1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
|
(* ========================================================================= *)
(* Examples of using the Grobner basis procedure. *)
(* ========================================================================= *)
time COMPLEX_ARITH
`!a b c.
(a * x pow 2 + b * x + c = Cx(&0)) /\
(a * y pow 2 + b * y + c = Cx(&0)) /\
~(x = y)
==> (a * (x + y) + b = Cx(&0))`;;
time COMPLEX_ARITH
`!a b c.
(a * x pow 2 + b * x + c = Cx(&0)) /\
(Cx(&2) * a * y pow 2 + Cx(&2) * b * y + Cx(&2) * c = Cx(&0)) /\
~(x = y)
==> (a * (x + y) + b = Cx(&0))`;;
(* ------------------------------------------------------------------------- *)
(* Another example. *)
(* ------------------------------------------------------------------------- *)
time COMPLEX_ARITH
`~((y_1 = Cx(&2) * y_3) /\
(y_2 = Cx(&2) * y_4) /\
(y_1 * y_3 = y_2 * y_4) /\
((y_1 pow 2 - y_2 pow 2) * z = Cx(&1)))`;;
time COMPLEX_ARITH
`!y_1 y_2 y_3 y_4.
(y_1 = Cx(&2) * y_3) /\
(y_2 = Cx(&2) * y_4) /\
(y_1 * y_3 = y_2 * y_4)
==> (y_1 pow 2 = y_2 pow 2)`;;
(* ------------------------------------------------------------------------- *)
(* Angle at centre vs. angle at circumference. *)
(* Formulation from "Real quantifier elimination in practice" paper. *)
(* ------------------------------------------------------------------------- *)
time COMPLEX_ARITH
`~((c pow 2 = a pow 2 + b pow 2) /\
(c pow 2 = x0 pow 2 + (y0 - b) pow 2) /\
(y0 * t1 = a + x0) /\
(y0 * t2 = a - x0) /\
((Cx(&1) - t1 * t2) * t = t1 + t2) /\
(u * (b * t - a) = Cx(&1)) /\
(v1 * a + v2 * x0 + v3 * y0 = Cx(&1)))`;;
time COMPLEX_ARITH
`(c pow 2 = a pow 2 + b pow 2) /\
(c pow 2 = x0 pow 2 + (y0 - b) pow 2) /\
(y0 * t1 = a + x0) /\
(y0 * t2 = a - x0) /\
((Cx(&1) - t1 * t2) * t = t1 + t2) /\
(~(a = Cx(&0)) \/ ~(x0 = Cx(&0)) \/ ~(y0 = Cx(&0)))
==> (b * t = a)`;;
time COMPLEX_ARITH
`(c pow 2 = a pow 2 + b pow 2) /\
(c pow 2 = x0 pow 2 + (y0 - b) pow 2) /\
(y0 * t1 = a + x0) /\
(y0 * t2 = a - x0) /\
((Cx(&1) - t1 * t2) * t = t1 + t2) /\
(~(a = Cx(&0)) /\ ~(x0 = Cx(&0)) /\ ~(y0 = Cx(&0)))
==> (b * t = a)`;;
(* ------------------------------------------------------------------------- *)
(* Another example (note we rule out points 1, 2 or 3 coinciding). *)
(* ------------------------------------------------------------------------- *)
time COMPLEX_ARITH
`((x1 - x0) pow 2 + (y1 - y0) pow 2 =
(x2 - x0) pow 2 + (y2 - y0) pow 2) /\
((x2 - x0) pow 2 + (y2 - y0) pow 2 =
(x3 - x0) pow 2 + (y3 - y0) pow 2) /\
((x1 - x0') pow 2 + (y1 - y0') pow 2 =
(x2 - x0') pow 2 + (y2 - y0') pow 2) /\
((x2 - x0') pow 2 + (y2 - y0') pow 2 =
(x3 - x0') pow 2 + (y3 - y0') pow 2) /\
(a12 * (x1 - x2) + b12 * (y1 - y2) = Cx(&1)) /\
(a13 * (x1 - x3) + b13 * (y1 - y3) = Cx(&1)) /\
(a23 * (x2 - x3) + b23 * (y2 - y3) = Cx(&1)) /\
~((x1 - x0) pow 2 + (y1 - y0) pow 2 = Cx(&0))
==> (x0' = x0) /\ (y0' = y0)`;;
time COMPLEX_ARITH
`~(((x1 - x0) pow 2 + (y1 - y0) pow 2 =
(x2 - x0) pow 2 + (y2 - y0) pow 2) /\
((x2 - x0) pow 2 + (y2 - y0) pow 2 =
(x3 - x0) pow 2 + (y3 - y0) pow 2) /\
((x1 - x0') pow 2 + (y1 - y0') pow 2 =
(x2 - x0') pow 2 + (y2 - y0') pow 2) /\
((x2 - x0') pow 2 + (y2 - y0') pow 2 =
(x3 - x0') pow 2 + (y3 - y0') pow 2) /\
(a12 * (x1 - x2) + b12 * (y1 - y2) = Cx(&1)) /\
(a13 * (x1 - x3) + b13 * (y1 - y3) = Cx(&1)) /\
(a23 * (x2 - x3) + b23 * (y2 - y3) = Cx(&1)) /\
(z * (x0' - x0) = Cx(&1)) /\
(z' * (y0' - y0) = Cx(&1)) /\
(z'' * ((x1 - x0) pow 2 + (y1 - y0) pow 2) = Cx(&1)) /\
(z''' * ((x1 - x09) pow 2 + (y1 - y09) pow 2) = Cx(&1)))`;;
(* ------------------------------------------------------------------------- *)
(* These are pure algebraic simplification. *)
(* ------------------------------------------------------------------------- *)
let LAGRANGE_4 = time COMPLEX_ARITH
`(((x1 pow 2) + (x2 pow 2) + (x3 pow 2) + (x4 pow 2)) *
((y1 pow 2) + (y2 pow 2) + (y3 pow 2) + (y4 pow 2))) =
((((((x1*y1) - (x2*y2)) - (x3*y3)) - (x4*y4)) pow 2) +
(((((x1*y2) + (x2*y1)) + (x3*y4)) - (x4*y3)) pow 2) +
(((((x1*y3) - (x2*y4)) + (x3*y1)) + (x4*y2)) pow 2) +
(((((x1*y4) + (x2*y3)) - (x3*y2)) + (x4*y1)) pow 2))`;;
let LAGRANGE_8 = time COMPLEX_ARITH
`((p1 pow 2 + q1 pow 2 + r1 pow 2 + s1 pow 2 + t1 pow 2 + u1 pow 2 + v1 pow 2 + w1 pow 2) *
(p2 pow 2 + q2 pow 2 + r2 pow 2 + s2 pow 2 + t2 pow 2 + u2 pow 2 + v2 pow 2 + w2 pow 2)) =
((p1 * p2 - q1 * q2 - r1 * r2 - s1 * s2 - t1 * t2 - u1 * u2 - v1 * v2 - w1* w2) pow 2 +
(p1 * q2 + q1 * p2 + r1 * s2 - s1 * r2 + t1 * u2 - u1 * t2 - v1 * w2 + w1* v2) pow 2 +
(p1 * r2 - q1 * s2 + r1 * p2 + s1 * q2 + t1 * v2 + u1 * w2 - v1 * t2 - w1* u2) pow 2 +
(p1 * s2 + q1 * r2 - r1 * q2 + s1 * p2 + t1 * w2 - u1 * v2 + v1 * u2 - w1* t2) pow 2 +
(p1 * t2 - q1 * u2 - r1 * v2 - s1 * w2 + t1 * p2 + u1 * q2 + v1 * r2 + w1* s2) pow 2 +
(p1 * u2 + q1 * t2 - r1 * w2 + s1 * v2 - t1 * q2 + u1 * p2 - v1 * s2 + w1* r2) pow 2 +
(p1 * v2 + q1 * w2 + r1 * t2 - s1 * u2 - t1 * r2 + u1 * s2 + v1 * p2 - w1* q2) pow 2 +
(p1 * w2 - q1 * v2 + r1 * u2 + s1 * t2 - t1 * s2 - u1 * r2 + v1 * q2 + w1* p2) pow 2)`;;
let LIOUVILLE = time COMPLEX_ARITH
`((x1 pow 2 + x2 pow 2 + x3 pow 2 + x4 pow 2) pow 2) =
(Cx(&1 / &6) * ((x1 + x2) pow 4 + (x1 + x3) pow 4 + (x1 + x4) pow 4 +
(x2 + x3) pow 4 + (x2 + x4) pow 4 + (x3 + x4) pow 4) +
Cx(&1 / &6) * ((x1 - x2) pow 4 + (x1 - x3) pow 4 + (x1 - x4) pow 4 +
(x2 - x3) pow 4 + (x2 - x4) pow 4 + (x3 - x4) pow 4))`;;
let FLECK = time COMPLEX_ARITH
`((x1 pow 2 + x2 pow 2 + x3 pow 2 + x4 pow 2) pow 3) =
(Cx(&1 / &60) * ((x1 + x2 + x3) pow 6 + (x1 + x2 - x3) pow 6 +
(x1 - x2 + x3) pow 6 + (x1 - x2 - x3) pow 6 +
(x1 + x2 + x4) pow 6 + (x1 + x2 - x4) pow 6 +
(x1 - x2 + x4) pow 6 + (x1 - x2 - x4) pow 6 +
(x1 + x3 + x4) pow 6 + (x1 + x3 - x4) pow 6 +
(x1 - x3 + x4) pow 6 + (x1 - x3 - x4) pow 6 +
(x2 + x3 + x4) pow 6 + (x2 + x3 - x4) pow 6 +
(x2 - x3 + x4) pow 6 + (x2 - x3 - x4) pow 6) +
Cx(&1 / &30) * ((x1 + x2) pow 6 + (x1 - x2) pow 6 +
(x1 + x3) pow 6 + (x1 - x3) pow 6 +
(x1 + x4) pow 6 + (x1 - x4) pow 6 +
(x2 + x3) pow 6 + (x2 - x3) pow 6 +
(x2 + x4) pow 6 + (x2 - x4) pow 6 +
(x3 + x4) pow 6 + (x3 - x4) pow 6) +
Cx(&3 / &5) * (x1 pow 6 + x2 pow 6 + x3 pow 6 + x4 pow 6))`;;
let HURWITZ = time COMPLEX_ARITH
`!x1 x2 x3 x4.
(x1 pow 2 + x2 pow 2 + x3 pow 2 + x4 pow 2) pow 4 =
Cx(&1 / &840) * ((x1 + x2 + x3 + x4) pow 8 +
(x1 + x2 + x3 - x4) pow 8 +
(x1 + x2 - x3 + x4) pow 8 +
(x1 + x2 - x3 - x4) pow 8 +
(x1 - x2 + x3 + x4) pow 8 +
(x1 - x2 + x3 - x4) pow 8 +
(x1 - x2 - x3 + x4) pow 8 +
(x1 - x2 - x3 - x4) pow 8) +
Cx(&1 / &5040) * ((Cx(&2) * x1 + x2 + x3) pow 8 +
(Cx(&2) * x1 + x2 - x3) pow 8 +
(Cx(&2) * x1 - x2 + x3) pow 8 +
(Cx(&2) * x1 - x2 - x3) pow 8 +
(Cx(&2) * x1 + x2 + x4) pow 8 +
(Cx(&2) * x1 + x2 - x4) pow 8 +
(Cx(&2) * x1 - x2 + x4) pow 8 +
(Cx(&2) * x1 - x2 - x4) pow 8 +
(Cx(&2) * x1 + x3 + x4) pow 8 +
(Cx(&2) * x1 + x3 - x4) pow 8 +
(Cx(&2) * x1 - x3 + x4) pow 8 +
(Cx(&2) * x1 - x3 - x4) pow 8 +
(Cx(&2) * x2 + x3 + x4) pow 8 +
(Cx(&2) * x2 + x3 - x4) pow 8 +
(Cx(&2) * x2 - x3 + x4) pow 8 +
(Cx(&2) * x2 - x3 - x4) pow 8 +
(x1 + Cx(&2) * x2 + x3) pow 8 +
(x1 + Cx(&2) * x2 - x3) pow 8 +
(x1 - Cx(&2) * x2 + x3) pow 8 +
(x1 - Cx(&2) * x2 - x3) pow 8 +
(x1 + Cx(&2) * x2 + x4) pow 8 +
(x1 + Cx(&2) * x2 - x4) pow 8 +
(x1 - Cx(&2) * x2 + x4) pow 8 +
(x1 - Cx(&2) * x2 - x4) pow 8 +
(x1 + Cx(&2) * x3 + x4) pow 8 +
(x1 + Cx(&2) * x3 - x4) pow 8 +
(x1 - Cx(&2) * x3 + x4) pow 8 +
(x1 - Cx(&2) * x3 - x4) pow 8 +
(x2 + Cx(&2) * x3 + x4) pow 8 +
(x2 + Cx(&2) * x3 - x4) pow 8 +
(x2 - Cx(&2) * x3 + x4) pow 8 +
(x2 - Cx(&2) * x3 - x4) pow 8 +
(x1 + x2 + Cx(&2) * x3) pow 8 +
(x1 + x2 - Cx(&2) * x3) pow 8 +
(x1 - x2 + Cx(&2) * x3) pow 8 +
(x1 - x2 - Cx(&2) * x3) pow 8 +
(x1 + x2 + Cx(&2) * x4) pow 8 +
(x1 + x2 - Cx(&2) * x4) pow 8 +
(x1 - x2 + Cx(&2) * x4) pow 8 +
(x1 - x2 - Cx(&2) * x4) pow 8 +
(x1 + x3 + Cx(&2) * x4) pow 8 +
(x1 + x3 - Cx(&2) * x4) pow 8 +
(x1 - x3 + Cx(&2) * x4) pow 8 +
(x1 - x3 - Cx(&2) * x4) pow 8 +
(x2 + x3 + Cx(&2) * x4) pow 8 +
(x2 + x3 - Cx(&2) * x4) pow 8 +
(x2 - x3 + Cx(&2) * x4) pow 8 +
(x2 - x3 - Cx(&2) * x4) pow 8) +
Cx(&1 / &84) * ((x1 + x2) pow 8 + (x1 - x2) pow 8 +
(x1 + x3) pow 8 + (x1 - x3) pow 8 +
(x1 + x4) pow 8 + (x1 - x4) pow 8 +
(x2 + x3) pow 8 + (x2 - x3) pow 8 +
(x2 + x4) pow 8 + (x2 - x4) pow 8 +
(x3 + x4) pow 8 + (x3 - x4) pow 8) +
Cx(&1 / &840) * ((Cx(&2) * x1) pow 8 + (Cx(&2) * x2) pow 8 +
(Cx(&2) * x3) pow 8 + (Cx(&2) * x4) pow 8)`;;
let SCHUR = time COMPLEX_ARITH
`Cx(&22680) * (x1 pow 2 + x2 pow 2 + x3 pow 2 + x4 pow 2) pow 5 =
Cx(&9) * ((Cx(&2) * x1) pow 10 +
(Cx(&2) * x2) pow 10 +
(Cx(&2) * x3) pow 10 +
(Cx(&2) * x4) pow 10) +
Cx(&180) * ((x1 + x2) pow 10 + (x1 - x2) pow 10 +
(x1 + x3) pow 10 + (x1 - x3) pow 10 +
(x1 + x4) pow 10 + (x1 - x4) pow 10 +
(x2 + x3) pow 10 + (x2 - x3) pow 10 +
(x2 + x4) pow 10 + (x2 - x4) pow 10 +
(x3 + x4) pow 10 + (x3 - x4) pow 10) +
((Cx(&2) * x1 + x2 + x3) pow 10 +
(Cx(&2) * x1 + x2 - x3) pow 10 +
(Cx(&2) * x1 - x2 + x3) pow 10 +
(Cx(&2) * x1 - x2 - x3) pow 10 +
(Cx(&2) * x1 + x2 + x4) pow 10 +
(Cx(&2) * x1 + x2 - x4) pow 10 +
(Cx(&2) * x1 - x2 + x4) pow 10 +
(Cx(&2) * x1 - x2 - x4) pow 10 +
(Cx(&2) * x1 + x3 + x4) pow 10 +
(Cx(&2) * x1 + x3 - x4) pow 10 +
(Cx(&2) * x1 - x3 + x4) pow 10 +
(Cx(&2) * x1 - x3 - x4) pow 10 +
(Cx(&2) * x2 + x3 + x4) pow 10 +
(Cx(&2) * x2 + x3 - x4) pow 10 +
(Cx(&2) * x2 - x3 + x4) pow 10 +
(Cx(&2) * x2 - x3 - x4) pow 10 +
(x1 + Cx(&2) * x2 + x3) pow 10 +
(x1 + Cx(&2) * x2 - x3) pow 10 +
(x1 - Cx(&2) * x2 + x3) pow 10 +
(x1 - Cx(&2) * x2 - x3) pow 10 +
(x1 + Cx(&2) * x2 + x4) pow 10 +
(x1 + Cx(&2) * x2 - x4) pow 10 +
(x1 - Cx(&2) * x2 + x4) pow 10 +
(x1 - Cx(&2) * x2 - x4) pow 10 +
(x1 + Cx(&2) * x3 + x4) pow 10 +
(x1 + Cx(&2) * x3 - x4) pow 10 +
(x1 - Cx(&2) * x3 + x4) pow 10 +
(x1 - Cx(&2) * x3 - x4) pow 10 +
(x2 + Cx(&2) * x3 + x4) pow 10 +
(x2 + Cx(&2) * x3 - x4) pow 10 +
(x2 - Cx(&2) * x3 + x4) pow 10 +
(x2 - Cx(&2) * x3 - x4) pow 10 +
(x1 + x2 + Cx(&2) * x3) pow 10 +
(x1 + x2 - Cx(&2) * x3) pow 10 +
(x1 - x2 + Cx(&2) * x3) pow 10 +
(x1 - x2 - Cx(&2) * x3) pow 10 +
(x1 + x2 + Cx(&2) * x4) pow 10 +
(x1 + x2 - Cx(&2) * x4) pow 10 +
(x1 - x2 + Cx(&2) * x4) pow 10 +
(x1 - x2 - Cx(&2) * x4) pow 10 +
(x1 + x3 + Cx(&2) * x4) pow 10 +
(x1 + x3 - Cx(&2) * x4) pow 10 +
(x1 - x3 + Cx(&2) * x4) pow 10 +
(x1 - x3 - Cx(&2) * x4) pow 10 +
(x2 + x3 + Cx(&2) * x4) pow 10 +
(x2 + x3 - Cx(&2) * x4) pow 10 +
(x2 - x3 + Cx(&2) * x4) pow 10 +
(x2 - x3 - Cx(&2) * x4) pow 10) +
Cx(&9) * ((x1 + x2 + x3 + x4) pow 10 +
(x1 + x2 + x3 - x4) pow 10 +
(x1 + x2 - x3 + x4) pow 10 +
(x1 + x2 - x3 - x4) pow 10 +
(x1 - x2 + x3 + x4) pow 10 +
(x1 - x2 + x3 - x4) pow 10 +
(x1 - x2 - x3 + x4) pow 10 +
(x1 - x2 - x3 - x4) pow 10)`;;
(* ------------------------------------------------------------------------- *)
(* Intersection of diagonals of a parallelogram is their midpoint. *)
(* Kapur "...Dixon resultants, Groebner Bases, and Characteristic Sets", 3.1 *)
(* ------------------------------------------------------------------------- *)
time COMPLEX_ARITH
`(x1 = u3) /\
(x1 * (u2 - u1) = x2 * u3) /\
(x4 * (x2 - u1) = x1 * (x3 - u1)) /\
(x3 * u3 = x4 * u2) /\
~(u1 = Cx(&0)) /\
~(u3 = Cx(&0))
==> (x3 pow 2 + x4 pow 2 = (u2 - x3) pow 2 + (u3 - x4) pow 2)`;;
(* ------------------------------------------------------------------------- *)
(* Chou's formulation of same property. *)
(* ------------------------------------------------------------------------- *)
time COMPLEX_ARITH
`(u1 * x1 - u1 * u3 = Cx(&0)) /\
(u3 * x2 - (u2 - u1) * x1 = Cx(&0)) /\
(x1 * x4 - (x2 - u1) * x3 - u1 * x1 = Cx(&0)) /\
(u3 * x4 - u2 * x3 = Cx(&0)) /\
~(u1 = Cx(&0)) /\
~(u3 = Cx(&0))
==> (Cx(&2) * u2 * x4 + Cx(&2) * u3 * x3 - u3 pow 2 - u2 pow 2 = Cx(&0))`;;
(* ------------------------------------------------------------------------- *)
(* Perpendicular lines property; from Kapur's earlier paper. *)
(* ------------------------------------------------------------------------- *)
time COMPLEX_ARITH
`(y1 * y3 + x1 * x3 = Cx(&0)) /\
(y3 * (y2 - y3) + (x2 - x3) * x3 = Cx(&0)) /\
~(x3 = Cx(&0)) /\
~(y3 = Cx(&0))
==> (y1 * (x2 - x3) = x1 * (y2 - y3))`;;
(* ------------------------------------------------------------------------- *)
(* Simson's theorem (Chou, p7). *)
(* ------------------------------------------------------------------------- *)
time COMPLEX_ARITH
`(Cx(&2) * u2 * x2 + Cx(&2) * u3 * x1 - u3 pow 2 - u2 pow 2 = Cx(&0)) /\
(Cx(&2) * u1 * x2 - u1 pow 2 = Cx(&0)) /\
(--(x3 pow 2) + Cx(&2) * x2 * x3 + Cx(&2) * u4 * x1 - u4 pow 2 = Cx(&0)) /\
(u3 * x5 + (--u2 + u1) * x4 - u1 * u3 = Cx(&0)) /\
((u2 - u1) * x5 + u3 * x4 + (--u2 + u1) * x3 - u3 * u4 = Cx(&0)) /\
(u3 * x7 - u2 * x6 = Cx(&0)) /\
(u2 * x7 + u3 * x6 - u2 * x3 - u3 * u4 = Cx(&0)) /\
~(Cx(&4) * u1 * u3 = Cx(&0)) /\
~(Cx(&2) * u1 = Cx(&0)) /\
~(--(u3 pow 2) - u2 pow 2 + Cx(&2) * u1 * u2 - u1 pow 2 = Cx(&0)) /\
~(u3 = Cx(&0)) /\
~(--(u3 pow 2) - u2 pow 2 = Cx(&0)) /\
~(u2 = Cx(&0))
==> (x4 * x7 + (--x5 + x3) * x6 - x3 * x4 = Cx(&0))`;;
(* ------------------------------------------------------------------------- *)
(* Determinants from Coq convex hull paper (some require reals or order). *)
(* ------------------------------------------------------------------------- *)
let det3 = new_definition
`det3(a11,a12,a13,
a21,a22,a23,
a31,a32,a33) =
a11 * (a22 * a33 - a32 * a23) -
a12 * (a21 * a33 - a31 * a23) +
a13 * (a21 * a32 - a31 * a22)`;;
let DET_TRANSPOSE = prove
(`det3(a1,b1,c1,a2,b2,c2,a3,b3,c3) =
det3(a1,a2,a3,b1,b2,b3,c1,c2,c3)`,
REWRITE_TAC[det3] THEN CONV_TAC(time COMPLEX_ARITH));;
let sdet3 = new_definition
`sdet3(p,q,r) = det3(FST p,SND p,Cx(&1),
FST q,SND q,Cx(&1),
FST r,SND r,Cx(&1))`;;
let SDET3_PERMUTE_1 = prove
(`sdet3(p,q,r) = sdet3(q,r,p)`,
REWRITE_TAC[sdet3; det3] THEN CONV_TAC(time COMPLEX_ARITH));;
let SDET3_PERMUTE_2 = prove
(`sdet3(p,q,r) = --(sdet3(p,r,q))`,
REWRITE_TAC[sdet3; det3] THEN CONV_TAC(time COMPLEX_ARITH));;
let SDET_SUM = prove
(`sdet3(p,q,r) - sdet3(t,q,r) - sdet3(p,t,r) - sdet3(p,q,t) = Cx(&0)`,
REWRITE_TAC[sdet3; det3] THEN CONV_TAC(time COMPLEX_ARITH));;
let SDET_CRAMER = prove
(`sdet3(s,t,q) * sdet3(t,p,r) = sdet3(t,q,r) * sdet3(s,t,p) +
sdet3(t,p,q) * sdet3(s,t,r)`,
REWRITE_TAC[sdet3; det3] THEN CONV_TAC(time COMPLEX_ARITH));;
let SDET_NZ = prove
(`!p q r. ~(sdet3(p,q,r) = Cx(&0))
==> ~(p = q) /\ ~(q = r) /\ ~(r = p)`,
REWRITE_TAC[FORALL_PAIR_THM; PAIR_EQ; sdet3; det3] THEN
CONV_TAC(time COMPLEX_ARITH));;
let SDET_LINCOMB = prove
(`(FST p * sdet3(i,j,k) =
FST i * sdet3(j,k,p) + FST j * sdet3(k,i,p) + FST k * sdet3(i,j,p)) /\
(SND p * sdet3(i,j,k) =
SND i * sdet3(j,k,p) + SND j * sdet3(k,i,p) + SND k * sdet3(i,j,p))`,
REWRITE_TAC[sdet3; det3] THEN CONV_TAC(time COMPLEX_ARITH));;
(***** I'm not sure if this is true; there must be some
sufficient degenerate conditions....
let th = prove
(`~(~(xp pow 2 + yp pow 2 = Cx(&0)) /\
~(xq pow 2 + yq pow 2 = Cx(&0)) /\
~(xr pow 2 + yr pow 2 = Cx(&0)) /\
(det3(xp,yp,Cx(&1),
xq,yq,Cx(&1),
xr,yr,Cx(&1)) = Cx(&0)) /\
(det3(yp,xp pow 2 + yp pow 2,Cx(&1),
yq,xq pow 2 + yq pow 2,Cx(&1),
yr,xr pow 2 + yr pow 2,Cx(&1)) = Cx(&0)) /\
(det3(xp,xp pow 2 + yp pow 2,Cx(&1),
xq,xq pow 2 + yq pow 2,Cx(&1),
xr,xr pow 2 + yr pow 2,Cx(&1)) = Cx(&0)))`,
REWRITE_TAC[det3] THEN
CONV_TAC(time COMPLEX_ARITH));;
***************)
(* ------------------------------------------------------------------------- *)
(* Some geometry concepts (just "axiomatic" in this file). *)
(* ------------------------------------------------------------------------- *)
prioritize_real();;
let collinear = new_definition
`collinear (a:real#real) b c <=>
((FST a - FST b) * (SND b - SND c) =
(SND a - SND b) * (FST b - FST c))`;;
let parallel = new_definition
`parallel (a,b) (c,d) <=>
((FST a - FST b) * (SND c - SND d) = (SND a - SND b) * (FST c - FST d))`;;
let perpendicular = new_definition
`perpendicular (a,b) (c,d) <=>
((FST a - FST b) * (FST c - FST d) + (SND a - SND b) * (SND c - SND d) =
&0)`;;
let oncircle_with_diagonal = new_definition
`oncircle_with_diagonal a (b,c) = perpendicular (b,a) (c,a)`;;
let length = new_definition
`length (a,b) = sqrt((FST a - FST b) pow 2 + (SND a - SND b) pow 2)`;;
let lengths_eq = new_definition
`lengths_eq (a,b) (c,d) <=>
((FST a - FST b) pow 2 + (SND a - SND b) pow 2 =
(FST c - FST d) pow 2 + (SND c - SND d) pow 2)`;;
let is_midpoint = new_definition
`is_midpoint b (a,c) <=>
(&2 * FST b = FST a + FST c) /\
(&2 * SND b = SND a + SND c)`;;
(* ------------------------------------------------------------------------- *)
(* Chou isn't explicit about this. *)
(* ------------------------------------------------------------------------- *)
let is_intersection = new_definition
`is_intersection p (a,b) (c,d) <=>
collinear a p b /\ collinear c p d`;;
(* ------------------------------------------------------------------------- *)
(* This is used in some degenerate conditions. See Chou, p18. *)
(* ------------------------------------------------------------------------- *)
let isotropic = new_definition
`isotropic (a,b) = perpendicular (a,b) (a,b)`;;
(* ------------------------------------------------------------------------- *)
(* This increases degree, but sometimes makes complex assertion useful. *)
(* ------------------------------------------------------------------------- *)
let distinctpairs = new_definition
`distinctpairs pprs <=>
~(ITLIST (\(a,b) pr. ((FST a - FST b) pow 2 + (SND a - SND b) pow 2) * pr)
pprs (&1) = &0)`;;
(* ------------------------------------------------------------------------- *)
(* Simple tactic to remove defined concepts and expand coordinates. *)
(* ------------------------------------------------------------------------- *)
let (EXPAND_COORDS_TAC:tactic) =
let complex2_ty = `:real#real` in
fun (asl,w) ->
(let fvs = filter (fun v -> type_of v = complex2_ty) (frees w) in
MAP_EVERY (fun v -> SPEC_TAC(v,v)) fvs THEN
GEN_REWRITE_TAC DEPTH_CONV [FORALL_PAIR_THM; EXISTS_PAIR_THM] THEN
REPEAT GEN_TAC) (asl,w);;
let PAIR_BETA_THM = prove
(`(\(x,y). P x y) (a,b) = P a b`,
CONV_TAC(LAND_CONV GEN_BETA_CONV) THEN REFL_TAC);;
let GEOM_TAC =
EXPAND_COORDS_TAC THEN
GEN_REWRITE_TAC TOP_DEPTH_CONV
[collinear; parallel; perpendicular; oncircle_with_diagonal;
length; lengths_eq; is_midpoint; is_intersection; distinctpairs;
isotropic; ITLIST; PAIR_BETA_THM; BETA_THM; PAIR_EQ; FST; SND];;
(* ------------------------------------------------------------------------- *)
(* Centroid (Chou, example 142). *)
(* ------------------------------------------------------------------------- *)
let CENTROID = time prove
(`is_midpoint d (b,c) /\
is_midpoint e (a,c) /\
is_midpoint f (a,b) /\
is_intersection m (b,e) (a,d)
==> collinear c f m`,
GEOM_TAC THEN CONV_TAC GROBNER_REAL_ARITH);;
(* ------------------------------------------------------------------------- *)
(* Gauss's theorem (Chou, example 15). *)
(* ------------------------------------------------------------------------- *)
let GAUSS = time prove
(`collinear x a0 a3 /\
collinear x a1 a2 /\
collinear y a2 a3 /\
collinear y a1 a0 /\
is_midpoint m1 (a1,a3) /\
is_midpoint m2 (a0,a2) /\
is_midpoint m3 (x,y)
==> collinear m1 m2 m3`,
GEOM_TAC THEN CONV_TAC GROBNER_REAL_ARITH);;
(* ------------------------------------------------------------------------- *)
(* Simson's theorem (Chou, example 288). *)
(* ------------------------------------------------------------------------- *)
(**** These are all hideously slow. At least the first one works.
I haven't had the patience to try the rest.
let SIMSON = time prove
(`lengths_eq (O,a) (O,b) /\
lengths_eq (O,a) (O,c) /\
lengths_eq (d,O) (O,a) /\
perpendicular (e,d) (b,c) /\
collinear e b c /\
perpendicular (f,d) (a,c) /\
collinear f a c /\
perpendicular (g,d) (a,b) /\
collinear g a b /\
~(collinear a c b) /\
~(lengths_eq (a,b) (a,a)) /\
~(lengths_eq (a,c) (a,a)) /\
~(lengths_eq (b,c) (a,a))
==> collinear e f g`,
GEOM_TAC THEN CONV_TAC GROBNER_REAL_ARITH);;
let SIMSON = time prove
(`lengths_eq (O,a) (O,b) /\
lengths_eq (O,a) (O,c) /\
lengths_eq (d,O) (O,a) /\
perpendicular (e,d) (b,c) /\
collinear e b c /\
perpendicular (f,d) (a,c) /\
collinear f a c /\
perpendicular (g,d) (a,b) /\
collinear g a b /\
~(a = b) /\ ~(a = c) /\ ~(a = d) /\ ~(b = c) /\ ~(b = d) /\ ~(c = d)
==> collinear e f g`,
GEOM_TAC THEN CONV_TAC GROBNER_REAL_ARITH);;
let SIMSON = time prove
(`lengths_eq (O,a) (O,b) /\
lengths_eq (O,a) (O,c) /\
lengths_eq (d,O) (O,a) /\
perpendicular (e,d) (b,c) /\
collinear e b c /\
perpendicular (f,d) (a,c) /\
collinear f a c /\
perpendicular (g,d) (a,b) /\
collinear g a b /\
~(collinear a c b) /\
~(isotropic (a,b)) /\
~(isotropic (a,c)) /\
~(isotropic (b,c)) /\
~(isotropic (a,d)) /\
~(isotropic (b,d)) /\
~(isotropic (c,d))
==> collinear e f g`,
GEOM_TAC THEN CONV_TAC GROBNER_REAL_ARITH);;
****************)
|