File: polylog.ml

package info (click to toggle)
hol-light 20170109-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 36,568 kB
  • ctags: 8,549
  • sloc: ml: 540,018; cpp: 439; lisp: 286; java: 279; makefile: 262; sh: 229; yacc: 108; perl: 78; ansic: 57; sed: 39
file content (677 lines) | stat: -rw-r--r-- 32,767 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
(* ========================================================================= *)
(* Pi series in Bailey/Borwein/Plouffe "polylogarithmic constants" paper.    *)
(* ========================================================================= *)

needs "Library/transc.ml";;

let FACTOR_1X4_LEMMA = prove
 (`!x. (x * x + x * sqrt (&2) + &1) * (x * x - x * sqrt (&2) + &1) =
       &1 + x pow 4`,
  REWRITE_TAC[REAL_ARITH
   `(a + b + c) * (a - b + c) = &2 * a * c + a * a - b * b + c * c`] THEN
  REWRITE_TAC[REAL_ARITH
   `&2 * (x * x) * &1 + a - (x * s) * x * s + &1 * &1 =
   (&2 - s * s) * x * x + (&1 + a)`] THEN
  SIMP_TAC[REWRITE_RULE[REAL_POW_2] SQRT_POW_2; REAL_POS] THEN
  REWRITE_TAC[REAL_SUB_REFL; REAL_MUL_LZERO; REAL_ADD_LID] THEN
  SUBST1_TAC(SYM(NUM_REDUCE_CONV `SUC(SUC(SUC(SUC 0)))`)) THEN
  REWRITE_TAC[real_pow; REAL_MUL_ASSOC; REAL_MUL_RID]);;

let MAGIC_DERIVATIVE = prove
 (`!x. abs(x) < &1
       ==> ((\x. ln((x - &1) pow 2) +
                 ln((x + &1) pow 2) +
                 ln((x pow 2 + x * sqrt(&2) + &1) /
                    (x pow 2 - x * sqrt(&2) + &1)) +
                 &2 * atn(x * sqrt(&2) + &1) +
                 &2 * atn(x * sqrt(&2) - &1) +
                 &2 * atn(x pow 2) -
                 ln(x pow 4 + &1))
            diffl ((&4 * sqrt(&2) -
                    &8 * x pow 3 -
                    &4 * sqrt(&2) * x pow 4 -
                    &8 * x pow 5) / (&1 - x pow 8)))(x)`,
  REPEAT STRIP_TAC THEN
  W(MP_TAC o SPEC `x:real` o DIFF_CONV o lhand o rator o snd) THEN
  REWRITE_TAC[IMP_IMP] THEN
  MATCH_MP_TAC(TAUT
   `a /\ (a ==> (b <=> c)) ==> (a ==> b) ==> c`) THEN
  CONJ_TAC THENL
   [REWRITE_TAC[GSYM CONJ_ASSOC] THEN
    MATCH_MP_TAC(TAUT
     `a /\ (a ==> c) /\ (a /\ c ==> b) /\ d /\ e
      ==> e /\ d /\ b /\ a /\ c`) THEN
    REPEAT CONJ_TAC THENL
     [MATCH_MP_TAC(REAL_ARITH `&0 <= x ==> &0 < x + &1`) THEN
      SUBST1_TAC(SYM(NUM_REDUCE_CONV `2 + 2`)) THEN
      REWRITE_TAC[REAL_POW_ADD; REAL_LE_SQUARE];
      GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [REAL_ADD_SYM] THEN
      ONCE_REWRITE_TAC[GSYM FACTOR_1X4_LEMMA] THEN
      DISCH_THEN(MP_TAC o MATCH_MP REAL_LT_IMP_NZ) THEN
      SIMP_TAC[REAL_POW_2; REAL_ENTIRE; DE_MORGAN_THM];
      STRIP_TAC THEN
      MATCH_MP_TAC REAL_LTE_TRANS THEN
      EXISTS_TAC `inv((x pow 2 - x * sqrt (&2) + &1) *
                      (x pow 2 - x * sqrt (&2) + &1)) *
                  ((x pow 2 - x * sqrt (&2) + &1) *
                   (x pow 2 - x * sqrt (&2) + &1)) *
                  (x pow 2 + x * sqrt (&2) + &1) /
                  (x pow 2 - x * sqrt (&2) + &1)` THEN
      CONJ_TAC THENL
       [MATCH_MP_TAC REAL_LT_MUL THEN CONJ_TAC THENL
         [REWRITE_TAC[REAL_LT_INV_EQ; GSYM REAL_POW_2] THEN
          ASM_REWRITE_TAC[REAL_ARITH `&0 < x <=> &0 <= x /\ ~(x = &0)`;
                          REAL_POW_EQ_0] THEN
          REWRITE_TAC[REAL_LE_SQUARE; REAL_POW_2]; ALL_TAC] THEN
        ASM_SIMP_TAC[GSYM REAL_MUL_ASSOC; REAL_DIV_LMUL] THEN
        ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
        REWRITE_TAC[REAL_POW_2; FACTOR_1X4_LEMMA] THEN
        MATCH_MP_TAC(REAL_ARITH `&0 <= x ==> &0 < &1 + x`) THEN
        SUBST1_TAC(SYM(NUM_REDUCE_CONV `2 + 2`)) THEN
        REWRITE_TAC[REAL_POW_ADD; REAL_LE_SQUARE];
        ALL_TAC] THEN
      ONCE_REWRITE_TAC[REAL_MUL_ASSOC] THEN
      ASM_SIMP_TAC[REAL_MUL_LINV; REAL_ENTIRE; DE_MORGAN_THM] THEN
      REWRITE_TAC[REAL_LE_REFL; REAL_MUL_LID];
      REWRITE_TAC[REAL_ARITH `&0 < x <=> &0 <= x /\ ~(x = &0)`] THEN
      REWRITE_TAC[REAL_POW_2; REAL_LE_SQUARE; REAL_ENTIRE] THEN
      UNDISCH_TAC `abs(x) < &1` THEN REAL_ARITH_TAC;
      REWRITE_TAC[REAL_ARITH `&0 < x <=> &0 <= x /\ ~(x = &0)`] THEN
      REWRITE_TAC[REAL_POW_2; REAL_LE_SQUARE; REAL_ENTIRE] THEN
      UNDISCH_TAC `abs(x) < &1` THEN REAL_ARITH_TAC];
    ALL_TAC] THEN
  STRIP_TAC THEN
  CONV_TAC NUM_REDUCE_CONV THEN
  REWRITE_TAC[REAL_MUL_RZERO; REAL_MUL_LZERO; REAL_MUL_LID; REAL_MUL_RID;
              REAL_SUB_RZERO; REAL_SUB_LZERO; REAL_SUB_REFL;
              REAL_ADD_LID; REAL_ADD_RID] THEN
  AP_THM_TAC THEN AP_TERM_TAC THEN
  REWRITE_TAC[REAL_POW_1] THEN
  REWRITE_TAC[REAL_ARITH
   `(a + b) * (x - y + z) - (a - b) * (x + y + z) =
    &2 * (b * x + b * z - a * y)`] THEN
  REWRITE_TAC[REAL_POW_2; REAL_MUL_RID] THEN
  REWRITE_TAC[REAL_ARITH
   `s * x * x + s - (&2 * x) * x * s = s * (&1 - x * x)`] THEN
  REWRITE_TAC[real_div; REAL_INV_MUL; REAL_INV_INV; GSYM REAL_MUL_ASSOC] THEN
  REWRITE_TAC[AC REAL_MUL_AC
   `a * b * c * d * e * inv(a) * f =
    (a * inv a) * b * c * d * e * f`] THEN
  REWRITE_TAC[REAL_ARITH
   `&1 + (x * s + &1) * (x * s + &1) =
    &2 + &2 * x * s + (s * s) * x * x`] THEN
  REWRITE_TAC[REAL_ARITH
   `&1 + (x * s - &1) * (x * s - &1) =
    &2 + &2 * x * --s + (s * s) * x * x`] THEN
  SIMP_TAC[REWRITE_RULE[REAL_POW_2] SQRT_POW_2; REAL_POS] THEN
  REWRITE_TAC[GSYM REAL_ADD_LDISTRIB] THEN
  REWRITE_TAC[REAL_ARITH `&2 + &2 * x = &2 * (&1 + x)`] THEN
  REWRITE_TAC[REAL_MUL_LNEG] THEN
  REWRITE_TAC[REAL_ARITH
   `&1 + x * (a + b) = (&1 + x * a) + x * b`] THEN
  REWRITE_TAC[REAL_MUL_RNEG] THEN REWRITE_TAC[GSYM real_sub] THEN
  REWRITE_TAC[REAL_ARITH `(&1 + x * a) + x * x = x * x + x * a + &1`] THEN
  REWRITE_TAC[REAL_ARITH `(&1 - x * a) + x * x = x * x - x * a + &1`] THEN
  REWRITE_TAC[REAL_INV_MUL; GSYM REAL_MUL_ASSOC] THEN
  REWRITE_TAC[REAL_ARITH `inv(x) * y * z * x = (x * inv(x)) * y * z`] THEN
  SIMP_TAC[REAL_MUL_RINV; REAL_OF_NUM_EQ; ARITH_EQ; REAL_MUL_LID] THEN
  REWRITE_TAC[REAL_ARITH
    `p' * n * &2 * s2 * aa * n' * n' =
     (n' * n) * (p' * n') * &2 * s2 * aa`] THEN
  MP_TAC(SPEC `x pow 2` REAL_LE_SQUARE) THEN
  DISCH_THEN(MP_TAC o MATCH_MP (REAL_ARITH `&0 <= x ==> ~(&1 + x = &0)`)) THEN
  GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [GSYM REAL_POW_2] THEN
  REWRITE_TAC[REAL_POW_POW; ARITH] THEN
  REWRITE_TAC[GSYM FACTOR_1X4_LEMMA; REAL_ENTIRE; DE_MORGAN_THM] THEN
  STRIP_TAC THEN
  ASM_SIMP_TAC[REAL_MUL_LINV; REAL_MUL_LID] THEN
  SUBGOAL_THEN
   `!other. inv(x * x + x * sqrt (&2) + &1) * sqrt (&2) +
            inv(x * x - x * sqrt (&2) + &1) * sqrt (&2) + other =
            other + &2 * sqrt(&2) * (&1 + x * x) *
                    inv(x * x + x * sqrt (&2) + &1) *
                    inv(x * x - x * sqrt (&2) + &1)`
   (fun th -> ONCE_REWRITE_TAC[th])
  THENL
   [GEN_TAC THEN
    MATCH_MP_TAC REAL_EQ_LCANCEL_IMP THEN
    EXISTS_TAC `(x * x + x * sqrt (&2) + &1) *
                (x * x - x * sqrt (&2) + &1)` THEN
    MATCH_MP_TAC(TAUT `~a /\ (~a ==> b) ==> ~a /\ b`) THEN CONJ_TAC THENL
     [REWRITE_TAC[FACTOR_1X4_LEMMA] THEN
      MATCH_MP_TAC(REAL_ARITH `&0 <= x ==> ~(&1 + x = &0)`) THEN
      SUBST1_TAC(SYM(NUM_REDUCE_CONV `2 + 2`)) THEN
      REWRITE_TAC[REAL_POW_ADD; REAL_LE_SQUARE]; ALL_TAC] THEN
    REWRITE_TAC[REAL_ENTIRE; DE_MORGAN_THM] THEN STRIP_TAC THEN
    GEN_REWRITE_TAC LAND_CONV [REAL_ARITH
     `(x * y) * (a + b + c) = (x * a) * y + (y * b) * x + x * y * c`] THEN
    ASM_SIMP_TAC[REAL_MUL_ASSOC; REAL_MUL_RINV] THEN
    REWRITE_TAC[REAL_ARITH
     `(a + b + x * other = x * (other + c)) <=> (a + b = x * c)`] THEN
    REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN
    ONCE_REWRITE_TAC[AC REAL_MUL_AC
     `p * n * x * y * z * p' * n' =
      (p * p') * (n * n') * x * y * z`] THEN
    ASM_SIMP_TAC[REAL_MUL_RINV; REAL_MUL_LID; REAL_MUL_RID] THEN
    REWRITE_TAC[REAL_ARITH
     `a * (x - y + z) + a * (x + y + z) = &2 * a * (x + z)`] THEN
    REWRITE_TAC[REAL_ADD_AC]; ALL_TAC] THEN
  REWRITE_TAC[GSYM REAL_INV_MUL; FACTOR_1X4_LEMMA] THEN
  SUBGOAL_THEN `~(x + &1 = &0) /\ ~(x - &1 = &0)` STRIP_ASSUME_TAC THENL
   [CONJ_TAC THENL
     [UNDISCH_TAC `&0 < (x + &1) pow 2`;
      UNDISCH_TAC `&0 < (x - &1) pow 2`] THEN
    DISCH_THEN(MP_TAC o MATCH_MP REAL_LT_IMP_NZ) THEN
    SIMP_TAC[REAL_POW_EQ_0; ARITH_EQ]; ALL_TAC] THEN
  ASM_SIMP_TAC[REAL_MUL_RINV; REAL_MUL_LID] THEN
  REWRITE_TAC[REAL_ARITH
   `i4 * &2 * s * (&1 - x2) + other + &2 * s * (&1 + x2) * i4 =
    &4 * s * i4 + other`] THEN
  MATCH_MP_TAC REAL_EQ_LCANCEL_IMP THEN EXISTS_TAC `&1 - x pow 8` THEN
  MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL
   [MATCH_MP_TAC(REAL_ARITH `x < &1 ==> ~(&1 - x = &0)`) THEN
    SUBST1_TAC(SYM(NUM_REDUCE_CONV `2 * 4`)) THEN
    SUBST1_TAC(SYM(REAL_RAT_REDUCE_CONV `&1 pow 4`)) THEN
    REWRITE_TAC[GSYM REAL_POW_POW] THEN MATCH_MP_TAC REAL_POW_LT2 THEN
    REWRITE_TAC[ARITH_EQ; REAL_POW_2; REAL_LE_SQUARE] THEN
    REWRITE_TAC[GSYM REAL_POW_2] THEN
    ONCE_REWRITE_TAC[GSYM REAL_POW2_ABS] THEN
    SUBST1_TAC(SYM(REAL_RAT_REDUCE_CONV `&1 pow 2`)) THEN
    MATCH_MP_TAC REAL_POW_LT2 THEN
    ASM_REWRITE_TAC[REAL_ABS_POS; ARITH_EQ]; ALL_TAC] THEN
  SIMP_TAC[GSYM real_div; REAL_DIV_LMUL] THEN
  SUBGOAL_THEN `!x. &1 - x pow 8 = (&1 + x pow 4) * (&1 - x pow 4)`
   (fun th -> REWRITE_TAC[th])
  THENL
   [SUBST1_TAC(SYM(NUM_REDUCE_CONV `4 * 2`)) THEN
    REWRITE_TAC[GSYM REAL_POW_POW] THEN
    REWRITE_TAC[REAL_POW_2] THEN REAL_ARITH_TAC; ALL_TAC] THEN
  REWRITE_TAC[REAL_ENTIRE; DE_MORGAN_THM] THEN STRIP_TAC THEN
  REWRITE_TAC[GSYM REAL_POW_2; GSYM(CONJUNCT2 real_pow)] THEN
  CONV_TAC NUM_REDUCE_CONV THEN
  SUBST1_TAC(SPECL [`x pow 4`; `&1`] REAL_ADD_SYM) THEN
  REWRITE_TAC[real_div; REAL_ARITH
   `a + b + c1 * c2 * x + x * d - x * e =
    (a + b) + x * (c1 * c2 + d - e)`] THEN
  ONCE_REWRITE_TAC[REAL_ARITH
   `(p * m) * (x + inv(p) * y) = m * x * p + (p * inv(p)) * m * y`] THEN
  ASM_SIMP_TAC[REAL_MUL_RINV; REAL_MUL_LID] THEN
  UNDISCH_TAC `~(&1 - x pow 4 = &0)` THEN
  SUBGOAL_THEN `!x. &1 - x pow 4 = (&1 + x pow 2) * (&1 - x pow 2)`
   (fun th -> REWRITE_TAC[th])
  THENL
   [SUBST1_TAC(SYM(NUM_REDUCE_CONV `2 * 2`)) THEN
    REWRITE_TAC[GSYM REAL_POW_POW] THEN
    REWRITE_TAC[REAL_POW_2] THEN REAL_ARITH_TAC; ALL_TAC] THEN
  REWRITE_TAC[REAL_ENTIRE; DE_MORGAN_THM] THEN STRIP_TAC THEN
  UNDISCH_TAC `~(&1 - x pow 2 = &0)` THEN
  SUBGOAL_THEN `!x. &1 - x pow 2 = (&1 + x) * (&1 - x)`
   (fun th -> REWRITE_TAC[th])
  THENL
   [REWRITE_TAC[REAL_POW_2] THEN REAL_ARITH_TAC; ALL_TAC] THEN
  REWRITE_TAC[REAL_ENTIRE; DE_MORGAN_THM] THEN STRIP_TAC THEN
  ONCE_REWRITE_TAC[REAL_ARITH
   `(x12 * (p1 + p2) * (m1 - m2)) * (m' * &2 + p' * &2) * other =
    --(&2) * x12 * other *
    ((p2 + p1) * (m2 - m1) * m' + (m2 - m1) * (p2 + p1) * p')`] THEN
  ASM_SIMP_TAC[REAL_MUL_RINV] THEN
  CONV_TAC(TOP_DEPTH_CONV num_CONV) THEN
  REWRITE_TAC[real_pow] THEN CONV_TAC NUM_REDUCE_CONV THEN
  REAL_ARITH_TAC);;

let POLYLOG_CONVERGES = prove
 (`!a b x. ~(a = 0) /\ ~(b = 0) /\ abs(x) < &1
           ==> summable (\n. x pow (a * n + b) / &(a * n + b))`,
  REPEAT STRIP_TAC THEN
  MATCH_MP_TAC SER_COMPAR THEN
  EXISTS_TAC `\n. abs(x) pow (a * n + b)` THEN CONJ_TAC THENL
   [EXISTS_TAC `0` THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN
    REWRITE_TAC[REAL_ABS_DIV; GSYM REAL_ABS_POW; REAL_ABS_NUM] THEN
    REWRITE_TAC[real_div] THEN
    GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_RID] THEN
    MATCH_MP_TAC REAL_LE_LMUL THEN REWRITE_TAC[REAL_ABS_POS] THEN
    ASM_SIMP_TAC[REAL_INV_LE_1; REAL_OF_NUM_LE;
                 ARITH_RULE `~(b = 0) ==> 1 <= a + b`];
    ALL_TAC] THEN
  ONCE_REWRITE_TAC[ADD_SYM] THEN
  REWRITE_TAC[REAL_POW_ADD; GSYM REAL_POW_POW] THEN
  REWRITE_TAC[summable] THEN
  EXISTS_TAC `abs(x) pow b * inv(&1 - abs(x) pow a)` THEN
  MATCH_MP_TAC SER_CMUL THEN
  MATCH_MP_TAC GP THEN
  REWRITE_TAC[REAL_ABS_POW; REAL_ABS_ABS] THEN
  SUBST1_TAC(SYM(SPEC `a:num` REAL_POW_ONE)) THEN
  MATCH_MP_TAC REAL_POW_LT2 THEN
  ASM_REWRITE_TAC[REAL_ABS_POS]);;

let POLYLOG_DERIVATIVE = prove
 (`!a b x. ~(a = 0) /\ ~(b = 0) /\ abs(x) < &1
           ==> ((\x. suminf (\n. x pow (a * n + b) / &(a * n + b))) diffl
               (x pow (b - 1) / (&1 - x pow a)))(x)`,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `abs(x pow a) < &1` ASSUME_TAC THENL
   [REWRITE_TAC[REAL_ABS_POW] THEN
    SUBST1_TAC(SYM(SPEC `a:num` REAL_POW_ONE)) THEN
    MATCH_MP_TAC REAL_POW_LT2 THEN
    ASM_REWRITE_TAC[REAL_ABS_POS]; ALL_TAC] THEN
  MP_TAC(SPEC `x pow a` GP) THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN
  SUBGOAL_THEN
   `((\x. suminf (\n. inv(&(a * n + b)) * x pow n)) diffl
     (suminf (\n. diffs (\n. inv(&(a * n + b))) n * (x pow a) pow n)))(x pow a)`
  MP_TAC THENL
   [MATCH_MP_TAC TERMDIFF_STRONG THEN
    EXISTS_TAC `(abs(x pow a) + &1) / &2` THEN
    ABBREV_TAC `k = (abs(x pow a) + &1) / &2` THEN
    SUBGOAL_THEN `abs(x pow a) < abs(k) /\ abs(k) < &1` STRIP_ASSUME_TAC THENL
     [EXPAND_TAC "k" THEN
      SIMP_TAC[REAL_ABS_DIV; REAL_ABS_NUM; REAL_LT_RDIV_EQ;
             REAL_LT_LDIV_EQ; REAL_OF_NUM_LT; ARITH] THEN
      UNDISCH_TAC `abs(x pow a) < &1` THEN REAL_ARITH_TAC; ALL_TAC] THEN
    ASM_REWRITE_TAC[] THEN MATCH_MP_TAC SER_COMPAR THEN
    EXISTS_TAC `\n. abs(k) pow n` THEN CONJ_TAC THENL
     [EXISTS_TAC `0` THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN
      REWRITE_TAC[] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
      REWRITE_TAC[GSYM real_div; REAL_ABS_DIV;
                  GSYM REAL_ABS_POW; REAL_ABS_NUM] THEN
      ASM_SIMP_TAC[REAL_LE_LDIV_EQ; REAL_OF_NUM_LT;
                   ARITH_RULE `~(b = 0) ==> 0 < a + b`] THEN
      GEN_REWRITE_TAC LAND_CONV [GSYM REAL_MUL_RID] THEN
      MATCH_MP_TAC REAL_LE_LMUL THEN REWRITE_TAC[REAL_ABS_POS] THEN
      ASM_SIMP_TAC[REAL_OF_NUM_LE;
                   ARITH_RULE `~(b = 0) ==> 1 <= a + b`]; ALL_TAC] THEN
    REWRITE_TAC[summable] THEN EXISTS_TAC `inv(&1 - abs k)` THEN
    ASM_SIMP_TAC[GP; REAL_ABS_ABS]; ALL_TAC] THEN
  REWRITE_TAC[diffs] THEN
  MP_TAC(SPECL [`a:num`; `x:real`] DIFF_POW) THEN
  REWRITE_TAC[TAUT `a ==> b ==> c <=> b /\ a ==> c`] THEN
  DISCH_THEN(MP_TAC o MATCH_MP DIFF_CHAIN) THEN
  REWRITE_TAC[] THEN
  MP_TAC(SPECL [`b:num`; `x:real`] DIFF_POW) THEN
  REWRITE_TAC[TAUT `a ==> b ==> c <=> b /\ a ==> c`] THEN
  DISCH_THEN(MP_TAC o MATCH_MP DIFF_MUL) THEN
  REWRITE_TAC[] THEN
  SUBGOAL_THEN
   `summable (\n. &(SUC n) / &(a * SUC n + b) * (x pow a) pow (SUC n - 1))`
  ASSUME_TAC THENL
   [REWRITE_TAC[SUC_SUB1] THEN MATCH_MP_TAC SER_COMPAR THEN
    EXISTS_TAC `\n. abs(x pow a) pow n` THEN CONJ_TAC THENL
     [EXISTS_TAC `0` THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN
      REWRITE_TAC[] THEN ONCE_REWRITE_TAC[REAL_ABS_MUL] THEN
      REWRITE_TAC[GSYM REAL_ABS_POW] THEN
      GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_LID] THEN
      MATCH_MP_TAC REAL_LE_RMUL THEN REWRITE_TAC[REAL_ABS_POS] THEN
      ASM_SIMP_TAC[REAL_OF_NUM_LE; REAL_OF_NUM_LT; REAL_ABS_DIV; REAL_ABS_NUM;
                   ARITH_RULE `~(b = 0) ==> 0 < a + b /\ 1 <= a + b`;
                   REAL_MUL_LID; REAL_LE_LDIV_EQ] THEN
      MATCH_MP_TAC(ARITH_RULE `1 * n <= b ==> n <= b + c`) THEN
      ASM_SIMP_TAC[LE_MULT_RCANCEL; ARITH_RULE `1 <= n <=> ~(n = 0)`];
      ALL_TAC] THEN
    REWRITE_TAC[summable] THEN EXISTS_TAC `inv(&1 - abs(x pow a))` THEN
    ASM_SIMP_TAC[GP; REAL_ABS_ABS]; ALL_TAC] THEN
  FIRST_ASSUM(MP_TAC o
              MATCH_MP(SPECL [`f:num->real`; `1`] SER_OFFSET_REV) o
              REWRITE_RULE[ADD1]) THEN
  REWRITE_TAC[SUM_1] THEN
  REWRITE_TAC[real_div; REAL_MUL_LZERO; REAL_MUL_RZERO; REAL_ADD_LID] THEN
  REWRITE_TAC[GSYM real_div] THEN
  CONV_TAC(LAND_CONV(ONCE_DEPTH_CONV(ALPHA_CONV `n:num`))) THEN
  REWRITE_TAC[ADD_SUB] THEN REWRITE_TAC[ADD1] THEN
  DISCH_THEN(MP_TAC o MATCH_MP SER_CMUL) THEN
  DISCH_THEN(MP_TAC o SPEC `&a * x pow (a - 1) * x pow b`) THEN
  SUBGOAL_THEN
   `summable (\n. inv(&(a * n + b)) * x pow a pow n)`
  MP_TAC THENL
   [MATCH_MP_TAC SER_COMPAR THEN
    EXISTS_TAC `\n. abs(x pow a) pow n` THEN CONJ_TAC THENL
     [EXISTS_TAC `0` THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN
      REWRITE_TAC[REAL_ABS_MUL; GSYM REAL_ABS_POW; REAL_ABS_NUM] THEN
      GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_LID] THEN
      MATCH_MP_TAC REAL_LE_RMUL THEN REWRITE_TAC[REAL_ABS_POS] THEN
      REWRITE_TAC[REAL_ABS_INV; REAL_ABS_NUM] THEN
      ASM_SIMP_TAC[REAL_INV_LE_1; REAL_OF_NUM_LE;
                   ARITH_RULE `~(b = 0) ==> 1 <= a + b`];
      ALL_TAC] THEN
    REWRITE_TAC[summable] THEN
    EXISTS_TAC `inv(&1 - abs(x pow a))` THEN
    ASM_SIMP_TAC[GP; REAL_ABS_ABS]; ALL_TAC] THEN
  DISCH_THEN(fun th -> ASSUME_TAC th THEN MP_TAC th) THEN
  DISCH_THEN(MP_TAC o MATCH_MP SUMMABLE_SUM) THEN
  DISCH_THEN(MP_TAC o MATCH_MP SER_CMUL) THEN
  DISCH_THEN(MP_TAC o SPEC `&b * x pow (b - 1)`) THEN
  ONCE_REWRITE_TAC[TAUT `a ==> b ==> c <=> b /\ a ==> c`] THEN
  DISCH_THEN(MP_TAC o MATCH_MP SER_ADD) THEN REWRITE_TAC[] THEN
  SUBGOAL_THEN
   `!n. (&a * x pow (a - 1) * x pow b) *
        &n / &(a * n + b) * x pow a pow (n - 1) +
        (&b * x pow (b - 1)) * inv(&(a * n + b)) * x pow a pow n =
        x pow (a * n + b - 1)`
   (fun th -> REWRITE_TAC[th])
  THENL
   [X_GEN_TAC `n:num` THEN ASM_CASES_TAC `n = 0` THENL
     [ASM_REWRITE_TAC[SUB_0; real_pow; MULT_CLAUSES; ADD_CLAUSES] THEN
      REWRITE_TAC[real_div; REAL_MUL_LZERO; REAL_MUL_RZERO] THEN
      REWRITE_TAC[REAL_ADD_LID; GSYM REAL_MUL_ASSOC; REAL_MUL_RID] THEN
      ASM_SIMP_TAC[GSYM real_div; REAL_DIV_LMUL; REAL_OF_NUM_EQ]; ALL_TAC] THEN
    REWRITE_TAC[REAL_POW_ADD; GSYM REAL_POW_POW] THEN
    SUBGOAL_THEN `(x pow a) pow n = x pow a * (x pow a) pow (n - 1)`
    SUBST1_TAC THENL
     [REWRITE_TAC[GSYM(CONJUNCT2 real_pow)] THEN
      AP_TERM_TAC THEN UNDISCH_TAC `~(n = 0)` THEN ARITH_TAC; ALL_TAC] THEN
    REWRITE_TAC[REAL_POW_POW] THEN
    SUBGOAL_THEN `x pow a = x * x pow (a - 1)` SUBST1_TAC THENL
     [REWRITE_TAC[GSYM(CONJUNCT2 real_pow)] THEN
      AP_TERM_TAC THEN UNDISCH_TAC `~(a = 0)` THEN ARITH_TAC; ALL_TAC] THEN
    SUBGOAL_THEN `x pow b = x * x pow (b - 1)` SUBST1_TAC THENL
     [REWRITE_TAC[GSYM(CONJUNCT2 real_pow)] THEN
      AP_TERM_TAC THEN UNDISCH_TAC `~(b = 0)` THEN ARITH_TAC; ALL_TAC] THEN
    REWRITE_TAC[real_div; GSYM REAL_MUL_ASSOC] THEN
    REWRITE_TAC[REAL_ARITH
     `a * xa1 * x * xb1 * n * i * xan1 + b * xb1 * i * x * xa1 * xan1 =
      x * xa1 * xan1 * xb1 * (a * n + b) * i`] THEN
    ASM_SIMP_TAC[GSYM real_div; REAL_OF_NUM_MUL; REAL_OF_NUM_ADD] THEN
    ASM_SIMP_TAC[REAL_DIV_REFL; REAL_MUL_RID; REAL_OF_NUM_EQ;
                 ARITH_RULE `~(b = 0) ==> ~(a + b = 0)`];
    ALL_TAC] THEN
  DISCH_THEN(MP_TAC o MATCH_MP SUM_UNIQ) THEN
  SUBGOAL_THEN
   `x pow (b - 1) / (&1 - x pow a) = suminf (\n. x pow (a * n + b - 1))`
  (SUBST1_TAC o SYM) THENL
   [MATCH_MP_TAC SUM_UNIQ THEN
    ONCE_REWRITE_TAC[ADD_SYM] THEN
    REWRITE_TAC[REAL_POW_ADD; real_div] THEN
    MATCH_MP_TAC SER_CMUL THEN
    ASM_SIMP_TAC[GSYM REAL_POW_POW; GP]; ALL_TAC] THEN
  SIMP_TAC[REAL_MUL_AC] THEN DISCH_THEN(K ALL_TAC) THEN
  REWRITE_TAC[diffl] THEN
  MATCH_MP_TAC(ONCE_REWRITE_RULE[IMP_CONJ]
               LIM_TRANSFORM) THEN
  REWRITE_TAC[LIM] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN
  EXISTS_TAC `&1 - abs(x)` THEN
  ASM_REWRITE_TAC[REAL_SUB_LT; REAL_SUB_RZERO] THEN
  X_GEN_TAC `h:real` THEN STRIP_TAC THEN
  MATCH_MP_TAC(REAL_ARITH `(a = a') /\ &0 < b ==> abs(a - a') < b`) THEN
  ASM_REWRITE_TAC[] THEN
  AP_THM_TAC THEN AP_TERM_TAC THEN
  SUBGOAL_THEN `abs(x + h) < &1` ASSUME_TAC THENL
   [UNDISCH_TAC `abs(h) < &1 - abs(x)` THEN REAL_ARITH_TAC; ALL_TAC] THEN
  SUBGOAL_THEN
   `!z. abs(z) < &1
        ==> (suminf (\n. z pow (a * n + b) / &(a * n + b)) =
             z pow b * suminf (\n. inv (&(a * n + b)) * z pow a pow n))`
   (fun th -> ASM_SIMP_TAC[th]) THEN
  X_GEN_TAC `z:real` THEN DISCH_TAC THEN
  MATCH_MP_TAC(GSYM SUM_UNIQ) THEN
  ONCE_REWRITE_TAC[ADD_SYM] THEN
  REWRITE_TAC[REAL_POW_ADD; real_div; GSYM REAL_MUL_ASSOC] THEN
  MATCH_MP_TAC SER_CMUL THEN
  GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [REAL_MUL_SYM] THEN
  REWRITE_TAC[GSYM REAL_POW_POW] THEN
  MATCH_MP_TAC SUMMABLE_SUM THEN
  ONCE_REWRITE_TAC[ADD_SYM] THEN
  MATCH_MP_TAC SER_COMPAR THEN
  EXISTS_TAC `\n. abs(z pow a) pow n` THEN CONJ_TAC THENL
   [EXISTS_TAC `0` THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN
    REWRITE_TAC[REAL_ABS_MUL; GSYM REAL_ABS_POW; REAL_ABS_NUM] THEN
    GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_LID] THEN
    MATCH_MP_TAC REAL_LE_RMUL THEN REWRITE_TAC[REAL_ABS_POS] THEN
    REWRITE_TAC[REAL_ABS_INV; REAL_ABS_NUM] THEN
    ASM_SIMP_TAC[REAL_INV_LE_1; REAL_OF_NUM_LE;
                 ARITH_RULE `~(b = 0) ==> 1 <= a + b`];
    ALL_TAC] THEN
  REWRITE_TAC[summable] THEN
  EXISTS_TAC `inv(&1 - abs(z pow a))` THEN
  MATCH_MP_TAC GP THEN REWRITE_TAC[REAL_ABS_ABS; REAL_ABS_POW] THEN
  SUBST1_TAC(SYM(SPEC `a:num` REAL_POW_ONE)) THEN
  MATCH_MP_TAC REAL_POW_LT2 THEN ASM_REWRITE_TAC[REAL_ABS_POS]);;

let POLYLOG_THM = prove
 (`(\n. inv(&16 pow n) * (&4 / &(8 * n + 1) -
                          &2 / &(8 * n + 4) -
                          &1 / &(8 * n + 5) -
                          &1 / &(8 * n + 6)))
   sums pi`,
  SUBGOAL_THEN
   `!x. abs(x) < &1
        ==> ((\x. suminf (\n. &4 * sqrt(&2) * x pow (8 * n + 1) / &(8 * n + 1) -
                              &8 * x pow (8 * n + 4) / &(8 * n + 4) -
                              &4 * sqrt(&2) * x pow (8 * n + 5) / &(8 * n + 5) -
                              &8 * x pow (8 * n + 6) / &(8 * n + 6)))
             diffl
              (&4 * sqrt(&2) -
               &8 * x pow 3 -
               &4 * sqrt(&2) * x pow 4 -
               &8 * x pow 5) / (&1 - x pow 8))(x)`
  ASSUME_TAC THENL
   [REPEAT STRIP_TAC THEN
    MP_TAC(SPECL [`8`; `1`; `x:real`] POLYLOG_DERIVATIVE) THEN
    CONV_TAC NUM_REDUCE_CONV THEN ASM_REWRITE_TAC[real_pow] THEN
    DISCH_THEN(MP_TAC o SPEC `&4 * sqrt(&2)` o MATCH_MP DIFF_CMUL) THEN
    MP_TAC(SPECL [`8`; `4`; `x:real`] POLYLOG_DERIVATIVE) THEN
    CONV_TAC NUM_REDUCE_CONV THEN ASM_REWRITE_TAC[] THEN
    DISCH_THEN(MP_TAC o SPEC `&8` o MATCH_MP DIFF_CMUL) THEN
    MP_TAC(SPECL [`8`; `5`; `x:real`] POLYLOG_DERIVATIVE) THEN
    CONV_TAC NUM_REDUCE_CONV THEN ASM_REWRITE_TAC[] THEN
    DISCH_THEN(MP_TAC o SPEC `&4 * sqrt(&2)` o MATCH_MP DIFF_CMUL) THEN
    MP_TAC(SPECL [`8`; `6`; `x:real`] POLYLOG_DERIVATIVE) THEN
    CONV_TAC NUM_REDUCE_CONV THEN ASM_REWRITE_TAC[] THEN
    DISCH_THEN(MP_TAC o SPEC `&8` o MATCH_MP DIFF_CMUL) THEN
    REWRITE_TAC[] THEN
    ONCE_REWRITE_TAC[TAUT `a ==> b ==> c <=> b /\ a ==> c`] THEN
    DISCH_THEN(MP_TAC o MATCH_MP DIFF_ADD) THEN
    ONCE_REWRITE_TAC[TAUT `a ==> b ==> c <=> b /\ a ==> c`] THEN
    DISCH_THEN(MP_TAC o MATCH_MP DIFF_ADD) THEN
    ONCE_REWRITE_TAC[TAUT `a ==> b ==> c <=> b /\ a ==> c`] THEN
    DISCH_THEN(MP_TAC o MATCH_MP DIFF_SUB) THEN
    REWRITE_TAC[real_div; REAL_MUL_ASSOC; GSYM REAL_ADD_RDISTRIB;
                GSYM REAL_SUB_RDISTRIB] THEN
    REWRITE_TAC[REAL_ARITH `a - (b + c + d) = a - b - c - d`] THEN
    REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN REWRITE_TAC[GSYM real_div] THEN
    REWRITE_TAC[REAL_MUL_ASSOC; REAL_MUL_RID] THEN
    REWRITE_TAC[diffl] THEN
    MATCH_MP_TAC(ONCE_REWRITE_RULE[IMP_CONJ]
                 LIM_TRANSFORM) THEN
    REWRITE_TAC[LIM] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN
    EXISTS_TAC `&1 - abs(x)` THEN
    ASM_REWRITE_TAC[REAL_SUB_LT; REAL_SUB_RZERO] THEN
    X_GEN_TAC `h:real` THEN STRIP_TAC THEN
    MATCH_MP_TAC(REAL_ARITH `(a = a') /\ &0 < b ==> abs(a - a') < b`) THEN
    ASM_REWRITE_TAC[] THEN
    AP_THM_TAC THEN AP_TERM_TAC THEN
    SUBGOAL_THEN `abs(x + h) < &1` ASSUME_TAC THENL
     [UNDISCH_TAC `abs(h) < &1 - abs(x)` THEN REAL_ARITH_TAC; ALL_TAC] THEN
    SUBGOAL_THEN
     `!z. abs(z) < &1
          ==> (suminf
                  (\n. (&4 * sqrt (&2)) * z pow (8 * n + 1) / &(8 * n + 1) -
                       &8 * z pow (8 * n + 4) / &(8 * n + 4) -
                       (&4 * sqrt (&2)) * z pow (8 * n + 5) / &(8 * n + 5) -
                       &8 * z pow (8 * n + 6) / &(8 * n + 6)) =
            (&4 * sqrt (&2)) * suminf (\n. z pow (8 * n + 1) / &(8 * n + 1)) -
             &8 * suminf (\n. z pow (8 * n + 4) / &(8 * n + 4)) -
             (&4 * sqrt (&2)) * suminf (\n. z pow (8 * n + 5) / &(8 * n + 5)) -
             &8 * suminf (\n. z pow (8 * n + 6) / &(8 * n + 6)))`
     (fun th -> ASM_SIMP_TAC[th]) THEN
    X_GEN_TAC `z:real` THEN DISCH_TAC THEN
    MATCH_MP_TAC(GSYM SUM_UNIQ) THEN
    REPEAT(MATCH_MP_TAC SER_SUB THEN CONJ_TAC) THEN
    MATCH_MP_TAC SER_CMUL THEN
    MATCH_MP_TAC SUMMABLE_SUM THEN
    MATCH_MP_TAC POLYLOG_CONVERGES THEN
    ASM_REWRITE_TAC[] THEN CONV_TAC NUM_REDUCE_CONV; ALL_TAC] THEN
  MP_TAC(SPEC
   `\x. suminf (\n. &4 * sqrt (&2) * x pow (8 * n + 1) / &(8 * n + 1) -
                    &8 * x pow (8 * n + 4) / &(8 * n + 4) -
                    &4 * sqrt (&2) * x pow (8 * n + 5) / &(8 * n + 5) -
                    &8 * x pow (8 * n + 6) / &(8 * n + 6)) -
        (ln ((x - &1) pow 2) +
         ln((x + &1) pow 2) +
         ln((x pow 2 + x * sqrt (&2) + &1) /
            (x pow 2 - x * sqrt (&2) + &1)) +
         &2 * atn (x * sqrt (&2) + &1) +
         &2 * atn (x * sqrt (&2) - &1) +
         &2 * atn (x pow 2) - ln (x pow 4 + &1))` DIFF_ISCONST_END_SIMPLE) THEN
  DISCH_THEN(MP_TAC o SPECL [`&0`; `inv(sqrt(&2))`]) THEN
  W(C SUBGOAL_THEN (fun th -> REWRITE_TAC[th]) o funpow 2 lhand o snd) THENL
   [SIMP_TAC[SQRT_POS_LT; REAL_LT_INV_EQ; REAL_OF_NUM_LT; ARITH] THEN
    X_GEN_TAC `x:real` THEN STRIP_TAC THEN
    SUBGOAL_THEN `abs(x) < &1` MP_TAC THENL
     [MATCH_MP_TAC(REAL_ARITH
       `!a. &0 <= x /\ x <= a /\ a < &1 ==> abs(x) < &1`) THEN
      EXISTS_TAC `inv(sqrt(&2))` THEN ASM_REWRITE_TAC[] THEN
      SUBST1_TAC(SYM(REAL_RAT_REDUCE_CONV `inv(&1)`)) THEN
      MATCH_MP_TAC REAL_LT_INV2 THEN REWRITE_TAC[REAL_LT_01] THEN
      MATCH_MP_TAC REAL_LTE_TRANS THEN
      EXISTS_TAC `sqrt((&5 / &4) pow 2)` THEN CONJ_TAC THENL
       [SIMP_TAC[POW_2_SQRT; REAL_LE_DIV; REAL_POS] THEN
        CONV_TAC REAL_RAT_REDUCE_CONV; ALL_TAC] THEN
      MATCH_MP_TAC SQRT_MONO_LE THEN CONV_TAC REAL_RAT_REDUCE_CONV;
      ALL_TAC] THEN
    DISCH_THEN(fun th -> MP_TAC(MATCH_MP MAGIC_DERIVATIVE th) THEN
                         ANTE_RES_THEN MP_TAC th) THEN
    ONCE_REWRITE_TAC[IMP_IMP] THEN
    DISCH_THEN(MP_TAC o MATCH_MP DIFF_SUB) THEN
    REWRITE_TAC[REAL_SUB_REFL]; ALL_TAC] THEN
  SIMP_TAC[snd(EQ_IMP_RULE(SPEC_ALL REAL_POW_EQ_0));
           ARITH_RULE `~(b = 0) ==> ~(a + b = 0)`;
           ARITH_EQ] THEN
  REWRITE_TAC[real_div; REAL_MUL_LZERO; REAL_MUL_RZERO] THEN
  REWRITE_TAC[GSYM real_div; REAL_ADD_LID; REAL_ADD_RID] THEN
  CONV_TAC REAL_RAT_REDUCE_CONV THEN
  REWRITE_TAC[REAL_DIV_1; LN_1; ATN_1; ATN_NEG; ATN_0] THEN
  REWRITE_TAC[REAL_ARITH `a * b + a * --b + c = c`] THEN
  SUBGOAL_THEN `suminf (\n. &0) = &0` SUBST1_TAC THENL
   [MATCH_MP_TAC(GSYM SUM_UNIQ) THEN
    MP_TAC(SPECL [`\n:num. &0`; `0`] SER_0) THEN REWRITE_TAC[sum];
    ALL_TAC] THEN
  REWRITE_TAC[REAL_MUL_RZERO; REAL_ADD_LID; REAL_SUB_REFL] THEN
  SIMP_TAC[REAL_MUL_LINV; REAL_LT_IMP_NZ; REAL_LT_INV_EQ;
           SQRT_POS_LT; REAL_OF_NUM_LT; ARITH_LE; ARITH_LT] THEN
  SUBGOAL_THEN `inv(sqrt(&2)) pow 4 = inv(sqrt(&2)) pow 2 pow 2`
  SUBST1_TAC THENL [REWRITE_TAC[REAL_POW_POW; ARITH]; ALL_TAC] THEN
  SUBGOAL_THEN `inv(sqrt(&2)) pow 2 = &1 / &2` SUBST1_TAC THENL
   [REWRITE_TAC[REAL_POW_INV; real_div; REAL_MUL_LID] THEN AP_TERM_TAC THEN
    SIMP_TAC[SQRT_POW_2; REAL_POS]; ALL_TAC] THEN
  CONV_TAC REAL_RAT_REDUCE_CONV THEN
  SUBGOAL_THEN
   `!other. ln((inv (sqrt (&2)) - &1) pow 2) +
            ln((inv (sqrt (&2)) + &1) pow 2) + other =
            ln(&1 / &4) + other`
   (fun th -> ONCE_REWRITE_TAC[th])
  THENL
   [GEN_TAC THEN REWRITE_TAC[REAL_ADD_ASSOC] THEN
    AP_THM_TAC THEN AP_TERM_TAC THEN
    SUBGOAL_THEN `&0 < (inv(sqrt(&2)) - &1) pow 2 /\
                  &0 < (inv(sqrt (&2)) + &1) pow 2`
     (fun th -> SIMP_TAC[GSYM LN_MUL; th])
    THENL
     [REWRITE_TAC[REAL_ARITH `&0 < x <=> &0 <= x /\ ~(x = &0)`] THEN
      REWRITE_TAC[REAL_POW_2; REAL_LE_SQUARE; REAL_ENTIRE] THEN
      MATCH_MP_TAC(REAL_ARITH
       `&0 < x /\ x < &1 ==> ~(x - &1 = &0) /\ ~(x + &1 = &0)`) THEN
      SIMP_TAC[REAL_LT_INV_EQ; SQRT_POS_LT; REAL_OF_NUM_LT; ARITH] THEN
      MATCH_MP_TAC REAL_LET_TRANS THEN
      EXISTS_TAC `sqrt((&4 / &5) pow 2)` THEN CONJ_TAC THENL
       [ALL_TAC;
        SIMP_TAC[POW_2_SQRT; REAL_LE_DIV; REAL_POS] THEN
        CONV_TAC REAL_RAT_REDUCE_CONV] THEN
      SIMP_TAC[GSYM SQRT_INV; REAL_POS] THEN
      MATCH_MP_TAC SQRT_MONO_LE THEN CONV_TAC REAL_RAT_REDUCE_CONV;
      ALL_TAC] THEN
    REWRITE_TAC[GSYM REAL_POW_MUL] THEN
    REWRITE_TAC[REAL_ARITH `(x - &1) * (x + &1) = x * x - &1`] THEN
    REWRITE_TAC[GSYM REAL_POW_2] THEN
    SUBGOAL_THEN `inv(sqrt(&2)) pow 2 = &1 / &2` SUBST1_TAC THENL
     [REWRITE_TAC[REAL_POW_INV; real_div; REAL_MUL_LID] THEN AP_TERM_TAC THEN
      SIMP_TAC[SQRT_POW_2; REAL_POS]; ALL_TAC] THEN
    CONV_TAC REAL_RAT_REDUCE_CONV; ALL_TAC] THEN
  REWRITE_TAC[ATN_0; REAL_MUL_RZERO; REAL_ADD_LID] THEN
  ONCE_REWRITE_TAC[REAL_ARITH
   `l1 + l2 + a + y - l3 = (l1 + l2 - l3) + a + y`] THEN
  SIMP_TAC[GSYM LN_DIV; GSYM LN_MUL; REAL_LT_DIV; REAL_LT_MUL; REAL_OF_NUM_LT;
           ARITH_LE; ARITH_LT] THEN
  CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[LN_1; REAL_ADD_LID] THEN
  REWRITE_TAC[GSYM REAL_ADD_LDISTRIB] THEN
  ONCE_REWRITE_TAC[ADD_SYM] THEN
  REWRITE_TAC[REAL_POW_ADD; real_div; REAL_MUL_ASSOC] THEN
  SUBGOAL_THEN `!n. inv(sqrt (&2)) pow (8 * n) = inv(&16 pow n)`
   (fun th -> REWRITE_TAC[th])
  THENL
   [SUBST1_TAC(SYM(NUM_REDUCE_CONV `2 * 4`)) THEN
    REWRITE_TAC[GSYM REAL_POW_POW] THEN
    SUBGOAL_THEN `inv(sqrt(&2)) pow 2 = &1 / &2` SUBST1_TAC THENL
     [REWRITE_TAC[REAL_POW_INV; real_div; REAL_MUL_LID] THEN AP_TERM_TAC THEN
      SIMP_TAC[SQRT_POW_2; REAL_POS]; ALL_TAC] THEN
    CONV_TAC REAL_RAT_REDUCE_CONV THEN
    REWRITE_TAC[GSYM REAL_POW_INV] THEN
    REWRITE_TAC[real_div; REAL_MUL_LID]; ALL_TAC] THEN
  REWRITE_TAC[GSYM REAL_MUL_ASSOC; GSYM REAL_INV_MUL] THEN
  SUBGOAL_THEN `!x. x pow 5 = x * x pow 4` (fun th -> REWRITE_TAC[th]) THENL
   [REWRITE_TAC[GSYM(CONJUNCT2 real_pow); ARITH]; ALL_TAC] THEN
  REWRITE_TAC[REAL_POW_1] THEN
  ONCE_REWRITE_TAC[REAL_ARITH
   `a * s * i * b - c - d * s * (i * e) * f - g =
    (s * i) * a * b - c - (s * i) * d * e * f - g`] THEN
  SIMP_TAC[REAL_MUL_RINV; REAL_LT_IMP_NZ; SQRT_POS_LT; REAL_OF_NUM_LT;
           ARITH_LT; ARITH_LE] THEN
  SUBGOAL_THEN `!x. x pow 6 = (x pow 2) pow 3`
    (fun th -> REWRITE_TAC[th])
  THENL [REWRITE_TAC[REAL_POW_POW; ARITH]; ALL_TAC] THEN
  SUBGOAL_THEN `!x. x pow 4 = (x pow 2) pow 2`
    (fun th -> REWRITE_TAC[th])
  THENL [REWRITE_TAC[REAL_POW_POW; ARITH]; ALL_TAC] THEN
  SUBGOAL_THEN `inv(sqrt(&2)) pow 2 = &1 / &2` SUBST1_TAC THENL
   [REWRITE_TAC[REAL_POW_INV; real_div; REAL_MUL_LID] THEN AP_TERM_TAC THEN
    SIMP_TAC[SQRT_POW_2; REAL_POS]; ALL_TAC] THEN
  REWRITE_TAC[REAL_MUL_ASSOC] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN
  ONCE_REWRITE_TAC[ADD_SYM] THEN
  REWRITE_TAC[REAL_INV_MUL] THEN
  ONCE_REWRITE_TAC[AC REAL_MUL_AC `a * b * c = b * a * c`] THEN
  REWRITE_TAC[GSYM REAL_SUB_LDISTRIB] THEN
  REWRITE_TAC[GSYM real_div] THEN
  REWRITE_TAC[REAL_SUB_0] THEN DISCH_TAC THEN
  SUBGOAL_THEN
   `summable
      (\n. inv (&16 pow n) *
           (&4 / &(8 * n + 1) -
            &2 / &(8 * n + 4) -
            &1 / &(8 * n + 5) -
            &1 / &(8 * n + 6)))`
  MP_TAC THENL
   [MATCH_MP_TAC SER_COMPAR THEN
    EXISTS_TAC `\n. &8 / &16 pow n` THEN CONJ_TAC THENL
     [EXISTS_TAC `0` THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN
      REWRITE_TAC[REAL_ABS_MUL; GSYM REAL_ABS_POW; REAL_ABS_NUM] THEN
      GEN_REWRITE_TAC LAND_CONV [REAL_MUL_SYM] THEN
      REWRITE_TAC[real_div] THEN MATCH_MP_TAC REAL_LE_MUL2 THEN
      REWRITE_TAC[REAL_ABS_POS] THEN
      REWRITE_TAC[REAL_ABS_INV; REAL_ABS_POW; REAL_ABS_NUM; REAL_LE_REFL] THEN
      MATCH_MP_TAC(REAL_ARITH
       `abs(v) <= &1 /\ abs(w) <= &1 /\ abs(x) <= &1 /\ abs(y) <= &1
        ==> abs(&4 * v - &2 * w - &1 * x - &1 * y) <= &8`) THEN
      REWRITE_TAC[REAL_ABS_INV; REAL_ABS_NUM] THEN
      SUBST1_TAC(SYM REAL_INV_1) THEN
      REPEAT CONJ_TAC THEN MATCH_MP_TAC REAL_LE_INV2 THEN
      CONV_TAC REAL_RAT_REDUCE_CONV THEN
      REWRITE_TAC[REAL_OF_NUM_LE] THEN ARITH_TAC; ALL_TAC] THEN
    REWRITE_TAC[summable] THEN EXISTS_TAC `&8 / (&1 - inv(&16))` THEN
    REWRITE_TAC[real_div; GSYM REAL_POW_INV] THEN
    MATCH_MP_TAC SER_CMUL THEN
    MATCH_MP_TAC GP THEN CONV_TAC REAL_RAT_REDUCE_CONV; ALL_TAC] THEN
  DISCH_THEN(MP_TAC o MATCH_MP SUMMABLE_SUM) THEN ASM_REWRITE_TAC[] THEN
  MATCH_MP_TAC EQ_IMP THEN
  REWRITE_TAC[real_div; REAL_MUL_LID] THEN AP_TERM_TAC THEN
  ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
  SIMP_TAC[GSYM REAL_EQ_RDIV_EQ; REAL_OF_NUM_LT; ARITH] THEN
  MP_TAC(SPEC `atn(&1 / &2)` TAN_COT) THEN
  REWRITE_TAC[ATN_TAN] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN
  DISCH_THEN(MP_TAC o AP_TERM `atn`) THEN REWRITE_TAC[REAL_DIV_1] THEN
  MATCH_MP_TAC(REAL_ARITH
   `(a = d - c) ==> (a = b) ==> (b + c = d)`) THEN
  MATCH_MP_TAC TAN_ATN THEN REWRITE_TAC[PI2_PI4] THEN
  MATCH_MP_TAC(REAL_ARITH
   `&0 < x /\ x < p4
    ==> --(&2 * p4) < &2 * p4 - x /\ &2 * p4 - x < &2 * p4`) THEN
  CONJ_TAC THENL
   [SUBST1_TAC(SYM ATN_0) THEN MATCH_MP_TAC ATN_MONO_LT THEN
    CONV_TAC REAL_RAT_REDUCE_CONV;
    MATCH_MP_TAC ATN_LT_PI4_POS THEN CONV_TAC REAL_RAT_REDUCE_CONV]);;