1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
|
(* ========================================================================= *)
(* Dickson's lemma. *)
(* ========================================================================= *)
let MINIMIZING_CHOICE = prove
(`!(m:A->num) s. (?x. P x) ==> ?a. P a /\ !b. P b ==> m(a) <= m(b)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM NOT_LT] THEN
MP_TAC(ISPEC `\n. ?x. P x /\ (m:A->num) x = n` num_WOP) THEN
ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* The Nash-Williams minimal bad sequence argument for some predicate `bad` *)
(* that is a "safety property" in the Lamport/Alpern/Schneider sense. *)
(* ------------------------------------------------------------------------- *)
let MINIMAL_BAD_SEQUENCE = prove
(`!(bad:(num->A)->bool) (m:A->num).
(!x. ~bad x ==> ?n. !y. (!k. k < n ==> y k = x k) ==> ~bad y) /\
(?x. bad x)
==> ?y. bad y /\
!z n. bad z /\ (!k. k < n ==> z k = y k) ==> m(y n) <= m(z n)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN SUBGOAL_THEN
`?x. !n. (x:num->A) n =
@a. (?y. bad y /\ (!k. k < n ==> y k = x k) /\ y n = a) /\
!z. bad z /\ (!k. k < n ==> z k = x k)
==> (m:A->num)(a) <= m(z n)`
STRIP_ASSUME_TAC THENL
[MATCH_MP_TAC(MATCH_MP WF_REC WF_num) THEN SIMP_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN
`!n. (?y:num->A. bad y /\ (!k. k < n ==> y k = x k) /\ y n = x n) /\
!z. bad z /\ (!k. k < n ==> z k = x k) ==> m(x n):num <= m(z n)`
ASSUME_TAC THENL [ALL_TAC; EXISTS_TAC `x:num->A` THEN ASM_MESON_TAC[]] THEN
MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN
FIRST_X_ASSUM(fun th -> DISCH_TAC THEN SUBST1_TAC(SPEC `n:num` th)) THEN
CONV_TAC SELECT_CONV THEN REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN
REWRITE_TAC[TAUT `(p /\ q /\ r) /\ s <=> r /\ p /\ q /\ s`] THEN
ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN REWRITE_TAC[UNWIND_THM1] THEN
REWRITE_TAC[CONJ_ASSOC] THEN MATCH_MP_TAC MINIMIZING_CHOICE THEN
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN SPEC_TAC(`n:num`,`n:num`) THEN
INDUCT_TAC THEN SIMP_TAC[LT] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Dickson's Lemma itself. *)
(* ------------------------------------------------------------------------- *)
let DICKSON = prove
(`!n x:num->num->num. ?i j. i < j /\ (!k. k < n ==> x i k <= x j k)`,
ABBREV_TAC
`bad = \n x:num->num->num. !i j. i < j ==> ?k. k < n /\ x j k < x i k` THEN
SUBGOAL_THEN `!n:num x:num->num->num. ~(bad n x)` MP_TAC THENL
[ALL_TAC; EXPAND_TAC "bad" THEN MESON_TAC[NOT_LT]] THEN
INDUCT_TAC THENL [EXPAND_TAC "bad" THEN MESON_TAC[LT]; ALL_TAC] THEN
REWRITE_TAC[GSYM NOT_EXISTS_THM] THEN DISCH_TAC THEN
SUBGOAL_THEN
`?x. bad (SUC n) (x:num->num->num) /\
!y j. bad (SUC n) y /\ (!i. i < j ==> y i = x i)
==> x j n <= y j n`
STRIP_ASSUME_TAC THENL
[MATCH_MP_TAC MINIMAL_BAD_SEQUENCE THEN ASM_REWRITE_TAC[] THEN
X_GEN_TAC `x:num->num->num` THEN EXPAND_TAC "bad" THEN
REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`i:num`; `j:num`] THEN STRIP_TAC THEN
EXISTS_TAC `SUC j` THEN X_GEN_TAC `y:num->num->num` THEN
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [LT_SUC_LE] THEN
REWRITE_TAC[LE_LT] THEN STRIP_TAC THEN
MAP_EVERY EXISTS_TAC [`i:num`; `j:num`] THEN ASM_MESON_TAC[];
SUBGOAL_THEN `~(bad (n:num) (x:num->num->num))` MP_TAC THENL
[ASM_MESON_TAC[]; EXPAND_TAC "bad" THEN REWRITE_TAC[]] THEN
MAP_EVERY X_GEN_TAC [`i:num`; `j:num`] THEN DISCH_TAC THEN
MP_TAC(ASSUME `bad (SUC n) (x:num->num->num):bool`) THEN
EXPAND_TAC "bad" THEN REWRITE_TAC[] THEN
DISCH_THEN(MP_TAC o SPECL [`i:num`; `j:num`]) THEN
ASM_REWRITE_TAC[LT] THEN MATCH_MP_TAC MONO_EXISTS THEN
X_GEN_TAC `k:num` THEN STRIP_TAC THEN ASM_REWRITE_TAC[LT_REFL] THEN
FIRST_X_ASSUM SUBST_ALL_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC
`\k. if k < i then (x:num->num->num) k else x (j + k - i)`) THEN
DISCH_THEN(MP_TAC o SPEC `i:num`) THEN
ASM_REWRITE_TAC[LT_REFL; SUB_REFL; ADD_CLAUSES; NOT_IMP; NOT_LE] THEN
SIMP_TAC[] THEN UNDISCH_TAC `bad (SUC n) (x:num->num->num):bool` THEN
ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN EXPAND_TAC "bad" THEN
REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; LEFT_IMP_EXISTS_THM] THEN
REPEAT GEN_TAC THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN
ASM_MESON_TAC[LT_TRANS; ARITH_RULE
`(a:num < i /\ ~(b < i) /\ i < j ==> a < j + b - i) /\
(~(a < i) /\ a < b /\ i < j ==> j + a - i < j + b - i)`]]);;
|