File: machin.ml

package info (click to toggle)
hol-light 20170109-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 36,568 kB
  • ctags: 8,549
  • sloc: ml: 540,018; cpp: 439; lisp: 286; java: 279; makefile: 262; sh: 229; yacc: 108; perl: 78; ansic: 57; sed: 39
file content (850 lines) | stat: -rw-r--r-- 38,143 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
(* ========================================================================= *)
(* Derivation of Machin's formula and other similar ones.                    *)
(* ========================================================================= *)

needs "Library/transc.ml";;

let REAL_LE_1_POW2 = prove
 (`!n. &1 <= &2 pow n`,
  REWRITE_TAC[REAL_OF_NUM_POW; REAL_OF_NUM_LE; ARITH_RULE `1 <= n <=> 0 < n`;
              EXP_LT_0; ARITH]);;

let REAL_LT_1_POW2 = prove
 (`!n. &1 < &2 pow n <=> ~(n = 0)`,
  GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[] THEN
  CONV_TAC REAL_RAT_REDUCE_CONV THEN
  SUBST1_TAC(SYM(REAL_RAT_REDUCE_CONV `&2 pow 0`)) THEN
  MATCH_MP_TAC REAL_POW_MONO_LT THEN
  REWRITE_TAC[REAL_OF_NUM_LT] THEN POP_ASSUM MP_TAC THEN ARITH_TAC);;

let REAL_POW2_CLAUSES = prove
 (`(!n. &0 <= &2 pow n) /\
   (!n. &0 < &2 pow n) /\
   (!n. &0 <= inv(&2 pow n)) /\
   (!n. &0 < inv(&2 pow n)) /\
   (!n. inv(&2 pow n) <= &1) /\
   (!n. &1 - inv(&2 pow n) <= &1) /\
   (!n. &1 <= &2 pow n) /\
   (!n. &1 < &2 pow n <=> ~(n = 0)) /\
   (!n. &0 <= &1 - inv(&2 pow n)) /\
   (!n. &0 <= &2 pow n - &1) /\
   (!n. &0 < &1 - inv(&2 pow n) <=> ~(n = 0))`,
  SIMP_TAC[REAL_LE_1_POW2; REAL_LT_1_POW2; REAL_SUB_LE; REAL_SUB_LT;
           REAL_INV_LE_1] THEN
  SIMP_TAC[REAL_LE_INV_EQ; REAL_LT_INV_EQ; REAL_POW_LT; REAL_POW_LE;
           REAL_OF_NUM_LE; REAL_OF_NUM_LT; ARITH;
           REAL_ARITH `&1 - x <= &1 <=> &0 <= x`] THEN
  GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[] THEN
  CONV_TAC REAL_RAT_REDUCE_CONV THEN
  MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `inv(&2 pow 1)` THEN
  ASM_SIMP_TAC[REAL_LE_INV2; REAL_POW_MONO; REAL_POW_LT; REAL_OF_NUM_LT; ARITH;
               REAL_OF_NUM_LE; ARITH_RULE `1 <= n <=> ~(n = 0)`] THEN
  CONV_TAC REAL_RAT_REDUCE_CONV);;

let REAL_POW2_THM = prove
 (`&0 < &2 pow n /\
   &1 <= &2 pow n /\
   (&1 < &2 pow n <=> ~(n = 0)) /\
   (&2 pow m <= &2 pow n <=> m <= n) /\
   (&2 pow m < &2 pow n <=> m < n) /\
   (inv(&2 pow m) <= inv(&2 pow n) <=> n <= m) /\
   (inv(&2 pow m) < inv(&2 pow n) <=> n < m)`,
  REWRITE_TAC[REAL_POW2_CLAUSES] THEN
  SUBGOAL_THEN `!m n. &2 pow m <= &2 pow n <=> m <= n` ASSUME_TAC THENL
   [REPEAT GEN_TAC THEN EQ_TAC THEN
    SIMP_TAC[REAL_POW_MONO; REAL_OF_NUM_LE; ARITH] THEN
    CONV_TAC CONTRAPOS_CONV THEN
    SIMP_TAC[REAL_NOT_LE; REAL_NOT_LT; REAL_POW_MONO_LT; REAL_OF_NUM_LT;
             NOT_LE; ARITH]; ALL_TAC] THEN
  ASM_REWRITE_TAC[GSYM REAL_NOT_LE] THEN REWRITE_TAC[GSYM NOT_LE] THEN
  SUBGOAL_THEN `!m n. inv(&2 pow m) <= inv(&2 pow n) <=> &2 pow n <= &2 pow m`
   (fun th -> ASM_REWRITE_TAC[th]) THEN
  REPEAT GEN_TAC THEN EQ_TAC THEN
  SIMP_TAC[REAL_LE_INV2; REAL_POW2_CLAUSES] THEN
  CONV_TAC CONTRAPOS_CONV THEN
  SIMP_TAC[REAL_NOT_LE; REAL_LT_INV2; REAL_POW2_CLAUSES]);;

(* ------------------------------------------------------------------------- *)
(* Compound errors given bounds in assumptions.                              *)
(* ------------------------------------------------------------------------- *)

let BOUND_SUMPROD_RULE =
  let pth_add = REAL_ARITH
    `abs(x1) <= b1 /\ abs(x2) <= b2 ==> abs(x1 + x2) <= b1 + b2`
  and pth_sub = REAL_ARITH
    `abs(x1) <= b1 /\ abs(x2) <= b2 ==> abs(x1 - x2) <= b1 + b2`
  and pth_mul = prove
   (`abs(x1) <= b1 /\ abs(x2) <= b2 ==> abs(x1 * x2) <= b1 * b2`,
    REWRITE_TAC[REAL_ABS_MUL] THEN
    SIMP_TAC[REAL_LE_MUL2; REAL_ABS_POS])
  and pth_neg = REAL_ARITH
    `abs(x1) <= b1 ==> abs(--x1) <= b1`
  and pth_pow = prove
   (`abs(x) <= b1 ==> abs(x pow n) <= b1 pow n`,
    REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[REAL_ABS_POW] THEN
    MATCH_MP_TAC REAL_POW_LE2 THEN ASM_REWRITE_TAC[REAL_ABS_POS])
  and pth_abs = REAL_ARITH `abs(x) <= b ==> abs(abs(x)) <= b`
  and pth_triv = REAL_ARITH `abs(x) <= abs(x)`
  and n_tm = `n:num` in
  let rec BOUND_SUMPROD_RULE (asl,w) =
    let tm = rator w in
    try tryfind (fun (_,th) -> if rator(concl th) = tm then th
                               else fail()) asl
    with Failure _ -> try
        let pth,th = tryfind
          (fun pth -> pth,PART_MATCH (rator o rand) pth tm)
          [pth_neg; pth_abs] in
        let th1 = BOUND_SUMPROD_RULE (asl,lhand(concl th)) in
        MATCH_MP pth th1
    with Failure _ -> try
        let pth = INST [funpow 3 rand tm,n_tm] pth_pow in
        let th = PART_MATCH (rator o rand) pth tm in
        let th1 = BOUND_SUMPROD_RULE (asl,lhand(concl th)) in
        MATCH_MP (INST [funpow 3 rand tm,n_tm] pth_pow) th1
    with Failure _ -> try
        let pth,th = tryfind
          (fun pth -> pth,PART_MATCH (rator o rand) pth tm)
          [pth_add; pth_sub; pth_mul] in
        let trm = lhand(concl th) in
        let th1 = BOUND_SUMPROD_RULE (asl,lhand trm)
        and th2 = BOUND_SUMPROD_RULE (asl,rand trm) in
        MATCH_MP pth (CONJ th1 th2)
    with Failure _ ->
        PART_MATCH rator pth_triv tm in
  BOUND_SUMPROD_RULE;;

let BOUND_SUMPROD_TAC =
  let tac =
    let pth =
      REAL_ARITH `x <= a ==> (!b. a <= b ==> x <= b) /\
                             (!b. a < b ==> x < b)` in
    fun th ->
      let th1,th2 = CONJ_PAIR(MATCH_MP pth th) in
      MATCH_MP_TAC th1 ORELSE MATCH_MP_TAC th2
  and le_tm = `(<=):real->real->bool` in
  fun (asl,w as gl) ->
    let l,r = dest_comb w in
    let gv = genvar(type_of r) in
    let tm = mk_comb(mk_comb(le_tm,rand l),gv) in
    let th = BOUND_SUMPROD_RULE(asl,tm) in
    tac th gl;;

(* ------------------------------------------------------------------------- *)
(* Power series for atn.                                                     *)
(* ------------------------------------------------------------------------- *)

let REAL_ATN_POWSER_SUMMABLE = prove
 (`!x. abs(x) < &1
       ==> summable (\n. (if EVEN n then &0
                          else --(&1) pow ((n - 1) DIV 2) / &n) * x pow n)`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC SER_COMPAR THEN
  EXISTS_TAC `\n. abs(x) pow n` THEN CONJ_TAC THENL
   [EXISTS_TAC `0` THEN REPEAT STRIP_TAC THEN REWRITE_TAC[] THEN
    COND_CASES_TAC THEN
    SIMP_TAC[REAL_POW_LE; REAL_MUL_LZERO; REAL_ABS_POS; REAL_ABS_NUM] THEN
    REWRITE_TAC[REAL_ABS_MUL; REAL_ABS_DIV; REAL_ABS_NEG; REAL_ABS_POW] THEN
    REWRITE_TAC[REAL_ABS_NUM; REAL_POW_ONE; REAL_MUL_LID] THEN
    REWRITE_TAC[real_div; REAL_MUL_LID] THEN
    ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[GSYM real_div] THEN
    MATCH_MP_TAC REAL_LE_LDIV THEN
    CONJ_TAC THENL [ASM_MESON_TAC[REAL_OF_NUM_LT; EVEN; LT_NZ]; ALL_TAC] THEN
    GEN_REWRITE_TAC LAND_CONV [GSYM REAL_MUL_RID] THEN
    MATCH_MP_TAC REAL_LE_LMUL THEN
    SIMP_TAC[REAL_POW_LE; REAL_ABS_POS] THEN
    ASM_MESON_TAC[REAL_OF_NUM_LE; EVEN; ARITH_RULE `1 <= n <=> ~(n = 0)`];
    ALL_TAC] THEN
  REWRITE_TAC[summable] THEN EXISTS_TAC `inv(&1 - abs x)` THEN
  MATCH_MP_TAC GP THEN ASM_REWRITE_TAC[REAL_ABS_ABS]);;

let REAL_ATN_POWSER_DIFFS_SUMMABLE = prove
 (`!x. abs(x) < &1
       ==> summable (\n. diffs (\n. (if EVEN n then &0
                                     else --(&1) pow ((n - 1) DIV 2) / &n)) n *
                         x pow n)`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[diffs] THEN
  MATCH_MP_TAC SER_COMPAR THEN
  EXISTS_TAC `\n. abs(x) pow n` THEN CONJ_TAC THENL
   [EXISTS_TAC `0` THEN REPEAT STRIP_TAC THEN REWRITE_TAC[] THEN
    COND_CASES_TAC THEN
    SIMP_TAC[REAL_POW_LE; REAL_MUL_LZERO; REAL_MUL_RZERO;
             REAL_ABS_POS; REAL_ABS_NUM] THEN
    SIMP_TAC[REAL_MUL_ASSOC; REAL_DIV_LMUL; REAL_OF_NUM_EQ; NOT_SUC] THEN
    REWRITE_TAC[REAL_ABS_MUL; REAL_ABS_DIV; REAL_ABS_NEG; REAL_ABS_POW] THEN
    REWRITE_TAC[REAL_ABS_NUM; REAL_POW_ONE; REAL_MUL_LID; REAL_LE_REFL];
    ALL_TAC] THEN
  REWRITE_TAC[summable] THEN EXISTS_TAC `inv(&1 - abs x)` THEN
  MATCH_MP_TAC GP THEN ASM_REWRITE_TAC[REAL_ABS_ABS]);;

let REAL_ATN_POWSER_DIFFS_SUM = prove
 (`!x. abs(x) < &1
       ==> (\n. diffs (\n. (if EVEN n then &0
                            else --(&1) pow ((n - 1) DIV 2) / &n)) n * x pow n)
           sums (inv(&1 + x pow 2))`,
  REPEAT STRIP_TAC THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP REAL_ATN_POWSER_DIFFS_SUMMABLE) THEN
  DISCH_THEN(fun th -> MP_TAC(MATCH_MP SUMMABLE_SUM th) THEN
                       MP_TAC(MATCH_MP SER_PAIR th)) THEN
  SUBGOAL_THEN
   `(\n. sum (2 * n,2) (\n. diffs
      (\n. (if EVEN n then &0
            else --(&1) pow ((n - 1) DIV 2) / &n)) n * x pow n)) =
    (\n. --(x pow 2) pow n)`
  SUBST1_TAC THENL
   [ABS_TAC THEN
    CONV_TAC(LAND_CONV(LAND_CONV(RAND_CONV(TOP_DEPTH_CONV num_CONV)))) THEN
    REWRITE_TAC[sum; diffs; ADD_CLAUSES; EVEN_MULT; ARITH_EVEN; EVEN] THEN
    REWRITE_TAC[REAL_ADD_LID; REAL_ADD_RID; REAL_MUL_LZERO;
                REAL_MUL_RZERO] THEN
    SIMP_TAC[ARITH_RULE `SUC n - 1 = n`; DIV_MULT; ARITH_EQ] THEN
    SIMP_TAC[REAL_MUL_ASSOC; REAL_DIV_LMUL; REAL_OF_NUM_EQ; NOT_SUC] THEN
    ONCE_REWRITE_TAC[GSYM REAL_POW_POW] THEN
    REWRITE_TAC[GSYM REAL_POW_MUL] THEN
    REWRITE_TAC[REAL_MUL_LNEG; REAL_MUL_LID]; ALL_TAC] THEN
  SUBGOAL_THEN `(\n. --(x pow 2) pow n) sums inv (&1 + x pow 2)` MP_TAC THENL
   [ONCE_REWRITE_TAC[REAL_ARITH `&1 + x = &1 - (--x)`] THEN
    MATCH_MP_TAC GP THEN
    REWRITE_TAC[REAL_ABS_NEG; REAL_ABS_POW] THEN
    GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_LID] THEN
    ASM_SIMP_TAC[REAL_POW_2; REAL_LT_MUL2; REAL_ABS_POS]; ALL_TAC] THEN
  MESON_TAC[SUM_UNIQ]);;

let REAL_ATN_POWSER_DIFFS_DIFFS_SUMMABLE = prove
 (`!x. abs(x) < &1
       ==> summable
             (\n. diffs (diffs
                 (\n. (if EVEN n then &0
                       else --(&1) pow ((n - 1) DIV 2) / &n))) n * x pow n)`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[diffs] THEN
  MATCH_MP_TAC SER_COMPAR THEN
  EXISTS_TAC `\n. &(SUC n) * abs(x) pow n` THEN CONJ_TAC THENL
   [EXISTS_TAC `0` THEN REPEAT STRIP_TAC THEN
    REWRITE_TAC[REAL_ABS_NUM; REAL_ABS_MUL; GSYM REAL_MUL_ASSOC] THEN
    MATCH_MP_TAC REAL_LE_LMUL THEN REWRITE_TAC[REAL_POS] THEN
    COND_CASES_TAC THEN
    SIMP_TAC[REAL_POW_LE; REAL_MUL_LZERO; REAL_MUL_RZERO;
             REAL_ABS_POS; REAL_ABS_NUM] THEN
    REWRITE_TAC[REAL_ABS_DIV; REAL_ABS_NUM; REAL_MUL_ASSOC] THEN
    SIMP_TAC[REAL_DIV_LMUL; REAL_OF_NUM_EQ; NOT_SUC] THEN
    REWRITE_TAC[REAL_ABS_POW; REAL_ABS_NEG; REAL_POW_ONE; REAL_MUL_LID;
                REAL_ABS_NUM; REAL_LE_REFL]; ALL_TAC] THEN
  MATCH_MP_TAC SER_RATIO THEN
  SUBGOAL_THEN `?c. abs(x) < c /\ c < &1` STRIP_ASSUME_TAC THENL
   [EXISTS_TAC `(&1 + abs(x)) / &2` THEN
    SIMP_TAC[REAL_LT_LDIV_EQ; REAL_LT_RDIV_EQ; REAL_OF_NUM_LT; ARITH] THEN
    UNDISCH_TAC `abs(x) < &1` THEN REAL_ARITH_TAC; ALL_TAC] THEN
  EXISTS_TAC `c:real` THEN ASM_REWRITE_TAC[] THEN
  SUBGOAL_THEN `?N. !n. n >= N ==> &(SUC(SUC n)) * abs(x) <= &(SUC n) * c`
  STRIP_ASSUME_TAC THENL
   [ALL_TAC;
    EXISTS_TAC `N:num` THEN REPEAT STRIP_TAC THEN
    REWRITE_TAC[real_pow; REAL_ABS_MUL; REAL_MUL_ASSOC] THEN
    MATCH_MP_TAC REAL_LE_RMUL THEN REWRITE_TAC[REAL_ABS_POS] THEN
    REWRITE_TAC[REAL_ABS_NUM; REAL_ABS_ABS] THEN
    GEN_REWRITE_TAC RAND_CONV [REAL_MUL_SYM] THEN ASM_SIMP_TAC[]] THEN
  ASM_CASES_TAC `x = &0` THENL
   [ASM_REWRITE_TAC[REAL_ABS_NUM; REAL_MUL_RZERO] THEN
    EXISTS_TAC `0` THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_MUL THEN
    REWRITE_TAC[REAL_POS] THEN UNDISCH_TAC `abs(x) < c` THEN REAL_ARITH_TAC;
    ALL_TAC] THEN
  ASM_SIMP_TAC[GSYM REAL_LE_RDIV_EQ; GSYM REAL_ABS_NZ] THEN
  REWRITE_TAC[real_div; GSYM REAL_MUL_ASSOC] THEN
  REWRITE_TAC[GSYM real_div] THEN
  REWRITE_TAC[ADD1; GSYM REAL_OF_NUM_ADD] THEN
  ONCE_REWRITE_TAC[REAL_ARITH `x + &1 <= y <=> &1 <= y - x * &1`] THEN
  REWRITE_TAC[GSYM REAL_SUB_LDISTRIB] THEN
  SUBGOAL_THEN `?N. &1 <= &N * (c / abs x - &1)` STRIP_ASSUME_TAC THENL
   [ALL_TAC;
    EXISTS_TAC `N:num` THEN REWRITE_TAC[GE] THEN REPEAT STRIP_TAC THEN
    FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
     `&1 <= x ==> x <= y ==> &1 <= y`)) THEN
    MATCH_MP_TAC REAL_LE_RMUL THEN
    ASM_SIMP_TAC[REAL_ARITH `a <= b ==> a <= b + &1`;
                 REAL_OF_NUM_LE; REAL_LE_RADD] THEN
    REWRITE_TAC[REAL_LE_SUB_LADD; REAL_ADD_LID] THEN
    ASM_SIMP_TAC[REAL_LE_RDIV_EQ; GSYM REAL_ABS_NZ; REAL_MUL_LID;
                 REAL_LT_IMP_LE]] THEN
  ASM_SIMP_TAC[GSYM REAL_LE_LDIV_EQ; REAL_LT_SUB_LADD; REAL_ADD_LID;
               REAL_LT_RDIV_EQ; GSYM REAL_ABS_NZ; REAL_MUL_LID;
               REAL_ARCH_SIMPLE]);;

let REAL_ATN_POWSER_DIFFL = prove
 (`!x. abs(x) < &1
       ==> ((\x. suminf (\n. (if EVEN n then &0
                              else --(&1) pow ((n - 1) DIV 2) / &n) * x pow n))
            diffl (inv(&1 + x pow 2))) x`,
  REPEAT STRIP_TAC THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP REAL_ATN_POWSER_DIFFS_SUM) THEN
  DISCH_THEN(SUBST1_TAC o MATCH_MP SUM_UNIQ) THEN
  MATCH_MP_TAC TERMDIFF THEN
  SUBGOAL_THEN `?K. abs(x) < abs(K) /\ abs(K) < &1` STRIP_ASSUME_TAC THENL
   [EXISTS_TAC `(&1 + abs(x)) / &2` THEN
    SIMP_TAC[REAL_LT_LDIV_EQ; REAL_ABS_DIV; REAL_ABS_NUM;
             REAL_LT_RDIV_EQ; REAL_OF_NUM_LT; ARITH] THEN
    UNDISCH_TAC `abs(x) < &1` THEN REAL_ARITH_TAC; ALL_TAC] THEN
  EXISTS_TAC `K:real` THEN ASM_REWRITE_TAC[] THEN
  ASM_SIMP_TAC[REAL_ATN_POWSER_SUMMABLE; REAL_ATN_POWSER_DIFFS_SUMMABLE;
               REAL_ATN_POWSER_DIFFS_DIFFS_SUMMABLE]);;

let REAL_ATN_POWSER = prove
 (`!x. abs(x) < &1
       ==> (\n. (if EVEN n then &0
                 else --(&1) pow ((n - 1) DIV 2) / &n) * x pow n)
           sums (atn x)`,
  REPEAT STRIP_TAC THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP REAL_ATN_POWSER_SUMMABLE) THEN
  DISCH_THEN(MP_TAC o MATCH_MP SUMMABLE_SUM) THEN
  SUBGOAL_THEN
   `suminf (\n. (if EVEN n then &0
                 else --(&1) pow ((n - 1) DIV 2) / &n) * x pow n) = atn(x)`
   (fun th -> REWRITE_TAC[th]) THEN
  ONCE_REWRITE_TAC[REAL_ARITH `(a = b) <=> (a - b = &0)`] THEN
  SUBGOAL_THEN
   `suminf (\n. (if EVEN n then &0
                 else --(&1) pow ((n - 1) DIV 2) / &n) * &0 pow n) -
    atn(&0) = &0`
  MP_TAC THENL
   [MATCH_MP_TAC(REAL_ARITH `(a = &0) /\ (b = &0) ==> (a - b = &0)`) THEN
    CONJ_TAC THENL
     [CONV_TAC SYM_CONV THEN MATCH_MP_TAC SUM_UNIQ THEN
      MP_TAC(SPEC `&0` GP) THEN
      REWRITE_TAC[REAL_ABS_NUM; REAL_OF_NUM_LT; ARITH] THEN
      DISCH_THEN(MP_TAC o SPEC `&0` o MATCH_MP SER_CMUL) THEN
      REWRITE_TAC[REAL_MUL_LZERO] THEN
      MATCH_MP_TAC(TAUT `(a = b) ==> a ==> b`) THEN
      AP_THM_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN
      COND_CASES_TAC THEN ASM_REWRITE_TAC[REAL_MUL_LZERO] THEN
      CONV_TAC SYM_CONV THEN
      REWRITE_TAC[REAL_ENTIRE; REAL_POW_EQ_0] THEN ASM_MESON_TAC[EVEN];
      GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM TAN_0] THEN
      MATCH_MP_TAC TAN_ATN THEN
      SIMP_TAC[PI2_BOUNDS; REAL_ARITH `&0 < x ==> --x < &0`]];
    ALL_TAC] THEN
  ASM_CASES_TAC `x = &0` THEN ASM_REWRITE_TAC[] THEN
  DISCH_THEN(fun th -> GEN_REWRITE_TAC RAND_CONV [SYM th]) THEN
  MP_TAC(SPEC `\x. suminf (\n. (if EVEN n then &0

                       else --(&1) pow ((n - 1) DIV 2) / &n) * x pow n) -
          atn x` DIFF_ISCONST_END_SIMPLE) THEN
  FIRST_ASSUM(DISJ_CASES_TAC o MATCH_MP (REAL_ARITH
    `~(x = &0) ==> &0 < x \/ x < &0`))
  THENL
   [DISCH_THEN(MP_TAC o SPECL [`&0`; `x:real`]);
    CONV_TAC(RAND_CONV SYM_CONV) THEN
    DISCH_THEN(MP_TAC o SPECL [`x:real`; `&0`])] THEN
  (REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN
   ASM_REWRITE_TAC[] THEN
   X_GEN_TAC `u:real` THEN REPEAT STRIP_TAC THEN
   SUBGOAL_THEN `abs(u) < &1` (MP_TAC o MATCH_MP REAL_ATN_POWSER_DIFFL) THENL
    [POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN REAL_ARITH_TAC;
     ALL_TAC] THEN
   DISCH_THEN(MP_TAC o C CONJ (SPEC `u:real` DIFF_ATN)) THEN
   DISCH_THEN(MP_TAC o MATCH_MP DIFF_SUB) THEN
   REWRITE_TAC[REAL_SUB_REFL]));;

(* ------------------------------------------------------------------------- *)
(* A more Taylor-like version with a simply bounded remainder term.          *)
(* ------------------------------------------------------------------------- *)

let MCLAURIN_ATN_SIMPLE = prove
 (`!x n k. abs(x) <= inv(&2 pow k) /\ ~(k = 0)
           ==> abs(atn x -
                   sum(0,n) (\m. (if EVEN m then &0
                                  else --(&1) pow ((m - 1) DIV 2) / &m) *
                                  x pow m))
               <= &2 * abs(x) pow n`,
  REPEAT STRIP_TAC THEN SUBGOAL_THEN `abs(x) < &1` ASSUME_TAC THENL
   [MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `inv(&2 pow k)` THEN
    ASM_REWRITE_TAC[REAL_ARITH `a < &1 <=> &0 < &1 - a`; REAL_POW2_CLAUSES];
    ALL_TAC] THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP REAL_ATN_POWSER) THEN
  DISCH_THEN(fun th -> ASSUME_TAC(SYM(MATCH_MP SUM_UNIQ th)) THEN
                       MP_TAC(MATCH_MP SUM_SUMMABLE th)) THEN
  DISCH_THEN(MP_TAC o MATCH_MP SER_OFFSET) THEN
  DISCH_THEN(MP_TAC o SPEC `n:num`) THEN ASM_REWRITE_TAC[] THEN
  DISCH_THEN(MP_TAC o MATCH_MP SUM_UNIQ) THEN
  MATCH_MP_TAC(REAL_ARITH
   `abs(r) <= e ==> (f - s = r) ==> abs(f - s) <= e`) THEN
  SUBGOAL_THEN
   `(\m. abs(x) pow (m + n)) sums (abs(x) pow n) * inv(&1 - abs(x))`
  ASSUME_TAC THENL
   [FIRST_ASSUM(MP_TAC o MATCH_MP GP o MATCH_MP (REAL_ARITH
      `abs(x) < &1 ==> abs(abs x) < &1`)) THEN
    DISCH_THEN(MP_TAC o SPEC `abs(x) pow n` o MATCH_MP SER_CMUL) THEN
    ONCE_REWRITE_TAC[ADD_SYM] THEN REWRITE_TAC[GSYM REAL_POW_ADD];
    ALL_TAC] THEN
  MATCH_MP_TAC REAL_LE_TRANS THEN
  EXISTS_TAC `suminf (\m. abs(x) pow (m + n))` THEN CONJ_TAC THENL
   [ALL_TAC;
    FIRST_ASSUM(SUBST1_TAC o SYM o MATCH_MP SUM_UNIQ) THEN
    GEN_REWRITE_TAC RAND_CONV [REAL_MUL_SYM] THEN
    MATCH_MP_TAC REAL_LE_LMUL THEN SIMP_TAC[REAL_ABS_POS; REAL_POW_LE] THEN
    GEN_REWRITE_TAC RAND_CONV [GSYM REAL_INV_INV] THEN
    MATCH_MP_TAC REAL_LE_INV2 THEN
    ONCE_REWRITE_TAC[REAL_ARITH `a <= &1 - b <=> b <= &1 - a`] THEN
    CONV_TAC REAL_RAT_REDUCE_CONV THEN
    MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `inv(&2 pow k)` THEN
    ASM_REWRITE_TAC[] THEN REWRITE_TAC[real_div; REAL_MUL_LID] THEN
    MATCH_MP_TAC REAL_LE_INV2 THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN
    GEN_REWRITE_TAC LAND_CONV [GSYM REAL_POW_1] THEN
    ASM_SIMP_TAC[REAL_POW_MONO; REAL_OF_NUM_LE; ARITH;
                 ARITH_RULE `~(k = 0) ==> 1 <= k`]] THEN
  SUBGOAL_THEN
   `!m. abs((if EVEN (m + n) then &0
             else --(&1) pow (((m + n) - 1) DIV 2) / &(m + n)) *
             x pow (m + n))
        <= abs(x) pow (m + n)`
  ASSUME_TAC THENL
   [GEN_TAC THEN COND_CASES_TAC THEN
    SIMP_TAC[REAL_MUL_LZERO; REAL_ABS_NUM; REAL_POW_LE; REAL_ABS_POS] THEN
    REWRITE_TAC[REAL_ABS_MUL; REAL_ABS_DIV; REAL_ABS_POW; REAL_ABS_NEG] THEN
    REWRITE_TAC[REAL_ABS_NUM; REAL_POW_ONE; REAL_MUL_LID] THEN
    GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_LID] THEN
    MATCH_MP_TAC REAL_LE_RMUL THEN SIMP_TAC[REAL_POW_LE; REAL_ABS_POS] THEN
    REWRITE_TAC[real_div; REAL_MUL_LID] THEN
    GEN_REWRITE_TAC RAND_CONV [GSYM REAL_INV_1] THEN
    MATCH_MP_TAC REAL_LE_INV2 THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN
    REWRITE_TAC[REAL_OF_NUM_LE; ARITH_RULE `1 <= n <=> ~(n = 0)`] THEN
    ASM_MESON_TAC[EVEN]; ALL_TAC] THEN
  MATCH_MP_TAC REAL_LE_TRANS THEN
  EXISTS_TAC
   `suminf (\m. abs((if EVEN (m + n) then &0
                     else --(&1) pow (((m + n) - 1) DIV 2) / &(m + n)) *
                    x pow (m + n)))` THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC SER_ABS THEN MATCH_MP_TAC SER_COMPARA THEN
    EXISTS_TAC `\m. abs(x) pow (m + n)` THEN
    ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[SUM_SUMMABLE]; ALL_TAC] THEN
  MATCH_MP_TAC SER_LE THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
   [MATCH_MP_TAC SER_COMPARA THEN
    EXISTS_TAC `\m. abs(x) pow (m + n)` THEN
    ASM_REWRITE_TAC[]; ALL_TAC] THEN
  ASM_MESON_TAC[SUM_SUMMABLE]);;

let MCLAURIN_ATN_APPROX = prove
 (`!x n k. abs(x) <= inv(&2 pow k) /\ ~(k = 0)
           ==> abs(atn x -
                   sum(0,n) (\m. (if EVEN m then &0
                                  else --(&1) pow ((m - 1) DIV 2) / &m) *
                                  x pow m))
               <= inv(&2 pow (n * k - 1))`,
  REPEAT STRIP_TAC THEN ASM_CASES_TAC `n = 0` THENL
   [ASM_REWRITE_TAC[sum; REAL_SUB_RZERO; MULT_CLAUSES; SUB_0] THEN
    MP_TAC(SPECL [`x:real`; `2`; `k:num`] MCLAURIN_ATN_SIMPLE) THEN
    ASM_REWRITE_TAC[] THEN
    MATCH_MP_TAC(REAL_ARITH
     `abs(y) + d <= e ==> abs(x - y) <= d ==> abs(x) <= e`) THEN
    CONV_TAC(ONCE_DEPTH_CONV REAL_SUM_CONV) THEN
    REWRITE_TAC[real_pow; REAL_POW_1] THEN CONV_TAC NUM_REDUCE_CONV THEN
    CONV_TAC REAL_RAT_REDUCE_CONV THEN
    REWRITE_TAC[real_div; REAL_MUL_LID; REAL_INV_1; REAL_ADD_LID] THEN
    SUBGOAL_THEN `abs(x) <= inv(&2)` ASSUME_TAC THENL
     [MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `inv(&2 pow k)` THEN
      ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_INV2 THEN
      CONV_TAC REAL_RAT_REDUCE_CONV THEN
      CONV_TAC REAL_RAT_REDUCE_CONV THEN
      GEN_REWRITE_TAC LAND_CONV [GSYM REAL_POW_1] THEN
      ASM_SIMP_TAC[REAL_POW_MONO; REAL_OF_NUM_LE; ARITH;
                   ARITH_RULE `~(k = 0) ==> 1 <= k`];
      ALL_TAC] THEN
    MATCH_MP_TAC REAL_LE_TRANS THEN
    EXISTS_TAC `inv(&2) + &2 * inv(&2) pow 2` THEN
    CONV_TAC(RAND_CONV REAL_RAT_REDUCE_CONV) THEN REWRITE_TAC[REAL_POW_1] THEN
    MATCH_MP_TAC REAL_LE_ADD2 THEN ASM_REWRITE_TAC[] THEN
    ASM_SIMP_TAC[REAL_LE_LMUL_EQ; REAL_OF_NUM_LT; ARITH;
                 REAL_POW_LE2; REAL_OF_NUM_LE; REAL_ABS_POS];
    ALL_TAC] THEN
  MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&2 * abs(x) pow n` THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC MCLAURIN_ATN_SIMPLE THEN ASM_MESON_TAC[]; ALL_TAC] THEN
  ASM_SIMP_TAC[REAL_POW_SUB; REAL_OF_NUM_EQ; ARITH_EQ;
               ARITH_RULE `1 <= x <=> ~(x = 0)`; MULT_EQ_0] THEN
  REWRITE_TAC[REAL_INV_DIV; REAL_POW_1] THEN REWRITE_TAC[real_div] THEN
  SIMP_TAC[REAL_LE_LMUL_EQ; REAL_OF_NUM_LT; ARITH] THEN
  ONCE_REWRITE_TAC[MULT_SYM] THEN REWRITE_TAC[GSYM REAL_POW_POW] THEN
  ONCE_REWRITE_TAC[GSYM REAL_POW_INV] THEN MATCH_MP_TAC REAL_POW_LE2 THEN
  ASM_REWRITE_TAC[REAL_ABS_POS]);;

(* ------------------------------------------------------------------------- *)
(* Rules to return approximations to atn(x) good to 2^-p given |x| <= 2^-k.  *)
(* ------------------------------------------------------------------------- *)

let mclaurin_atn_rule,MCLAURIN_ATN_RULE =
  let x_tm = `x:real`
  and n_tm = `n:num`
  and k_tm = `k:num`
  and inv_tm = `inv`
  and le_tm = `(<=):real->real->bool`
  and pow2_tm = `(pow) (&2)` in
  let pth = SPECL [x_tm; n_tm; k_tm] MCLAURIN_ATN_APPROX
  and CLEAN_RULE = REWRITE_RULE[real_pow]
  and MATCH_REAL_LE_TRANS = MATCH_MP REAL_LE_TRANS
  and num_0 = Int 0
  and num_1 = Int 1 in
  let mclaurin_atn_rule k0 p0 =
    if k0 = 0 then failwith "mclaurin_atn_rule: must have |x| <= 1/2" else
    let k = Int k0
    and p = Int p0 in
    let n = Num.int_of_num(ceiling_num ((p +/ k) // k)) in
    let ns = if n mod 2 = 0 then 0--(n - 1) else 0--(n - 2) in
    map (fun m -> if m mod 2 = 0 then num_0 else
                  (if (m - 1) mod 4 = 0 then I else minus_num)
                  (num_1 // Int m)) ns
  and MCLAURIN_ATN_RULE k0 p0 =
    if k0 = 0 then failwith "MCLAURIN_ATN_RULE: must have |x| <= 1/2" else
    let k = Int k0
    and p = Int p0 in
    let n = ceiling_num ((p +/ k) // k) in
    let th1 = INST [mk_numeral k,k_tm; mk_numeral n,n_tm] pth in
    let th2 = ASSUME (lhand(lhand(concl th1)))
    and th3 = EQF_ELIM(NUM_REDUCE_CONV(rand(rand(lhand(concl th1))))) in
    let th4 = MP th1 (CONJ th2 th3) in
    let th5 = CONV_RULE(ONCE_DEPTH_CONV REAL_HORNER_SUM_CONV) th4 in
    let th6 = CLEAN_RULE th5 in
    let th7 = CONV_RULE (NUM_REDUCE_CONV THENC LAND_CONV REAL_RAT_REDUCE_CONV)
                        (BETA_RULE th6) in
    let tm1 = mk_comb(inv_tm,mk_comb(pow2_tm,mk_numeral p)) in
    let tm2 = mk_comb(mk_comb(le_tm,rand(concl th7)),tm1) in
    let th8 = EQT_ELIM((NUM_REDUCE_CONV THENC REAL_RAT_REDUCE_CONV) tm2) in
    let th9 = MATCH_REAL_LE_TRANS (CONJ th7 th8) in
    GEN x_tm (DISCH_ALL th9) in
  mclaurin_atn_rule,MCLAURIN_ATN_RULE;;

(* ------------------------------------------------------------------------- *)
(* Lemmas for Machin-type formulas.                                          *)
(* ------------------------------------------------------------------------- *)

let TAN_ADD_ATN_SIDECOND = prove
 (`!x y. ~(x * y = &1) ==> ~(cos(atn x + atn y) = &0)`,
  REPEAT GEN_TAC THEN DISCH_TAC THEN
  REWRITE_TAC[COS_ADD; REAL_ARITH `(a - b = &0) <=> (a = b)`] THEN
  DISCH_THEN(MP_TAC o AP_TERM `(*) (inv(cos(atn x)))`) THEN
  SIMP_TAC[REAL_MUL_ASSOC; REAL_MUL_LINV; COS_ATN_NZ; REAL_MUL_LID] THEN
  DISCH_THEN(MP_TAC o AP_TERM `(*) (inv(cos(atn y)))`) THEN
  SIMP_TAC[REAL_MUL_LINV; COS_ATN_NZ; REAL_MUL_LID; GSYM REAL_MUL_ASSOC] THEN
  ONCE_REWRITE_TAC[AC REAL_MUL_AC `a * b * c * d = (c * b) * (d * a)`] THEN
  ASM_REWRITE_TAC[GSYM tan; GSYM real_div; ATN_TAN]);;

let ATN_ADD = prove
 (`!x y. ~(x * y = &1) /\
         abs(atn x + atn y) < pi / &2
         ==> (atn(x) + atn(y) = atn((x + y) / (&1 - x * y)))`,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `tan(atn(x) + atn(y)) = (x + y) / (&1 - x * y)` MP_TAC THENL
   [ASM_SIMP_TAC[ATN_TAN; TAN_ADD; COS_ATN_NZ; TAN_ADD_ATN_SIDECOND];
    DISCH_THEN(SUBST1_TAC o SYM) THEN CONV_TAC SYM_CONV THEN
    ASM_SIMP_TAC[TAN_ATN; REAL_ARITH `abs(x) < e ==> --e < x /\ x < e`]]);;

let ATN_ADD_SMALL_LEMMA_POS = prove
 (`!x y. &0 < y /\ x * y < &1
         ==> atn(x) + atn(y) < pi / &2`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM REAL_LT_SUB_LADD] THEN
  SUBGOAL_THEN `pi / &2 - atn y = atn(tan(pi / &2 - atn y))` SUBST1_TAC THENL
   [CONV_TAC SYM_CONV THEN MATCH_MP_TAC TAN_ATN THEN
    MATCH_MP_TAC(REAL_ARITH
     `&0 < x /\ x < a ==> --a < a - x /\ a - x < a`) THEN
    REWRITE_TAC[ATN_BOUNDS] THEN
    GEN_REWRITE_TAC LAND_CONV [GSYM ATN_0] THEN
    ASM_SIMP_TAC[ATN_MONO_LT];
    MATCH_MP_TAC ATN_MONO_LT THEN REWRITE_TAC[TAN_COT; ATN_TAN] THEN
    GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_LID] THEN
    ASM_SIMP_TAC[GSYM real_div; REAL_LT_RDIV_EQ; REAL_LT_IMP_NZ]]);;

let ATN_ADD_SMALL_LEMMA = prove
 (`!x y. abs(x * y) < &1 ==> abs(atn(x) + atn(y)) < pi / &2`,
  REPEAT STRIP_TAC THEN
  MATCH_MP_TAC(REAL_ARITH
   `--a < x /\ x < a /\ --a < y /\ y < a /\
    (&0 < y ==> x + y < a) /\
    (&0 < --y ==> --x + --y < a)
    ==> abs(x + y) < a`) THEN
  REWRITE_TAC[ATN_BOUNDS] THEN CONJ_TAC THEN
  REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM ATN_NEG] THEN
  MATCH_MP_TAC ATN_ADD_SMALL_LEMMA_POS THEN
  ASM_SIMP_TAC[REAL_ARITH `abs(x) < &1 ==> x < &1`;
               REAL_ARITH `--x * -- y = x * y`] THEN
  FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
   `&0 < y ==> (z <= &0 ==> y <= &0) ==> &0 < z`)) THEN
  MATCH_MP_TAC(REAL_ARITH
   `(y < &0 ==> z < &0) /\ ((y = &0) ==> (z = &0))
    ==> y <= &0 ==> z <= &0`) THEN
  SIMP_TAC[ATN_0; GSYM ATN_NEG] THEN
  GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM ATN_0] THEN
  SIMP_TAC[ATN_MONO_LT]);;

let ATN_ADD_SMALL = prove
 (`!x y. abs(x * y) < &1
         ==> (atn(x) + atn(y) = atn((x + y) / (&1 - x * y)))`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC ATN_ADD THEN
  ASM_SIMP_TAC[ATN_ADD_SMALL_LEMMA] THEN
  POP_ASSUM MP_TAC THEN REAL_ARITH_TAC);;

let ATN_ADD_CONV =
  let match_fn = PART_MATCH (lhand o rand) ATN_ADD_SMALL in
  let overall_fn =
    C MP TRUTH o
    CONV_RULE
       (COMB2_CONV REAL_RAT_REDUCE_CONV
         (RAND_CONV REAL_RAT_REDUCE_CONV)) o
    match_fn in
  fun tm -> if is_ratconst(rand(rand tm)) &
               is_ratconst(rand(lhand tm))
            then overall_fn tm
            else failwith "ATN_ADD_CONV: Atn of nonconstant";;

let ATN_CMUL_CONV =
  let pth_base = prove
   (`(&0 * atn(x) = &0) /\
     (&1 * atn(x) = atn(x))`,
    REWRITE_TAC[REAL_MUL_LZERO; REAL_MUL_LID])
  and pth_0,pth_1 = (CONJ_PAIR o prove)
   (`(&(NUMERAL(BIT0 n)) * atn(x) =
      &(NUMERAL n) * atn(x) + &(NUMERAL n) * atn(x)) /\
     (&(NUMERAL(BIT1 n)) * atn(x) =
      atn(x) + &(NUMERAL n) * atn(x) + &(NUMERAL n) * atn(x))`,
    REWRITE_TAC[REAL_MUL_LZERO; REAL_MUL_LID] THEN
    REWRITE_TAC[NUMERAL; BIT0; BIT1] THEN
    REWRITE_TAC[GSYM REAL_OF_NUM_ADD; GSYM REAL_OF_NUM_SUC] THEN
    REAL_ARITH_TAC) in
  let rewr_base = GEN_REWRITE_CONV I [pth_base]
  and rewr_0 = GEN_REWRITE_CONV I [pth_0]
  and rewr_1 = GEN_REWRITE_CONV I [pth_1] in
  let rec ATN_CMUL_CONV tm =
    if not (is_ratconst(rand(rand tm))) then failwith "ATN_CMUL_CONV" else
    try rewr_base tm with Failure _ ->
    try let th1 = rewr_0 tm in
        let tm1 = rand(concl th1) in
        let th2 = ATN_CMUL_CONV(rand tm1) in
        let th3 = MK_COMB(AP_TERM (rator(rator tm1)) th2,th2) in
        let th4 = TRANS th3 (ATN_ADD_CONV(rand(concl th3))) in
        TRANS th1 th4
    with Failure _ ->
        let th1 = rewr_1 tm in
        let tm1 = rand(rand(concl th1)) in
        let th2 = ATN_CMUL_CONV(rand tm1) in
        let th3 = MK_COMB(AP_TERM (rator(rator tm1)) th2,th2) in
        let th4 = TRANS th3 (ATN_ADD_CONV(rand(concl th3))) in
        let th5 = AP_TERM (rator(rand(concl th1))) th4 in
        let th6 = TRANS th5 (ATN_ADD_CONV(rand(concl th5))) in
        TRANS th1 th6 in
  ATN_CMUL_CONV;;

let ATN_SUB_CONV =
  let pth = prove
   (`(atn(x) - atn(y) = atn(x) + atn(--y))`,
    REWRITE_TAC[real_sub; ATN_NEG]) in
  GEN_REWRITE_CONV I [pth] THENC
  RAND_CONV(RAND_CONV REAL_RAT_NEG_CONV) THENC
  ATN_ADD_CONV;;

let MACHIN_CONV =
  DEPTH_CONV(ATN_ADD_CONV ORELSEC ATN_SUB_CONV ORELSEC ATN_CMUL_CONV);;

let MACHIN_RULE tm = SYM(TRANS (MACHIN_CONV tm) ATN_1);;

let MACHIN_1 = time MACHIN_RULE `&4 * atn(&1 / &5) - atn(&1 / &239)`;;
let MACHIN_2 = time MACHIN_RULE `atn(&1 / &2) + atn(&1 / &3)`;;
let MACHIN_3 = time MACHIN_RULE `&2 * atn(&1 / &2) - atn(&1 / &7)`;;
let MACHIN_4 = time MACHIN_RULE `&2 * atn(&1 / &3) + atn(&1 / &7)`;;

let EULER = time MACHIN_RULE `&5 * atn(&1 / &7) + &2 * atn (&3 / &79)`;;

let GAUSS_MACHIN = time MACHIN_RULE
  `&12 * atn(&1 / &18) + &8 * atn (&1 / &57) - &5 * atn(&1 / &239)`;;

let STRASSNITZKY_MACHIN = time MACHIN_RULE
  `atn(&1 / &2) + atn (&1 / &5) + atn(&1 / &8)`;;

let MACHINLIKE_1 = time MACHIN_RULE
  `&6 * atn(&1 / &8) + &2 * atn(&1 / &57) + atn(&1 / &239)`;;
let MACHINLIKE_2 = time MACHIN_RULE
  `&4 * atn(&1 / &5) - &1 * atn(&1 / &70) + atn(&1 / &99)`;;
let MACHINLIKE_3 = time MACHIN_RULE
  `&1 * atn(&1 / &2) + &1 * atn(&1 / &5) + atn(&1 / &8)`;;
let MACHINLIKE_4 = time MACHIN_RULE
  `&8 * atn(&1 / &10) - &1 * atn(&1 / &239) - &4 * atn(&1 / &515)`;;
let MACHINLIKE_5 = time MACHIN_RULE
  `&5 * atn(&1 / &7) + &4 * atn(&1 / &53) + &2 * atn(&1 / &4443)`;;

(***** Hopefully this one would work, but it takes a long time

let HWANG_MACHIN = time MACHIN_RULE
  `&183 * atn(&1 / &239) + &32 * atn(&1 / &1023) -
   &68 * atn(&1 / &5832) + &12 * atn(&1 / &110443) -
   &12 * atn(&1 / &4841182) - &100 * atn(&1 / &6826318)`;;

 *****)

(* ------------------------------------------------------------------------- *)
(* Approximate the arctan of a rational number.                              *)
(* ------------------------------------------------------------------------- *)

let rec POLY l x =
  if l = [] then num_0
  else hd l +/ (x */ POLY (tl l) x);;

let atn_approx_conv,ATN_APPROX_CONV =
  let atn_tm = `atn`
  and num_0 = Int 0
  and num_1 = Int 1
  and num_2 = Int 2 in
  let rec log_2 x = if x <=/ num_1 then log_2 (num_2 */ x) -/ num_1
       else if x >/ num_2 then log_2 (x // num_2) +/ num_1
                      else num_1 in
  let pth = prove
   (`!p. abs(atn(&0) - &0) <= inv(&2 pow p)`,
    SIMP_TAC[ATN_0; REAL_SUB_REFL; REAL_ABS_NUM; REAL_LE_INV_EQ;
             REAL_POW_LE; REAL_POS]) in
  let atn_approx_conv p r =
    if r =/ num_0 then num_0 else
    let k = Num.int_of_num(minus_num(log_2(abs_num r))) in
    if k < 1 then failwith "atn_approx_conv: argument too big" else
    let rats = mclaurin_atn_rule k p in
    POLY rats r
  and ATN_APPROX_CONV p tm =
    let atm,rtm = dest_comb tm in
    if atm <> atn_tm then failwith "ATN_APPROX_CONV" else
    let r = rat_of_term rtm in
    if r =/ num_0 then SPEC (mk_small_numeral p) pth else
    let k = Num.int_of_num(minus_num(log_2(abs_num r))) in
    if k < 1 then failwith "ATN_APPROX_CONV: argument too big" else
    let th1 = MCLAURIN_ATN_RULE k p in
    let th2 = SPEC rtm th1 in
    let th3 = MP th2 (EQT_ELIM(REAL_RAT_REDUCE_CONV(lhand(concl th2)))) in
    CONV_RULE(LAND_CONV(RAND_CONV(RAND_CONV REAL_RAT_REDUCE_CONV))) th3 in
  atn_approx_conv,ATN_APPROX_CONV;;

(* ------------------------------------------------------------------------- *)
(* Approximate pi using this and a Machin-type formula.                      *)
(* ------------------------------------------------------------------------- *)

let pi_approx_rule,PI_APPROX_RULE =
  let const_1_8 = Int 1 // Int 8
  and const_1_57 = Int 1 // Int 57
  and const_1_239 = Int 1 // Int 239
  and const_24 = Int 24
  and const_8 = Int 8
  and const_4 = Int 4
  and tm_1_8 = `atn(&1 / &8)`
  and tm_1_57 = `atn(&1 / &57)`
  and tm_1_239 = `atn(&1 / &239)`
  and q1_tm = `q1:num`
  and q2_tm = `q2:num`
  and p_tm = `p:num` in
  let pth = prove
   (`(q1 = p + 5) /\
     (q2 = p + 6) /\
     abs(atn(&1 / &8) - a1) <= inv(&2 pow q1) /\
     abs(atn(&1 / &57) - a2) <= inv(&2 pow q2) /\
     abs(atn(&1 / &239) - a3) <= inv(&2 pow q2)
     ==> abs(pi - (&24 * a1 + &8 * a2 + &4 * a3)) <= inv(&2 pow p)`,
    DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
    DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
    ASM_REWRITE_TAC[] THEN POP_ASSUM_LIST(K ALL_TAC) THEN STRIP_TAC THEN
    MATCH_MP_TAC REAL_LE_LCANCEL_IMP THEN EXISTS_TAC `abs(inv(&2 pow 2))` THEN
    SIMP_TAC[REAL_POW2_CLAUSES; REAL_ARITH `&0 < x ==> &0 < abs(x)`] THEN
    REWRITE_TAC[GSYM REAL_ABS_MUL] THEN
    REWRITE_TAC[REAL_ABS_INV; REAL_ABS_POW; REAL_ABS_NUM] THEN
    REWRITE_TAC[GSYM REAL_INV_MUL; GSYM REAL_POW_ADD] THEN
    CONV_TAC REAL_RAT_REDUCE_CONV THEN
    REWRITE_TAC[REAL_SUB_LDISTRIB; REAL_ADD_LDISTRIB; REAL_MUL_ASSOC] THEN
    CONV_TAC REAL_RAT_REDUCE_CONV THEN
    REWRITE_TAC[real_div; REAL_MUL_LID] THEN
    GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o LAND_CONV) [REAL_MUL_SYM] THEN
    REWRITE_TAC[GSYM real_div; MACHINLIKE_1] THEN
    REWRITE_TAC[REAL_ARITH `(x1 + x2 + x3) - (y1 + y2 + y3) =
                            (x1 - y1) + (x2 - y2) + (x3 - y3)`] THEN
    REWRITE_TAC[GSYM REAL_SUB_LDISTRIB] THEN BOUND_SUMPROD_TAC THEN
    GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [ADD_SYM] THEN
    REWRITE_TAC[REAL_POW_ADD; REAL_INV_MUL; REAL_MUL_ASSOC] THEN
    SIMP_TAC[GSYM REAL_ADD_RDISTRIB; REAL_LE_RMUL_EQ; REAL_POW2_CLAUSES] THEN
    CONV_TAC REAL_RAT_REDUCE_CONV) in
  let pi_approx_rule p =
    let q1 = p + 5
    and q2 = p + 6 in
    let a1 = atn_approx_conv q1 const_1_8
    and a2 = atn_approx_conv q2 const_1_57
    and a3 = atn_approx_conv q2 const_1_239 in
    const_24 */ a1 +/ const_8 */ a2 +/ const_4 */ a3
  and PI_APPROX_RULE p =
    let q1 = p + 5
    and q2 = p + 6 in
    let th1 = ATN_APPROX_CONV q1 tm_1_8
    and th2 = ATN_APPROX_CONV q2 tm_1_57
    and th3 = ATN_APPROX_CONV q2 tm_1_239 in
    let th4 = INST [mk_small_numeral p,p_tm;
                    mk_small_numeral q1,q1_tm;
                    mk_small_numeral q2,q2_tm] pth in
    let th5 = EQT_ELIM(NUM_REDUCE_CONV(lhand(lhand(concl th4))))
    and th6 = EQT_ELIM(NUM_REDUCE_CONV(lhand(rand(lhand(concl th4))))) in
    let th7 = MATCH_MP th4 (end_itlist CONJ [th5; th6; th1; th2; th3]) in
    CONV_RULE(LAND_CONV(RAND_CONV(RAND_CONV REAL_RAT_REDUCE_CONV))) th7 in
  pi_approx_rule,PI_APPROX_RULE;;

(* ------------------------------------------------------------------------- *)
(* A version that yields a fraction with power of two denominator.           *)
(* ------------------------------------------------------------------------- *)

let pi_approx_binary_rule,PI_APPROX_BINARY_RULE =
  let pth = prove
   (`abs(x - r) <= inv(&2 pow (SUC p))
     ==> !a. abs(&2 pow p * r - a) <= inv(&2)
             ==> abs(x - a / &2 pow p) <= inv(&2 pow p)`,
    REPEAT STRIP_TAC THEN
    FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
      `abs(x - r) <= q ==> abs(r - r') <= p - q ==> abs(x - r') <= p`)) THEN
    MATCH_MP_TAC REAL_LE_LCANCEL_IMP THEN EXISTS_TAC `abs(&2 pow p)` THEN
    SIMP_TAC[REAL_ARITH `&0 < x ==> &0 < abs(x)`; REAL_POW2_THM] THEN
    REWRITE_TAC[GSYM REAL_ABS_MUL; REAL_SUB_LDISTRIB] THEN
    SIMP_TAC[REAL_ABS_POW; REAL_ABS_NUM; GSYM real_div;
             REAL_DIV_LMUL; REAL_LT_IMP_NZ; REAL_POW2_CLAUSES;
             REAL_DIV_POW2; REAL_OF_NUM_EQ; ARITH_EQ;
             LE_REFL; ARITH_RULE `~(SUC p <= p)`;
             ARITH_RULE `SUC p - p = 1`; SUB_REFL] THEN
    UNDISCH_TAC `abs (&2 pow p * r - a) <= inv (&2)` THEN
    CONV_TAC NUM_REDUCE_CONV THEN CONV_TAC REAL_RAT_REDUCE_CONV)
  and num_2 = Int 2 in
  let pi_approx_binary_rule p =
    let ppow = power_num num_2 (Int p) in
    let r = pi_approx_rule (p + 1) in
    let a = round_num (ppow */ r) in
    a // ppow
  and PI_APPROX_BINARY_RULE p =
    let ppow = power_num num_2 (Int p) in
    let th1 = PI_APPROX_RULE (p + 1) in
    let th2 = CONV_RULE(funpow 3 RAND_CONV num_CONV) th1 in
    let r = rat_of_term(rand(rand(lhand(concl th2)))) in
    let th3 = SPEC (mk_realintconst(round_num(ppow */ r))) (MATCH_MP pth th2) in
    let th4 = MP th3 (EQT_ELIM(REAL_RAT_REDUCE_CONV(lhand(concl th3)))) in
    CONV_RULE(LAND_CONV(RAND_CONV(RAND_CONV REAL_RAT_REDUCE_CONV))) th4 in
  pi_approx_binary_rule,PI_APPROX_BINARY_RULE;;

(* ------------------------------------------------------------------------- *)
(* Rule to expand atn(r) for rational r into more easily calculable bits.    *)
(* ------------------------------------------------------------------------- *)

let ATN_EXPAND_CONV =
  let num_0 = Int 0
  and num_1 = Int 1
  and num_2 = Int 2
  and eighth = Int 1 // Int 8
  and atn_tm = `atn`
  and eighth_tm = `&1 / &8`
  and mk_mul = mk_binop `(*)`
  and mk_add = mk_binop `(+)`
  and amp_tm = `&` in
  let home_in =
    let rec homein n x =
      let x' = (x -/ eighth) // (num_1 +/ x */ eighth) in
      if x' </ num_0 then
        if abs_num(x') </ abs_num(x) then (x',n+1) else (x,n)
      else homein (n + 1) x' in
    homein 0 in
  fun tm ->
    let ltm,rtm = dest_comb tm in
    if ltm <> atn_tm then failwith "ATN_EXPAND_CONV" else
    let r = rat_of_term rtm in
    let (x,n) = home_in r in
    let xtm = mk_add (mk_mul (mk_comb(amp_tm,mk_small_numeral n))
                             (mk_comb(atn_tm,eighth_tm)))
                     (mk_comb(atn_tm,term_of_rat x)) in
    SYM(MACHIN_CONV xtm);;