1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
|
(* ========================================================================= *)
(* Simple WHILE-language with relational semantics. *)
(* ========================================================================= *)
prioritize_num();;
parse_as_infix("refined",(12,"right"));;
(* ------------------------------------------------------------------------- *)
(* Logical operations "lifted" to predicates, for readability. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("AND",(20,"right"));;
parse_as_infix("OR",(16,"right"));;
parse_as_infix("IMP",(13,"right"));;
parse_as_infix("IMPLIES",(12,"right"));;
let FALSE = new_definition
`FALSE = \x:S. F`;;
let TRUE = new_definition
`TRUE = \x:S. T`;;
let NOT = new_definition
`NOT p = \x:S. ~(p x)`;;
let AND = new_definition
`p AND q = \x:S. p x /\ q x`;;
let OR = new_definition
`p OR q = \x:S. p x \/ q x`;;
let ANDS = new_definition
`ANDS P = \x:S. !p. P p ==> p x`;;
let ORS = new_definition
`ORS P = \x:S. ?p. P p /\ p x`;;
let IMP = new_definition
`p IMP q = \x:S. p x ==> q x`;;
(* ------------------------------------------------------------------------- *)
(* This one is different, corresponding to "subset". *)
(* ------------------------------------------------------------------------- *)
let IMPLIES = new_definition
`p IMPLIES q <=> !x:S. p x ==> q x`;;
(* ------------------------------------------------------------------------- *)
(* Simple procedure to prove tautologies at the predicate level. *)
(* ------------------------------------------------------------------------- *)
let PRED_TAUT =
let tac =
REWRITE_TAC[FALSE; TRUE; NOT; AND; OR; ANDS; ORS; IMP;
IMPLIES; FUN_EQ_THM] THEN MESON_TAC[] in
fun tm -> prove(tm,tac);;
(* ------------------------------------------------------------------------- *)
(* Some applications. *)
(* ------------------------------------------------------------------------- *)
let IMPLIES_TRANS = PRED_TAUT
`!p q r. p IMPLIES q /\ q IMPLIES r ==> p IMPLIES r`;;
(* ------------------------------------------------------------------------- *)
(* Enumerated type of basic commands, and other derived commands. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("Seq",(26,"right"));;
let command_INDUCTION,command_RECURSION = define_type
"command = Assign (S->S)
| Seq command command
| Ite (S->bool) command command
| While (S->bool) command";;
let SKIP = new_definition
`SKIP = Assign I`;;
let ABORT = new_definition
`ABORT = While TRUE SKIP`;;
let IF = new_definition
`IF e c = Ite e c SKIP`;;
let DO = new_definition
`DO c e = c Seq (While e c)`;;
let ASSERT = new_definition
`ASSERT g = Ite g SKIP ABORT`;;
(* ------------------------------------------------------------------------- *)
(* Annotation commands, to allow insertion of loop (in)variants. *)
(* ------------------------------------------------------------------------- *)
let AWHILE = new_definition
`AWHILE (i:S->bool) (v:S->S->bool) (e:S->bool) c = While e c`;;
let ADO = new_definition
`ADO (i:S->bool) (v:S->S->bool) c (e:S->bool) = DO c e`;;
(* ------------------------------------------------------------------------- *)
(* Useful properties of type constructors for commands. *)
(* ------------------------------------------------------------------------- *)
let command_DISTINCT =
distinctness "command";;
let command_INJECTIVE =
injectivity "command";;
(* ------------------------------------------------------------------------- *)
(* Relational semantics of commands. *)
(* ------------------------------------------------------------------------- *)
let sem_RULES,sem_INDUCT,sem_CASES = new_inductive_definition
`(!f s. sem(Assign f) s (f s)) /\
(!c1 c2 s s' s''. sem(c1) s s' /\ sem(c2) s' s''
==> sem(c1 Seq c2) s s'') /\
(!e c1 c2 s s'. e s /\ sem(c1) s s' ==> sem(Ite e c1 c2) s s') /\
(!e c1 c2 s s'. ~(e s) /\ sem(c2) s s' ==> sem(Ite e c1 c2) s s') /\
(!e c s. ~(e s) ==> sem(While e c) s s) /\
(!e c s s' s''. e s /\ sem(c) s s' /\ sem(While e c) s' s''
==> sem(While e c) s s'')`;;
(* ------------------------------------------------------------------------- *)
(* A more "denotational" view of the semantics. *)
(* ------------------------------------------------------------------------- *)
let SEM_ASSIGN = prove
(`sem(Assign f) s s' <=> (s' = f s)`,
GEN_REWRITE_TAC LAND_CONV [sem_CASES] THEN
REWRITE_TAC[command_DISTINCT; command_INJECTIVE] THEN MESON_TAC[]);;
let SEM_SEQ = prove
(`sem(c1 Seq c2) s s' <=> ?s''. sem c1 s s'' /\ sem c2 s'' s'`,
GEN_REWRITE_TAC LAND_CONV [sem_CASES] THEN
REWRITE_TAC[command_DISTINCT; command_INJECTIVE] THEN MESON_TAC[]);;
let SEM_ITE = prove
(`sem(Ite e c1 c2) s s' <=> e s /\ sem c1 s s' \/
~(e s) /\ sem c2 s s'`,
GEN_REWRITE_TAC LAND_CONV [sem_CASES] THEN
REWRITE_TAC[command_DISTINCT; command_INJECTIVE] THEN MESON_TAC[]);;
let SEM_SKIP = prove
(`sem(SKIP) s s' <=> (s' = s)`,
REWRITE_TAC[SKIP; SEM_ASSIGN; I_THM]);;
let SEM_IF = prove
(`sem(IF e c) s s' <=> e s /\ sem c s s' \/ ~(e s) /\ (s = s')`,
REWRITE_TAC[IF; SEM_ITE; SEM_SKIP; EQ_SYM_EQ]);;
let SEM_WHILE = prove
(`sem(While e c) s s' <=> sem(IF e (c Seq While e c)) s s'`,
GEN_REWRITE_TAC LAND_CONV [sem_CASES] THEN
REWRITE_TAC[FUN_EQ_THM; SEM_IF; SEM_SEQ] THEN REPEAT GEN_TAC THEN
REWRITE_TAC[command_DISTINCT; command_INJECTIVE] THEN MESON_TAC[]);;
let SEM_ABORT = prove
(`sem(ABORT) s s' <=> F`,
let lemma = prove
(`!c s s'. sem c s s' ==> ~(c = ABORT)`,
MATCH_MP_TAC sem_INDUCT THEN
REWRITE_TAC[command_DISTINCT; command_INJECTIVE; ABORT] THEN
REWRITE_TAC[FUN_EQ_THM; TRUE] THEN MESON_TAC[]) in
MESON_TAC[lemma]);;
let SEM_DO = prove
(`sem(DO c e) s s' <=> sem(c Seq IF e (DO c e)) s s'`,
REWRITE_TAC[DO; SEM_SEQ; GSYM SEM_WHILE]);;
let SEM_ASSERT = prove
(`sem(ASSERT g) s s' <=> g s /\ (s' = s)`,
REWRITE_TAC[ASSERT; SEM_ITE; SEM_SKIP; SEM_ABORT]);;
(* ------------------------------------------------------------------------- *)
(* Proofs that all commands are deterministic. *)
(* ------------------------------------------------------------------------- *)
let deterministic = new_definition
`deterministic r <=> !s s1 s2. r s s1 /\ r s s2 ==> (s1 = s2)`;;
let DETERMINISM = prove
(`!c:(S)command. deterministic(sem c)`,
REWRITE_TAC[deterministic] THEN SUBGOAL_THEN
`!c s s1. sem c s s1 ==> !s2:S. sem c s s2 ==> (s1 = s2)`
(fun th -> MESON_TAC[th]) THEN
MATCH_MP_TAC sem_INDUCT THEN CONJ_TAC THENL
[ALL_TAC; REPEAT CONJ_TAC THEN REPEAT GEN_TAC THEN DISCH_TAC] THEN
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[sem_CASES] THEN
REWRITE_TAC[command_DISTINCT; command_INJECTIVE] THEN
ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Termination, weakest liberal precondition and weakest precondition. *)
(* ------------------------------------------------------------------------- *)
let terminates = new_definition
`terminates c s <=> ?s'. sem c s s'`;;
let wlp = new_definition
`wlp c q s <=> !s'. sem c s s' ==> q s'`;;
let wp = new_definition
`wp c q s <=> terminates c s /\ wlp c q s`;;
(* ------------------------------------------------------------------------- *)
(* Dijkstra's healthiness conditions (the last because of determinism). *)
(* ------------------------------------------------------------------------- *)
let WP_TOTAL = prove
(`!c. (wp c FALSE = FALSE)`,
REWRITE_TAC[FUN_EQ_THM; wp; wlp; terminates; FALSE] THEN MESON_TAC[]);;
let WP_MONOTONIC = prove
(`q IMPLIES r ==> wp c q IMPLIES wp c r`,
REWRITE_TAC[IMPLIES; wp; wlp; terminates] THEN MESON_TAC[]);;
let WP_CONJUNCTIVE = prove
(`(wp c q) AND (wp c r) = wp c (q AND r)`,
REWRITE_TAC[FUN_EQ_THM; wp; wlp; terminates; AND] THEN MESON_TAC[]);;
let WP_DISJUNCTIVE = prove
(`(wp c p) OR (wp c q) = wp c (p OR q)`,
REWRITE_TAC[FUN_EQ_THM; wp; wlp; OR; terminates] THEN
MESON_TAC[REWRITE_RULE[deterministic] DETERMINISM]);;
(* ------------------------------------------------------------------------- *)
(* Weakest preconditions for the primitive and derived commands. *)
(* ------------------------------------------------------------------------- *)
let WP_ASSIGN = prove
(`!f q. wp (Assign f) q = q o f`,
REWRITE_TAC[wp; wlp; terminates; o_THM; FUN_EQ_THM; SEM_ASSIGN] THEN
MESON_TAC[]);;
let WP_SEQ = prove
(`!c1 c2 q. wp (c1 Seq c2) q = wp c1 (wp c2 q)`,
REWRITE_TAC[wp; wlp; terminates; SEM_SEQ; FUN_EQ_THM] THEN
MESON_TAC[REWRITE_RULE[deterministic] DETERMINISM]);;
let WP_ITE = prove
(`!e c1 c2 q. wp (Ite e c1 c2) q = (e AND wp c1 q) OR (NOT e AND wp c2 q)`,
REWRITE_TAC[wp; wlp; terminates; SEM_ITE; FUN_EQ_THM; AND; OR; NOT] THEN
MESON_TAC[]);;
let WP_WHILE = prove
(`!e c. wp (IF e (c Seq While e c)) q = wp (While e c) q`,
REWRITE_TAC[FUN_EQ_THM; wp; wlp; terminates; GSYM SEM_WHILE]);;
let WP_SKIP = prove
(`!q. wp SKIP q = q`,
REWRITE_TAC[FUN_EQ_THM; SKIP; WP_ASSIGN; I_THM; o_THM]);;
let WP_ABORT = prove
(`!q. wp ABORT q = FALSE`,
REWRITE_TAC[FUN_EQ_THM; wp; wlp; terminates; SEM_ABORT; FALSE]);;
let WP_IF = prove
(`!e c q. wp (IF e c) q = (e AND wp c q) OR (NOT e AND q)`,
REWRITE_TAC[IF; WP_ITE; WP_SKIP]);;
let WP_DO = prove
(`!e c. wp (c Seq IF e (DO c e)) q = wp (DO c e) q`,
REWRITE_TAC[FUN_EQ_THM; wp; wlp; terminates; GSYM SEM_DO]);;
let WP_ASSERT = prove
(`!g q. wp (ASSERT g) q = g AND q`,
REWRITE_TAC[wp; wlp; terminates; SEM_ASSERT; FUN_EQ_THM; AND] THEN
MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Rules for total correctness. *)
(* ------------------------------------------------------------------------- *)
let correct = new_definition
`correct p c q <=> p IMPLIES (wp c q)`;;
let CORRECT_PRESTRENGTH = prove
(`!p p' c q. p IMPLIES p' /\ correct p' c q ==> correct p c q`,
REWRITE_TAC[correct; IMPLIES_TRANS]);;
let CORRECT_POSTWEAK = prove
(`!p c q q'. correct p c q' /\ q' IMPLIES q ==> correct p c q`,
REWRITE_TAC[correct] THEN MESON_TAC[WP_MONOTONIC; IMPLIES_TRANS]);;
let CORRECT_ASSIGN = prove
(`!p f q. (p IMPLIES (\s. q(f s))) ==> correct p (Assign f) q`,
REWRITE_TAC[correct; WP_ASSIGN; IMPLIES; o_THM]);;
let CORRECT_SEQ = prove
(`!p q r c1 c2.
correct p c1 r /\ correct r c2 q ==> correct p (c1 Seq c2) q`,
REWRITE_TAC[correct; WP_SEQ; o_THM] THEN
MESON_TAC[WP_MONOTONIC; IMPLIES_TRANS]);;
let CORRECT_ITE = prove
(`!p e c1 c2 q.
correct (p AND e) c1 q /\ correct (p AND (NOT e)) c2 q
==> correct p (Ite e c1 c2) q`,
REWRITE_TAC[correct; WP_ITE; AND; NOT; IMPLIES; OR] THEN MESON_TAC[]);;
let CORRECT_WHILE = prove
(`! (<<) p c q e invariant.
WF(<<) /\
p IMPLIES invariant /\
(NOT e) AND invariant IMPLIES q /\
(!X:S. correct
(invariant AND e AND (\s. X = s)) c (invariant AND (\s. s << X)))
==> correct p (While e c) q`,
REWRITE_TAC[correct; IMPLIES; IN; AND; NOT] THEN REPEAT STRIP_TAC THEN
SUBGOAL_THEN `!s:S. invariant s ==> wp (While e c) q s` MP_TAC THENL
[ALL_TAC; ASM_MESON_TAC[]] THEN
FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[WF_IND]) THEN
X_GEN_TAC `s:S` THEN REPEAT DISCH_TAC THEN
ONCE_REWRITE_TAC[GSYM WP_WHILE] THEN
REWRITE_TAC[WP_IF; WP_SEQ; AND; OR; NOT; o_THM] THEN
ASM_CASES_TAC `(e:S->bool) s` THEN ASM_REWRITE_TAC[] THENL
[ALL_TAC; ASM_MESON_TAC[]] THEN
SUBGOAL_THEN `wp c (\x:S. invariant x /\ x << s) (s:S) :bool` MP_TAC THENL
[FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN `(\x:S. invariant x /\ x << (s:S)) IMPLIES wp (While e c) q`
MP_TAC THENL [REWRITE_TAC[IMPLIES] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
MESON_TAC[WP_MONOTONIC; IMPLIES]);;
let CORRECT_SKIP = prove
(`!p q. (p IMPLIES q) ==> correct p SKIP q`,
REWRITE_TAC[correct; WP_SKIP]);;
let CORRECT_ABORT = prove
(`!p q. F ==> correct p ABORT q`,
REWRITE_TAC[]);;
let CORRECT_IF = prove
(`!p e c q.
correct (p AND e) c q /\ (p AND (NOT e)) IMPLIES q
==> correct p (IF e c) q`,
REWRITE_TAC[correct; WP_IF; AND; NOT; IMPLIES; OR] THEN MESON_TAC[]);;
let CORRECT_DO = prove
(`! (<<) p q c invariant.
WF(<<) /\
(e AND invariant) IMPLIES p /\
((NOT e) AND invariant) IMPLIES q /\
(!X:S. correct
(p AND (\s. X = s)) c (invariant AND (\s. s << X)))
==> correct p (DO c e) q`,
REPEAT STRIP_TAC THEN REWRITE_TAC[DO] THEN
MATCH_MP_TAC CORRECT_SEQ THEN EXISTS_TAC `invariant:S->bool` THEN
ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
[POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN
REWRITE_TAC[correct; GSYM WP_CONJUNCTIVE] THEN
REWRITE_TAC[AND; IMPLIES] THEN MESON_TAC[];
MATCH_MP_TAC CORRECT_WHILE THEN
MAP_EVERY EXISTS_TAC [`(<<) :S->S->bool`; `invariant:S->bool`] THEN
ASM_REWRITE_TAC[IMPLIES] THEN X_GEN_TAC `X:S` THEN
MATCH_MP_TAC CORRECT_PRESTRENGTH THEN
EXISTS_TAC `p AND (\s:S. X = s)` THEN ASM_REWRITE_TAC[] THEN
UNDISCH_TAC `(e:S->bool) AND invariant IMPLIES p` THEN
REWRITE_TAC[AND; IMPLIES] THEN MESON_TAC[]]);;
let CORRECT_ASSERT = prove
(`!p g q. p IMPLIES (g AND q) ==> correct p (ASSERT g) q`,
REWRITE_TAC[correct; WP_ASSERT]);;
(* ------------------------------------------------------------------------- *)
(* VCs for the basic commands (in fact only assign should be needed). *)
(* ------------------------------------------------------------------------- *)
let VC_ASSIGN = prove
(`p IMPLIES (q o f) ==> correct p (Assign f) q`,
REWRITE_TAC[o_DEF; CORRECT_ASSIGN]);;
let VC_SKIP = prove
(`p IMPLIES q ==> correct p SKIP q`,
REWRITE_TAC[CORRECT_SKIP]);;
let VC_ABORT = prove
(`F ==> correct p ABORT q`,
MATCH_ACCEPT_TAC CORRECT_ABORT);;
let VC_ASSERT = prove
(`p IMPLIES (b AND q) ==> correct p (ASSERT b) q`,
REWRITE_TAC[CORRECT_ASSERT]);;
(* ------------------------------------------------------------------------- *)
(* VCs for composite commands other than sequences. *)
(* ------------------------------------------------------------------------- *)
let VC_ITE = prove
(`correct (p AND e) c1 q /\ correct (p AND NOT e) c2 q
==> correct p (Ite e c1 c2) q`,
REWRITE_TAC[CORRECT_ITE]);;
let VC_IF = prove
(`correct (p AND e) c q /\ p AND NOT e IMPLIES q
==> correct p (IF e c) q`,
REWRITE_TAC[CORRECT_IF]);;
let VC_AWHILE_VARIANT = prove
(`WF(<<) /\
p IMPLIES invariant /\
(NOT e) AND invariant IMPLIES q /\
(!X. correct
(invariant AND e AND (\s. X = s)) c (invariant AND (\s. s << X)))
==> correct p (AWHILE invariant (<<) e c) q`,
REWRITE_TAC[AWHILE; CORRECT_WHILE]);;
let VC_AWHILE_MEASURE = prove
(`p IMPLIES invariant /\
(NOT e) AND invariant IMPLIES q /\
(!X. correct
(invariant AND e AND (\s:S. X = m(s)))
c
(invariant AND (\s. m(s) < X)))
==> correct p (AWHILE invariant (MEASURE m) e c) q`,
STRIP_TAC THEN MATCH_MP_TAC VC_AWHILE_VARIANT THEN
ASM_REWRITE_TAC[WF_MEASURE] THEN
X_GEN_TAC `X:S` THEN FIRST_ASSUM(MP_TAC o SPEC `(m:S->num) X`) THEN
REWRITE_TAC[correct; AND; IMPLIES; MEASURE] THEN MESON_TAC[]);;
let VC_ADO_VARIANT = prove
(`WF(<<) /\
(e AND invariant) IMPLIES p /\
((NOT e) AND invariant) IMPLIES q /\
(!X. correct
(p AND (\s. X = s)) c (invariant AND (\s. s << X)))
==> correct p (ADO invariant (<<) c e) q`,
REWRITE_TAC[ADO; CORRECT_DO]);;
let VC_ADO_MEASURE = prove
(`(e AND invariant) IMPLIES p /\
((NOT e) AND invariant) IMPLIES q /\
(!X. correct
(p AND (\s:S. X = m(s))) c (invariant AND (\s. m(s) < X)))
==> correct p (ADO invariant (MEASURE m) c e) q`,
STRIP_TAC THEN MATCH_MP_TAC VC_ADO_VARIANT THEN
ASM_REWRITE_TAC[WF_MEASURE] THEN
X_GEN_TAC `X:S` THEN FIRST_ASSUM(MP_TAC o SPEC `(m:S->num) X`) THEN
REWRITE_TAC[correct; AND; IMPLIES; MEASURE] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* VCs for sequences of commands, using intelligence where possible. *)
(* ------------------------------------------------------------------------- *)
let VC_SEQ_ASSERT_LEFT = prove
(`p IMPLIES b /\ correct b c q ==> correct p (ASSERT b Seq c) q`,
MESON_TAC[CORRECT_SEQ; CORRECT_ASSERT; CORRECT_PRESTRENGTH;
PRED_TAUT `(p IMPLIES b) ==> (p IMPLIES b AND p)`]);;
let VC_SEQ_ASSERT_RIGHT = prove
(`correct p c b /\ b IMPLIES q ==> correct p (c Seq (ASSERT b)) q`,
MESON_TAC[CORRECT_SEQ; CORRECT_ASSERT;
PRED_TAUT `(p IMPLIES b) ==> (p IMPLIES p AND b)`]);;
let VC_SEQ_ASSERT_MIDDLE = prove
(`correct p c b /\ correct b c' q
==> correct p (c Seq (ASSERT b) Seq c') q`,
MESON_TAC[CORRECT_SEQ; CORRECT_ASSERT; PRED_TAUT `b IMPLIES b AND b`]);;
let VC_SEQ_ASSIGN_LEFT = prove
(`(p o f = p) /\ (f o f = f) /\
correct (p AND (\s:S. s = f s)) c q
==> correct p ((Assign f) Seq c) q`,
REWRITE_TAC[FUN_EQ_THM; o_THM] THEN STRIP_TAC THEN
MATCH_MP_TAC CORRECT_SEQ THEN EXISTS_TAC `p AND (\s:S. s = f s)` THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC VC_ASSIGN THEN
ASM_REWRITE_TAC[IMPLIES; AND; o_THM]);;
let VC_SEQ_ASSIGN_RIGHT = prove
(`correct p c (q o f) ==> correct p (c Seq (Assign f)) q`,
MESON_TAC[CORRECT_SEQ; VC_ASSIGN; PRED_TAUT `(p:S->bool) IMPLIES p`]);;
(* ------------------------------------------------------------------------- *)
(* Parser for correctness assertions. *)
(* ------------------------------------------------------------------------- *)
let rec dive_to_var ptm =
match ptm with
Varp(_,_) as vp -> vp | Typing(t,_) -> dive_to_var t | _ -> fail();;
let reserve_program_words,unreserve_program_words =
let words = ["var"; "end"; "skip"; "abort";
":="; "if"; "then"; "else"; "while"; "do"] in
(fun () -> reserve_words words),
(fun () -> unreserve_words words);;
reserve_program_words();;
let parse_program,parse_program_assertion =
let assign_ptm = Varp("Assign",dpty)
and seq_ptm = Varp("Seq",dpty)
and ite_ptm = Varp("Ite",dpty)
and while_ptm = Varp("While",dpty)
and skip_ptm = Varp("SKIP",dpty)
and abort_ptm = Varp("ABORT",dpty)
and if_ptm = Varp("IF",dpty)
and do_ptm = Varp("DO",dpty)
and assert_ptm = Varp("ASSERT",dpty)
and awhile_ptm = Varp("AWHILE",dpty)
and ado_ptm = Varp("ADO",dpty) in
let pmk_pair(ptm1,ptm2) = Combp(Combp(Varp(",",dpty),ptm1),ptm2) in
let varname ptm =
match dive_to_var ptm with Varp(n,_) -> n | _ -> fail() in
let rec assign s v e =
match s with
Combp(Combp(pop,lptm),rptm) ->
if varname pop = "," then
Combp(Combp(pop,assign lptm v e),assign rptm v e)
else fail()
| _ -> if varname s = v then e else s in
let lmk_assign s v e = Combp(assign_ptm,Absp(s,assign s v e))
and lmk_seq c cs =
if cs = [] then c else Combp(Combp(seq_ptm,c),hd cs)
and lmk_ite e c1 c2 = Combp(Combp(Combp(ite_ptm,e),c1),c2)
and lmk_while e c = Combp(Combp(while_ptm,e),c)
and lmk_skip _ = skip_ptm
and lmk_abort _ = abort_ptm
and lmk_if e c = Combp(Combp(if_ptm,e),c)
and lmk_do c e = Combp(Combp(do_ptm,c),e)
and lmk_assert e = Combp(assert_ptm,e)
and lmk_awhile i v e c = Combp(Combp(Combp(Combp(awhile_ptm,i),v),e),c)
and lmk_ado i v c e = Combp(Combp(Combp(Combp(ado_ptm,i),v),c),e) in
let lmk_gwhile al e c =
if al = [] then lmk_while e c
else lmk_awhile (fst(hd al)) (snd(hd al)) e c
and lmk_gdo al c e =
if al = [] then lmk_do c e
else lmk_ado (fst(hd al)) (snd(hd al)) c e in
let expression s = parse_preterm >> (fun p -> Absp(s,p)) in
let identifier =
function ((Ident n)::rest) -> n,rest
| _ -> raise Noparse in
let variant s =
(a (Ident "variant") ++ parse_preterm
>> snd)
||| (a (Ident "measure") ++ expression s
>> fun (_,m) -> Combp(Varp("MEASURE",dpty),m)) in
let annotation s =
a (Resword "[") ++ a (Ident "invariant") ++ expression s ++
a (Resword ";") ++ variant s ++ a (Resword "]")
>> fun (((((_,_),i),_),v),_) -> (i,v) in
let rec command s i =
( (a (Resword "(") ++ commands s ++ a (Resword ")")
>> (fun ((_,c),_) -> c))
||| (a (Resword "skip")
>> lmk_skip)
||| (a (Resword "abort")
>> lmk_abort)
||| (a (Resword "if") ++ expression s ++ a (Resword "then") ++ command s ++
possibly (a (Resword "else") ++ command s >> snd)
>> (fun ((((_,e),_),c),cs) -> if cs = [] then lmk_if e c
else lmk_ite e c (hd cs)))
||| (a (Resword "while") ++ expression s ++ a (Resword "do") ++
possibly (annotation s) ++ command s
>> (fun ((((_,e),_),al),c) -> lmk_gwhile al e c))
||| (a (Resword "do") ++ possibly (annotation s) ++
command s ++ a (Resword "while") ++ expression s
>> (fun ((((_,al),c),_),e) -> lmk_gdo al c e))
||| (a (Resword "{") ++ expression s ++ a (Resword "}")
>> (fun ((_,e),_) -> lmk_assert e))
||| (identifier ++ a (Resword ":=") ++ parse_preterm
>> (fun ((v,_),e) -> lmk_assign s v e))) i
and commands s i =
(command s ++ possibly (a (Resword ";") ++ commands s >> snd)
>> (fun (c,cs) -> lmk_seq c cs)) i in
let program i =
let ((_,s),_),r =
(a (Resword "var") ++ parse_preterm ++ a (Resword ";")) i in
let c,r' = (commands s ++ a (Resword "end") >> fst) r in
(s,c),r' in
let assertion =
a (Ident "correct") ++ parse_preterm ++ program ++ parse_preterm
>> fun (((_,p),(s,c)),q) ->
Combp(Combp(Combp(Varp("correct",dpty),Absp(s,p)),c),Absp(s,q)) in
(program >> snd),assertion;;
(* ------------------------------------------------------------------------- *)
(* Introduce the variables in the VCs. *)
(* ------------------------------------------------------------------------- *)
let STATE_GEN_TAC =
let PAIR_CONV = REWR_CONV(GSYM PAIR) in
let rec repair vs v acc =
try let l,r = dest_pair vs in
let th = PAIR_CONV v in
let tm = rand(concl th) in
let rtm = rator tm in
let lth,acc1 = repair l (rand rtm) acc in
let rth,acc2 = repair r (rand tm) acc1 in
TRANS th (MK_COMB(AP_TERM (rator rtm) lth,rth)),acc2
with Failure _ -> REFL v,((v,vs)::acc) in
fun (asl,w) ->
let abstm = find_term (fun t -> not (is_abs t) && is_gabs t) w in
let vs = fst(dest_gabs abstm) in
let v = genvar(type_of(fst(dest_forall w))) in
let th,gens = repair vs v [] in
(X_GEN_TAC v THEN SUBST1_TAC th THEN
MAP_EVERY SPEC_TAC gens THEN REPEAT GEN_TAC) (asl,w);;
let STATE_GEN_TAC' =
let PAIR_CONV = REWR_CONV(GSYM PAIR) in
let rec repair vs v acc =
try let l,r = dest_pair vs in
let th = PAIR_CONV v in
let tm = rand(concl th) in
let rtm = rator tm in
let lth,acc1 = repair l (rand rtm) acc in
let rth,acc2 = repair r (rand tm) acc1 in
TRANS th (MK_COMB(AP_TERM (rator rtm) lth,rth)),acc2
with Failure _ -> REFL v,((v,vs)::acc) in
fun (asl,w) ->
let abstm = find_term (fun t -> not (is_abs t) && is_gabs t) w in
let vs0 = fst(dest_gabs abstm) in
let vl0 = striplist dest_pair vs0 in
let vl = map (variant (variables (list_mk_conj(w::map (concl o snd) asl))))
vl0 in
let vs = end_itlist (curry mk_pair) vl in
let v = genvar(type_of(fst(dest_forall w))) in
let th,gens = repair vs v [] in
(X_GEN_TAC v THEN SUBST1_TAC th THEN
MAP_EVERY SPEC_TAC gens THEN REPEAT GEN_TAC) (asl,w);;
(* ------------------------------------------------------------------------- *)
(* Tidy up a verification condition. *)
(* ------------------------------------------------------------------------- *)
let VC_UNPACK_TAC =
REWRITE_TAC[IMPLIES; o_THM; FALSE; TRUE; AND; OR; NOT; IMP] THEN
STATE_GEN_TAC THEN CONV_TAC(REDEPTH_CONV GEN_BETA_CONV) THEN
REWRITE_TAC[PAIR_EQ; GSYM CONJ_ASSOC];;
(* ------------------------------------------------------------------------- *)
(* Calculate a (pseudo-) weakest precondition for command. *)
(* ------------------------------------------------------------------------- *)
let find_pwp =
let wptms =
(map (snd o strip_forall o concl)
[WP_ASSIGN; WP_ITE; WP_SKIP; WP_ABORT; WP_IF; WP_ASSERT]) @
[`wp (AWHILE i v e c) q = i`; `wp (ADO i v c e) q = i`] in
let conv tm =
tryfind (fun t -> rand (instantiate (term_match [] (lhand t) tm) t))
wptms in
fun tm q -> conv(mk_comb(list_mk_icomb "wp" [tm],q));;
(* ------------------------------------------------------------------------- *)
(* Tools for automatic VC generation from annotated program. *)
(* ------------------------------------------------------------------------- *)
let VC_SEQ_TAC =
let is_seq = is_binary "Seq"
and strip_seq = striplist (dest_binary "Seq")
and is_assert tm =
try fst(dest_const(rator tm)) = "ASSERT" with Failure _ -> false
and is_assign tm =
try fst(dest_const(rator tm)) = "Assign" with Failure _ -> false
and SIDE_TAC =
GEN_REWRITE_TAC I [FUN_EQ_THM] THEN STATE_GEN_TAC THEN
PURE_REWRITE_TAC[IMPLIES; o_THM; FALSE; TRUE; AND; OR; NOT; IMP] THEN
CONV_TAC(REDEPTH_CONV GEN_BETA_CONV) THEN
REWRITE_TAC[PAIR_EQ] THEN NO_TAC in
let ADJUST_TAC ptm ptm' ((_,w) as gl) =
let w' = subst [ptm',ptm] w in
let th = EQT_ELIM(REWRITE_CONV[correct; WP_SEQ] (mk_eq(w,w'))) in
GEN_REWRITE_TAC I [th] gl in
fun (asl,w) ->
let cptm,q = dest_comb w in
let cpt,ptm = dest_comb cptm in
let ctm,p = dest_comb cpt in
let ptms = strip_seq ptm in
let seq = rator(rator ptm) in
try let atm = find is_assert ptms in
let i = index atm ptms in
if i = 0 then
let ptm' = mk_binop seq (hd ptms) (list_mk_binop seq (tl ptms)) in
(ADJUST_TAC ptm ptm' THEN
MATCH_MP_TAC VC_SEQ_ASSERT_LEFT THEN CONJ_TAC THENL
[VC_UNPACK_TAC; ALL_TAC]) (asl,w)
else if i = length ptms - 1 then
let ptm' = mk_binop seq (list_mk_binop seq (butlast ptms))
(last ptms) in
(ADJUST_TAC ptm ptm' THEN
MATCH_MP_TAC VC_SEQ_ASSERT_RIGHT THEN CONJ_TAC THENL
[ALL_TAC; VC_UNPACK_TAC]) (asl,w)
else
let l,mr = chop_list (index atm ptms) ptms in
let ptm' = mk_binop seq (list_mk_binop seq l)
(mk_binop seq (hd mr) (list_mk_binop seq (tl mr))) in
(ADJUST_TAC ptm ptm' THEN
MATCH_MP_TAC VC_SEQ_ASSERT_MIDDLE THEN CONJ_TAC) (asl,w)
with Failure "find" -> try
if is_assign (hd ptms) then
let ptm' = mk_binop seq (hd ptms) (list_mk_binop seq (tl ptms)) in
(ADJUST_TAC ptm ptm' THEN
MATCH_MP_TAC VC_SEQ_ASSIGN_LEFT THEN REPEAT CONJ_TAC THENL
[SIDE_TAC; SIDE_TAC; ALL_TAC]) (asl,w)
else fail()
with Failure _ ->
let ptm' = mk_binop seq
(list_mk_binop seq (butlast ptms)) (last ptms) in
let pwp = find_pwp (rand ptm') q in
(ADJUST_TAC ptm ptm' THEN MATCH_MP_TAC CORRECT_SEQ THEN
EXISTS_TAC pwp THEN CONJ_TAC)
(asl,w);;
(* ------------------------------------------------------------------------- *)
(* Tactic to apply a 1-step VC generation. *)
(* ------------------------------------------------------------------------- *)
let VC_STEP_TAC =
let tacnet =
itlist (enter [])
[`correct p SKIP q`,
MATCH_MP_TAC VC_SKIP THEN VC_UNPACK_TAC;
`correct p (ASSERT b) q`,
MATCH_MP_TAC VC_ASSERT THEN VC_UNPACK_TAC;
`correct p (Assign f) q`,
MATCH_MP_TAC VC_ASSIGN THEN VC_UNPACK_TAC;
`correct p (Ite e c1 c2) q`,
MATCH_MP_TAC VC_ITE THEN CONJ_TAC;
`correct p (IF e c) q`,
MATCH_MP_TAC VC_IF THEN CONJ_TAC THENL [ALL_TAC; VC_UNPACK_TAC];
`correct p (AWHILE i (MEASURE m) e c) q`,
MATCH_MP_TAC VC_AWHILE_MEASURE THEN REPEAT CONJ_TAC THENL
[VC_UNPACK_TAC; VC_UNPACK_TAC; GEN_TAC];
`correct p (AWHILE i v e c) q`,
MATCH_MP_TAC VC_AWHILE_VARIANT THEN REPEAT CONJ_TAC THENL
[ALL_TAC; VC_UNPACK_TAC; VC_UNPACK_TAC; STATE_GEN_TAC'];
`correct p (ADO i (MEASURE m) c e) q`,
MATCH_MP_TAC VC_ADO_MEASURE THEN REPEAT CONJ_TAC THENL
[VC_UNPACK_TAC; VC_UNPACK_TAC; STATE_GEN_TAC'];
`correct p (ADO i v c e) q`,
MATCH_MP_TAC VC_ADO_VARIANT THEN REPEAT CONJ_TAC THENL
[ALL_TAC; VC_UNPACK_TAC; VC_UNPACK_TAC; STATE_GEN_TAC'];
`correct p (c1 Seq c2) q`,
VC_SEQ_TAC] empty_net in
fun (asl,w) -> FIRST(lookup w tacnet) (asl,w);;
(* ------------------------------------------------------------------------- *)
(* Final packaging to strip away the program completely. *)
(* ------------------------------------------------------------------------- *)
let VC_TAC = REPEAT VC_STEP_TAC;;
(* ------------------------------------------------------------------------- *)
(* Some examples. *)
(* ------------------------------------------------------------------------- *)
install_parser ("correct",parse_program_assertion);;
let EXAMPLE_FACTORIAL = prove
(`correct
T
var x,y,n;
x := 0;
y := 1;
while x < n do [invariant x <= n /\ (y = FACT x); measure n - x]
(x := x + 1;
y := y * x)
end
y = FACT n`,
VC_TAC THENL
[STRIP_TAC THEN ASM_REWRITE_TAC[FACT; LE_0];
REWRITE_TAC[CONJ_ASSOC; NOT_LT; LE_ANTISYM] THEN MESON_TAC[];
REWRITE_TAC[GSYM ADD1; FACT] THEN STRIP_TAC THEN
ASM_REWRITE_TAC[MULT_AC] THEN UNDISCH_TAC `x < n` THEN ARITH_TAC]);;
delete_parser "correct";;
|