1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
|
(* ========================================================================= *)
(* Interface to prover9. *)
(* ========================================================================= *)
(**** NB: this is the "prover9" command invoked by HOL Light.
**** If this doesn't work, set an explicit path to the prover9 binary
****)
let prover9 = "prover9";;
(* ------------------------------------------------------------------------- *)
(* Debugging mode (true = keep the Prover9 input and output files) *)
(* ------------------------------------------------------------------------- *)
let prover9_debugging = ref false;;
(* ------------------------------------------------------------------------- *)
(* Prover9 options. Set to "" for the Prover9 default. *)
(* ------------------------------------------------------------------------- *)
let prover9_options = ref
("clear(auto_inference).\n"^
"clear(auto_denials).\n"^
"clear(auto_limits).\n"^
"set(neg_binary_resolution).\n"^
"set(binary_resolution).\n"^
"set(paramodulation).\n");;
(* ------------------------------------------------------------------------- *)
(* Find the variables, functions, and predicates excluding equality. *)
(* ------------------------------------------------------------------------- *)
let rec functions fvs tm (vacc,facc,racc as acc) =
if is_var tm then
if mem tm fvs then (vacc,insert tm facc,racc)
else (insert tm vacc,facc,racc)
else if is_abs tm then acc else
let f,args = strip_comb tm in
itlist (functions fvs) args (vacc,insert f facc,racc);;
let rec signature fvs tm (vacc,facc,racc as acc) =
if is_neg tm then signature fvs (rand tm) acc
else if is_conj tm || is_disj tm || is_imp tm || is_iff tm then
signature fvs (lhand tm) (signature fvs (rand tm) acc)
else if is_forall tm || is_exists tm || is_uexists tm then
signature fvs (body(rand tm)) acc
else if is_eq tm then
functions fvs (lhand tm) (functions fvs (rand tm) acc)
else if is_abs tm then acc else
let r,args = strip_comb tm in
itlist (functions fvs) args (vacc,facc,insert r racc);;
(* ------------------------------------------------------------------------- *)
(* Shadow first-order syntax. Literal sign is true = positive. *)
(* ------------------------------------------------------------------------- *)
type folterm = Variable of string | Function of string * folterm list;;
type literal = Literal of bool * string * folterm list;;
(* ------------------------------------------------------------------------- *)
(* Translate clause into shadow syntax. *)
(* ------------------------------------------------------------------------- *)
let rec translate_term (trans_var,trans_fun,trans_rel as trp) tm =
let f,args = strip_comb tm in
if defined trans_fun f then
Function(apply trans_fun f,map (translate_term trp) args)
else if is_var tm then Variable(apply trans_var tm)
else failwith("unknown function"^
(try fst(dest_const tm) with Failure _ -> "??"));;
let translate_atom (trans_var,trans_fun,trans_rel as trp) tm =
if is_eq tm then
Literal(true,"=",[translate_term trp (lhand tm);
translate_term trp (rand tm)])
else
let r,args = strip_comb tm in
Literal(true,apply trans_rel r,map (translate_term trp) args);;
let rec translate_clause trp tm =
if is_disj tm then
translate_clause trp (lhand tm) @ translate_clause trp (rand tm)
else if is_neg tm then
let Literal(s,r,args) = translate_atom trp (rand tm) in
[Literal(not s,r,args)]
else [translate_atom trp tm];;
(* ------------------------------------------------------------------------- *)
(* Create Prover9 input file for a set of clauses. *)
(* ------------------------------------------------------------------------- *)
let rec prover9_of_term tm =
match tm with
Variable(s) -> s
| Function(f,[]) -> f
| Function(f,args) ->
f^"("^
end_itlist (fun s t -> s^","^t) (map prover9_of_term args) ^
")";;
let prover9_of_literal lit =
match lit with
Literal(s,r,[]) -> if s then r else "-"^r
| Literal(s,"=",[l;r]) ->
(if s then "(" else "-(")^
(prover9_of_term l) ^ " = " ^ (prover9_of_term r)^")"
| Literal(s,r,args) ->
(if s then "" else "-")^r^"("^
end_itlist (fun s t -> s^","^t) (map prover9_of_term args) ^
")";;
let rec prover9_of_clause cls =
match cls with
[] -> failwith "prover9_of_clause: empty clause"
| [l] -> prover9_of_literal l
| l::ls -> prover9_of_literal l ^ " | " ^ prover9_of_clause ls;;
(* ------------------------------------------------------------------------- *)
(* Parse S-expressions. *)
(* ------------------------------------------------------------------------- *)
type sexp = Atom of string | List of sexp list;;
let atom inp =
match inp with
Resword "("::rst -> raise Noparse
| Resword ")"::rst -> raise Noparse
| Resword s::rst -> Atom s,rst
| Ident s::rst -> Atom s,rst
| [] -> raise Noparse;;
let rec sexpression inp =
( atom
||| (a (Resword "(") ++ many sexpression ++ a (Resword ")") >>
(fun ((_,l),_) -> List l)))
inp;;
(* ------------------------------------------------------------------------- *)
(* Skip to beginning of proof object. *)
(* ------------------------------------------------------------------------- *)
let rec skipheader i s =
if String.sub s i 28 = ";; BEGINNING OF PROOF OBJECT"
then String.sub s (i + 28) (String.length s - i - 28)
else skipheader (i + 1) s;;
(* ------------------------------------------------------------------------- *)
(* Parse a proof step. *)
(* ------------------------------------------------------------------------- *)
let parse_proofstep ps =
match ps with
List[Atom id; just; formula; Atom "NIL"] -> (id,just,formula)
| _ -> failwith "unexpected proofstep";;
(* ------------------------------------------------------------------------- *)
(* Convert sexp representation of formula to shadow syntax. *)
(* ------------------------------------------------------------------------- *)
let rec folterm_of_sexp sexp =
match sexp with
Atom(s) when String.sub s 0 1 = "v" -> Variable s
| Atom(s) -> Function(s,[])
| List(Atom f::args) -> Function(f,map folterm_of_sexp args)
| _ -> failwith "folterm_of_sexp: malformed sexpression term representation";;
let folatom_of_sexp sexp =
match sexp with
Atom(r) -> Literal(true,r,[])
| List(Atom r::args) -> Literal(true,r,map folterm_of_sexp args)
| _ -> failwith "folatom_of_sexp: malformed sexpression atom representation";;
let folliteral_of_sexp sexp =
match sexp with
List[Atom "not";sex] -> let Literal(s,r,args) = folatom_of_sexp sex in
Literal(not s,r,args)
| _ -> folatom_of_sexp sexp;;
let rec folclause_of_sexp sexp =
match sexp with
List[Atom "or";sex1;sex2] ->
folclause_of_sexp sex1 @ folclause_of_sexp sex2
| _ -> [folliteral_of_sexp sexp];;
(* ------------------------------------------------------------------------- *)
(* Convert shadow syntax back into HOL (sometimes given expected type). *)
(* Make a crude type postcorrection for equations between variables based *)
(* on their types in other terms, if applicable. *)
(* It might be nicer to use preterms to get a systematic use of context, but *)
(* this is a pretty simple problem. *)
(* ------------------------------------------------------------------------- *)
let rec hol_of_folterm (btrans_fun,btrans_rel as trp) ty tm =
match tm with
Variable(x) -> variant (ran btrans_fun) (mk_var(x,ty))
| Function(fs,args) ->
let f = apply btrans_fun fs in
let tys,rty = nsplit dest_fun_ty args (type_of f) in
list_mk_comb(f,map2 (hol_of_folterm trp) tys args);;
let hol_of_folliteral (btrans_fun,btrans_rel as trp) lit =
match lit with
Literal(s,"false",[]) -> if s then mk_const("F",[])
else mk_neg(mk_const("F",[]))
| Literal(s,"=",[l;r]) ->
let tml_prov = hol_of_folterm trp aty l
and tmr_prov = hol_of_folterm trp aty r in
let ty = if type_of tml_prov <> aty then type_of tml_prov
else if type_of tmr_prov <> aty then type_of tmr_prov
else aty in
let ptm = mk_eq(hol_of_folterm trp ty l,hol_of_folterm trp ty r) in
if s then ptm else mk_neg ptm
| Literal(s,rs,args) ->
let r = apply btrans_rel rs in
let tys,rty = nsplit dest_fun_ty args (type_of r) in
let ptm = list_mk_comb(r,map2 (hol_of_folterm trp) tys args) in
if s then ptm else mk_neg ptm;;
let is_truevar (bf,_) tm = is_var tm && not(mem tm (ran bf));;
let rec hol_of_folclause trp cls =
match cls with
[] -> mk_const("F",[])
| [c] -> hol_of_folliteral trp c
| c::cs -> let rawcls = map (hol_of_folliteral trp) cls in
let is_truevar tm = is_var tm &
not(mem tm (ran(fst trp))) &
not(mem tm (ran(snd trp))) in
let und,dec = partition
(fun t -> is_eq t && is_truevar(lhs t) && is_truevar(rhs t))
rawcls in
if und = [] || dec = [] then list_mk_disj rawcls else
let cxt = map dest_var (filter is_truevar (freesl dec)) in
let correct t =
try let l,r = dest_eq t in
let ls = fst(dest_var l) and rs = fst(dest_var r) in
let ty = try assoc ls cxt with Failure _ -> assoc rs cxt in
mk_eq(mk_var(ls,ty),mk_var(rs,ty))
with Failure _ -> t in
list_mk_disj(map correct rawcls);;
(* ------------------------------------------------------------------------- *)
(* Composed map from sexp to HOL items. *)
(* ------------------------------------------------------------------------- *)
let hol_of_term trp ty sexp = hol_of_folterm trp ty (folterm_of_sexp sexp);;
let hol_of_literal trp sexp = hol_of_folliteral trp (folliteral_of_sexp sexp);;
let hol_of_clause trp sexp = hol_of_folclause trp (folclause_of_sexp sexp);;
(* ------------------------------------------------------------------------- *)
(* Follow paramodulation path *)
(* ------------------------------------------------------------------------- *)
let rec PARA_SUBS_CONV path eth tm =
match path with
[] -> if lhs(concl eth) = tm then eth else failwith "PARA_SUBS_CONV"
| n::rpt -> let f,args = strip_comb tm in
funpow (length args - n) RATOR_CONV (RAND_CONV
(PARA_SUBS_CONV rpt eth)) tm;;
(* ------------------------------------------------------------------------- *)
(* Pull forward disjunct in clause using prover9/Ivy director string. *)
(* ------------------------------------------------------------------------- *)
let FRONT1_DISJ_CONV =
GEN_REWRITE_CONV I [TAUT `a \/ b \/ c <=> b \/ a \/ c`] ORELSEC
GEN_REWRITE_CONV I [TAUT `a \/ b <=> b \/ a`];;
let rec FRONT_DISJ_CONV l tm =
match l with
[] | ((Atom "1")::_) -> REFL tm
| (Atom "2")::t -> (RAND_CONV (FRONT_DISJ_CONV t) THENC
FRONT1_DISJ_CONV) tm
| _ -> failwith "unexpected director string in clause";;
(* ------------------------------------------------------------------------- *)
(* For using paramodulating equation, more convenient to put at the back. *)
(* ------------------------------------------------------------------------- *)
let AP_IMP =
let pp = MATCH_MP(TAUT `(a ==> b) ==> !x. x \/ a ==> x \/ b`) in
fun t -> SPEC t o pp;;
let rec PARA_BACK_CONV eqdir tm =
match eqdir with
[Atom "1"] when not(is_disj tm) -> REFL tm
| [Atom "2"] when not(is_disj tm) -> SYM_CONV tm
| Atom "2"::eqs -> RAND_CONV (PARA_BACK_CONV eqs) tm
| [Atom "1"; Atom f] when is_disj tm ->
let th1 = if f = "2" then LAND_CONV SYM_CONV tm else REFL tm in
let tm' = rand(concl th1) in
let djs = disjuncts tm' in
let th2 = DISJ_ACI_RULE(mk_eq(tm',list_mk_disj(tl djs @ [hd djs]))) in
TRANS th1 th2
| _ -> failwith "PARA_BACK_CONV";;
(* ------------------------------------------------------------------------- *)
(* Do direct resolution on front clauses. *)
(* ------------------------------------------------------------------------- *)
let RESOLVE =
let resrules = map (MATCH_MP o TAUT)
[`a /\ ~a ==> F`;
`~a /\ a ==> F`;
`a /\ (~a \/ b) ==> b`;
`~a /\ (a \/ b) ==> b`;
`(a \/ b) /\ ~a ==> b`;
`(~a \/ b) /\ a ==> b`;
`(a \/ b) /\ (~a \/ c) ==> b \/ c`;
`(~a \/ b) /\ (a \/ c) ==> b \/ c`] in
fun th1 th2 -> let th = CONJ th1 th2 in tryfind (fun f -> f th) resrules;;
(* ------------------------------------------------------------------------- *)
(* AC rearrangement of disjunction but maybe correcting proforma types in *)
(* the target term for equations between variables. *)
(* ------------------------------------------------------------------------- *)
let ACI_CORRECT th tm =
try EQ_MP (DISJ_ACI_RULE(mk_eq(concl th,tm))) th with Failure _ ->
let cxt = map dest_var (frees(concl th)) in
let rec correct t =
if is_disj t then mk_disj(correct(lhand t),correct(rand t))
else if is_neg t then mk_neg(correct(rand t)) else
(try let l,r = dest_eq t in
let ls = fst(dest_var l) and rs = fst(dest_var r) in
let ty = try assoc ls cxt with Failure _ -> assoc rs cxt in
mk_eq(mk_var(ls,ty),mk_var(rs,ty))
with Failure _ -> t) in
let tm' = correct tm in
EQ_MP (DISJ_ACI_RULE(mk_eq(concl th,tm'))) th;;
(* ------------------------------------------------------------------------- *)
(* Process proof step. *)
(* ------------------------------------------------------------------------- *)
let rec PROVER9_PATH_CONV l conv =
match l with
Atom "2"::t -> RAND_CONV(PROVER9_PATH_CONV t conv)
| Atom "1"::t -> LAND_CONV(PROVER9_PATH_CONV t conv)
| [] -> conv
| _ -> failwith "PROVER9_PATH_CONV:unknown path";;
let PROVER9_FLIP_CONV tm =
if is_neg tm then RAND_CONV SYM_CONV tm else SYM_CONV tm;;
let process_proofstep ths trp asms (lab,just,fm) =
let tm = hol_of_clause trp fm in
match just with
List[Atom "input"] ->
if is_eq tm && lhs tm = rhs tm then REFL(rand tm) else
tryfind (fun th -> PART_MATCH I th tm) ths
| List[Atom "flip"; Atom n; List path] ->
let th = apply asms n in
let nth = CONV_RULE(PROVER9_PATH_CONV path PROVER9_FLIP_CONV) th in
if concl nth = tm then nth
else failwith "Inconsistency from flip"
| List[Atom "instantiate"; Atom "0"; List[List[x;Atom".";y]]] ->
let th = REFL(hol_of_term trp aty y) in
if concl th = tm then th
else failwith "Inconsistency from instantiation of reflexivity"
| List[Atom "instantiate"; Atom n; List i] ->
let th = apply asms n
and ilist = map (fun (List[Atom x;Atom"."; y]) -> (y,x)) i in
let xs = map
(fun (y,x) -> find_term (fun v -> is_var v && fst(dest_var v) = x)
(concl th)) ilist in
let ys = map2
(fun (y,x) v -> hol_of_term trp (type_of v) y) ilist xs in
INST (zip ys xs) th
| List[Atom "paramod"; Atom eqid; List eqdir; Atom tmid; List dir] ->
let eth = CONV_RULE (PARA_BACK_CONV eqdir) (apply asms eqid)
and tth = apply asms tmid
and path = (map (fun (Atom s) -> int_of_string s) dir) in
let etm = concl eth in
let th =
if is_disj etm then
let djs = disjuncts etm in
let eq = last djs in
let fth = CONV_RULE (PARA_SUBS_CONV path (ASSUME eq)) tth in
MP (itlist AP_IMP (butlast djs) (DISCH eq fth)) eth
else CONV_RULE(PARA_SUBS_CONV path eth) tth in
if concl th = tm then th
else failwith "Inconsistency from paramodulation"
| List[Atom "resolve"; Atom l1; List path1; Atom l2; List path2] ->
let th1 = CONV_RULE (FRONT_DISJ_CONV path1) (apply asms l1)
and th2 = CONV_RULE (FRONT_DISJ_CONV path2) (apply asms l2) in
let th3 = RESOLVE th1 th2 in
ACI_CORRECT th3 tm
| List[Atom "propositional"; Atom l] ->
let th1 = apply asms l in
ACI_CORRECT th1 tm
| _ -> failwith "process_proofstep: no translation";;
let rec process_proofsteps ths trp asms steps =
match steps with
[] -> asms,[]
| ((lab,_,_) as st)::sts ->
(try let th = process_proofstep ths trp asms st in
process_proofsteps ths trp ((lab |-> th) asms) sts
with _ -> asms,steps);;
(* ------------------------------------------------------------------------- *)
(* Main refutation procedure for clauses *)
(* ------------------------------------------------------------------------- *)
let PROVER9_REFUTE ths =
let fvs = itlist (fun th -> union (freesl(hyp th))) ths [] in
let fovars,functions,relations =
signature fvs (end_itlist (curry mk_conj) (map concl ths)) ([],[],[]) in
let trans_var =
itlist2 (fun f n -> f |-> "x"^string_of_int n)
fovars (1--length fovars) undefined
and trans_fun =
itlist2 (fun f n -> f |-> "f"^string_of_int n)
functions (1--length functions) undefined
and trans_rel =
itlist2 (fun f n -> f |-> "R"^string_of_int n)
relations (1--length relations) undefined in
let cls =
map (translate_clause (trans_var,trans_fun,trans_rel) o concl) ths in
let p9cls = map (fun c -> prover9_of_clause c ^".\n") cls in
let p9str = "clear(bell).\n"^ !prover9_options ^
"formulas(sos).\n"^
itlist (^) p9cls
"end_of_list.\n" in
let filename_in = Filename.temp_file "prover9" ".in"
and filename_out = Filename.temp_file "prover9" ".out" in
let _ = file_of_string filename_in p9str in
let retcode = Sys.command
(prover9 ^ " -f " ^ filename_in ^ " | prooftrans ivy >" ^ filename_out) in
if retcode <> 0 then failwith "Prover9 call apparently failed" else
let p9proof = string_of_file filename_out in
let _ = if !prover9_debugging then ()
else (ignore(Sys.remove filename_in);
ignore(Sys.remove filename_out)) in
let List sexps,unp = sexpression(lex(explode(skipheader 0 p9proof))) in
(if unp <> [Ident ";;"; Ident "END"; Ident "OF";
Ident "PROOF"; Ident "OBJECT"]
then (Format.print_string "Unexpected proof object tail";
Format.print_newline())
else ());
let btrans_fun = itlist (fun (x,y) -> y |-> x) (graph trans_fun) undefined
and btrans_rel = itlist (fun (x,y) -> y |-> x) (graph trans_rel) undefined
and proof = map parse_proofstep sexps in
let asms,undone =
process_proofsteps ths (btrans_fun,btrans_rel) undefined proof in
find (fun th -> concl th = mk_const("F",[])) (map snd (graph asms));;
(* ------------------------------------------------------------------------- *)
(* Hence a prover. *)
(* ------------------------------------------------------------------------- *)
let PROVER9 =
let prule = MATCH_MP(TAUT `(~p ==> F) ==> p`)
and false_tm = `F` and true_tm = `T` in
let init_conv =
TOP_DEPTH_CONV BETA_CONV THENC
PRESIMP_CONV THENC
CONDS_ELIM_CONV THENC
NNFC_CONV THENC CNF_CONV THENC
DEPTH_BINOP_CONV `(/\)` (SKOLEM_CONV THENC PRENEX_CONV) THENC
GEN_REWRITE_CONV REDEPTH_CONV
[RIGHT_AND_EXISTS_THM; LEFT_AND_EXISTS_THM] THENC
GEN_REWRITE_CONV TOP_DEPTH_CONV [GSYM DISJ_ASSOC] THENC
GEN_REWRITE_CONV TOP_DEPTH_CONV [GSYM CONJ_ASSOC] in
fun tm ->
let tm' = mk_neg tm in
let ith = init_conv tm' in
let itm = rand(concl ith) in
if itm = true_tm then failwith "PROVER9: formula is trivially false" else
if itm = false_tm then prule(fst(EQ_IMP_RULE ith)) else
let evs,bod = strip_exists itm in
let ths = map SPEC_ALL (CONJUNCTS(ASSUME bod)) in
let ths' = end_itlist (@) (map (CONJUNCTS o CONV_RULE CNF_CONV) ths) in
let rth = PROVER9_REFUTE ths' in
let eth = itlist SIMPLE_CHOOSE evs rth in
let sth = PROVE_HYP (UNDISCH(fst(EQ_IMP_RULE ith))) eth in
prule(DISCH tm' sth);;
(* ------------------------------------------------------------------------- *)
(* Examples. *)
(* ------------------------------------------------------------------------- *)
let FRIEND_0 = time PROVER9
`(!x:P. ~friend(x,x)) /\ ~(a:P = b) /\ (!x y. friend(x,y) ==> friend(y,x))
==> (!x. ?y z. friend(x,y) /\ ~friend(x,z)) \/
(!x. ?y z. ~(y = z) /\ ~friend(x,y) /\ ~friend(x,z))`;;
let FRIEND_1 = time PROVER9
`(!x:P. ~friend(x,x)) /\ a IN s /\ b IN s /\ ~(a:P = b) /\
(!x y. friend(x,y) ==> friend(y,x))
==> (!x. x IN s ==> ?y z. y IN s /\ z IN s /\ friend(x,y) /\ ~friend(x,z)) \/
(!x. x IN s ==> ?y z. y IN s /\ z IN s /\
~(y = z) /\ ~friend(x,y) /\ ~friend(x,z))`;;
let LOS = time PROVER9
`(!x y z. P(x,y) /\ P(y,z) ==> P(x,z)) /\
(!x y z. Q(x,y) /\ Q(y,z) ==> Q(x,z)) /\
(!x y. Q(x,y) ==> Q(y,x)) /\
(!x y. P(x,y) \/ Q(x,y)) /\
~P(a,b) /\ ~Q(c,d)
==> F`;;
let CONWAY_1 = time PROVER9
`(!x. 0 + x = x) /\
(!x y. x + y = y + x) /\
(!x y z. x + (y + z) = (x + y) + z) /\
(!x. 1 * x = x) /\ (!x. x * 1 = x) /\
(!x y z. x * (y * z) = (x * y) * z) /\
(!x. 0 * x = 0) /\ (!x. x * 0 = 0) /\
(!x y z. x * (y + z) = (x * y) + (x * z)) /\
(!x y z. (x + y) * z = (x * z) + (y * z)) /\
(!x y. star(x * y) = 1 + x * star(y * x) * y) /\
(!x y. star(x + y) = star(star(x) * y) * star(x))
==> star(star(star(1))) = star(star(1))`;;
let CONWAY_2 = time PROVER9
`(!x. 0 + x = x) /\
(!x y. x + y = y + x) /\
(!x y z. x + (y + z) = (x + y) + z) /\
(!x. 1 * x = x) /\ (!x. x * 1 = x) /\
(!x y z. x * (y * z) = (x * y) * z) /\
(!x. 0 * x = 0) /\ (!x. x * 0 = 0) /\
(!x y z. x * (y + z) = (x * y) + (x * z)) /\
(!x y z. (x + y) * z = (x * z) + (y * z)) /\
(!x y. star(x * y) = 1 + x * star(y * x) * y) /\
(!x y. star(x + y) = star(star(x) * y) * star(x))
==> !a. star(star(star(star(a)))) = star(star(star(a)))`;;
let ECKMAN_HILTON_1 = time PROVER9
`(!x. 1 * x = x) /\
(!x. x * 1 = x) /\
(!x. 1 + x = x) /\
(!x. x + 1 = x) /\
(!w x y z. (w * x) + (y * z) = (w + y) * (x + z))
==> !a b. a * b = a + b`;;
let ECKMAN_HILTON_2 = time PROVER9
`(!x. 1 * x = x) /\
(!x. x * 1 = x) /\
(!x. 1 + x = x) /\
(!x. x + 1 = x) /\
(!w x y z. (w * x) + (y * z) = (w + y) * (x + z))
==> !a b. a * b = b * a`;;
let ECKMAN_HILTON_3 = time PROVER9
`(!x. 1 * x = x) /\
(!x. x * 1 = x) /\
(!x. 0 + x = x) /\
(!x. x + 0 = x) /\
(!w x y z. (w * x) + (y * z) = (w + y) * (x + z))
==> !a b. a * b = b * a`;;
let ECKMAN_HILTON_4 = time PROVER9
`(!x. 1 * x = x) /\
(!x. x * 1 = x) /\
(!x. 0 + x = x) /\
(!x. x + 0 = x) /\
(!w x y z. (w * x) + (y * z) = (w + y) * (x + z))
==> !a b. a + b = a * b`;;
let DOUBLE_DISTRIB = time PROVER9
`(!x y z. (x * y) * z = (x * z) * (y * z)) /\
(!x y z. z * (x * y) = (z * x) * (z * y))
==> !a b c. (a * b) * (c * a) = (a * c) * (b * a)`;;
let MOORE_PENROSE_PSEUDOINVERSE_UNIQUE = time PROVER9
`X * A * X = X /\ transpose(A * X) = A * X /\
A * X * A = A /\ transpose(X * A) = X * A /\
Y * A * Y = Y /\ transpose(A * Y) = A * Y /\
A * Y * A = A /\ transpose(Y * A) = Y * A /\
(!x y z. (x * y) * z = x * (y * z)) /\
(!x y. transpose(x * y) = transpose(y) * transpose(x))
==> X = Y`;;
|