1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
|
(* ========================================================================= *)
(* Part 1: Background theories. *)
(* ========================================================================= *)
let EMPTY_IS_FINITE = prove
(`!s. (s = EMPTY) ==> FINITE s`,
SIMP_TAC[FINITE_RULES]);;
let SING_IS_FINITE = prove
(`!s a. (s = {a}) ==> FINITE s`,
SIMP_TAC[FINITE_INSERT; FINITE_RULES]);;
let UNION_NONZERO = prove
(`{a | ~(f a + g a = 0)} = {a | ~(f a = 0)} UNION {a | ~(g a = 0)}`,
REWRITE_TAC[ADD_EQ_0; EXTENSION; IN_UNION; IN_ELIM_THM; DE_MORGAN_THM]);;
(* ------------------------------------------------------------------------- *)
(* Definition of type of finite multisets with a few basic operations. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("mmember",(11,"right"));;
parse_as_infix("munion",(16,"right"));;
parse_as_infix("mdiff",(18,"left"));;
let multiset_tybij_th = prove
(`?f. FINITE {a:A | ~(f a = 0)}`,
EXISTS_TAC `\a:A. 0` THEN
SIMP_TAC[EMPTY_IS_FINITE; EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY]);;
let multiset_tybij = new_type_definition
"multiset" ("multiset","multiplicity") multiset_tybij_th;;
let mempty = new_definition
`mempty = multiset (\b. 0)`;;
let mmember = new_definition
`a mmember M <=> ~(multiplicity M a = 0)`;;
let msing = new_definition
`msing a = multiset (\b. if b = a then 1 else 0)`;;
let munion = new_definition
`M munion N = multiset(\b. multiplicity M b + multiplicity N b)`;;
let mdiff = new_definition
`M mdiff N = multiset(\b. multiplicity M b - multiplicity N b)`;;
(* ------------------------------------------------------------------------- *)
(* Extensionality for multisets. *)
(* ------------------------------------------------------------------------- *)
let MEXTENSION = prove
(`(M = N) = !a. multiplicity M a = multiplicity N a`,
REWRITE_TAC[GSYM FUN_EQ_THM] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN
MESON_TAC[multiset_tybij]);;
(* ------------------------------------------------------------------------- *)
(* Basic properties of multisets. *)
(* ------------------------------------------------------------------------- *)
let MULTIPLICITY_MULTISET = prove
(`FINITE {a | ~(f a = 0)} /\ (f a = y) ==> (multiplicity(multiset f) a = y)`,
SIMP_TAC[multiset_tybij]);;
let MEMPTY = prove
(`multiplicity mempty a = 0`,
REWRITE_TAC[mempty] THEN MATCH_MP_TAC MULTIPLICITY_MULTISET THEN
SIMP_TAC[EMPTY_IS_FINITE; EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY]);;
let MSING = prove
(`multiplicity (msing (a:A)) b = if b = a then 1 else 0`,
REWRITE_TAC[msing] THEN MATCH_MP_TAC MULTIPLICITY_MULTISET THEN
REWRITE_TAC[] THEN MATCH_MP_TAC SING_IS_FINITE THEN EXISTS_TAC `a:A` THEN
REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT; NOT_IN_EMPTY] THEN
GEN_TAC THEN COND_CASES_TAC THEN REWRITE_TAC[ARITH_EQ]);;
let MUNION = prove
(`multiplicity (M munion N) a = multiplicity M a + multiplicity N a`,
REWRITE_TAC[munion] THEN MATCH_MP_TAC MULTIPLICITY_MULTISET THEN
REWRITE_TAC[UNION_NONZERO; FINITE_UNION] THEN SIMP_TAC[multiset_tybij] THEN
CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN REWRITE_TAC[multiset_tybij]);;
let MDIFF = prove
(`multiplicity (M mdiff N) (a:A) = multiplicity M a - multiplicity N a`,
REWRITE_TAC[mdiff] THEN MATCH_MP_TAC MULTIPLICITY_MULTISET THEN
REWRITE_TAC[] THEN MATCH_MP_TAC FINITE_SUBSET THEN
EXISTS_TAC `{a:A | ~(multiplicity M a = 0)}` THEN
SIMP_TAC[SUBSET; IN_ELIM_THM; multiset_tybij] THEN
CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN REWRITE_TAC[multiset_tybij] THEN
ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Some trivial properties of multisets that we use later. *)
(* ------------------------------------------------------------------------- *)
let MUNION_MEMPTY = prove
(`~(M munion (msing(a:A)) = mempty)`,
REWRITE_TAC[MEXTENSION; MEMPTY; MSING; MUNION] THEN
DISCH_THEN(MP_TAC o SPEC `a:A`) THEN
REWRITE_TAC[ADD_EQ_0; ARITH_EQ]);;
let MMEMBER_MUNION = prove
(`x mmember (M munion N) <=> x mmember M \/ x mmember N`,
REWRITE_TAC[mmember; MUNION; ADD_EQ_0; DE_MORGAN_THM]);;
let MMEMBER_MSING = prove
(`x mmember (msing a) <=> (x = a)`,
REWRITE_TAC[mmember; MSING] THEN COND_CASES_TAC THEN REWRITE_TAC[ARITH_EQ]);;
let MUNION_EMPTY = prove
(`M munion mempty = M`,
REWRITE_TAC[MEXTENSION; MUNION; MEMPTY; ADD_CLAUSES]);;
let MUNION_ASSOC = prove
(`M1 munion (M2 munion M3) = (M1 munion M2) munion M3`,
REWRITE_TAC[MEXTENSION; MUNION; ADD_ASSOC]);;
let MUNION_AC = prove
(`(M1 munion M2 = M2 munion M1) /\
((M1 munion M2) munion M3 = M1 munion M2 munion M3) /\
(M1 munion M2 munion M3 = M2 munion M1 munion M3)`,
REWRITE_TAC[MEXTENSION; MUNION; ADD_AC]);;
let MUNION_11 = prove
(`(M1 munion N = M2 munion N) <=> (M1 = M2)`,
REWRITE_TAC[MEXTENSION; MUNION; EQ_ADD_RCANCEL]);;
let MUNION_INUNION = prove
(`a mmember (M munion (msing b)) /\ ~(b = a) ==> a mmember M`,
REWRITE_TAC[mmember; MUNION; MSING; ADD_EQ_0] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[ARITH_EQ]);;
let MMEMBER_MDIFF = prove
(`(a:A) mmember M ==> (M = (M mdiff (msing a)) munion (msing a))`,
REWRITE_TAC[mmember; MEXTENSION; MUNION; MDIFF; MSING] THEN
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
UNDISCH_TAC `~(multiplicity M (a:A) = 0)` THEN ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Induction principle for multisets. *)
(* ------------------------------------------------------------------------- *)
let MULTISET_INDUCT_LEMMA1 = prove
(`(!M. ({a | ~(multiplicity M a = 0)} SUBSET s) ==> P M) /\
(!a:A M. P M ==> P (M munion (msing a)))
==> !n M. (multiplicity M a = n) /\
{a:A | ~(multiplicity M a = 0)} SUBSET (a INSERT s)
==> P M`,
STRIP_TAC THEN INDUCT_TAC THEN REPEAT STRIP_TAC THENL
[FIRST_X_ASSUM MATCH_MP_TAC THEN
UNDISCH_TAC `{a:A | ~(multiplicity M a = 0)} SUBSET (a INSERT s)` THEN
REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_INSERT] THEN ASM_MESON_TAC[];
SUBGOAL_THEN `M = (M mdiff (msing(a:A))) munion (msing a)` SUBST1_TAC THENL
[MATCH_MP_TAC MMEMBER_MDIFF THEN ASM_REWRITE_TAC[mmember; NOT_SUC];
ALL_TAC] THEN
MAP_EVERY (MATCH_MP_TAC o ASSUME)
[`!a:A M. P M ==> P (M munion msing a)`;
`!M. (multiplicity M a = n) /\
{a:A | ~(multiplicity M a = 0)} SUBSET (a INSERT s)
==> P M`] THEN
ASM_REWRITE_TAC[MDIFF; MSING; ARITH_RULE `SUC n - 1 = n`] THEN
MATCH_MP_TAC SUBSET_TRANS THEN
EXISTS_TAC `{a:A | ~(multiplicity M a = 0)}` THEN
ASM_SIMP_TAC[SUBSET; IN_ELIM_THM; CONTRAPOS_THM; SUB_0]]);;
let MULTISET_INDUCT_LEMMA2 = prove
(`P mempty /\
(!a:A M. P M ==> P (M munion (msing a)))
==> !s. FINITE s ==> !M. {a:A | ~(multiplicity M a = 0)} SUBSET s ==> P M`,
STRIP_TAC THEN MATCH_MP_TAC FINITE_INDUCT THEN CONJ_TAC THENL
[REWRITE_TAC[SUBSET; IN_ELIM_THM; NOT_IN_EMPTY] THEN
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `M:(A)multiset = mempty` (fun th -> ASM_REWRITE_TAC[th]) THEN
ASM_REWRITE_TAC[MEXTENSION; MEMPTY]; X_GEN_TAC `a:A`] THEN
REPEAT STRIP_TAC THEN MP_TAC MULTISET_INDUCT_LEMMA1 THEN
ASM_REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN
ASM_REWRITE_TAC[GSYM EXISTS_REFL]);;
let MULTISET_INDUCT = prove
(`P mempty /\
(!a:A M. P M ==> P (M munion (msing a)))
==> !M. P M`,
DISCH_THEN(MP_TAC o MATCH_MP MULTISET_INDUCT_LEMMA2) THEN
REWRITE_TAC[RIGHT_IMP_FORALL_THM] THEN
REWRITE_TAC[IMP_IMP] THEN
GEN_TAC THEN DISCH_THEN MATCH_MP_TAC THEN
EXISTS_TAC `{a:A | ~(multiplicity M a = 0)}` THEN
REWRITE_TAC[SUBSET_REFL; multiset_tybij] THEN
CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN REWRITE_TAC[multiset_tybij]);;
(* ========================================================================= *)
(* Part 2: Transcription of Tobias's paper. *)
(* ========================================================================= *)
parse_as_infix("<<",(12,"right"));;
(* ------------------------------------------------------------------------- *)
(* Wellfounded part of a relation. *)
(* ------------------------------------------------------------------------- *)
let WFP_RULES,WFP_INDUCT,WFP_CASES = new_inductive_definition
`!x. (!y. y << x ==> WFP(<<) y) ==> WFP(<<) x`;;
(* ------------------------------------------------------------------------- *)
(* Wellfounded part induction. *)
(* ------------------------------------------------------------------------- *)
let WFP_PART_INDUCT = prove
(`!P. (!x. x IN WFP(<<) /\ (!y. y << x ==> P(y)) ==> P(x))
==> !x:A. x IN WFP(<<) ==> P(x)`,
GEN_TAC THEN REWRITE_TAC[IN] THEN STRIP_TAC THEN
ONCE_REWRITE_TAC[TAUT `a ==> b <=> a ==> a /\ b`] THEN
MATCH_MP_TAC WFP_INDUCT THEN ASM_MESON_TAC[WFP_RULES]);;
(* ------------------------------------------------------------------------- *)
(* A relation is wellfounded iff WFP is the whole universe. *)
(* ------------------------------------------------------------------------- *)
let WFP_WF = prove
(`WF(<<) <=> (WFP(<<) = UNIV:A->bool)`,
EQ_TAC THENL
[REWRITE_TAC[WF_IND; EXTENSION; IN; UNIV] THEN MESON_TAC[WFP_RULES];
DISCH_TAC THEN MP_TAC WFP_PART_INDUCT THEN
ASM_REWRITE_TAC[IN; UNIV; WF_IND]]);;
(* ------------------------------------------------------------------------- *)
(* The multiset order. *)
(* ------------------------------------------------------------------------- *)
let morder = new_definition
`morder(<<) N M <=> ?M0 a K. (M = M0 munion (msing a)) /\
(N = M0 munion K) /\
(!b. b mmember K ==> b << a)`;;
(* ------------------------------------------------------------------------- *)
(* We separate off this part from the proof of LEMMA_2_1. *)
(* ------------------------------------------------------------------------- *)
let LEMMA_2_0 = prove
(`morder(<<) N (M0 munion (msing a))
==> (?M. morder(<<) M M0 /\ (N = M munion (msing a))) \/
(?K. (N = M0 munion K) /\ (!b:A. b mmember K ==> b << a))`,
GEN_REWRITE_TAC LAND_CONV [morder] THEN
DISCH_THEN(EVERY_TCL (map X_CHOOSE_THEN
[`M1:(A)multiset`; `b:A`; `K:(A)multiset`]) STRIP_ASSUME_TAC) THEN
ASM_CASES_TAC `b:A = a` THENL
[DISJ2_TAC THEN UNDISCH_THEN `b:A = a` SUBST_ALL_TAC THEN
EXISTS_TAC `K:(A)multiset` THEN ASM_MESON_TAC[MUNION_11]; DISJ1_TAC] THEN
SUBGOAL_THEN `?M2. M1 = M2 munion (msing(a:A))` STRIP_ASSUME_TAC THENL
[EXISTS_TAC `M1 mdiff (msing(a:A))` THEN
MAP_EVERY MATCH_MP_TAC [MMEMBER_MDIFF; MUNION_INUNION] THEN
UNDISCH_TAC `M0 munion (msing a) = M1 munion (msing(b:A))` THEN
ASM_REWRITE_TAC[MEXTENSION; MUNION; MSING; mmember] THEN
DISCH_THEN(MP_TAC o SPEC `a:A`) THEN ASM_REWRITE_TAC[] THEN
ARITH_TAC; ALL_TAC] THEN
EXISTS_TAC `M2 munion K:(A)multiset` THEN ASM_REWRITE_TAC[MUNION_AC] THEN
REWRITE_TAC[morder] THEN
MAP_EVERY EXISTS_TAC [`M2:(A)multiset`; `b:A`; `K:(A)multiset`] THEN
UNDISCH_TAC `M0 munion msing (a:A) = M1 munion msing b` THEN
ASM_REWRITE_TAC[MUNION_AC] THEN MESON_TAC[MUNION_AC; MUNION_11]);;
(* ------------------------------------------------------------------------- *)
(* The sequence of lemmas from Tobias's paper. *)
(* ------------------------------------------------------------------------- *)
let LEMMA_2_1 = prove
(`(!M b:A. b << a /\ M IN WFP(morder(<<))
==> (M munion (msing b)) IN WFP(morder(<<))) /\
M0 IN WFP(morder(<<)) /\
(!M. morder(<<) M M0 ==> (M munion (msing a)) IN WFP(morder(<<)))
==> (M0 munion (msing a)) IN WFP(morder(<<))`,
STRIP_TAC THEN REWRITE_TAC[IN] THEN MATCH_MP_TAC WFP_RULES THEN
X_GEN_TAC `N:(A)multiset` THEN
DISCH_THEN(DISJ_CASES_THEN MP_TAC o MATCH_MP LEMMA_2_0) THENL
[ASM_MESON_TAC[IN]; REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN
SPEC_TAC(`N:(A)multiset`,`N:(A)multiset`) THEN
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
MATCH_MP_TAC MULTISET_INDUCT THEN REPEAT STRIP_TAC THEN
RULE_ASSUM_TAC(REWRITE_RULE[MUNION_ASSOC; MMEMBER_MUNION; MMEMBER_MSING]) THEN
ASM_MESON_TAC[IN; MUNION_EMPTY]);;
let LEMMA_2_2 = prove
(`(!M b. b << a /\ M IN WFP(morder(<<))
==> (M munion (msing b)) IN WFP(morder(<<)))
==> !M. M IN WFP(morder(<<)) ==> (M munion (msing a)) IN WFP(morder(<<))`,
STRIP_TAC THEN MATCH_MP_TAC WFP_PART_INDUCT THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC LEMMA_2_1 THEN ASM_REWRITE_TAC[]);;
let LEMMA_2_3 = prove
(`WF(<<)
==> !a M. M IN WFP(morder(<<)) ==> (M munion (msing a)) IN WFP(morder(<<))`,
REWRITE_TAC[WF_IND] THEN DISCH_THEN MATCH_MP_TAC THEN MESON_TAC[LEMMA_2_2]);;
let LEMMA_2_4 = prove
(`WF(<<) ==> !M. M IN WFP(morder(<<))`,
DISCH_TAC THEN MATCH_MP_TAC MULTISET_INDUCT THEN CONJ_TAC THENL
[REWRITE_TAC[IN] THEN MATCH_MP_TAC WFP_RULES THEN
REWRITE_TAC[morder; MUNION_MEMPTY];
ASM_SIMP_TAC[LEMMA_2_3]]);;
(* ------------------------------------------------------------------------- *)
(* Hence the final result. *)
(* ------------------------------------------------------------------------- *)
let MORDER_WF = prove
(`WF(<<) ==> WF(morder(<<))`,
SIMP_TAC[WFP_WF; EXTENSION; IN_UNIV; LEMMA_2_4]);;
|