File: reduct.ml

package info (click to toggle)
hol-light 20170109-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 36,568 kB
  • ctags: 8,549
  • sloc: ml: 540,018; cpp: 439; lisp: 286; java: 279; makefile: 262; sh: 229; yacc: 108; perl: 78; ansic: 57; sed: 39
file content (453 lines) | stat: -rw-r--r-- 21,327 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
(* ========================================================================= *)
(* General "reduction" properties of binary relations,                       *)
(* ========================================================================= *)

needs "Library/rstc.ml";;

(* ------------------------------------------------------------------------- *)
(* Field of a binary relation.                                               *)
(* ------------------------------------------------------------------------- *)

let FL = new_definition
  `FL(R) x <=> (?y:A. R x y) \/ (?y. R y x)`;;

(* ------------------------------------------------------------------------ *)
(* Normality of a term w.r.t. a reduction relation                          *)
(* ------------------------------------------------------------------------ *)

let NORMAL = new_definition
  `NORMAL(R:A->A->bool) x <=> ~(?y. R x y)`;;

(* ------------------------------------------------------------------------ *)
(* Full Church-Rosser property.                                             *)
(*                                                                          *)
(* Note that we deviate from most term rewriting literature which call this *)
(* the "diamond property" and calls a relation "Church-Rosser" iff its RTC  *)
(* has the diamond property. But this seems simpler and more natural.       *)
(* ------------------------------------------------------------------------ *)

let CR = new_definition
  `CR(R:A->A->bool) <=> !x y1 y2. R x y1 /\ R x y2 ==> ?z. R y1 z /\ R y2 z`;;

(* ------------------------------------------------------------------------ *)
(* Weak Church-Rosser property, i.e. the rejoining may take several steps.  *)
(* ------------------------------------------------------------------------ *)

let WCR = new_definition
  `WCR(R:A->A->bool) <=>
   !x y1 y2. R x y1 /\ R x y2 ==> ?z. RTC R y1 z /\ RTC R y2 z`;;

(* ------------------------------------------------------------------------ *)
(* (Weak) normalization: every term has a normal form.                      *)
(* ------------------------------------------------------------------------ *)

let WN = new_definition
  `WN(R:A->A->bool) <=> !x. ?y. RTC R x y /\ NORMAL(R) y`;;

(* ------------------------------------------------------------------------ *)
(* Strong normalization: every reduction sequence terminates (Noetherian)   *)
(* ------------------------------------------------------------------------ *)

let SN = new_definition
  `SN(R:A->A->bool) <=> ~(?seq. !n. R (seq n) (seq (SUC n)))`;;

(* ------------------------------------------------------------------------- *)
(* Definition of a tree.                                                     *)
(* ------------------------------------------------------------------------- *)

let TREE = new_definition
  `TREE(R:A->A->bool) <=>
        (!y. ~(TC R y y)) /\
        ?a. a IN FL(R) /\
            !y. y IN FL(R) ==> (y = a) \/ TC R a y /\ ?!x. R x y`;;

(* ------------------------------------------------------------------------- *)
(* Local finiteness (finitely branching).                                    *)
(* ------------------------------------------------------------------------- *)

let LF = new_definition
  `LF(R:A->A->bool) <=> !x. FINITE {y | R x y}`;;

(* ------------------------------------------------------------------------- *)
(* Wellfoundedness apparatus for SN relations.                               *)
(* ------------------------------------------------------------------------- *)

let SN_WF = prove
 (`!R:A->A->bool. SN(R) <=> WF(INV R)`,
  REWRITE_TAC[SN; WF_DCHAIN; INV]);;

let SN_PRESERVE = prove
 (`!R:A->A->bool. SN(R) <=> !P. (!x. P x ==> ?y. P y /\ R x y) ==> ~(?x. P x)`,
  REWRITE_TAC[SN_WF; WF; INV] THEN MESON_TAC[]);;

let SN_NOETHERIAN = prove
 (`!R:A->A->bool. SN(R) <=> !P. (!x. (!y. R x y ==> P y) ==> P x) ==> !x. P x`,
  REWRITE_TAC[WF_IND; SN_WF; INV]);;

(* ------------------------------------------------------------------------ *)
(* Normality and weak normalization is preserved by transitive closure.     *)
(* ------------------------------------------------------------------------ *)

let NORMAL_TC = prove
 (`!R:A->A->bool. NORMAL(TC R) x <=> NORMAL(R) x`,
  REWRITE_TAC[NORMAL] THEN MESON_TAC[TC_CASES_R; TC_INC]);;

let NORMAL_RTC = prove
 (`!R:A->A->bool. NORMAL(R) x ==> !y. RTC R x y <=> (x = y)`,
  ONCE_REWRITE_TAC[GSYM NORMAL_TC] THEN
  REWRITE_TAC[NORMAL; RTC; RC_EXPLICIT] THEN MESON_TAC[]);;

let WN_TC = prove
 (`!R:A->A->bool. WN(TC R) <=> WN R`,
  REWRITE_TAC[WN; NORMAL_TC; RTC; TC_IDEMP]);;

(* ------------------------------------------------------------------------- *)
(* Wellfoundedness and strong normalization are too.                         *)
(* ------------------------------------------------------------------------- *)

let WF_TC = prove
 (`!R:A->A->bool. WF(TC R) <=> WF(R)`,
  GEN_TAC THEN EQ_TAC THENL
   [MESON_TAC[WF_SUBSET; TC_INC];
    REWRITE_TAC[WF] THEN DISCH_TAC THEN X_GEN_TAC `P:A->bool` THEN
    FIRST_X_ASSUM(MP_TAC o SPEC `\y:A. ?z. P z /\ TC(R) z y`) THEN
    REWRITE_TAC[] THEN MESON_TAC[TC_CASES_L]]);;

(******************* Alternative --- intuitionistic --- proof

let WF_TC = prove
 (`!R:A->A->bool. WF(TC R) <=> WF(R)`,
  GEN_TAC THEN EQ_TAC THENL
   [MESON_TAC[WF_SUBSET; TC_INC];
    REWRITE_TAC[WF_IND]] THEN
  DISCH_TAC THEN GEN_TAC THEN
  FIRST_ASSUM(MP_TAC o SPEC `\z:A. !u:A. TC(R) u z ==> P(u)`) THEN
  REWRITE_TAC[] THEN MESON_TAC[TC_CASES_L]);;

let WF_TC_EXPLICIT = prove
 (`!R:A->A->bool. WF(R) ==> WF(TC(R))`,
  GEN_TAC THEN REWRITE_TAC[WF_IND] THEN DISCH_TAC THEN
  GEN_TAC THEN DISCH_TAC THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `\z:A. !u:A. TC(R) u z ==> P(u)`) THEN
  REWRITE_TAC[] THEN STRIP_TAC THEN X_GEN_TAC `z:A` THEN
  FIRST_ASSUM MATCH_MP_TAC THEN SPEC_TAC(`z:A`,`z:A`) THEN
  FIRST_ASSUM MATCH_MP_TAC THEN
  GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o REDEPTH_CONV)
   [RIGHT_IMP_FORALL_THM; IMP_IMP] THEN
  DISCH_TAC THEN X_GEN_TAC `u:A` THEN
  ONCE_REWRITE_TAC[TC_CASES_L] THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL
   [DISCH_TAC THEN
    MATCH_MP_TAC(ASSUME `!x:A. (!y. TC R y x ==> P y) ==> P x`) THEN
    X_GEN_TAC `v:A` THEN DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
    EXISTS_TAC `u:A` THEN CONJ_TAC THEN FIRST_ASSUM ACCEPT_TAC;
    DISCH_THEN(X_CHOOSE_THEN `w:A` STRIP_ASSUME_TAC) THEN
    FIRST_ASSUM MATCH_MP_TAC THEN EXISTS_TAC `w:A` THEN
    CONJ_TAC THEN FIRST_ASSUM ACCEPT_TAC]);;

***********************)

let SN_TC = prove
 (`!R:A->A->bool. SN(TC R) <=> SN R`,
  GEN_TAC THEN REWRITE_TAC[SN_WF; GSYM TC_INV; WF_TC]);;

(* ------------------------------------------------------------------------ *)
(* Strong normalization implies normalization                               *)
(* ------------------------------------------------------------------------ *)

let SN_WN = prove
 (`!R:A->A->bool. SN(R) ==> WN(R)`,
  GEN_TAC THEN REWRITE_TAC[SN_WF; WF; WN] THEN DISCH_TAC THEN
  X_GEN_TAC `a:A` THEN POP_ASSUM(MP_TAC o SPEC `\y:A. RTC R a y`) THEN
  REWRITE_TAC[INV; NORMAL] THEN MESON_TAC[RTC_REFL; RTC_TRANS_L]);;

(* ------------------------------------------------------------------------ *)
(* Reflexive closure preserves Church-Rosser property (pretty trivial)      *)
(* ------------------------------------------------------------------------ *)

let RC_CR = prove
 (`!R:A->A->bool. CR(R) ==> CR(RC R)`,
  REWRITE_TAC[CR; RC_EXPLICIT] THEN MESON_TAC[]);;

(* ------------------------------------------------------------------------ *)
(* The strip lemma leads us halfway to the fact that transitive        x    *)
(* closure preserves the Church-Rosser property. It's no harder       / \   *)
(* to prove it for two separate reduction relations. This then       /   y2 *)
(* allows us to prove the desired theorem simply by using the       /    /  *)
(* strip lemma twice with a bit of conjunct-swapping.              y1   /   *)
(*                                                                   \ /    *)
(* The diagram on the right shows the use of the variables.           z     *)
(* ------------------------------------------------------------------------ *)

let STRIP_LEMMA = prove
 (`!R S. (!x y1 y2.    R x y1 /\ S x y2 ==> ?z:A. S y1 z /\    R y2 z) ==>
         (!x y1 y2. TC R x y1 /\ S x y2 ==> ?z:A. S y1 z /\ TC R y2 z)`,
  REPEAT GEN_TAC THEN DISCH_TAC THEN
  REWRITE_TAC[TAUT `a /\ b ==> c <=> a ==> (b ==> c)`] THEN
  REWRITE_TAC[GSYM RIGHT_IMP_FORALL_THM] THEN
  MATCH_MP_TAC TC_INDUCT THEN ASM_MESON_TAC[TC_INC; TC_TRANS]);;

(* ------------------------------------------------------------------------ *)
(* Transitive closure preserves Church-Rosser property.                     *)
(* ------------------------------------------------------------------------ *)

let TC_CR = prove
 (`!R:A->A->bool. CR(R) ==> CR(TC R)`,
  GEN_TAC THEN REWRITE_TAC[CR] THEN DISCH_TAC THEN
  MATCH_MP_TAC STRIP_LEMMA THEN REPEAT GEN_TAC THEN
  ONCE_REWRITE_TAC[CONJ_SYM] THEN
  RULE_INDUCT_TAC STRIP_LEMMA THEN ASM_REWRITE_TAC[]);;

(* ------------------------------------------------------------------------ *)
(* Reflexive transitive closure preserves Church-Rosser property.           *)
(* ------------------------------------------------------------------------ *)

let RTC_CR = prove
 (`!R:A->A->bool. CR(R) ==> CR(RTC R)`,
  REWRITE_TAC[RTC] THEN MESON_TAC[RC_CR; TC_CR]);;

(* ------------------------------------------------------------------------ *)
(* Equivalent `Church-Rosser` property for the equivalence relation.        *)
(* ------------------------------------------------------------------------ *)

let STC_CR = prove
 (`!R:A->A->bool. CR(RTC R) <=>
        !x y. RSTC R x y ==> ?z:A. RTC R x z /\ RTC R y z`,
  GEN_TAC THEN REWRITE_TAC[CR] THEN EQ_TAC THENL
   [DISCH_TAC THEN MATCH_MP_TAC RSTC_INDUCT THEN
    ASM_MESON_TAC[RTC_REFL; RTC_INC; RTC_TRANS];
    MESON_TAC[RSTC_INC_RTC; RSTC_SYM; RSTC_TRANS]]);;

(* ------------------------------------------------------------------------ *)
(* Under normalization, Church-Rosser is equivalent to uniqueness of NF     *)
(* ------------------------------------------------------------------------ *)

let NORM_CR = prove
 (`!R:A->A->bool. WN(R) ==>
     (CR(RTC R) <=> (!x y1 y2. RTC R x y1 /\ NORMAL(R) y1 /\
                               RTC R x y2 /\ NORMAL(R) y2 ==> (y1 = y2)))`,
  GEN_TAC THEN REWRITE_TAC[CR; WN] THEN DISCH_TAC THEN EQ_TAC THENL
   [MESON_TAC[NORMAL_RTC]; ASM_MESON_TAC[RTC_TRANS]]);;

(* ------------------------------------------------------------------------ *)
(* Normalizing and Church-Rosser iff every term has a unique normal form    *)
(* ------------------------------------------------------------------------ *)

let CR_NORM = prove
 (`!R:A->A->bool. WN(R) /\ CR(RTC R) <=> !x. ?!y. RTC R x y /\ NORMAL(R) y`,
  GEN_TAC THEN ONCE_REWRITE_TAC[EXISTS_UNIQUE_THM] THEN
  REWRITE_TAC[FORALL_AND_THM; GSYM WN] THEN
  MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> (a /\ b <=> a /\ c)`) THEN
  DISCH_THEN(fun th -> REWRITE_TAC[MATCH_MP NORM_CR th]) THEN
  REWRITE_TAC[CONJ_ASSOC]);;

(* ------------------------------------------------------------------------ *)
(* Newman's lemma: weak Church-Rosser plus                   x              *)
(* strong normalization implies full Church-                / \             *)
(* Rosser. By the above (and SN ==> WN) it                 z1 z2            *)
(* is sufficient to show normal forms are                 / | | \           *)
(* unique. We use the Noetherian induction               /  \ /  \          *)
(* form of SN, so we need only prove that if            /    z    \         *)
(* some term has multiple normal forms, so             /     |     \        *)
(* does a `successor`. See the diagram on the         /      |      \       *)
(* right for the use of variables.                   y1      w       y2     *)
(* ------------------------------------------------------------------------ *)

let NEWMAN_LEMMA = prove
 (`!R:A->A->bool. SN(R) /\ WCR(R) ==> CR(RTC R)`,
  GEN_TAC THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP SN_WN) THEN
  DISCH_THEN(fun th -> ASSUME_TAC(REWRITE_RULE[WN] th) THEN MP_TAC th) THEN
  DISCH_THEN(fun th -> REWRITE_TAC[MATCH_MP NORM_CR th]) THEN
  FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[WF_IND; SN_WF]) THEN
  REWRITE_TAC[INV] THEN X_GEN_TAC `x:A` THEN REPEAT STRIP_TAC THEN
  MAP_EVERY UNDISCH_TAC [`RTC R (x:A) y1`; `RTC R (x:A) y2`] THEN
  ONCE_REWRITE_TAC[RTC_CASES_R] THEN
  DISCH_THEN(DISJ_CASES_THEN2 ASSUME_TAC (X_CHOOSE_TAC `z2:A`)) THEN
  DISCH_THEN(DISJ_CASES_THEN2 ASSUME_TAC (X_CHOOSE_TAC `z1:A`)) THENL
   [ASM_MESON_TAC[];ASM_MESON_TAC[NORMAL];ASM_MESON_TAC[NORMAL]; ALL_TAC] THEN
  FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [WCR]) THEN
  ASM_MESON_TAC[RTC_TRANS]);;

(* ------------------------------------------------------------------------- *)
(* A variant of Koenig's lemma.                                              *)
(* ------------------------------------------------------------------------- *)

let LF_TC_FINITE = prove
 (`!R. LF(R) /\ SN(R) ==> !x:A. FINITE {y | TC(R) x y}`,
  GEN_TAC THEN REWRITE_TAC[LF] THEN STRIP_TAC THEN
  FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[WF_IND; SN_WF; INV]) THEN
  GEN_TAC THEN DISCH_TAC THEN SUBGOAL_THEN
    `{y:A | TC(R) x y} = {y | R x y} UNION
                         (UNIONS { s | ?z. R x z /\ (s = {y | TC(R) z y})})`
  SUBST1_TAC THENL
   [REWRITE_TAC[EXTENSION; IN_UNION; IN_UNIONS] THEN
    REWRITE_TAC[IN_ELIM_THM] THEN REWRITE_TAC[IN] THEN
    GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [TC_CASES_R] THEN
    AP_TERM_TAC THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
    ASM_MESON_TAC[]; ALL_TAC] THEN
  ASM_REWRITE_TAC[FINITE_UNION; FINITE_UNIONS] THEN CONJ_TAC THENL
   [MP_TAC(ISPECL [`\z:A. {y | TC R z y}`; `{z | (R:A->A->bool) x z}`]
                  FINITE_IMAGE_EXPAND) THEN
    ASM_REWRITE_TAC[] THEN REWRITE_TAC[IN; IN_ELIM_THM];
    GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [IN_ELIM_THM] THEN
    REWRITE_TAC[] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
    FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM ACCEPT_TAC]);;

let SN_NOLOOP = prove
 (`!R:A->A->bool. SN(R) ==> !z. ~(TC(R) z z)`,
  GEN_TAC THEN ONCE_REWRITE_TAC[GSYM SN_TC] THEN
  SPEC_TAC(`TC(R:A->A->bool)`,`R:A->A->bool`) THEN
  GEN_TAC THEN REWRITE_TAC[SN_WF; INV; WF] THEN
  DISCH_THEN(fun th -> GEN_TAC THEN MP_TAC th) THEN
  DISCH_THEN(MP_TAC o SPEC `\x:A. x = z`) THEN
  REWRITE_TAC[] THEN MESON_TAC[]);;

let RELPOW_RTC = prove
 (`!R:A->A->bool. !n x y. RELPOW n R x y ==> RTC(R) x y`,
  GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[RELPOW] THEN
  ASM_MESON_TAC[RTC_REFL; RTC_TRANS_L]);;

let RTC_TC_LEMMA = prove
 (`!R x:A. {y:A | RTC(R) x y} = x INSERT {y:A | TC(R) x y}`,
  REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT] THEN
  REWRITE_TAC[RTC; RC_EXPLICIT; DISJ_ACI; EQ_SYM_EQ]);;

let HAS_SIZE_SUBSET = prove
 (`!s:A->bool t m n. s HAS_SIZE m /\ t HAS_SIZE n /\ s SUBSET t ==> m <= n`,
  REWRITE_TAC[HAS_SIZE] THEN MESON_TAC[CARD_SUBSET]);;

let FC_FINITE_BOUND_LEMMA = prove
 (`!R. (!z. ~(TC R z z))
       ==> !n. {y:A | RTC(R) x y} HAS_SIZE n
               ==> !m y. RELPOW m R x y ==> m <= n`,
  REPEAT STRIP_TAC THEN
  FIRST_ASSUM(X_CHOOSE_THEN `f:num->A` STRIP_ASSUME_TAC o
    REWRITE_RULE[RELPOW_SEQUENCE]) THEN
  SUBGOAL_THEN `!i. i <= m ==> RELPOW i R (x:A) (f i)` ASSUME_TAC THENL
   [INDUCT_TAC THEN ASM_REWRITE_TAC[RELPOW] THEN
    REWRITE_TAC[LE_SUC_LT] THEN ASM_MESON_TAC[LT_IMP_LE]; ALL_TAC] THEN
  SUBGOAL_THEN `{z:A | ?i:num. i < m /\ (z = f i)} SUBSET {y | RTC R x y}`
  ASSUME_TAC THENL
   [REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN ASM_MESON_TAC[RELPOW_RTC; LT_IMP_LE];
    ALL_TAC] THEN
  SUBGOAL_THEN `!p. p <= m ==> {z:A | ?i. i < p /\ (z = f i)} HAS_SIZE p`
  (fun th -> ASSUME_TAC(MATCH_MP th (SPEC `m:num` LE_REFL))) THENL
   [ALL_TAC;
    MATCH_MP_TAC HAS_SIZE_SUBSET THEN
    EXISTS_TAC `{z:A | ?i. i < m /\ (z = f i)}` THEN
    EXISTS_TAC `{y:A | RTC(R) x y}` THEN ASM_REWRITE_TAC[]] THEN
  INDUCT_TAC THEN DISCH_TAC THENL
   [REWRITE_TAC[HAS_SIZE_0; EXTENSION; NOT_IN_EMPTY; IN_ELIM_THM; LT];
    ALL_TAC] THEN
  SUBGOAL_THEN `{z:A | ?i. i < SUC p /\ (z = f i)} =
                f(p) INSERT {z | ?i. i < p /\ (z = f i)}`
  SUBST1_TAC THENL
   [REWRITE_TAC[EXTENSION; IN_INSERT; IN_ELIM_THM] THEN
    REWRITE_TAC[LT] THEN MESON_TAC[]; ALL_TAC] THEN
  REWRITE_TAC[HAS_SIZE; CARD_CLAUSES; SUC_INJ] THEN
  SUBGOAL_THEN `{z:A | ?i. i < p /\ (z = f i)} HAS_SIZE p` MP_TAC THENL
   [FIRST_ASSUM MATCH_MP_TAC THEN UNDISCH_TAC `SUC p <= m` THEN ARITH_TAC;
    ALL_TAC] THEN
  REWRITE_TAC[HAS_SIZE] THEN STRIP_TAC THEN
  FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP (CONJUNCT2 CARD_CLAUSES) th]) THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[FINITE_INSERT] THEN
  UNDISCH_TAC `f p IN {z:A | ?i:num. i < p /\ (z = f i)}` THEN
  CONV_TAC CONTRAPOS_CONV THEN DISCH_TAC THEN
  REWRITE_TAC[IN_ELIM_THM; NOT_EXISTS_THM] THEN
  X_GEN_TAC `q:num` THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  SUBGOAL_THEN `TC(R) ((f:num->A) q) (f p)` (fun th -> ASM_MESON_TAC[th]) THEN
  UNDISCH_TAC `SUC p <= m` THEN UNDISCH_TAC `q < p` THEN
  REWRITE_TAC[LT_EXISTS] THEN
  DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC) THEN
  SPEC_TAC(`d:num`,`d:num`) THEN INDUCT_TAC THENL
   [REWRITE_TAC[ADD_CLAUSES] THEN DISCH_TAC THEN
    MATCH_MP_TAC TC_INC THEN FIRST_ASSUM MATCH_MP_TAC THEN
    UNDISCH_TAC `SUC (SUC q) <= m` THEN ARITH_TAC;
    DISCH_TAC THEN MATCH_MP_TAC TC_TRANS_L THEN
    EXISTS_TAC `(f:num->A)(q + SUC d)` THEN CONJ_TAC THENL
     [ALL_TAC; REWRITE_TAC[ADD_CLAUSES]] THEN
    FIRST_ASSUM MATCH_MP_TAC THEN
    UNDISCH_TAC `SUC (q + SUC (SUC d)) <= m` THEN ARITH_TAC]);;

let FC_FINITE_BOUND = prove
 (`!R (x:A). FINITE {y | RTC(R) x y} /\
             (!z. ~(TC R z z))
             ==> ?N. !n y. RELPOW n R x y ==> n <= N`,
  REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
  DISCH_TAC THEN EXISTS_TAC `CARD {y:A | RTC(R) x y}` THEN
  FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP FC_FINITE_BOUND_LEMMA) THEN
  ASM_REWRITE_TAC[HAS_SIZE]);;

let BOUND_SN = prove
 (`!R. (!x:A. ?N. !n y. RELPOW n R x y ==> n <= N) ==> SN(R)`,
  GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[SN_WF; WF_DCHAIN; INV] THEN
  DISCH_THEN(X_CHOOSE_TAC `f:num->A`) THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `(f:num->A) 0`) THEN
  DISCH_THEN(X_CHOOSE_THEN `N:num`
   (MP_TAC o SPECL [`SUC N`; `f(SUC N):A`])) THEN
  REWRITE_TAC[GSYM NOT_LT; LT] THEN
  SUBGOAL_THEN `!n. RELPOW n R (f 0 :A) (f n)` (fun th -> REWRITE_TAC[th]) THEN
  INDUCT_TAC THEN ASM_REWRITE_TAC[RELPOW] THEN ASM_MESON_TAC[]);;

let LF_SN_BOUND = prove
 (`!R. LF(R) ==> (SN(R) <=> !x:A. ?N. !n y. RELPOW n R x y ==> n <= N)`,
  GEN_TAC THEN DISCH_TAC THEN EQ_TAC THEN REWRITE_TAC[BOUND_SN] THEN
  DISCH_TAC THEN GEN_TAC THEN MATCH_MP_TAC FC_FINITE_BOUND THEN CONJ_TAC THENL
   [SPEC_TAC(`x:A`,`x:A`) THEN REWRITE_TAC[RTC_TC_LEMMA; FINITE_INSERT] THEN
    MATCH_MP_TAC LF_TC_FINITE THEN ASM_REWRITE_TAC[];
    MATCH_MP_TAC SN_NOLOOP THEN ASM_REWRITE_TAC[]]);;

(* ------------------------------------------------------------------------- *)
(* Koenig's lemma.                                                           *)
(* ------------------------------------------------------------------------- *)

let TREE_FL = prove
 (`!R. TREE(R) ==> ?a:A. FL(R) = {y | RTC(R) a y}`,
  GEN_TAC THEN REWRITE_TAC[TREE] THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC
   (X_CHOOSE_THEN `a:A` STRIP_ASSUME_TAC)) THEN
  EXISTS_TAC `a:A` THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN
  X_GEN_TAC `x:A` THEN EQ_TAC THENL
   [DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN REWRITE_TAC[RTC; RC_EXPLICIT] THEN
    MESON_TAC[]; ONCE_REWRITE_TAC[RTC_CASES_L] THEN ASM_MESON_TAC[IN; FL]]);;

let KOENIG_LEMMA = prove
 (`!R:A->A->bool. TREE(R) /\ LF(R) /\ SN(R) ==> FINITE (FL R)`,
  GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN
  DISCH_THEN(X_CHOOSE_THEN `a:A` SUBST1_TAC o MATCH_MP TREE_FL) THEN
  REWRITE_TAC[RTC_TC_LEMMA; FINITE_INSERT] THEN
  SPEC_TAC(`a:A`,`a:A`) THEN MATCH_MP_TAC LF_TC_FINITE THEN
  ASM_REWRITE_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Rephrasing in terms of joinability.                                       *)
(* ------------------------------------------------------------------------- *)

let JOINABLE = new_definition
  `JOINABLE R s t <=> ?u. RTC R s u /\ RTC R t u`;;

let JOINABLE_REFL = prove
 (`!R t. JOINABLE R t t`,
  REWRITE_TAC[JOINABLE] THEN MESON_TAC[RTC_CASES]);;

let JOINABLE_SYM = prove
 (`!R s t. JOINABLE R s t <=> JOINABLE R t s`,
  REWRITE_TAC[JOINABLE] THEN MESON_TAC[]);;

let JOINABLE_TRANS_R = prove
 (`!R s t u. R s t /\ JOINABLE R t u ==> JOINABLE R s u`,
  REWRITE_TAC[JOINABLE] THEN MESON_TAC[RTC_CASES_R]);;

let CR_RSTC_JOINABLE = prove
 (`!R. CR(RTC R) ==> !x:A y. RSTC(R) x y <=> JOINABLE(R) x y`,
  GEN_TAC THEN REWRITE_TAC[STC_CR; JOINABLE] THEN
  ASM_MESON_TAC[RSTC_TRANS; RSTC_SYM; RSTC_INC_RTC]);;

(* ------------------------------------------------------------------------- *)
(* CR is equivalent to transitivity of joinability.                          *)
(* ------------------------------------------------------------------------- *)

let JOINABLE_TRANS = prove
 (`!R. CR(RTC R) <=>
       !x y z. JOINABLE(R) x y /\ JOINABLE(R) y z ==> JOINABLE(R) x z`,
  REWRITE_TAC[CR; JOINABLE] THEN MESON_TAC[RTC_REFL; RTC_TRANS; RTC_SYM]);;