File: kb.ml

package info (click to toggle)
hol-light 20170109-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 36,568 kB
  • ctags: 8,549
  • sloc: ml: 540,018; cpp: 439; lisp: 286; java: 279; makefile: 262; sh: 229; yacc: 108; perl: 78; ansic: 57; sed: 39
file content (295 lines) | stat: -rw-r--r-- 13,045 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
(* ========================================================================= *)
(* Knuth-Bendix completion done by HOL inference. John Harrison 2005         *)
(*                                                                           *)
(* This was written by fairly mechanical modification of the code at         *)
(*                                                                           *)
(*   http://www.cl.cam.ac.uk/users/jrh/atp/order.ml                          *)
(*   http://www.cl.cam.ac.uk/users/jrh/atp/completion.ml                     *)
(*                                                                           *)
(* for HOL's slightly different term structure, with ad hoc term             *)
(* manipulations replaced by inference on equational theorems. We also have  *)
(* the optimization of throwing left-reducible rules back into the set of    *)
(* critical pairs. However, we don't prioritize smaller critical pairs or    *)
(* anything like that; this is still a very naive implementation.            *)
(*                                                                           *)
(* For something very similar done 15 years ago, see Konrad Slind's Master's *)
(* thesis: "An Implementation of Higher Order Logic", U Calgary 1991.        *)
(* ========================================================================= *)

let is_realvar w x = is_var x && not(mem x w);;

let rec real_strip w tm =
  if mem tm w then tm,[] else
  let l,r = dest_comb tm in
  let f,args = real_strip w l in f,args@[r];;

(* ------------------------------------------------------------------------- *)
(* Construct a weighting function.                                           *)
(* ------------------------------------------------------------------------- *)

let weight lis (f,n) (g,m) =
  let i = index f lis and j = index g lis in
  i > j || i = j && n > m;;

(* ------------------------------------------------------------------------- *)
(* Generic lexicographic ordering function.                                  *)
(* ------------------------------------------------------------------------- *)

let rec lexord ord l1 l2 =
  match (l1,l2) with
    (h1::t1,h2::t2) -> if ord h1 h2 then length t1 = length t2
                       else h1 = h2 && lexord ord t1 t2
  | _ -> false;;

(* ------------------------------------------------------------------------- *)
(* Lexicographic path ordering. Note that we also use the weights            *)
(* to define the set of constants, so they don't literally have to be        *)
(* constants in the HOL sense.                                               *)
(* ------------------------------------------------------------------------- *)

let rec lpo_gt w s t =
  if is_realvar w t then not(s = t) && mem t (frees s)
  else if is_realvar w s || is_abs s || is_abs t then false else
  let f,fargs = real_strip w s and g,gargs = real_strip w t in
  exists (fun si -> lpo_ge w si t) fargs ||
        forall (lpo_gt w s) gargs &
        (f = g && lexord (lpo_gt w) fargs gargs ||
         weight w (f,length fargs) (g,length gargs))
and lpo_ge w s t = (s = t) || lpo_gt w s t;;

(* ------------------------------------------------------------------------- *)
(* Unification. Again we have the weights "w" fixing the set of constants.   *)
(* ------------------------------------------------------------------------- *)

let rec istriv w env x t =
  if is_realvar w t then t = x || defined env t && istriv w env x (apply env t)
  else if is_const t then false else
  let f,args = strip_comb t in
  exists (istriv w env x) args && failwith "cyclic";;

let rec unify w env tp =
  match tp with
   ((Var(_,_) as x),t) | (t,(Var(_,_) as x)) when not(mem x w) ->
        if defined env x then unify w env (apply env x,t)
        else if istriv w env x t then env else (x|->t) env
  | (Comb(f,x),Comb(g,y)) -> unify w (unify w env (x,y)) (f,g)
  | (s,t) -> if s = t then env else failwith "unify: not unifiable";;

(* ------------------------------------------------------------------------- *)
(* Full unification, unravelling graph into HOL-style instantiation list.    *)
(* ------------------------------------------------------------------------- *)

let fullunify w (s,t) =
  let env = unify w undefined (s,t) in
  let th = map (fun (x,t) -> (t,x)) (graph env) in
  let rec subs t =
    let t' = vsubst th t in
    if t' = t then t else subs t' in
  map (fun (t,x) -> (subs t,x)) th;;

(* ------------------------------------------------------------------------- *)
(* Construct "overlaps": ways of rewriting subterms using unification.       *)
(* ------------------------------------------------------------------------- *)

let LIST_MK_COMB f ths = rev_itlist (fun s t -> MK_COMB(t,s)) ths (REFL f);;

let rec listcases fn rfn lis acc =
  match lis with
    [] -> acc
  | h::t -> fn h (fun i h' -> rfn i (h'::map REFL t)) @
            listcases fn (fun i t' -> rfn i (REFL h::t')) t acc;;

let rec overlaps w th tm rfn =
  let l,r = dest_eq(concl th) in
  if not (is_comb tm) then [] else
  let f,args = strip_comb tm in
  listcases (overlaps w th) (fun i a -> rfn i (LIST_MK_COMB f a)) args
            (try [rfn (fullunify w (l,tm)) th] with Failure _ -> []);;

(* ------------------------------------------------------------------------- *)
(* Rename variables canonically to avoid clashes or remove redundancy.       *)
(* ------------------------------------------------------------------------- *)

let fixvariables s th =
  let fvs = subtract (frees(concl th)) (freesl(hyp th)) in
  let gvs = map2 (fun v n -> mk_var(s^string_of_int n,type_of v))
                 fvs (1--(length fvs)) in
  INST (zip gvs fvs) th;;

let renamepair (th1,th2) = fixvariables "x" th1,fixvariables "y" th2;;

(* ------------------------------------------------------------------------- *)
(* Find all critical pairs.                                                  *)
(* ------------------------------------------------------------------------- *)

let crit1 w eq1 eq2 =
  let l1,r1 = dest_eq(concl eq1)
  and l2,r2 = dest_eq(concl eq2) in
  overlaps w eq1 l2 (fun i th -> TRANS (SYM(INST i th)) (INST i eq2));;

let thm_union l1 l2 =
  itlist (fun th ths -> let th' = fixvariables "x" th in
                        let tm = concl th' in
                        if exists (fun th'' -> concl th'' = tm) ths then ths
                        else th'::ths)
         l1 l2;;

let critical_pairs w tha thb =
  let th1,th2 = renamepair (tha,thb) in
  if concl th1 = concl th2 then crit1 w th1 th2 else
  filter (fun th -> let l,r = dest_eq(concl th) in l <> r)
         (thm_union (crit1 w th1 th2) (thm_union (crit1 w th2 th1) []));;

(* ------------------------------------------------------------------------- *)
(* Normalize an equation and try to orient it.                               *)
(* ------------------------------------------------------------------------- *)

let normalize_and_orient w eqs th =
  let th' = GEN_REWRITE_RULE TOP_DEPTH_CONV eqs th in
  let s',t' = dest_eq(concl th') in
  if lpo_ge w s' t' then th' else if lpo_ge w t' s' then SYM th'
  else failwith "Can't orient equation";;

(* ------------------------------------------------------------------------- *)
(* Print out status report to reduce user boredom.                           *)
(* ------------------------------------------------------------------------- *)

let status(eqs,crs) eqs0 =
  if eqs = eqs0 && (length crs) mod 1000 <> 0 then () else
  (print_string(string_of_int(length eqs)^" equations and "^
                string_of_int(length crs)^" pending critical pairs");
   print_newline());;

(* ------------------------------------------------------------------------- *)
(* Basic completion, throwing back left-reducible rules.                     *)
(* ------------------------------------------------------------------------- *)

let left_reducible eqs eq =
  can (CHANGED_CONV(GEN_REWRITE_CONV (LAND_CONV o ONCE_DEPTH_CONV) eqs))
      (concl eq);;

let rec complete w (eqs,crits) =
  match crits with
    (eq::ocrits) ->
        let trip =
          try let eq' = normalize_and_orient w eqs eq in
              let s',t' = dest_eq(concl eq') in
              if s' = t' then (eqs,ocrits) else
              let crits',eqs' = partition(left_reducible [eq']) eqs in
              let eqs'' = eq'::eqs' in
              eqs'',
              ocrits @ crits' @ itlist ((@) o critical_pairs w eq') eqs'' []
          with Failure _ ->
              if exists (can (normalize_and_orient w eqs)) ocrits
              then (eqs,ocrits@[eq])
              else failwith "complete: no orientable equations" in
        status trip eqs; complete w trip
  | [] -> eqs;;

(* ------------------------------------------------------------------------- *)
(* Overall completion.                                                       *)
(* ------------------------------------------------------------------------- *)

let complete_equations wts eqs =
  let eqs' = map (normalize_and_orient wts []) eqs in
  complete wts ([],eqs');;

(* ------------------------------------------------------------------------- *)
(* Knuth-Bendix example 4: the inverse property.                             *)
(* ------------------------------------------------------------------------- *)

complete_equations [`1`; `(*):num->num->num`; `i:num->num`]
  [SPEC_ALL(ASSUME `!a b. i(a) * a * b = b`)];;

(* ------------------------------------------------------------------------- *)
(* Knuth-Bendix example 6: central groupoids.                                *)
(* ------------------------------------------------------------------------- *)

complete_equations [`(*):num->num->num`]
 [SPEC_ALL(ASSUME `!a b c. (a * b) * (b * c) = b`)];;

(* ------------------------------------------------------------------------- *)
(* Knuth-Bendix example 9: cancellation law.                                 *)
(* ------------------------------------------------------------------------- *)

complete_equations
 [`1`; `( * ):num->num->num`; `(+):num->num->num`; `(-):num->num->num`]
 (map SPEC_ALL (CONJUNCTS (ASSUME
  `(!a b:num. a - a * b = b) /\
   (!a b:num. a * b - b = a) /\
   (!a. a * 1 = a) /\
   (!a. 1 * a = a)`)));;

(* ------------------------------------------------------------------------- *)
(* Another example: pure congruence closure (no variables).                  *)
(* ------------------------------------------------------------------------- *)

complete_equations [`c:A`; `f:A->A`]
 (map SPEC_ALL (CONJUNCTS (ASSUME
   `((f(f(f(f(f c))))) = c:A) /\ (f(f(f c)) = c)`)));;

(* ------------------------------------------------------------------------- *)
(* Knuth-Bendix example 1: group theory.                                     *)
(* ------------------------------------------------------------------------- *)

let eqs = map SPEC_ALL (CONJUNCTS (ASSUME
  `(!x. 1 * x = x) /\ (!x. i(x) * x = 1) /\
   (!x y z. (x * y) * z = x * y * z)`));;

complete_equations [`1`; `(*):num->num->num`; `i:num->num`] eqs;;

(* ------------------------------------------------------------------------- *)
(* Near-rings (from Aichinger's Diplomarbeit).                               *)
(* ------------------------------------------------------------------------- *)

let eqs = map SPEC_ALL (CONJUNCTS (ASSUME
  `(!x. 0 + x = x) /\
   (!x. neg x + x = 0) /\
   (!x y z. (x + y) + z = x + y + z) /\
   (!x y z. (x * y) * z = x * y * z) /\
   (!x y z. (x + y) * z = (x * z) + (y * z))`));;

let nreqs =
complete_equations
  [`0`; `(+):num->num->num`; `neg:num->num`; `( * ):num->num->num`] eqs;;

(*** This weighting also works OK, though the system is a bit bigger

let nreqs =
complete_equations
  [`0`; `(+):num->num->num`; `( * ):num->num->num`; `INV`] eqs;;

****)

(* ------------------------------------------------------------------------- *)
(* A "completion" tactic.                                                    *)
(* ------------------------------------------------------------------------- *)

let COMPLETE_TAC w th =
  let eqs = map SPEC_ALL (CONJUNCTS(SPEC_ALL th)) in
  let eqs' = complete_equations w eqs in
  MAP_EVERY (ASSUME_TAC o GEN_ALL) eqs';;

(* ------------------------------------------------------------------------- *)
(* Solve example problems in groups and near-rings.                          *)
(* ------------------------------------------------------------------------- *)

g `(!x. 1 * x = x) /\
   (!x. i(x) * x = 1) /\
   (!x y z. (x * y) * z = x * y * z)
   ==> !x y. i(y) * i(i(i(x * i(y)))) * x = 1`;;

e (DISCH_THEN(COMPLETE_TAC [`1`; `(*):num->num->num`; `i:num->num`]));;
e (ASM_REWRITE_TAC[]);;

g `(!x. 0 + x = x) /\
   (!x. neg x + x = 0) /\
   (!x y z. (x + y) + z = x + y + z) /\
   (!x y z. (x * y) * z = x * y * z) /\
   (!x y z. (x + y) * z = (x * z) + (y * z))
   ==> (neg 0  * (x * y + z + neg(neg(w + z))) + neg(neg b + neg a) =
        a + b)`;;

e (DISCH_THEN(COMPLETE_TAC
     [`0`; `(+):num->num->num`; `neg:num->num`; `( * ):num->num->num`]));;
e (ASM_REWRITE_TAC[]);;