File: multiwf.ml

package info (click to toggle)
hol-light 20170109-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 36,568 kB
  • ctags: 8,549
  • sloc: ml: 540,018; cpp: 439; lisp: 286; java: 279; makefile: 262; sh: 229; yacc: 108; perl: 78; ansic: 57; sed: 39
file content (307 lines) | stat: -rw-r--r-- 13,594 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
(* ========================================================================= *)
(* Part 1: Background theories.                                              *)
(* ========================================================================= *)

let EMPTY_IS_FINITE = prove
 (`!s. (s = EMPTY) ==> FINITE s`,
  SIMP_TAC[FINITE_RULES]);;

let SING_IS_FINITE = prove
 (`!s a. (s = {a}) ==> FINITE s`,
  SIMP_TAC[FINITE_INSERT; FINITE_RULES]);;

let UNION_NONZERO = prove
 (`{a | ~(f a + g a = 0)} = {a | ~(f a = 0)} UNION {a | ~(g a = 0)}`,
  REWRITE_TAC[ADD_EQ_0; EXTENSION; IN_UNION; IN_ELIM_THM; DE_MORGAN_THM]);;

(* ------------------------------------------------------------------------- *)
(* Definition of type of finite multisets with a few basic operations.       *)
(* ------------------------------------------------------------------------- *)

parse_as_infix("mmember",(11,"right"));;
parse_as_infix("munion",(16,"right"));;
parse_as_infix("mdiff",(18,"left"));;

let multiset_tybij_th = prove
 (`?f. FINITE {a:A | ~(f a = 0)}`,
  EXISTS_TAC `\a:A. 0` THEN
  SIMP_TAC[EMPTY_IS_FINITE; EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY]);;

let multiset_tybij = new_type_definition
  "multiset" ("multiset","multiplicity") multiset_tybij_th;;

let mempty = new_definition
  `mempty = multiset (\b. 0)`;;

let mmember = new_definition
  `a mmember M <=> ~(multiplicity M a = 0)`;;

let msing = new_definition
  `msing a = multiset (\b. if b = a then 1 else 0)`;;

let munion = new_definition
  `M munion N = multiset(\b. multiplicity M b + multiplicity N b)`;;

let mdiff = new_definition
  `M mdiff N = multiset(\b. multiplicity M b - multiplicity N b)`;;

(* ------------------------------------------------------------------------- *)
(* Extensionality for multisets.                                             *)
(* ------------------------------------------------------------------------- *)

let MEXTENSION = prove
 (`(M = N) = !a. multiplicity M a = multiplicity N a`,
  REWRITE_TAC[GSYM FUN_EQ_THM] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN
  MESON_TAC[multiset_tybij]);;

(* ------------------------------------------------------------------------- *)
(* Basic properties of multisets.                                            *)
(* ------------------------------------------------------------------------- *)

let MULTIPLICITY_MULTISET = prove
 (`FINITE {a | ~(f a = 0)} /\ (f a = y) ==> (multiplicity(multiset f) a = y)`,
  SIMP_TAC[multiset_tybij]);;

let MEMPTY = prove
 (`multiplicity mempty a = 0`,
  REWRITE_TAC[mempty] THEN MATCH_MP_TAC MULTIPLICITY_MULTISET THEN
  SIMP_TAC[EMPTY_IS_FINITE; EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY]);;

let MSING = prove
 (`multiplicity (msing (a:A)) b = if b = a then 1 else 0`,
  REWRITE_TAC[msing] THEN MATCH_MP_TAC MULTIPLICITY_MULTISET THEN
  REWRITE_TAC[] THEN MATCH_MP_TAC SING_IS_FINITE THEN EXISTS_TAC `a:A` THEN
  REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT; NOT_IN_EMPTY] THEN
  GEN_TAC THEN COND_CASES_TAC THEN REWRITE_TAC[ARITH_EQ]);;

let MUNION = prove
 (`multiplicity (M munion N) a = multiplicity M a + multiplicity N a`,
  REWRITE_TAC[munion] THEN MATCH_MP_TAC MULTIPLICITY_MULTISET THEN
  REWRITE_TAC[UNION_NONZERO; FINITE_UNION] THEN SIMP_TAC[multiset_tybij] THEN
  CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN REWRITE_TAC[multiset_tybij]);;

let MDIFF = prove
 (`multiplicity (M mdiff N) (a:A) = multiplicity M a - multiplicity N a`,
  REWRITE_TAC[mdiff] THEN MATCH_MP_TAC MULTIPLICITY_MULTISET THEN
  REWRITE_TAC[] THEN MATCH_MP_TAC FINITE_SUBSET THEN
  EXISTS_TAC `{a:A | ~(multiplicity M a = 0)}` THEN
  SIMP_TAC[SUBSET; IN_ELIM_THM; multiset_tybij] THEN
  CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN REWRITE_TAC[multiset_tybij] THEN
  ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Some trivial properties of multisets that we use later.                   *)
(* ------------------------------------------------------------------------- *)

let MUNION_MEMPTY = prove
 (`~(M munion (msing(a:A)) = mempty)`,
  REWRITE_TAC[MEXTENSION; MEMPTY; MSING; MUNION] THEN
  DISCH_THEN(MP_TAC o SPEC `a:A`) THEN
  REWRITE_TAC[ADD_EQ_0; ARITH_EQ]);;

let MMEMBER_MUNION = prove
 (`x mmember (M munion N) <=> x mmember M \/ x mmember N`,
  REWRITE_TAC[mmember; MUNION; ADD_EQ_0; DE_MORGAN_THM]);;

let MMEMBER_MSING = prove
 (`x mmember (msing a) <=> (x = a)`,
  REWRITE_TAC[mmember; MSING] THEN COND_CASES_TAC THEN REWRITE_TAC[ARITH_EQ]);;

let MUNION_EMPTY = prove
 (`M munion mempty = M`,
  REWRITE_TAC[MEXTENSION; MUNION; MEMPTY; ADD_CLAUSES]);;

let MUNION_ASSOC = prove
 (`M1 munion (M2 munion M3) = (M1 munion M2) munion M3`,
  REWRITE_TAC[MEXTENSION; MUNION; ADD_ASSOC]);;

let MUNION_AC = prove
 (`(M1 munion M2 = M2 munion M1) /\
   ((M1 munion M2) munion M3 = M1 munion M2 munion M3) /\
   (M1 munion M2 munion M3 = M2 munion M1 munion M3)`,
  REWRITE_TAC[MEXTENSION; MUNION; ADD_AC]);;

let MUNION_11 = prove
 (`(M1 munion N = M2 munion N) <=> (M1 = M2)`,
  REWRITE_TAC[MEXTENSION; MUNION; EQ_ADD_RCANCEL]);;

let MUNION_INUNION = prove
 (`a mmember (M munion (msing b)) /\ ~(b = a) ==> a mmember M`,
  REWRITE_TAC[mmember; MUNION; MSING; ADD_EQ_0] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[ARITH_EQ]);;

let MMEMBER_MDIFF = prove
 (`(a:A) mmember M ==> (M = (M mdiff (msing a)) munion (msing a))`,
  REWRITE_TAC[mmember; MEXTENSION; MUNION; MDIFF; MSING] THEN
  REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
  UNDISCH_TAC `~(multiplicity M (a:A) = 0)` THEN ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Induction principle for multisets.                                        *)
(* ------------------------------------------------------------------------- *)

let MULTISET_INDUCT_LEMMA1 = prove
 (`(!M. ({a | ~(multiplicity M a = 0)} SUBSET s) ==> P M) /\
   (!a:A M. P M ==> P (M munion (msing a)))
   ==> !n M. (multiplicity M a = n) /\
             {a:A | ~(multiplicity M a = 0)} SUBSET (a INSERT s)
             ==> P M`,
  STRIP_TAC THEN INDUCT_TAC THEN REPEAT STRIP_TAC THENL
   [FIRST_X_ASSUM MATCH_MP_TAC THEN
    UNDISCH_TAC `{a:A | ~(multiplicity M a = 0)} SUBSET (a INSERT s)` THEN
    REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_INSERT] THEN ASM_MESON_TAC[];
    SUBGOAL_THEN `M = (M mdiff (msing(a:A))) munion (msing a)` SUBST1_TAC THENL
     [MATCH_MP_TAC MMEMBER_MDIFF THEN ASM_REWRITE_TAC[mmember; NOT_SUC];
      ALL_TAC] THEN
    MAP_EVERY (MATCH_MP_TAC o ASSUME)
     [`!a:A M. P M ==> P (M munion msing a)`;
      `!M. (multiplicity M a = n) /\
           {a:A | ~(multiplicity M a = 0)} SUBSET (a INSERT s)
           ==> P M`] THEN
    ASM_REWRITE_TAC[MDIFF; MSING; ARITH_RULE `SUC n - 1 = n`] THEN
    MATCH_MP_TAC SUBSET_TRANS THEN
    EXISTS_TAC `{a:A | ~(multiplicity M a = 0)}` THEN
    ASM_SIMP_TAC[SUBSET; IN_ELIM_THM; CONTRAPOS_THM; SUB_0]]);;

let MULTISET_INDUCT_LEMMA2 = prove
 (`P mempty /\
   (!a:A M. P M ==> P (M munion (msing a)))
   ==> !s. FINITE s ==> !M. {a:A | ~(multiplicity M a = 0)} SUBSET s ==> P M`,
  STRIP_TAC THEN MATCH_MP_TAC FINITE_INDUCT THEN CONJ_TAC THENL
   [REWRITE_TAC[SUBSET; IN_ELIM_THM; NOT_IN_EMPTY] THEN
    REPEAT STRIP_TAC THEN
    SUBGOAL_THEN `M:(A)multiset = mempty` (fun th -> ASM_REWRITE_TAC[th]) THEN
    ASM_REWRITE_TAC[MEXTENSION; MEMPTY]; X_GEN_TAC `a:A`] THEN
  REPEAT STRIP_TAC THEN MP_TAC MULTISET_INDUCT_LEMMA1 THEN
  ASM_REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN
  ASM_REWRITE_TAC[GSYM EXISTS_REFL]);;

let MULTISET_INDUCT = prove
 (`P mempty /\
   (!a:A M. P M ==> P (M munion (msing a)))
   ==> !M. P M`,
  DISCH_THEN(MP_TAC o MATCH_MP MULTISET_INDUCT_LEMMA2) THEN
  REWRITE_TAC[RIGHT_IMP_FORALL_THM] THEN
  REWRITE_TAC[IMP_IMP] THEN
  GEN_TAC THEN DISCH_THEN MATCH_MP_TAC THEN
  EXISTS_TAC `{a:A | ~(multiplicity M a = 0)}` THEN
  REWRITE_TAC[SUBSET_REFL; multiset_tybij] THEN
  CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN REWRITE_TAC[multiset_tybij]);;

(* ========================================================================= *)
(* Part 2: Transcription of Tobias's paper.                                  *)
(* ========================================================================= *)

parse_as_infix("<<",(12,"right"));;

(* ------------------------------------------------------------------------- *)
(* Wellfounded part of a relation.                                           *)
(* ------------------------------------------------------------------------- *)

let WFP_RULES,WFP_INDUCT,WFP_CASES = new_inductive_definition
  `!x. (!y. y << x ==> WFP(<<) y) ==> WFP(<<) x`;;

(* ------------------------------------------------------------------------- *)
(* Wellfounded part induction.                                               *)
(* ------------------------------------------------------------------------- *)

let WFP_PART_INDUCT = prove
 (`!P. (!x. x IN WFP(<<) /\ (!y. y << x ==> P(y)) ==> P(x))
       ==> !x:A. x IN WFP(<<) ==> P(x)`,
  GEN_TAC THEN REWRITE_TAC[IN] THEN STRIP_TAC THEN
  ONCE_REWRITE_TAC[TAUT `a ==> b <=> a ==> a /\ b`] THEN
  MATCH_MP_TAC WFP_INDUCT THEN ASM_MESON_TAC[WFP_RULES]);;

(* ------------------------------------------------------------------------- *)
(* A relation is wellfounded iff WFP is the whole universe.                  *)
(* ------------------------------------------------------------------------- *)

let WFP_WF = prove
 (`WF(<<) <=> (WFP(<<) = UNIV:A->bool)`,
  EQ_TAC THENL
   [REWRITE_TAC[WF_IND; EXTENSION; IN; UNIV] THEN MESON_TAC[WFP_RULES];
    DISCH_TAC THEN MP_TAC WFP_PART_INDUCT THEN
    ASM_REWRITE_TAC[IN; UNIV; WF_IND]]);;

(* ------------------------------------------------------------------------- *)
(* The multiset order.                                                       *)
(* ------------------------------------------------------------------------- *)

let morder = new_definition
  `morder(<<) N M <=> ?M0 a K. (M = M0 munion (msing a)) /\
                               (N = M0 munion K) /\
                               (!b. b mmember K ==> b << a)`;;

(* ------------------------------------------------------------------------- *)
(* We separate off this part from the proof of LEMMA_2_1.                    *)
(* ------------------------------------------------------------------------- *)

let LEMMA_2_0 = prove
 (`morder(<<) N (M0 munion (msing a))
   ==> (?M. morder(<<) M M0 /\ (N = M munion (msing a))) \/
       (?K. (N = M0 munion K) /\ (!b:A. b mmember K ==> b << a))`,
  GEN_REWRITE_TAC LAND_CONV [morder] THEN
  DISCH_THEN(EVERY_TCL (map X_CHOOSE_THEN
   [`M1:(A)multiset`; `b:A`; `K:(A)multiset`]) STRIP_ASSUME_TAC) THEN
  ASM_CASES_TAC `b:A = a` THENL
   [DISJ2_TAC THEN UNDISCH_THEN `b:A = a` SUBST_ALL_TAC THEN
    EXISTS_TAC `K:(A)multiset` THEN ASM_MESON_TAC[MUNION_11]; DISJ1_TAC] THEN
  SUBGOAL_THEN `?M2. M1 = M2 munion (msing(a:A))` STRIP_ASSUME_TAC THENL
   [EXISTS_TAC `M1 mdiff (msing(a:A))` THEN
    MAP_EVERY MATCH_MP_TAC [MMEMBER_MDIFF; MUNION_INUNION] THEN
    UNDISCH_TAC `M0 munion (msing a) = M1 munion (msing(b:A))` THEN
    ASM_REWRITE_TAC[MEXTENSION; MUNION; MSING; mmember] THEN
    DISCH_THEN(MP_TAC o SPEC `a:A`) THEN ASM_REWRITE_TAC[] THEN
    ARITH_TAC; ALL_TAC] THEN
  EXISTS_TAC `M2 munion K:(A)multiset` THEN ASM_REWRITE_TAC[MUNION_AC] THEN
  REWRITE_TAC[morder] THEN
  MAP_EVERY EXISTS_TAC [`M2:(A)multiset`; `b:A`; `K:(A)multiset`] THEN
  UNDISCH_TAC `M0 munion msing (a:A) = M1 munion msing b` THEN
  ASM_REWRITE_TAC[MUNION_AC] THEN MESON_TAC[MUNION_AC; MUNION_11]);;

(* ------------------------------------------------------------------------- *)
(* The sequence of lemmas from Tobias's paper.                               *)
(* ------------------------------------------------------------------------- *)

let LEMMA_2_1 = prove
 (`(!M b:A. b << a /\ M IN WFP(morder(<<))
            ==> (M munion (msing b)) IN WFP(morder(<<))) /\
   M0 IN WFP(morder(<<)) /\
   (!M. morder(<<) M M0 ==> (M munion (msing a)) IN WFP(morder(<<)))
   ==> (M0 munion (msing a)) IN WFP(morder(<<))`,
  STRIP_TAC THEN REWRITE_TAC[IN] THEN MATCH_MP_TAC WFP_RULES THEN
  X_GEN_TAC `N:(A)multiset` THEN
  DISCH_THEN(DISJ_CASES_THEN MP_TAC o MATCH_MP LEMMA_2_0) THENL
   [ASM_MESON_TAC[IN]; REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN
  SPEC_TAC(`N:(A)multiset`,`N:(A)multiset`) THEN
  ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
  MATCH_MP_TAC MULTISET_INDUCT THEN REPEAT STRIP_TAC THEN
  RULE_ASSUM_TAC(REWRITE_RULE[MUNION_ASSOC; MMEMBER_MUNION; MMEMBER_MSING]) THEN
  ASM_MESON_TAC[IN; MUNION_EMPTY]);;

let LEMMA_2_2 = prove
 (`(!M b. b << a /\ M IN WFP(morder(<<))
          ==> (M munion (msing b)) IN WFP(morder(<<)))
   ==> !M. M IN WFP(morder(<<)) ==> (M munion (msing a)) IN WFP(morder(<<))`,
  STRIP_TAC THEN MATCH_MP_TAC WFP_PART_INDUCT THEN
  REPEAT STRIP_TAC THEN MATCH_MP_TAC LEMMA_2_1 THEN ASM_REWRITE_TAC[]);;

let LEMMA_2_3 = prove
 (`WF(<<)
   ==> !a M. M IN WFP(morder(<<)) ==> (M munion (msing a)) IN WFP(morder(<<))`,
  REWRITE_TAC[WF_IND] THEN DISCH_THEN MATCH_MP_TAC THEN MESON_TAC[LEMMA_2_2]);;

let LEMMA_2_4 = prove
 (`WF(<<) ==> !M. M IN WFP(morder(<<))`,
  DISCH_TAC THEN MATCH_MP_TAC MULTISET_INDUCT THEN CONJ_TAC THENL
   [REWRITE_TAC[IN] THEN MATCH_MP_TAC WFP_RULES THEN
    REWRITE_TAC[morder; MUNION_MEMPTY];
    ASM_SIMP_TAC[LEMMA_2_3]]);;

(* ------------------------------------------------------------------------- *)
(* Hence the final result.                                                   *)
(* ------------------------------------------------------------------------- *)

let MORDER_WF = prove
 (`WF(<<) ==> WF(morder(<<))`,
  SIMP_TAC[WFP_WF; EXTENSION; IN_UNIV; LEMMA_2_4]);;