove
 (`!p a. ~(poly p = poly [])
         ==> ?q. (poly p = poly (([--a; Cx(&1)] exp (order a p)) ** q)) /\
                 ~([--a; Cx(&1)] divides q)`,
  REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP ORDER_THM) THEN
  DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC o SPEC `a:complex`) THEN
  DISCH_THEN(X_CHOOSE_TAC `q:complex list` o REWRITE_RULE[divides]) THEN
  EXISTS_TAC `q:complex list` THEN ASM_REWRITE_TAC[] THEN
  DISCH_THEN(X_CHOOSE_TAC `r: complex list` o REWRITE_RULE[divides]) THEN
  UNDISCH_TAC `~([-- a; Cx(&1)] exp SUC (order a p) divides p)` THEN
  ASM_REWRITE_TAC[] THEN REWRITE_TAC[divides] THEN
  EXISTS_TAC `r:complex list` THEN
  ASM_REWRITE_TAC[POLY_MUL; FUN_EQ_THM; poly_exp] THEN
  SIMPLE_COMPLEX_ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Important composition properties of orders.                               *)
(* ------------------------------------------------------------------------- *)

let ORDER_MUL = prove
 (`!a p q. ~(poly (p ** q) = poly []) ==>
           (order a (p ** q) = order a p + order a q)`,
  REPEAT GEN_TAC THEN
  DISCH_THEN(fun th -> ASSUME_TAC th THEN MP_TAC th) THEN
  REWRITE_TAC[POLY_ENTIRE; DE_MORGAN_THM] THEN STRIP_TAC THEN
  SUBGOAL_THEN `(order a p + order a q = order a (p ** q)) /\
                ~(poly (p ** q) = poly [])`
  MP_TAC THENL [ALL_TAC; MESON_TAC[]] THEN
  REWRITE_TAC[GSYM ORDER] THEN CONJ_TAC THENL
   [MP_TAC(CONJUNCT1 (SPEC `a:complex`
      (MATCH_MP ORDER_THM (ASSUME `~(poly p = poly [])`)))) THEN
    DISCH_THEN(X_CHOOSE_TAC `r: complex list` o REWRITE_RULE[divides]) THEN
    MP_TAC(CONJUNCT1 (SPEC `a:complex`
      (MATCH_MP ORDER_THM (ASSUME `~(poly q = poly [])`)))) THEN
    DISCH_THEN(X_CHOOSE_TAC `s: complex list` o REWRITE_RULE[divides]) THEN
    REWRITE_TAC[divides; FUN_EQ_THM] THEN EXISTS_TAC `s ** r` THEN
    ASM_REWRITE_TAC[POLY_MUL; POLY_EXP_ADD] THEN SIMPLE_COMPLEX_ARITH_TAC;
    X_CHOOSE_THEN `r: complex list` STRIP_ASSUME_TAC
    (SPEC `a:complex` (MATCH_MP ORDER_DECOMP
       (ASSUME `~(poly p = poly [])`))) THEN
    X_CHOOSE_THEN `s: complex list` STRIP_ASSUME_TAC
    (SPEC `a:complex` (MATCH_MP ORDER_DECOMP
       (ASSUME `~(poly q = poly [])`))) THEN
    ASM_REWRITE_TAC[divides; FUN_EQ_THM; POLY_EXP_ADD; POLY_MUL; poly_exp] THEN
    DISCH_THEN(X_CHOOSE_THEN `t:complex list` STRIP_ASSUME_TAC) THEN
    SUBGOAL_THEN `[--a; Cx(&1)] divides (r ** s)` MP_TAC THENL
     [ALL_TAC; ASM_REWRITE_TAC[POLY_PRIMES]] THEN
    REWRITE_TAC[divides] THEN EXISTS_TAC `t:complex list` THEN
    SUBGOAL_THEN `poly ([-- a; Cx(&1)] exp (order a p) ** r ** s) =
                  poly ([-- a; Cx(&1)] exp (order a p) **
                       ([-- a; Cx(&1)] ** t))`
    MP_TAC THENL
     [ALL_TAC; MESON_TAC[POLY_MUL_LCANCEL; POLY_EXP_PRIME_EQ_0]] THEN
    SUBGOAL_THEN `poly ([-- a; Cx(&1)] exp (order a q) **
                        [-- a; Cx(&1)] exp (order a p) ** r ** s) =
                  poly ([-- a; Cx(&1)] exp (order a q) **
                        [-- a; Cx(&1)] exp (order a p) **
                        [-- a; Cx(&1)] ** t)`
    MP_TAC THENL
     [ALL_TAC; MESON_TAC[POLY_MUL_LCANCEL; POLY_EXP_PRIME_EQ_0]] THEN
    REWRITE_TAC[FUN_EQ_THM; POLY_MUL; POLY_ADD] THEN
    FIRST_ASSUM(UNDISCH_TAC o check is_forall o concl) THEN
    REWRITE_TAC[COMPLEX_MUL_AC]]);;

(* ------------------------------------------------------------------------- *)
(* Normalization of a polynomial.                                            *)
(* ------------------------------------------------------------------------- *)

let normalize = new_recursive_definition list_RECURSION
  `(normalize [] = []) /\
   (normalize (CONS h t) =
        if normalize t = [] then if h = Cx(&0) then [] else [h]
        else CONS h (normalize t))`;;

let POLY_NORMALIZE = prove
 (`!p. poly (normalize p) = poly p`,
  LIST_INDUCT_TAC THEN REWRITE_TAC[normalize; poly] THEN
  ASM_CASES_TAC `h = Cx(&0)` THEN ASM_REWRITE_TAC[] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[poly; FUN_EQ_THM] THEN
  UNDISCH_TAC `poly (normalize t) = poly t` THEN
  DISCH_THEN(SUBST1_TAC o SYM) THEN ASM_REWRITE_TAC[poly] THEN
  REWRITE_TAC[COMPLEX_MUL_RZERO; COMPLEX_ADD_LID]);;

let LENGTH_NORMALIZE_LE = prove
 (`!p. LENGTH(normalize p) <= LENGTH p`,
  LIST_INDUCT_TAC THEN REWRITE_TAC[LENGTH; normalize; LE_REFL] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[LENGTH; LE_SUC] THEN
  COND_CASES_TAC THEN REWRITE_TAC[LENGTH] THEN ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* The degree of a polynomial.                                               *)
(* ------------------------------------------------------------------------- *)

let degree = new_definition
  `degree p = PRE(LENGTH(normalize p))`;;

let DEGREE_ZERO = prove
 (`!p. (poly p = poly []) ==> (degree p = 0)`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[degree] THEN
  SUBGOAL_THEN `normalize p = []` SUBST1_TAC THENL
   [POP_ASSUM MP_TAC THEN SPEC_TAC(`p:complex list`,`p:complex list`) THEN
    REWRITE_TAC[POLY_ZERO] THEN
    LIST_INDUCT_TAC THEN REWRITE_TAC[normalize; ALL] THEN
    STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
    SUBGOAL_THEN `normalize t = []` (fun th -> REWRITE_TAC[th]) THEN
    FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[];
    REWRITE_TAC[LENGTH; PRE]]);;

(* ------------------------------------------------------------------------- *)
(* Show that the degree is welldefined.                                      *)
(* ------------------------------------------------------------------------- *)

let POLY_CONS_EQ = prove
 (`(poly (CONS h1 t1) = poly (CONS h2 t2)) <=>
   (h1 = h2) /\ (poly t1 = poly t2)`,
  REWRITE_TAC[FUN_EQ_THM] THEN EQ_TAC THENL [ALL_TAC; SIMP_TAC[poly]] THEN
  ONCE_REWRITE_TAC[SIMPLE_COMPLEX_ARITH `(a = b) <=> (a + --b = Cx(&0))`] THEN
  REWRITE_TAC[GSYM POLY_NEG; GSYM POLY_ADD] THEN DISCH_TAC THEN
  SUBGOAL_THEN `poly (CONS h1 t1 ++ neg(CONS h2 t2)) = poly []` MP_TAC THENL
   [ASM_REWRITE_TAC[poly; FUN_EQ_THM]; ALL_TAC] THEN
  REWRITE_TAC[poly_neg; poly_cmul; poly_add; NOT_CONS_NIL; HD; TL] THEN
  DISCH_THEN(MP_TAC o MATCH_MP POLY_ZERO_LEMMA) THEN
  SIMP_TAC[poly; COMPLEX_MUL_LNEG; COMPLEX_MUL_LID]);;

let POLY_NORMALIZE_ZERO = prove
 (`!p. (poly p = poly []) <=> (normalize p = [])`,
  REWRITE_TAC[POLY_ZERO] THEN
  LIST_INDUCT_TAC THEN REWRITE_TAC[ALL; normalize] THEN
  ASM_CASES_TAC `normalize t = []` THEN ASM_REWRITE_TAC[] THEN
  REWRITE_TAC[NOT_CONS_NIL] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[NOT_CONS_NIL]);;

let POLY_NORMALIZE_EQ_LEMMA = prove
 (`!p q. (poly p = poly q) ==> (normalize p = normalize q)`,
  LIST_INDUCT_TAC THENL
   [MESON_TAC[POLY_NORMALIZE_ZERO]; ALL_TAC] THEN
  LIST_INDUCT_TAC THENL
   [MESON_TAC[POLY_NORMALIZE_ZERO]; ALL_TAC] THEN
  REWRITE_TAC[POLY_CONS_EQ] THEN
  STRIP_TAC THEN ASM_REWRITE_TAC[normalize] THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `t':complex list`) THEN ASM_REWRITE_TAC[] THEN
  DISCH_THEN SUBST1_TAC THEN REFL_TAC);;

let POLY_NORMALIZE_EQ = prove
 (`!p q. (poly p = poly q) <=> (normalize p = normalize q)`,
  MESON_TAC[POLY_NORMALIZE_EQ_LEMMA; POLY_NORMALIZE]);;

let DEGREE_WELLDEF = prove
 (`!p q. (poly p = poly q) ==> (degree p = degree q)`,
  SIMP_TAC[degree; POLY_NORMALIZE_EQ]);;

(* ------------------------------------------------------------------------- *)
(* Degree of a product with a power of linear terms.                         *)
(* ------------------------------------------------------------------------- *)

let NORMALIZE_EQ = prove
 (`!p. ~(LAST p = Cx(&0)) ==> (normalize p = p)`,
  MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[NOT_CONS_NIL] THEN
  REWRITE_TAC[normalize; LAST] THEN REPEAT GEN_TAC THEN
  REPEAT(COND_CASES_TAC THEN ASM_SIMP_TAC[normalize]));;

let NORMAL_DEGREE = prove
 (`!p. ~(LAST p = Cx(&0)) ==> (degree p = LENGTH p - 1)`,
  SIMP_TAC[degree; NORMALIZE_EQ] THEN REPEAT STRIP_TAC THEN ARITH_TAC);;

let LAST_LINEAR_MUL_LEMMA = prove
 (`!p a b x.
     LAST(a ## p ++ CONS x (b ## p)) = if p = [] then x else b * LAST(p)`,
  LIST_INDUCT_TAC THEN
  REWRITE_TAC[poly_cmul; poly_add; LAST; HD; TL; NOT_CONS_NIL] THEN
  REPEAT GEN_TAC THEN
  SUBGOAL_THEN `~(a ## t ++ CONS (b * h) (b ## t) = [])`
  ASSUME_TAC THENL
   [SPEC_TAC(`t:complex list`,`t:complex list`) THEN
    LIST_INDUCT_TAC THEN REWRITE_TAC[poly_cmul; poly_add; NOT_CONS_NIL];
    ALL_TAC] THEN
  ASM_REWRITE_TAC[] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[]);;

let LAST_LINEAR_MUL = prove
 (`!p. ~(p = []) ==> (LAST([a; Cx(&1)] ** p) = LAST p)`,
  SIMP_TAC[poly_mul; NOT_CONS_NIL; LAST_LINEAR_MUL_LEMMA; COMPLEX_MUL_LID]);;

let NORMAL_NORMALIZE = prove
 (`!p. ~(normalize p = []) ==> ~(LAST(normalize p) = Cx(&0))`,
  LIST_INDUCT_TAC THEN REWRITE_TAC[normalize] THEN
  POP_ASSUM MP_TAC THEN ASM_CASES_TAC `normalize t = []` THEN
  ASM_REWRITE_TAC[LAST; NOT_CONS_NIL] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[LAST]);;

let LINEAR_MUL_DEGREE = prove
 (`!p a. ~(poly p = poly []) ==> (degree([a; Cx(&1)] ** p) = degree(p) + 1)`,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `degree([a; Cx(&1)] ** normalize p) = degree(normalize p) + 1`
  MP_TAC THENL
   [FIRST_ASSUM(ASSUME_TAC o
      GEN_REWRITE_RULE RAND_CONV [POLY_NORMALIZE_ZERO]) THEN
    FIRST_ASSUM(MP_TAC o MATCH_MP NORMAL_NORMALIZE) THEN
    FIRST_ASSUM(MP_TAC o MATCH_MP LAST_LINEAR_MUL) THEN
    SIMP_TAC[NORMAL_DEGREE] THEN REPEAT STRIP_TAC THEN
    SUBST1_TAC(SYM(SPEC `a:complex` COMPLEX_NEG_NEG)) THEN
    REWRITE_TAC[POLY_LENGTH_MUL] THEN
    UNDISCH_TAC `~(normalize p = [])` THEN
    SPEC_TAC(`normalize p`,`p:complex list`) THEN
    LIST_INDUCT_TAC THEN REWRITE_TAC[NOT_CONS_NIL; LENGTH] THEN ARITH_TAC;
    MATCH_MP_TAC EQ_IMP THEN BINOP_TAC THEN
    TRY(AP_THM_TAC THEN AP_TERM_TAC) THEN MATCH_MP_TAC DEGREE_WELLDEF THEN
    REWRITE_TAC[FUN_EQ_THM; POLY_MUL; POLY_NORMALIZE]]);;

let LINEAR_POW_MUL_DEGREE = prove
 (`!n a p. degree([a; Cx(&1)] exp n ** p) =
                if poly p = poly [] then 0 else degree p + n`,
  INDUCT_TAC THEN REWRITE_TAC[poly_exp] THENL
   [GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL
     [MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `degree(p)` THEN CONJ_TAC THENL
       [MATCH_MP_TAC DEGREE_WELLDEF THEN
        REWRITE_TAC[FUN_EQ_THM; POLY_MUL; poly; COMPLEX_MUL_RZERO;
                    COMPLEX_ADD_RID; COMPLEX_MUL_LID];
        MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `degree []` THEN CONJ_TAC THENL
         [MATCH_MP_TAC DEGREE_WELLDEF THEN ASM_REWRITE_TAC[];
          REWRITE_TAC[degree; LENGTH; normalize; ARITH]]];
      REWRITE_TAC[ADD_CLAUSES] THEN MATCH_MP_TAC DEGREE_WELLDEF THEN
      REWRITE_TAC[FUN_EQ_THM; POLY_MUL; poly; COMPLEX_MUL_RZERO;
                  COMPLEX_ADD_RID; COMPLEX_MUL_LID]];
    ALL_TAC] THEN
  REPEAT GEN_TAC THEN MATCH_MP_TAC EQ_TRANS THEN
  EXISTS_TAC `degree([a; Cx (&1)] exp n ** ([a; Cx (&1)] ** p))` THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC DEGREE_WELLDEF THEN
    REWRITE_TAC[FUN_EQ_THM; POLY_MUL; COMPLEX_MUL_AC]; ALL_TAC] THEN
  ASM_REWRITE_TAC[POLY_ENTIRE] THEN
  ASM_CASES_TAC `poly p = poly []` THEN ASM_REWRITE_TAC[] THEN
  ASM_SIMP_TAC[LINEAR_MUL_DEGREE] THEN
  SUBGOAL_THEN `~(poly [a; Cx (&1)] = poly [])`
   (fun th -> REWRITE_TAC[th] THEN ARITH_TAC) THEN
  REWRITE_TAC[POLY_NORMALIZE_EQ] THEN
  REWRITE_TAC[normalize; CX_INJ; REAL_OF_NUM_EQ; ARITH; NOT_CONS_NIL]);;

(* ------------------------------------------------------------------------- *)
(* Show that the order of a root (or nonroot!) is bounded by degree.         *)
(* ------------------------------------------------------------------------- *)

let ORDER_DEGREE = prove
 (`!a p. ~(poly p = poly []) ==> order a p <= degree p`,
  REPEAT STRIP_TAC THEN
  FIRST_ASSUM(MP_TAC o SPEC `a:complex` o MATCH_MP ORDER_THM) THEN
  DISCH_THEN(MP_TAC o REWRITE_RULE[divides] o CONJUNCT1) THEN
  DISCH_THEN(X_CHOOSE_THEN `q:complex list` ASSUME_TAC) THEN
  FIRST_ASSUM(SUBST1_TAC o MATCH_MP DEGREE_WELLDEF) THEN
  ASM_REWRITE_TAC[LINEAR_POW_MUL_DEGREE] THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [FUN_EQ_THM]) THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[POLY_MUL] THENL
   [UNDISCH_TAC `~(poly p = poly [])` THEN
    SIMP_TAC[FUN_EQ_THM; POLY_MUL; poly; COMPLEX_MUL_RZERO];
    DISCH_TAC THEN ARITH_TAC]);;

(* ------------------------------------------------------------------------- *)
(* Tidier versions of finiteness of roots.                                   *)
(* ------------------------------------------------------------------------- *)

let POLY_ROOTS_FINITE_SET = prove
 (`!p. ~(poly p = poly []) ==> FINITE { x | poly p x = Cx(&0)}`,
  GEN_TAC THEN REWRITE_TAC[POLY_ROOTS_FINITE] THEN
  DISCH_THEN(X_CHOOSE_THEN `N:num` MP_TAC) THEN
  DISCH_THEN(X_CHOOSE_THEN `i:num->complex` ASSUME_TAC) THEN
  MATCH_MP_TAC FINITE_SUBSET THEN
  EXISTS_TAC `{x:complex | ?n:num. n < N /\ (x = i n)}` THEN
  CONJ_TAC THENL
   [SPEC_TAC(`N:num`,`N:num`) THEN POP_ASSUM_LIST(K ALL_TAC) THEN
    INDUCT_TAC THENL
     [SUBGOAL_THEN `{x:complex | ?n. n < 0 /\ (x = i n)} = {}`
      (fun th -> REWRITE_TAC[th; FINITE_RULES]) THEN
      REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY; LT];
      SUBGOAL_THEN `{x:complex | ?n. n < SUC N /\ (x = i n)} =
                    (i N) INSERT {x:complex | ?n. n < N /\ (x = i n)}`
      SUBST1_TAC THENL
       [REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT; LT] THEN MESON_TAC[];
        MATCH_MP_TAC(CONJUNCT2 FINITE_RULES) THEN ASM_REWRITE_TAC[]]];
    ASM_REWRITE_TAC[SUBSET; IN_ELIM_THM]]);;

(* ------------------------------------------------------------------------- *)
(* Conversions to perform operations if coefficients are rational constants. *)
(* ------------------------------------------------------------------------- *)

let COMPLEX_RAT_MUL_CONV =
  GEN_REWRITE_CONV I [GSYM CX_MUL] THENC RAND_CONV REAL_RAT_MUL_CONV;;

let COMPLEX_RAT_ADD_CONV =
  GEN_REWRITE_CONV I [GSYM CX_ADD] THENC RAND_CONV REAL_RAT_ADD_CONV;;

let COMPLEX_RAT_EQ_CONV =
  GEN_REWRITE_CONV I [CX_INJ] THENC REAL_RAT_EQ_CONV;;

let POLY_CMUL_CONV =
  let cmul_conv0 = GEN_REWRITE_CONV I [CONJUNCT1 poly_cmul]
  and cmul_conv1 = GEN_REWRITE_CONV I [CONJUNCT2 poly_cmul] in
  let rec POLY_CMUL_CONV tm =
   (cmul_conv0 ORELSEC
    (cmul_conv1 THENC
     LAND_CONV COMPLEX_RAT_MUL_CONV THENC
     RAND_CONV POLY_CMUL_CONV)) tm in
  POLY_CMUL_CONV;;

let POLY_ADD_CONV =
  let add_conv0 = GEN_REWRITE_CONV I (butlast (CONJUNCTS POLY_ADD_CLAUSES))
  and add_conv1 = GEN_REWRITE_CONV I [last (CONJUNCTS POLY_ADD_CLAUSES)] in
  let rec POLY_ADD_CONV tm =
   (add_conv0 ORELSEC
    (add_conv1 THENC
     LAND_CONV COMPLEX_RAT_ADD_CONV THENC
     RAND_CONV POLY_ADD_CONV)) tm in
  POLY_ADD_CONV;;

let POLY_MUL_CONV =
  let mul_conv0 = GEN_REWRITE_CONV I [CONJUNCT1 POLY_MUL_CLAUSES]
  and mul_conv1 = GEN_REWRITE_CONV I [CONJUNCT1(CONJUNCT2 POLY_MUL_CLAUSES)]
  and mul_conv2 = GEN_REWRITE_CONV I [CONJUNCT2(CONJUNCT2 POLY_MUL_CLAUSES)] in
  let rec POLY_MUL_CONV tm =
   (mul_conv0 ORELSEC
    (mul_conv1 THENC POLY_CMUL_CONV) ORELSEC
    (mul_conv2 THENC
     LAND_CONV POLY_CMUL_CONV THENC
     RAND_CONV(RAND_CONV POLY_MUL_CONV) THENC
     POLY_ADD_CONV)) tm in
  POLY_MUL_CONV;;

let POLY_NORMALIZE_CONV =
  let pth = prove
   (`normalize (CONS h t) =
      (\n. if n = [] then if h = Cx(&0) then [] else [h] else CONS h n)
      (normalize t)`,
    REWRITE_TAC[normalize]) in
  let norm_conv0 = GEN_REWRITE_CONV I [CONJUNCT1 normalize]
  and norm_conv1 = GEN_REWRITE_CONV I [pth]
  and norm_conv2 = GEN_REWRITE_CONV DEPTH_CONV
   [COND_CLAUSES; NOT_CONS_NIL; EQT_INTRO(SPEC_ALL EQ_REFL)] in
  let rec POLY_NORMALIZE_CONV tm =
   (norm_conv0 ORELSEC
    (norm_conv1 THENC
     RAND_CONV POLY_NORMALIZE_CONV THENC
     BETA_CONV THENC
     RATOR_CONV(RAND_CONV(RATOR_CONV(LAND_CONV COMPLEX_RAT_EQ_CONV))) THENC
     norm_conv2)) tm in
  POLY_NORMALIZE_CONV;;

(* ------------------------------------------------------------------------- *)
(* Now we're finished with polynomials...                                    *)
(* ------------------------------------------------------------------------- *)

(************** keep this for now

do_list reduce_interface
 ["divides",`poly_divides:complex list->complex list->bool`;
  "exp",`poly_exp:complex list -> num -> complex list`;
  "diff",`poly_diff:complex list->complex list`];;

unparse_as_infix "exp";;

 ****************)