File: cong.ml

package info (click to toggle)
hol-light 20170109-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 36,568 kB
  • ctags: 8,549
  • sloc: ml: 540,018; cpp: 439; lisp: 286; java: 279; makefile: 262; sh: 229; yacc: 108; perl: 78; ansic: 57; sed: 39
file content (164 lines) | stat: -rw-r--r-- 6,356 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
(* ========================================================================= *)
(* Integer congruences.                                                      *)
(* ========================================================================= *)

prioritize_int();;

(* ------------------------------------------------------------------------- *)
(* Combined rewrite, for later proofs.                                       *)
(* ------------------------------------------------------------------------- *)

let CONG = prove
 (`(x == y) (mod n) <=> ?q. x - y = q * n`,
  REWRITE_TAC[int_congruent; int_divides] THEN MESON_TAC[INT_MUL_SYM]);;

(* ------------------------------------------------------------------------- *)
(* Trivial consequences.                                                     *)
(* ------------------------------------------------------------------------- *)

let CONG_MOD_0 = prove
 (`(x == y) (mod (&0)) <=> (x = y)`,
  INTEGER_TAC);;

let CONG_MOD_1 = prove
 (`(x == y) (mod (&1))`,
  INTEGER_TAC);;

(* ------------------------------------------------------------------------- *)
(* Congruence is an equivalence relation.                                    *)
(* ------------------------------------------------------------------------- *)

let CONG_REFL = prove
 (`!n x. (x == x) (mod n)`,
  INTEGER_TAC);;

let CONG_SYM = prove
 (`!n x y. (x == y) (mod n) ==> (y == x) (mod n)`,
  INTEGER_TAC);;

let CONG_TRANS = prove
 (`!n x y z. (x == y) (mod n) /\ (y == z) (mod n) ==> (x == z) (mod n)`,
  INTEGER_TAC);;

(* ------------------------------------------------------------------------- *)
(* Congruences are indeed congruences.                                       *)
(* ------------------------------------------------------------------------- *)

let CONG_ADD = prove
 (`!n x1 x2 y1 y2.
    (x1 == x2) (mod n) /\ (y1 == y2) (mod n) ==> (x1 + y1 == x2 + y2) (mod n)`,
  INTEGER_TAC);;

let CONG_NEG = prove
 (`!n x1 x2. (x1 == x2) (mod n) ==> (--x1 == --x2) (mod n)`,
  INTEGER_TAC);;

let CONG_SUB = prove
 (`!n x1 x2 y1 y2.
    (x1 == x2) (mod n) /\ (y1 == y2) (mod n) ==> (x1 - y1 == x2 - y2) (mod n)`,
  INTEGER_TAC);;

let CONG_MUL = prove
 (`!n x1 x2 y1 y2.
    (x1 == x2) (mod n) /\ (y1 == y2) (mod n) ==> (x1 * y1 == x2 * y2) (mod n)`,
  INTEGER_TAC);;

(* ------------------------------------------------------------------------- *)
(* Various other trivial properties of congruences.                          *)
(* ------------------------------------------------------------------------- *)

let CONG_MOD_NEG = prove
 (`!x y n. (x == y) (mod (--n)) <=> (x == y) (mod n)`,
  INTEGER_TAC);;

let CONG_MOD_ABS = prove
 (`!x y n. (x == y) (mod (abs n)) <=> (x == y) (mod n)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[INT_ABS] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[CONG_MOD_NEG]);;

let CONG_MULTIPLE = prove
 (`!m n. (m * n == &0) (mod n)`,
  INTEGER_TAC);;

let CONG_SELF = prove
 (`!n. (n == &0) (mod n)`,
  INTEGER_TAC);;

let CONG_SELF_ABS = prove
 (`!n. (abs(n) == &0) (mod n)`,
  ONCE_REWRITE_TAC[GSYM CONG_MOD_ABS] THEN REWRITE_TAC[CONG_SELF]);;

let CONG_MOD_1 = prove
 (`(x == y) (mod &1)`,
  INTEGER_TAC);;

(* ------------------------------------------------------------------------- *)
(* Can choose a representative, either positive or with minimal magnitude.   *)
(* ------------------------------------------------------------------------- *)

let CONG_REP_POS_POS = prove
 (`!n x. &0 <= x /\ ~(n = &0)
         ==> ?y. &0 <= y /\ y < abs(n) /\ (x == y) (mod n)`,
  REWRITE_TAC[IMP_CONJ] THEN
  REWRITE_TAC[GSYM INT_FORALL_POS] THEN
  MAP_EVERY X_GEN_TAC [`n:int`; `k:num`] THEN
  ONCE_REWRITE_TAC[GSYM CONG_MOD_ABS] THEN
  MP_TAC(SPEC `n:int` INT_ABS_POS) THEN
  ONCE_REWRITE_TAC[INT_ARITH `(n = &0) <=> (abs n = &0)`] THEN
  SPEC_TAC(`abs n`,`n:int`) THEN REWRITE_TAC[GSYM INT_FORALL_POS] THEN
  X_GEN_TAC `n:num` THEN REWRITE_TAC[INT_OF_NUM_EQ] THEN DISCH_TAC THEN
  EXISTS_TAC `&(k MOD n)` THEN
  REWRITE_TAC[CONG; INT_OF_NUM_LE; INT_OF_NUM_LT] THEN
  ASM_SIMP_TAC[DIVISION; LE_0] THEN EXISTS_TAC `&(k DIV n)` THEN
  REWRITE_TAC[INT_ARITH `(x - y = z) <=> (x = z + y)`] THEN
  REWRITE_TAC[INT_OF_NUM_MUL; INT_OF_NUM_ADD; INT_OF_NUM_EQ] THEN
  ASM_SIMP_TAC[DIVISION]);;

let CONG_REP_POS = prove
 (`!n x. ~(n = &0) ==> ?y. &0 <= y /\ y < abs(n) /\ (x == y) (mod n)`,
  REPEAT STRIP_TAC THEN
  DISJ_CASES_TAC(INT_ARITH `&0 <= x \/ &0 <= --x`) THEN
  ASM_SIMP_TAC[CONG_REP_POS_POS] THEN
  MP_TAC(SPECL [`n:int`; `--x`] CONG_REP_POS_POS) THEN
  ASM_REWRITE_TAC[] THEN
  DISCH_THEN(X_CHOOSE_THEN `y:int` STRIP_ASSUME_TAC) THEN
  ASM_CASES_TAC `y = &0` THENL
   [EXISTS_TAC `y:int` THEN
    FIRST_ASSUM(MP_TAC o MATCH_MP CONG_NEG) THEN
    ASM_REWRITE_TAC[INT_NEG_0; INT_NEG_NEG];
    ALL_TAC] THEN
  EXISTS_TAC `abs(n) - y` THEN
  ASM_SIMP_TAC[INT_ARITH `y < abs(n) ==> &0 <= abs(n) - y`;
               INT_ARITH `&0 <= y /\ ~(y = &0) ==> abs(n) - y < abs(n)`] THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP CONG_NEG) THEN
  DISCH_THEN(MP_TAC o MATCH_MP CONG_SYM) THEN
  DISCH_THEN(MP_TAC o CONJ (SPEC `abs n` CONG_SELF)) THEN
  REWRITE_TAC[CONG_MOD_ABS] THEN
  DISCH_THEN(MP_TAC o MATCH_MP CONG_ADD) THEN
  REWRITE_TAC[INT_NEG_NEG; INT_ADD_LID] THEN
  MESON_TAC[INT_ARITH `x + --y = x - y`; CONG_SYM]);;

let CONG_REP_MIN = prove
 (`!n x. ~(n = &0)
         ==> ?y. --(abs n) <= &2 * y /\ &2 * y < abs n /\ (x == y) (mod n)`,
  REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP CONG_REP_POS) THEN
  DISCH_THEN(X_CHOOSE_THEN `y:int` STRIP_ASSUME_TAC o SPEC `x:int`) THEN
  MP_TAC(INT_ARITH
   `&0 <= y /\ y < abs n
    ==> --(abs n) <= &2 * y /\ &2 * y < abs(n) \/
        --(abs n) <= &2 * (y - abs(n)) /\ &2 * (y - abs(n)) < abs(n)`) THEN
  ASM_REWRITE_TAC[] THEN STRIP_TAC THENL
   [ASM_MESON_TAC[CONG_REP_POS; INT_LT_IMP_LE]; ALL_TAC] THEN
  EXISTS_TAC `y - abs(n)` THEN ASM_REWRITE_TAC[] THEN
  MP_TAC(SPEC `n:int` CONG_SELF_ABS) THEN
  DISCH_THEN(MP_TAC o MATCH_MP CONG_SYM) THEN
  UNDISCH_TAC `(x == y) (mod n)` THEN
  REWRITE_TAC[IMP_IMP] THEN
  DISCH_THEN(MP_TAC o MATCH_MP CONG_SUB) THEN
  REWRITE_TAC[INT_ARITH `x - &0 = x`]);;

let CONG_REP_MIN_ABS = prove
 (`!n x. ~(n = &0) ==> ?y. &2 * abs(y) <= abs(n) /\ (x == y) (mod n)`,
  REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP CONG_REP_MIN) THEN
  DISCH_THEN(MP_TAC o SPEC `x:int`) THEN MATCH_MP_TAC MONO_EXISTS THEN
  SIMP_TAC[] THEN INT_ARITH_TAC);;