1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
|
(* ========================================================================= *)
(* General "reduction" properties of binary relations, *)
(* ========================================================================= *)
needs "Library/rstc.ml";;
(* ------------------------------------------------------------------------- *)
(* Field of a binary relation. *)
(* ------------------------------------------------------------------------- *)
let FL = new_definition
`FL(R) x <=> (?y:A. R x y) \/ (?y. R y x)`;;
(* ------------------------------------------------------------------------ *)
(* Normality of a term w.r.t. a reduction relation *)
(* ------------------------------------------------------------------------ *)
let NORMAL = new_definition
`NORMAL(R:A->A->bool) x <=> ~(?y. R x y)`;;
(* ------------------------------------------------------------------------ *)
(* Full Church-Rosser property. *)
(* *)
(* Note that we deviate from most term rewriting literature which call this *)
(* the "diamond property" and calls a relation "Church-Rosser" iff its RTC *)
(* has the diamond property. But this seems simpler and more natural. *)
(* ------------------------------------------------------------------------ *)
let CR = new_definition
`CR(R:A->A->bool) <=> !x y1 y2. R x y1 /\ R x y2 ==> ?z. R y1 z /\ R y2 z`;;
(* ------------------------------------------------------------------------ *)
(* Weak Church-Rosser property, i.e. the rejoining may take several steps. *)
(* ------------------------------------------------------------------------ *)
let WCR = new_definition
`WCR(R:A->A->bool) <=>
!x y1 y2. R x y1 /\ R x y2 ==> ?z. RTC R y1 z /\ RTC R y2 z`;;
(* ------------------------------------------------------------------------ *)
(* (Weak) normalization: every term has a normal form. *)
(* ------------------------------------------------------------------------ *)
let WN = new_definition
`WN(R:A->A->bool) <=> !x. ?y. RTC R x y /\ NORMAL(R) y`;;
(* ------------------------------------------------------------------------ *)
(* Strong normalization: every reduction sequence terminates (Noetherian) *)
(* ------------------------------------------------------------------------ *)
let SN = new_definition
`SN(R:A->A->bool) <=> ~(?seq. !n. R (seq n) (seq (SUC n)))`;;
(* ------------------------------------------------------------------------- *)
(* Definition of a tree. *)
(* ------------------------------------------------------------------------- *)
let TREE = new_definition
`TREE(R:A->A->bool) <=>
(!y. ~(TC R y y)) /\
?a. a IN FL(R) /\
!y. y IN FL(R) ==> (y = a) \/ TC R a y /\ ?!x. R x y`;;
(* ------------------------------------------------------------------------- *)
(* Local finiteness (finitely branching). *)
(* ------------------------------------------------------------------------- *)
let LF = new_definition
`LF(R:A->A->bool) <=> !x. FINITE {y | R x y}`;;
(* ------------------------------------------------------------------------- *)
(* Wellfoundedness apparatus for SN relations. *)
(* ------------------------------------------------------------------------- *)
let SN_WF = prove
(`!R:A->A->bool. SN(R) <=> WF(INV R)`,
REWRITE_TAC[SN; WF_DCHAIN; INV]);;
let SN_PRESERVE = prove
(`!R:A->A->bool. SN(R) <=> !P. (!x. P x ==> ?y. P y /\ R x y) ==> ~(?x. P x)`,
REWRITE_TAC[SN_WF; WF; INV] THEN MESON_TAC[]);;
let SN_NOETHERIAN = prove
(`!R:A->A->bool. SN(R) <=> !P. (!x. (!y. R x y ==> P y) ==> P x) ==> !x. P x`,
REWRITE_TAC[WF_IND; SN_WF; INV]);;
(* ------------------------------------------------------------------------ *)
(* Normality and weak normalization is preserved by transitive closure. *)
(* ------------------------------------------------------------------------ *)
let NORMAL_TC = prove
(`!R:A->A->bool. NORMAL(TC R) x <=> NORMAL(R) x`,
REWRITE_TAC[NORMAL] THEN MESON_TAC[TC_CASES_R; TC_INC]);;
let NORMAL_RTC = prove
(`!R:A->A->bool. NORMAL(R) x ==> !y. RTC R x y <=> (x = y)`,
ONCE_REWRITE_TAC[GSYM NORMAL_TC] THEN
REWRITE_TAC[NORMAL; RTC; RC_EXPLICIT] THEN MESON_TAC[]);;
let WN_TC = prove
(`!R:A->A->bool. WN(TC R) <=> WN R`,
REWRITE_TAC[WN; NORMAL_TC; RTC; TC_IDEMP]);;
(* ------------------------------------------------------------------------- *)
(* Wellfoundedness and strong normalization are too. *)
(* ------------------------------------------------------------------------- *)
let WF_TC = prove
(`!R:A->A->bool. WF(TC R) <=> WF(R)`,
GEN_TAC THEN EQ_TAC THENL
[MESON_TAC[WF_SUBSET; TC_INC];
REWRITE_TAC[WF] THEN DISCH_TAC THEN X_GEN_TAC `P:A->bool` THEN
FIRST_X_ASSUM(MP_TAC o SPEC `\y:A. ?z. P z /\ TC(R) z y`) THEN
REWRITE_TAC[] THEN MESON_TAC[TC_CASES_L]]);;
(******************* Alternative --- intuitionistic --- proof
let WF_TC = prove
(`!R:A->A->bool. WF(TC R) <=> WF(R)`,
GEN_TAC THEN EQ_TAC THENL
[MESON_TAC[WF_SUBSET; TC_INC];
REWRITE_TAC[WF_IND]] THEN
DISCH_TAC THEN GEN_TAC THEN
FIRST_ASSUM(MP_TAC o SPEC `\z:A. !u:A. TC(R) u z ==> P(u)`) THEN
REWRITE_TAC[] THEN MESON_TAC[TC_CASES_L]);;
let WF_TC_EXPLICIT = prove
(`!R:A->A->bool. WF(R) ==> WF(TC(R))`,
GEN_TAC THEN REWRITE_TAC[WF_IND] THEN DISCH_TAC THEN
GEN_TAC THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `\z:A. !u:A. TC(R) u z ==> P(u)`) THEN
REWRITE_TAC[] THEN STRIP_TAC THEN X_GEN_TAC `z:A` THEN
FIRST_ASSUM MATCH_MP_TAC THEN SPEC_TAC(`z:A`,`z:A`) THEN
FIRST_ASSUM MATCH_MP_TAC THEN
GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o REDEPTH_CONV)
[RIGHT_IMP_FORALL_THM; IMP_IMP] THEN
DISCH_TAC THEN X_GEN_TAC `u:A` THEN
ONCE_REWRITE_TAC[TC_CASES_L] THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL
[DISCH_TAC THEN
MATCH_MP_TAC(ASSUME `!x:A. (!y. TC R y x ==> P y) ==> P x`) THEN
X_GEN_TAC `v:A` THEN DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
EXISTS_TAC `u:A` THEN CONJ_TAC THEN FIRST_ASSUM ACCEPT_TAC;
DISCH_THEN(X_CHOOSE_THEN `w:A` STRIP_ASSUME_TAC) THEN
FIRST_ASSUM MATCH_MP_TAC THEN EXISTS_TAC `w:A` THEN
CONJ_TAC THEN FIRST_ASSUM ACCEPT_TAC]);;
***********************)
let SN_TC = prove
(`!R:A->A->bool. SN(TC R) <=> SN R`,
GEN_TAC THEN REWRITE_TAC[SN_WF; GSYM TC_INV; WF_TC]);;
(* ------------------------------------------------------------------------ *)
(* Strong normalization implies normalization *)
(* ------------------------------------------------------------------------ *)
let SN_WN = prove
(`!R:A->A->bool. SN(R) ==> WN(R)`,
GEN_TAC THEN REWRITE_TAC[SN_WF; WF; WN] THEN DISCH_TAC THEN
X_GEN_TAC `a:A` THEN POP_ASSUM(MP_TAC o SPEC `\y:A. RTC R a y`) THEN
REWRITE_TAC[INV; NORMAL] THEN MESON_TAC[RTC_REFL; RTC_TRANS_L]);;
(* ------------------------------------------------------------------------ *)
(* Reflexive closure preserves Church-Rosser property (pretty trivial) *)
(* ------------------------------------------------------------------------ *)
let RC_CR = prove
(`!R:A->A->bool. CR(R) ==> CR(RC R)`,
REWRITE_TAC[CR; RC_EXPLICIT] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------ *)
(* The strip lemma leads us halfway to the fact that transitive x *)
(* closure preserves the Church-Rosser property. It's no harder / \ *)
(* to prove it for two separate reduction relations. This then / y2 *)
(* allows us to prove the desired theorem simply by using the / / *)
(* strip lemma twice with a bit of conjunct-swapping. y1 / *)
(* \ / *)
(* The diagram on the right shows the use of the variables. z *)
(* ------------------------------------------------------------------------ *)
let STRIP_LEMMA = prove
(`!R S. (!x y1 y2. R x y1 /\ S x y2 ==> ?z:A. S y1 z /\ R y2 z) ==>
(!x y1 y2. TC R x y1 /\ S x y2 ==> ?z:A. S y1 z /\ TC R y2 z)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
REWRITE_TAC[TAUT `a /\ b ==> c <=> a ==> (b ==> c)`] THEN
REWRITE_TAC[GSYM RIGHT_IMP_FORALL_THM] THEN
MATCH_MP_TAC TC_INDUCT THEN ASM_MESON_TAC[TC_INC; TC_TRANS]);;
(* ------------------------------------------------------------------------ *)
(* Transitive closure preserves Church-Rosser property. *)
(* ------------------------------------------------------------------------ *)
let TC_CR = prove
(`!R:A->A->bool. CR(R) ==> CR(TC R)`,
GEN_TAC THEN REWRITE_TAC[CR] THEN DISCH_TAC THEN
MATCH_MP_TAC STRIP_LEMMA THEN REPEAT GEN_TAC THEN
ONCE_REWRITE_TAC[CONJ_SYM] THEN
RULE_INDUCT_TAC STRIP_LEMMA THEN ASM_REWRITE_TAC[]);;
(* ------------------------------------------------------------------------ *)
(* Reflexive transitive closure preserves Church-Rosser property. *)
(* ------------------------------------------------------------------------ *)
let RTC_CR = prove
(`!R:A->A->bool. CR(R) ==> CR(RTC R)`,
REWRITE_TAC[RTC] THEN MESON_TAC[RC_CR; TC_CR]);;
(* ------------------------------------------------------------------------ *)
(* Equivalent `Church-Rosser` property for the equivalence relation. *)
(* ------------------------------------------------------------------------ *)
let STC_CR = prove
(`!R:A->A->bool. CR(RTC R) <=>
!x y. RSTC R x y ==> ?z:A. RTC R x z /\ RTC R y z`,
GEN_TAC THEN REWRITE_TAC[CR] THEN EQ_TAC THENL
[DISCH_TAC THEN MATCH_MP_TAC RSTC_INDUCT THEN
ASM_MESON_TAC[RTC_REFL; RTC_INC; RTC_TRANS];
MESON_TAC[RSTC_INC_RTC; RSTC_SYM; RSTC_TRANS]]);;
(* ------------------------------------------------------------------------ *)
(* Under normalization, Church-Rosser is equivalent to uniqueness of NF *)
(* ------------------------------------------------------------------------ *)
let NORM_CR = prove
(`!R:A->A->bool. WN(R) ==>
(CR(RTC R) <=> (!x y1 y2. RTC R x y1 /\ NORMAL(R) y1 /\
RTC R x y2 /\ NORMAL(R) y2 ==> (y1 = y2)))`,
GEN_TAC THEN REWRITE_TAC[CR; WN] THEN DISCH_TAC THEN EQ_TAC THENL
[MESON_TAC[NORMAL_RTC]; ASM_MESON_TAC[RTC_TRANS]]);;
(* ------------------------------------------------------------------------ *)
(* Normalizing and Church-Rosser iff every term has a unique normal form *)
(* ------------------------------------------------------------------------ *)
let CR_NORM = prove
(`!R:A->A->bool. WN(R) /\ CR(RTC R) <=> !x. ?!y. RTC R x y /\ NORMAL(R) y`,
GEN_TAC THEN ONCE_REWRITE_TAC[EXISTS_UNIQUE_THM] THEN
REWRITE_TAC[FORALL_AND_THM; GSYM WN] THEN
MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> (a /\ b <=> a /\ c)`) THEN
DISCH_THEN(fun th -> REWRITE_TAC[MATCH_MP NORM_CR th]) THEN
REWRITE_TAC[CONJ_ASSOC]);;
(* ------------------------------------------------------------------------ *)
(* Newman's lemma: weak Church-Rosser plus x *)
(* strong normalization implies full Church- / \ *)
(* Rosser. By the above (and SN ==> WN) it z1 z2 *)
(* is sufficient to show normal forms are / | | \ *)
(* unique. We use the Noetherian induction / \ / \ *)
(* form of SN, so we need only prove that if / z \ *)
(* some term has multiple normal forms, so / | \ *)
(* does a `successor`. See the diagram on the / | \ *)
(* right for the use of variables. y1 w y2 *)
(* ------------------------------------------------------------------------ *)
let NEWMAN_LEMMA = prove
(`!R:A->A->bool. SN(R) /\ WCR(R) ==> CR(RTC R)`,
GEN_TAC THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP SN_WN) THEN
DISCH_THEN(fun th -> ASSUME_TAC(REWRITE_RULE[WN] th) THEN MP_TAC th) THEN
DISCH_THEN(fun th -> REWRITE_TAC[MATCH_MP NORM_CR th]) THEN
FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[WF_IND; SN_WF]) THEN
REWRITE_TAC[INV] THEN X_GEN_TAC `x:A` THEN REPEAT STRIP_TAC THEN
MAP_EVERY UNDISCH_TAC [`RTC R (x:A) y1`; `RTC R (x:A) y2`] THEN
ONCE_REWRITE_TAC[RTC_CASES_R] THEN
DISCH_THEN(DISJ_CASES_THEN2 ASSUME_TAC (X_CHOOSE_TAC `z2:A`)) THEN
DISCH_THEN(DISJ_CASES_THEN2 ASSUME_TAC (X_CHOOSE_TAC `z1:A`)) THENL
[ASM_MESON_TAC[];ASM_MESON_TAC[NORMAL];ASM_MESON_TAC[NORMAL]; ALL_TAC] THEN
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [WCR]) THEN
ASM_MESON_TAC[RTC_TRANS]);;
(* ------------------------------------------------------------------------- *)
(* A variant of Koenig's lemma. *)
(* ------------------------------------------------------------------------- *)
let LF_TC_FINITE = prove
(`!R. LF(R) /\ SN(R) ==> !x:A. FINITE {y | TC(R) x y}`,
GEN_TAC THEN REWRITE_TAC[LF] THEN STRIP_TAC THEN
FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[WF_IND; SN_WF; INV]) THEN
GEN_TAC THEN DISCH_TAC THEN SUBGOAL_THEN
`{y:A | TC(R) x y} = {y | R x y} UNION
(UNIONS { s | ?z. R x z /\ (s = {y | TC(R) z y})})`
SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_UNION; IN_UNIONS] THEN
REWRITE_TAC[IN_ELIM_THM] THEN REWRITE_TAC[IN] THEN
GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [TC_CASES_R] THEN
AP_TERM_TAC THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[]; ALL_TAC] THEN
ASM_REWRITE_TAC[FINITE_UNION; FINITE_UNIONS] THEN CONJ_TAC THENL
[MP_TAC(ISPECL [`\z:A. {y | TC R z y}`; `{z | (R:A->A->bool) x z}`]
FINITE_IMAGE_EXPAND) THEN
ASM_REWRITE_TAC[] THEN REWRITE_TAC[IN; IN_ELIM_THM];
GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [IN_ELIM_THM] THEN
REWRITE_TAC[] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM ACCEPT_TAC]);;
let SN_NOLOOP = prove
(`!R:A->A->bool. SN(R) ==> !z. ~(TC(R) z z)`,
GEN_TAC THEN ONCE_REWRITE_TAC[GSYM SN_TC] THEN
SPEC_TAC(`TC(R:A->A->bool)`,`R:A->A->bool`) THEN
GEN_TAC THEN REWRITE_TAC[SN_WF; INV; WF] THEN
DISCH_THEN(fun th -> GEN_TAC THEN MP_TAC th) THEN
DISCH_THEN(MP_TAC o SPEC `\x:A. x = z`) THEN
REWRITE_TAC[] THEN MESON_TAC[]);;
let RELPOW_RTC = prove
(`!R:A->A->bool. !n x y. RELPOW n R x y ==> RTC(R) x y`,
GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[RELPOW] THEN
ASM_MESON_TAC[RTC_REFL; RTC_TRANS_L]);;
let RTC_TC_LEMMA = prove
(`!R x:A. {y:A | RTC(R) x y} = x INSERT {y:A | TC(R) x y}`,
REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT] THEN
REWRITE_TAC[RTC; RC_EXPLICIT; DISJ_ACI; EQ_SYM_EQ]);;
let HAS_SIZE_SUBSET = prove
(`!s:A->bool t m n. s HAS_SIZE m /\ t HAS_SIZE n /\ s SUBSET t ==> m <= n`,
REWRITE_TAC[HAS_SIZE] THEN MESON_TAC[CARD_SUBSET]);;
let FC_FINITE_BOUND_LEMMA = prove
(`!R. (!z. ~(TC R z z))
==> !n. {y:A | RTC(R) x y} HAS_SIZE n
==> !m y. RELPOW m R x y ==> m <= n`,
REPEAT STRIP_TAC THEN
FIRST_ASSUM(X_CHOOSE_THEN `f:num->A` STRIP_ASSUME_TAC o
REWRITE_RULE[RELPOW_SEQUENCE]) THEN
SUBGOAL_THEN `!i. i <= m ==> RELPOW i R (x:A) (f i)` ASSUME_TAC THENL
[INDUCT_TAC THEN ASM_REWRITE_TAC[RELPOW] THEN
REWRITE_TAC[LE_SUC_LT] THEN ASM_MESON_TAC[LT_IMP_LE]; ALL_TAC] THEN
SUBGOAL_THEN `{z:A | ?i:num. i < m /\ (z = f i)} SUBSET {y | RTC R x y}`
ASSUME_TAC THENL
[REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN ASM_MESON_TAC[RELPOW_RTC; LT_IMP_LE];
ALL_TAC] THEN
SUBGOAL_THEN `!p. p <= m ==> {z:A | ?i. i < p /\ (z = f i)} HAS_SIZE p`
(fun th -> ASSUME_TAC(MATCH_MP th (SPEC `m:num` LE_REFL))) THENL
[ALL_TAC;
MATCH_MP_TAC HAS_SIZE_SUBSET THEN
EXISTS_TAC `{z:A | ?i. i < m /\ (z = f i)}` THEN
EXISTS_TAC `{y:A | RTC(R) x y}` THEN ASM_REWRITE_TAC[]] THEN
INDUCT_TAC THEN DISCH_TAC THENL
[REWRITE_TAC[HAS_SIZE_0; EXTENSION; NOT_IN_EMPTY; IN_ELIM_THM; LT];
ALL_TAC] THEN
SUBGOAL_THEN `{z:A | ?i. i < SUC p /\ (z = f i)} =
f(p) INSERT {z | ?i. i < p /\ (z = f i)}`
SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_INSERT; IN_ELIM_THM] THEN
REWRITE_TAC[LT] THEN MESON_TAC[]; ALL_TAC] THEN
REWRITE_TAC[HAS_SIZE; CARD_CLAUSES; SUC_INJ] THEN
SUBGOAL_THEN `{z:A | ?i. i < p /\ (z = f i)} HAS_SIZE p` MP_TAC THENL
[FIRST_ASSUM MATCH_MP_TAC THEN UNDISCH_TAC `SUC p <= m` THEN ARITH_TAC;
ALL_TAC] THEN
REWRITE_TAC[HAS_SIZE] THEN STRIP_TAC THEN
FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP (CONJUNCT2 CARD_CLAUSES) th]) THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[FINITE_INSERT] THEN
UNDISCH_TAC `f p IN {z:A | ?i:num. i < p /\ (z = f i)}` THEN
CONV_TAC CONTRAPOS_CONV THEN DISCH_TAC THEN
REWRITE_TAC[IN_ELIM_THM; NOT_EXISTS_THM] THEN
X_GEN_TAC `q:num` THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
SUBGOAL_THEN `TC(R) ((f:num->A) q) (f p)` (fun th -> ASM_MESON_TAC[th]) THEN
UNDISCH_TAC `SUC p <= m` THEN UNDISCH_TAC `q < p` THEN
REWRITE_TAC[LT_EXISTS] THEN
DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC) THEN
SPEC_TAC(`d:num`,`d:num`) THEN INDUCT_TAC THENL
[REWRITE_TAC[ADD_CLAUSES] THEN DISCH_TAC THEN
MATCH_MP_TAC TC_INC THEN FIRST_ASSUM MATCH_MP_TAC THEN
UNDISCH_TAC `SUC (SUC q) <= m` THEN ARITH_TAC;
DISCH_TAC THEN MATCH_MP_TAC TC_TRANS_L THEN
EXISTS_TAC `(f:num->A)(q + SUC d)` THEN CONJ_TAC THENL
[ALL_TAC; REWRITE_TAC[ADD_CLAUSES]] THEN
FIRST_ASSUM MATCH_MP_TAC THEN
UNDISCH_TAC `SUC (q + SUC (SUC d)) <= m` THEN ARITH_TAC]);;
let FC_FINITE_BOUND = prove
(`!R (x:A). FINITE {y | RTC(R) x y} /\
(!z. ~(TC R z z))
==> ?N. !n y. RELPOW n R x y ==> n <= N`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
DISCH_TAC THEN EXISTS_TAC `CARD {y:A | RTC(R) x y}` THEN
FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP FC_FINITE_BOUND_LEMMA) THEN
ASM_REWRITE_TAC[HAS_SIZE]);;
let BOUND_SN = prove
(`!R. (!x:A. ?N. !n y. RELPOW n R x y ==> n <= N) ==> SN(R)`,
GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[SN_WF; WF_DCHAIN; INV] THEN
DISCH_THEN(X_CHOOSE_TAC `f:num->A`) THEN
FIRST_X_ASSUM(MP_TAC o SPEC `(f:num->A) 0`) THEN
DISCH_THEN(X_CHOOSE_THEN `N:num`
(MP_TAC o SPECL [`SUC N`; `f(SUC N):A`])) THEN
REWRITE_TAC[GSYM NOT_LT; LT] THEN
SUBGOAL_THEN `!n. RELPOW n R (f 0 :A) (f n)` (fun th -> REWRITE_TAC[th]) THEN
INDUCT_TAC THEN ASM_REWRITE_TAC[RELPOW] THEN ASM_MESON_TAC[]);;
let LF_SN_BOUND = prove
(`!R. LF(R) ==> (SN(R) <=> !x:A. ?N. !n y. RELPOW n R x y ==> n <= N)`,
GEN_TAC THEN DISCH_TAC THEN EQ_TAC THEN REWRITE_TAC[BOUND_SN] THEN
DISCH_TAC THEN GEN_TAC THEN MATCH_MP_TAC FC_FINITE_BOUND THEN CONJ_TAC THENL
[SPEC_TAC(`x:A`,`x:A`) THEN REWRITE_TAC[RTC_TC_LEMMA; FINITE_INSERT] THEN
MATCH_MP_TAC LF_TC_FINITE THEN ASM_REWRITE_TAC[];
MATCH_MP_TAC SN_NOLOOP THEN ASM_REWRITE_TAC[]]);;
(* ------------------------------------------------------------------------- *)
(* Koenig's lemma. *)
(* ------------------------------------------------------------------------- *)
let TREE_FL = prove
(`!R. TREE(R) ==> ?a:A. FL(R) = {y | RTC(R) a y}`,
GEN_TAC THEN REWRITE_TAC[TREE] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC
(X_CHOOSE_THEN `a:A` STRIP_ASSUME_TAC)) THEN
EXISTS_TAC `a:A` THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN
X_GEN_TAC `x:A` THEN EQ_TAC THENL
[DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN REWRITE_TAC[RTC; RC_EXPLICIT] THEN
MESON_TAC[]; ONCE_REWRITE_TAC[RTC_CASES_L] THEN ASM_MESON_TAC[IN; FL]]);;
let KOENIG_LEMMA = prove
(`!R:A->A->bool. TREE(R) /\ LF(R) /\ SN(R) ==> FINITE (FL R)`,
GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `a:A` SUBST1_TAC o MATCH_MP TREE_FL) THEN
REWRITE_TAC[RTC_TC_LEMMA; FINITE_INSERT] THEN
SPEC_TAC(`a:A`,`a:A`) THEN MATCH_MP_TAC LF_TC_FINITE THEN
ASM_REWRITE_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Rephrasing in terms of joinability. *)
(* ------------------------------------------------------------------------- *)
let JOINABLE = new_definition
`JOINABLE R s t <=> ?u. RTC R s u /\ RTC R t u`;;
let JOINABLE_REFL = prove
(`!R t. JOINABLE R t t`,
REWRITE_TAC[JOINABLE] THEN MESON_TAC[RTC_CASES]);;
let JOINABLE_SYM = prove
(`!R s t. JOINABLE R s t <=> JOINABLE R t s`,
REWRITE_TAC[JOINABLE] THEN MESON_TAC[]);;
let JOINABLE_TRANS_R = prove
(`!R s t u. R s t /\ JOINABLE R t u ==> JOINABLE R s u`,
REWRITE_TAC[JOINABLE] THEN MESON_TAC[RTC_CASES_R]);;
let CR_RSTC_JOINABLE = prove
(`!R. CR(RTC R) ==> !x:A y. RSTC(R) x y <=> JOINABLE(R) x y`,
GEN_TAC THEN REWRITE_TAC[STC_CR; JOINABLE] THEN
ASM_MESON_TAC[RSTC_TRANS; RSTC_SYM; RSTC_INC_RTC]);;
(* ------------------------------------------------------------------------- *)
(* CR is equivalent to transitivity of joinability. *)
(* ------------------------------------------------------------------------- *)
let JOINABLE_TRANS = prove
(`!R. CR(RTC R) <=>
!x y z. JOINABLE(R) x y /\ JOINABLE(R) y z ==> JOINABLE(R) x z`,
REWRITE_TAC[CR; JOINABLE] THEN MESON_TAC[RTC_REFL; RTC_TRANS; RTC_SYM]);;
|