File: schnirelmann.ml

package info (click to toggle)
hol-light 20170109-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 36,568 kB
  • ctags: 8,549
  • sloc: ml: 540,018; cpp: 439; lisp: 286; java: 279; makefile: 262; sh: 229; yacc: 108; perl: 78; ansic: 57; sed: 39
file content (544 lines) | stat: -rw-r--r-- 25,771 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
(* ========================================================================= *)
(* Schnirelmann density and its basic properties (not Mann's theorem yet).   *)
(* ========================================================================= *)

needs "Multivariate/misc.ml";;
needs "Library/products.ml";;
prioritize_real();;

(* ------------------------------------------------------------------------- *)
(* The basic definition.                                                     *)
(* ------------------------------------------------------------------------- *)

let count = new_definition
 `count s n = CARD (s INTER (1..n))`;;

let schnirelmann = new_definition
 `schnirelmann s = inf { &(count s n) / &n | 1 <= n}`;;

(* ------------------------------------------------------------------------- *)
(* Basic properties of the "count" function.                                 *)
(* ------------------------------------------------------------------------- *)

let COUNT_BOUND = prove
 (`!s. count s n <= n`,
  GEN_TAC THEN REWRITE_TAC[count] THEN
  GEN_REWRITE_TAC RAND_CONV [GSYM CARD_NUMSEG_1] THEN
  MATCH_MP_TAC CARD_SUBSET THEN REWRITE_TAC[FINITE_NUMSEG] THEN SET_TAC[]);;

let COUNT_UNIV = prove
 (`!n. count (:num) n = n`,
  REWRITE_TAC[count; INTER_UNIV; CARD_NUMSEG_1]);;

let COUNT_MONO = prove
 (`!s t n. s SUBSET t ==> count s n <= count t n`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[count] THEN
  MATCH_MP_TAC CARD_SUBSET THEN
  ASM_SIMP_TAC[FINITE_INTER; FINITE_NUMSEG] THEN ASM SET_TAC[]);;

let COUNT_INSENSITIVE = prove
 (`!s t n. (!m. 1 <= m ==> (m IN s <=> m IN t))
         ==> count s n = count t n`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[count] THEN
  AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_INTER; IN_NUMSEG] THEN
  ASM_MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* The straightforward properties of Schnirelmann density.                   *)
(* ------------------------------------------------------------------------- *)

let SCHNIRELMANN_UBOUND,SCHNIRELMANN_LBOUND = (CONJ_PAIR o prove)
 (`(!n. 1 <= n ==> schnirelmann s <= &(count s n) / &n) /\
   (!b. (!n. 1 <= n ==> b <= &(count s n) / &n) ==> b <= schnirelmann s)`,
  MP_TAC(ISPEC `{ &(count s n) / &n | 1 <= n}` INF) THEN
  SIMP_TAC[SET_RULE `(!x. x IN {f x | P x} ==> Q x) <=> !x. P x ==> Q(f x)`;
           GSYM schnirelmann] THEN
  ANTS_TAC THENL
   [CONJ_TAC THENL [SET_TAC[LE_REFL]; ALL_TAC] THEN
    EXISTS_TAC `&0` THEN SIMP_TAC[REAL_LE_DIV; REAL_POS];
    MESON_TAC[]]);;

let SCHNIRELMANN_UBOUND_MUL = prove
 (`!n s. schnirelmann s * &n <= &(count s n)`,
  REPEAT GEN_TAC THEN
  DISJ_CASES_TAC(ARITH_RULE `n = 0 \/ 1 <= n`) THEN
  ASM_REWRITE_TAC[REAL_MUL_RZERO; REAL_POS] THEN
  ASM_SIMP_TAC[GSYM REAL_LE_RDIV_EQ; REAL_OF_NUM_LT; LE_1;
               SCHNIRELMANN_UBOUND]);;

let SCHNIRELMANN_BOUNDS = prove
 (`!s. &0 <= schnirelmann s /\ schnirelmann s <= &1`,
  GEN_TAC THEN REWRITE_TAC[schnirelmann] THEN
  MATCH_MP_TAC REAL_INF_BOUNDS THEN
  CONJ_TAC THENL [SET_TAC[LE_REFL]; ALL_TAC] THEN
  SIMP_TAC[SET_RULE `(!x. x IN {f x | P x} ==> Q x) <=> !x. P x ==> Q(f x)`;
           REAL_LE_DIV; REAL_POS; REAL_LE_LDIV_EQ; REAL_OF_NUM_LT; LE_1] THEN
  REWRITE_TAC[REAL_MUL_LID; REAL_OF_NUM_LE; COUNT_BOUND]);;

let SCHNIRELMANN_MONO = prove
 (`!s t. s SUBSET t ==> schnirelmann s <= schnirelmann t`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC SCHNIRELMANN_LBOUND THEN
  X_GEN_TAC `n:num` THEN DISCH_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN
  EXISTS_TAC `&(count s n) / &n` THEN ASM_SIMP_TAC[SCHNIRELMANN_UBOUND] THEN
  ASM_SIMP_TAC[REAL_LE_DIV2_EQ; REAL_OF_NUM_LT; LE_1] THEN
  ASM_SIMP_TAC[REAL_OF_NUM_LE; COUNT_MONO]);;

let SCHNIRELMANN_INSENSITIVE = prove
 (`!s t. (!n. 1 <= n ==> (n IN s <=> n IN t))
         ==> schnirelmann s = schnirelmann t`,
  REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP COUNT_INSENSITIVE) THEN
  SIMP_TAC[schnirelmann]);;

let SCHNIRELMANN_SENSITIVE = prove
 (`!s k. 1 <= k /\ ~(k IN s) ==> schnirelmann s <= &1 - &1 / &k`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN
  EXISTS_TAC `&(count s k) / &k` THEN
  ASM_SIMP_TAC[SCHNIRELMANN_UBOUND] THEN
  ASM_SIMP_TAC[REAL_FIELD `&1 <= x ==> (&1 - &1 / x) = (x - &1) / x`;
               REAL_OF_NUM_LE; REAL_LE_DIV2_EQ; REAL_OF_NUM_LT; LE_1] THEN
  ASM_SIMP_TAC[REAL_OF_NUM_SUB; REAL_OF_NUM_LE; count] THEN
  GEN_REWRITE_TAC RAND_CONV [GSYM CARD_NUMSEG_1] THEN
  MATCH_MP_TAC CARD_SUBSET THEN REWRITE_TAC[FINITE_NUMSEG] THEN
  REWRITE_TAC[SUBSET; IN_NUMSEG; IN_INTER] THEN
  ASM_MESON_TAC[ARITH_RULE `1 <= k ==> (x <= k - 1 <=> x <= k /\ ~(x = k))`]);;

let SCHNIRELMANN_SENSITIVE_1 = prove
 (`!s. ~(1 IN s) ==> schnirelmann s = &0`,
  REPEAT STRIP_TAC THEN
  MP_TAC(SPECL [`s:num->bool`; `1`] SCHNIRELMANN_SENSITIVE) THEN
  MP_TAC(SPEC `s:num->bool` SCHNIRELMANN_BOUNDS) THEN
  ASM_REWRITE_TAC[LE_REFL] THEN REAL_ARITH_TAC);;

let SCHNIRELMANN_UNIV = prove
 (`schnirelmann(:num) = &1`,
  REWRITE_TAC[GSYM REAL_LE_ANTISYM; SCHNIRELMANN_BOUNDS] THEN
  MATCH_MP_TAC SCHNIRELMANN_LBOUND THEN
  SIMP_TAC[COUNT_UNIV; REAL_DIV_REFL; REAL_OF_NUM_EQ; LE_1; REAL_LE_REFL]);;

let SCHNIRELMANN_EQ_1 = prove
 (`!s. schnirelmann s = &1 <=> !n. 1 <= n ==> n IN s`,
  GEN_TAC THEN EQ_TAC THENL
   [ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN
    REWRITE_TAC[EXTENSION; NOT_FORALL_THM; IN_UNIV; NOT_IMP] THEN
    DISCH_THEN(CHOOSE_THEN ASSUME_TAC) THEN
    FIRST_ASSUM(MP_TAC o MATCH_MP SCHNIRELMANN_SENSITIVE) THEN
    MATCH_MP_TAC(REAL_ARITH `&0 < x ==> s <= &1 - x ==> ~(s = &1)`) THEN
    ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; LE_1; ARITH];
    REPEAT STRIP_TAC THEN
    GEN_REWRITE_TAC RAND_CONV [GSYM SCHNIRELMANN_UNIV] THEN
    MATCH_MP_TAC SCHNIRELMANN_INSENSITIVE THEN
    ASM_REWRITE_TAC[IN_UNIV]]);;

(* ------------------------------------------------------------------------- *)
(* Sum-sets.                                                                 *)
(* ------------------------------------------------------------------------- *)

parse_as_infix("+++",(16,"right"));;

let sumset = new_definition
 `s +++ t = {x + y:num | x IN s /\ y IN t}`;;

let SUMSET_0 = prove
 (`!s t. 0 IN s /\ 0 IN t ==> 0 IN (s +++ t)`,
  SIMP_TAC[sumset; IN_ELIM_THM] THEN MESON_TAC[ADD_CLAUSES]);;

let SUMSET_SUPERSET_LZERO = prove
 (`!s t. 0 IN s ==> t SUBSET (s +++ t)`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[SUBSET; sumset; IN_ELIM_THM] THEN
  X_GEN_TAC `n:num` THEN DISCH_TAC THEN
  MAP_EVERY EXISTS_TAC [`0`; `n:num`] THEN ASM_REWRITE_TAC[ADD_CLAUSES]);;

let SUMSET_SUPERSET_RZERO = prove
 (`!s t. 0 IN t ==> s SUBSET (s +++ t)`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[SUBSET; sumset; IN_ELIM_THM] THEN
  X_GEN_TAC `n:num` THEN DISCH_TAC THEN
  MAP_EVERY EXISTS_TAC [`n:num`; `0`] THEN ASM_REWRITE_TAC[ADD_CLAUSES]);;

let SUMSET_SYM = prove
 (`!s t. s +++ t = t +++ s`,
  REWRITE_TAC[EXTENSION; IN_ELIM_THM; sumset] THEN MESON_TAC[ADD_SYM]);;

let SUMSET_ASSOC = prove
 (`!s t u. s +++ (t +++ u) = (s +++ t) +++ u`,
  REWRITE_TAC[EXTENSION; IN_ELIM_THM; sumset] THEN MESON_TAC[ADD_ASSOC]);;

let NEUTRAL_SUMSET = prove
 (`neutral(+++) = {0}`,
  REWRITE_TAC[neutral] THEN MATCH_MP_TAC SELECT_UNIQUE THEN
  X_GEN_TAC `s:num->bool` THEN
  REWRITE_TAC[sumset; IN_ELIM_THM; EXTENSION; IN_SING] THEN EQ_TAC THENL
   [DISCH_THEN(MP_TAC o SPEC `{0}`) THEN REWRITE_TAC[IN_SING]; ALL_TAC] THEN
  MESON_TAC[ADD_CLAUSES]);;

let MONOIDAL_SUMSET = prove
 (`monoidal (+++)`,
  REWRITE_TAC[monoidal; NEUTRAL_SUMSET; SUMSET_ASSOC] THEN
  REWRITE_TAC[EQT_INTRO(SPEC_ALL SUMSET_SYM)] THEN
  REWRITE_TAC[EXTENSION; sumset; IN_ELIM_THM; IN_SING] THEN
  MESON_TAC[ADD_CLAUSES]);;

let SUMSET_0_ITER = prove
 (`!a s. FINITE s /\ (!k. k IN s ==> 0 IN a k) ==> 0 IN iterate(+++) s a`,
  GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[ITERATE_CLAUSES; MONOIDAL_SUMSET; NEUTRAL_SUMSET; IN_SING] THEN
  SIMP_TAC[IN_INSERT; SUMSET_0]);;

(* ------------------------------------------------------------------------- *)
(* Basic Schnirelmann theorem.                                               *)
(* ------------------------------------------------------------------------- *)

let SCHNIRELMAN_LEMMA = prove
 (`!s t n. 0 IN (s INTER t) /\ count s n + count t n >= n ==> n IN (s +++ t)`,
  REWRITE_TAC[IN_INTER] THEN REPEAT STRIP_TAC THEN
  MATCH_MP_TAC(TAUT `(~p ==> F) ==> p`) THEN DISCH_TAC THEN
  ASM_CASES_TAC `(n:num) IN s` THENL
   [ASM_MESON_TAC[SUMSET_SUPERSET_RZERO; SUBSET]; ALL_TAC] THEN
  ASM_CASES_TAC `(n:num) IN t` THENL
   [ASM_MESON_TAC[SUMSET_SUPERSET_LZERO; SUBSET]; ALL_TAC] THEN
  ASM_CASES_TAC `n = 0` THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
  SUBGOAL_THEN
   `~((s INTER (1..n-1)) INTER (IMAGE (\b. n - b) (t INTER (1..n-1))) = {})`
  MP_TAC THENL
   [MATCH_MP_TAC CARD_UNION_OVERLAP THEN
    SIMP_TAC[FINITE_IMAGE; FINITE_INTER; FINITE_NUMSEG; GT] THEN
    MATCH_MP_TAC LET_TRANS THEN EXISTS_TAC `CARD(1..n-1)` THEN CONJ_TAC THENL
     [MATCH_MP_TAC CARD_SUBSET THEN
      REWRITE_TAC[SUBSET; IN_UNION; FORALL_IN_IMAGE; FORALL_AND_THM;
                  TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`] THEN
      SIMP_TAC[FINITE_NUMSEG; IN_INTER; IN_NUMSEG] THEN ARITH_TAC;
      ALL_TAC] THEN
    REWRITE_TAC[CARD_NUMSEG_1] THEN
    MATCH_MP_TAC(ARITH_RULE `~(n = 0) /\ n <= x ==> n - 1 < x`) THEN
    ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (ARITH_RULE
     `s + t:num >= n ==> a = s /\ b = t ==> n <= a + b`)) THEN
    SUBGOAL_THEN `CARD(IMAGE (\b. n - b) (t INTER (1..n-1))) = count t (n - 1)`
    SUBST1_TAC THENL
     [REWRITE_TAC[count] THEN MATCH_MP_TAC CARD_IMAGE_INJ THEN
      SIMP_TAC[FINITE_INTER; FINITE_NUMSEG; IN_INTER; IN_NUMSEG] THEN
      ARITH_TAC;
      ALL_TAC] THEN
    REWRITE_TAC[count] THEN CONJ_TAC THEN AP_TERM_TAC THEN
    ASM_SIMP_TAC[EXTENSION; IN_INTER; IN_NUMSEG;
      ARITH_RULE `~(n = 0) ==> (x <= n - 1 <=> x <= n /\ ~(x = n))`] THEN
    ASM_MESON_TAC[];
    UNDISCH_TAC `~(n IN s +++ t)` THEN
    REWRITE_TAC[] THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN
    REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; IN_INTER; IN_IMAGE; IN_NUMSEG;
                NOT_FORALL_THM; LEFT_IMP_EXISTS_THM] THEN
    X_GEN_TAC `a:num` THEN REWRITE_TAC[sumset; IN_ELIM_THM] THEN
    DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_TAC `b:num`)) THEN
    MAP_EVERY EXISTS_TAC [`a:num`; `b:num`] THEN ASM_REWRITE_TAC[] THEN
    ASM_ARITH_TAC]);;

let SCHNIRELMANN_THEOREM = prove
 (`!s t. 0 IN (s INTER t) /\ schnirelmann s + schnirelmann t >= &1
         ==> s +++ t = (:num)`,
  REWRITE_TAC[IN_INTER] THEN REPEAT STRIP_TAC THEN
  REWRITE_TAC[EXTENSION; IN_UNIV] THEN X_GEN_TAC `n:num` THEN
  ASM_CASES_TAC `n = 0` THENL
   [ASM_MESON_TAC[SUMSET_SUPERSET_LZERO; SUBSET; IN_INTER]; ALL_TAC] THEN
  MATCH_MP_TAC SCHNIRELMAN_LEMMA THEN ASM_REWRITE_TAC[IN_INTER] THEN
  REWRITE_TAC[GE; GSYM REAL_OF_NUM_LE; GSYM REAL_OF_NUM_ADD] THEN
  GEN_REWRITE_TAC LAND_CONV [GSYM REAL_MUL_LID] THEN
  ASM_SIMP_TAC[GSYM REAL_LE_RDIV_EQ; REAL_OF_NUM_LT; LE_1] THEN
  REWRITE_TAC[real_div; REAL_ADD_RDISTRIB] THEN REWRITE_TAC[GSYM real_div] THEN
  FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
   `a + b >= &1 ==> a <= x /\ b <= y ==> &1 <= x + y`)) THEN
  CONJ_TAC THEN MATCH_MP_TAC SCHNIRELMANN_UBOUND THEN ASM_ARITH_TAC);;

let SCHNIRELMANN_THEOREM_2 = prove
 (`!s. 0 IN s /\ schnirelmann s >= &1 / &2 ==> s +++ s = (:num)`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC SCHNIRELMANN_THEOREM THEN
  ASM_REWRITE_TAC[IN_INTER] THEN ASM_REAL_ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Additional additivity properties and full Schnirelmann theorem.           *)
(* ------------------------------------------------------------------------- *)

let ENUMERATION_LEMMA = prove
 (`!n s p. s HAS_SIZE n /\ (!k. k IN s ==> 1 <= k /\ k <= p)
           ==> ?a:num->num.
                 a(0) = 0 /\
                 a(n + 1) = p + 1 /\
                 s = IMAGE a (1..n) /\
                 (!j k. j <= n /\ k <= n + 1 /\ j < k ==> a(j) < a(k)) /\
                 (!j k. j <= n /\ k <= n + 1 /\ j <= k ==> a(j) <= a(k))`,
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPEC `(<=):num->num->bool` TOPOLOGICAL_SORT) THEN
  REWRITE_TAC[LE_TRANS; LE_ANTISYM] THEN
  DISCH_THEN(MP_TAC o SPECL [`n:num`; `s:num->bool`]) THEN
  ASM_REWRITE_TAC[NOT_LE; IN_NUMSEG] THEN
  DISCH_THEN(X_CHOOSE_THEN `f:num->num` STRIP_ASSUME_TAC) THEN
  EXISTS_TAC `\i. if 1 <= i then if i <= n then f i else p + 1 else 0` THEN
  ASM_REWRITE_TAC[ARITH; ARITH_RULE `1 <= n + 1 /\ ~(n + 1 <= n)`] THEN
  CONJ_TAC THENL
   [REWRITE_TAC[EXTENSION; IN_IMAGE; IN_NUMSEG] THEN MESON_TAC[]; ALL_TAC] THEN
  MATCH_MP_TAC(TAUT `(a ==> b) /\ a ==> a /\ b`) THEN
  CONJ_TAC THENL [MESON_TAC[LE_LT]; ALL_TAC] THEN
  SUBGOAL_THEN `!k. 1 <= k /\ k <= n ==> 1 <= f(k) /\ f(k) <= p`
  ASSUME_TAC THENL
   [GEN_TAC THEN STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
    ASM_REWRITE_TAC[IN_IMAGE; IN_NUMSEG] THEN ASM_MESON_TAC[];
    ALL_TAC] THEN
  MAP_EVERY X_GEN_TAC [`i:num`; `j:num`] THEN STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o SPECL [`i:num`; `j:num`]) THEN ASM_REWRITE_TAC[] THEN
  REPEAT(COND_CASES_TAC THEN ASM_SIMP_TAC[]) THEN
  FIRST_X_ASSUM(fun th ->
    MP_TAC(SPEC `i:num` th) THEN MP_TAC(SPEC `j:num` th)) THEN
  ASM_ARITH_TAC);;

let CARD_INTER_0_1 = prove
 (`!n s. 0 IN s ==> CARD(s INTER (0..n)) = SUC(CARD(s INTER (1..n)))`,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `s INTER (0..n) = 0 INSERT (s INTER (1..n))` SUBST1_TAC THENL
   [MATCH_MP_TAC(SET_RULE
     `a IN s /\ (t = a INSERT u)
      ==> (s INTER t = a INSERT (s INTER u))`) THEN
    ASM_REWRITE_TAC[EXTENSION; IN_INSERT; IN_NUMSEG] THEN ARITH_TAC;
    SIMP_TAC[CARD_CLAUSES; FINITE_INTER; FINITE_NUMSEG; IN_INTER; ARITH;
             IN_NUMSEG; GSYM REAL_OF_NUM_SUC]]);;

let SCHNIRELMANN_SUMSET = prove
 (`!s t. 0 IN (s INTER t)
         ==> schnirelmann(s +++ t)
                >= (schnirelmann s + schnirelmann t) -
                   schnirelmann s * schnirelmann t`,
  REWRITE_TAC[IN_INTER] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[real_ge] THEN
  MATCH_MP_TAC SCHNIRELMANN_LBOUND THEN X_GEN_TAC `n:num` THEN STRIP_TAC THEN
  ASM_SIMP_TAC[REAL_LE_RDIV_EQ; REAL_OF_NUM_LT; LE_1] THEN
  MP_TAC(SPECL [`count s n`; `s INTER (1..n)`; `n:num`] ENUMERATION_LEMMA) THEN
  SIMP_TAC[count; HAS_SIZE; FINITE_INTER; FINITE_NUMSEG] THEN
  SIMP_TAC[IN_INTER; IN_NUMSEG] THEN
  DISCH_THEN(X_CHOOSE_THEN `a:num->num` STRIP_ASSUME_TAC) THEN
  ABBREV_TAC `A = CARD(s INTER (1..n))` THEN
  SUBGOAL_THEN `!k. k <= A ==> (a:num->num)(k) IN s /\ a(k) <= n`
  ASSUME_TAC THENL
   [GEN_TAC THEN DISCH_TAC THEN
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [EXTENSION]) THEN
    DISCH_THEN(MP_TAC o SPEC `(a:num->num)(k)`) THEN
    DISJ_CASES_TAC(ARITH_RULE `k = 0 \/ 1 <= k`) THEN
    ASM_REWRITE_TAC[LE_0; IN_INTER; IN_NUMSEG] THEN
    MATCH_MP_TAC(TAUT `d ==> (a /\ b /\ c <=> d) ==> a /\ c`) THEN
    REWRITE_TAC[IN_IMAGE; IN_NUMSEG] THEN ASM_MESON_TAC[];
    ALL_TAC] THEN
  MATCH_MP_TAC REAL_LE_TRANS THEN
  EXISTS_TAC `&(CARD ((s +++ t) INTER (0..n))) - &1` THEN CONJ_TAC THENL
   [ALL_TAC;
    ASM_SIMP_TAC[CARD_INTER_0_1; SUMSET_0; GSYM REAL_OF_NUM_SUC] THEN
    REAL_ARITH_TAC] THEN
  REWRITE_TAC[REAL_LE_SUB_LADD] THEN MATCH_MP_TAC REAL_LE_TRANS THEN
  EXISTS_TAC
   `&(CARD(UNIONS(IMAGE (\i. (IMAGE (\b. a i + b)
                                    (t INTER (0..(a(i+1) - a(i) - 1)))))
                        (0..A))))` THEN
  CONJ_TAC THENL
   [ALL_TAC;
    REWRITE_TAC[REAL_OF_NUM_LE] THEN MATCH_MP_TAC CARD_SUBSET THEN
    SIMP_TAC[FINITE_INTER; FINITE_NUMSEG; UNIONS_SUBSET; FORALL_IN_IMAGE] THEN
    REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN
    X_GEN_TAC `k:num` THEN DISCH_TAC THEN X_GEN_TAC `l:num` THEN
    REWRITE_TAC[IN_INTER] THEN REPEAT STRIP_TAC THEN
    RULE_ASSUM_TAC(REWRITE_RULE[IN_NUMSEG]) THENL
     [REWRITE_TAC[sumset; IN_ELIM_THM] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
    REWRITE_TAC[IN_NUMSEG; LE_0] THEN
    MATCH_MP_TAC(ARITH_RULE
     `a(k) < a(k + 1) /\ a(k + 1) <= n + 1 /\ l <= a(k + 1) - a(k) - 1
      ==> a(k) + l <= n`) THEN
    ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
     [FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_ARITH_TAC; ALL_TAC] THEN
    ASM_CASES_TAC `k:num = A` THEN ASM_REWRITE_TAC[LE_REFL] THEN
    REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `k + 1`)) THEN ASM_ARITH_TAC] THEN
  W(MP_TAC o PART_MATCH (lhs o rand) CARD_UNIONS o rand o rand o snd) THEN
  REWRITE_TAC[FORALL_IN_IMAGE; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
  SIMP_TAC[FINITE_IMAGE; FINITE_NUMSEG; FINITE_INTER] THEN
  SUBGOAL_THEN
   `!i j. i IN 0..A /\ j IN 0..A /\ ~(i = j)
               ==> IMAGE (\b. a i + b) (t INTER (0..a (i + 1) - a i - 1)) INTER
                   IMAGE (\b. a j + b) (t INTER (0..a (j + 1) - a j - 1)) = {}`
  (LABEL_TAC "*") THENL
   [MAP_EVERY X_GEN_TAC [`i:num`; `j:num`] THEN STRIP_TAC THEN
    REWRITE_TAC[SET_RULE
     `IMAGE f s INTER t = {} <=> !x. x IN s ==> ~(f x IN t)`] THEN
    X_GEN_TAC `k:num` THEN DISCH_TAC THEN REWRITE_TAC[IN_IMAGE] THEN
    DISCH_THEN(X_CHOOSE_THEN `l:num` STRIP_ASSUME_TAC) THEN
    RULE_ASSUM_TAC(REWRITE_RULE[IN_NUMSEG; IN_INTER]) THEN
    SUBGOAL_THEN `a(i + 1):num <= a(j) \/ a(j + 1) <= a(i)` MP_TAC THENL
     [FIRST_X_ASSUM(DISJ_CASES_TAC o MATCH_MP (ARITH_RULE
       `~(i = j) ==> i + 1 <= j \/ j + 1 <= i`))
      THENL [DISJ1_TAC; DISJ2_TAC] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
      ASM_ARITH_TAC;
      ALL_TAC] THEN
    SUBGOAL_THEN `(a:num->num)(i) < a(i + 1) /\ a(j) < a(j + 1)`
    STRIP_ASSUME_TAC THENL
     [CONJ_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC; ALL_TAC] THEN
    ASM_ARITH_TAC;
    ALL_TAC] THEN
  ANTS_TAC THENL
   [X_GEN_TAC `i:num` THEN DISCH_TAC THEN
    X_GEN_TAC `j:num` THEN DISCH_TAC THEN
    ASM_CASES_TAC `i:num = j` THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[];
    ALL_TAC] THEN
  DISCH_THEN SUBST1_TAC THEN
  W(MP_TAC o PART_MATCH (lhs o rand) NSUM_IMAGE_NONZERO o
    rand o rand o snd) THEN
  REWRITE_TAC[] THEN ANTS_TAC THENL
   [REWRITE_TAC[FINITE_NUMSEG] THEN MAP_EVERY X_GEN_TAC [`i:num`; `j:num`] THEN
    STRIP_TAC THEN REMOVE_THEN "*" (MP_TAC o SPECL [`i:num`; `j:num`]) THEN
    ASM_REWRITE_TAC[INTER_ACI] THEN SIMP_TAC[CARD_CLAUSES];
    ALL_TAC] THEN
  DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[o_DEF] THEN
  SIMP_TAC[EQ_ADD_LCANCEL; CARD_IMAGE_INJ; FINITE_INTER; FINITE_NUMSEG] THEN
  SIMP_TAC[REAL_OF_NUM_SUM; FINITE_INTER; FINITE_NUMSEG] THEN
  MATCH_MP_TAC REAL_LE_TRANS THEN
  EXISTS_TAC
   `sum(0..A) (\i. schnirelmann t * &(a(i + 1) - a(i) - 1) + &1)` THEN
  CONJ_TAC THENL
   [ALL_TAC;
    MATCH_MP_TAC SUM_LE_NUMSEG THEN REWRITE_TAC[] THEN
    ASM_SIMP_TAC[CARD_INTER_0_1; SUMSET_0; GSYM REAL_OF_NUM_SUC] THEN
    SIMP_TAC[GSYM count; SCHNIRELMANN_UBOUND_MUL; REAL_LE_RADD]] THEN
  REWRITE_TAC[SUM_ADD_NUMSEG; SUM_CONST_NUMSEG] THEN
  REWRITE_TAC[SUB_0; GSYM REAL_OF_NUM_ADD; REAL_MUL_RID] THEN
  REWRITE_TAC[REAL_ADD_ASSOC; REAL_LE_RADD] THEN
  MATCH_MP_TAC REAL_LE_TRANS THEN
  EXISTS_TAC
   `sum(0..A) (\i. schnirelmann t * (&(a(i + 1)) - &(a i) - &1)) + &A` THEN
  CONJ_TAC THENL
   [ALL_TAC;
    REWRITE_TAC[REAL_LE_RADD] THEN MATCH_MP_TAC SUM_LE_NUMSEG THEN
    X_GEN_TAC `i:num` THEN STRIP_TAC THEN
    SUBGOAL_THEN `a(i):num < a(i + 1)` ASSUME_TAC THENL
     [FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_ARITH_TAC; ALL_TAC] THEN
    ASM_SIMP_TAC[REAL_OF_NUM_SUB; LT_IMP_LE; ARITH_RULE `a < b ==> 1 <= b - a`;
                 REAL_LE_REFL]] THEN
  REWRITE_TAC[SUM_LMUL] THEN
  ONCE_REWRITE_TAC[REAL_ARITH `a - b - c:real = --((b - a) + c)`] THEN
  REWRITE_TAC[SUM_NEG; SUM_ADD_NUMSEG; SUM_DIFFS; LE_0] THEN
  ASM_REWRITE_TAC[REAL_ARITH `--(&0 - a + b) = a - b`; SUM_CONST_NUMSEG] THEN
  REWRITE_TAC[SUB_0; GSYM REAL_OF_NUM_ADD; REAL_MUL_RID] THEN
  REWRITE_TAC[REAL_ARITH `(n + &1) - (a + &1) = n - a`] THEN
  MATCH_MP_TAC(REAL_ARITH
   `(&1 - t) * s * n <= (&1 - t) * a
    ==> ((s + t) - s * t) * n <= t * (n - a) + a`) THEN
  MATCH_MP_TAC REAL_LE_LMUL THEN EXPAND_TAC "A" THEN
  REWRITE_TAC[REAL_SUB_LE; SCHNIRELMANN_UBOUND_MUL; GSYM count] THEN
  REWRITE_TAC[SCHNIRELMANN_BOUNDS]);;

(* ------------------------------------------------------------------------- *)
(* Now an iterative form.                                                    *)
(* ------------------------------------------------------------------------- *)

let SCHNIRELMANN_SUMSET_GEN = prove
 (`!a s. FINITE s /\ (!i:A. i IN s ==> 0 IN a i)
         ==> schnirelmann(iterate(+++) s a)
             >= &1 - product s (\i. &1 - schnirelmann(a i))`,
  GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[PRODUCT_CLAUSES; real_ge; REAL_SUB_REFL; SCHNIRELMANN_BOUNDS] THEN
  MAP_EVERY X_GEN_TAC [`k:A`; `s:A->bool`] THEN STRIP_TAC THEN
  DISCH_TAC THEN FIRST_ASSUM(MP_TAC o check (is_imp o concl)) THEN
  ANTS_TAC THENL [ASM_MESON_TAC[IN_INSERT]; DISCH_TAC] THEN
  ASM_SIMP_TAC[ITERATE_CLAUSES; MONOIDAL_SUMSET] THEN
  MATCH_MP_TAC REAL_LE_TRANS THEN
  EXISTS_TAC `&1 - (&1 - schnirelmann(a(k:A))) *
                   (&1 - schnirelmann(iterate (+++) s a))` THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC(REAL_ARITH `a <= b ==> &1 - b <= &1 - a`) THEN
    MATCH_MP_TAC REAL_LE_LMUL THEN
    ASM_REWRITE_TAC[REAL_SUB_LE; SCHNIRELMANN_BOUNDS] THEN
    ASM_REAL_ARITH_TAC;
    REWRITE_TAC[REAL_ARITH `&1 - (&1 - s) * (&1 - t) <= u <=>
                            u >= (s + t) - s * t`] THEN
    MATCH_MP_TAC SCHNIRELMANN_SUMSET THEN
    ASM_SIMP_TAC[IN_INTER; IN_INSERT; SUMSET_0_ITER]]);;

let SCHNIRELMANN_SUMSET_POW = prove
 (`!i s. FINITE i /\ 0 IN s
         ==> schnirelmann(iterate(+++) i (\k:A. s))
             >= &1 - (&1 - schnirelmann s) pow (CARD i)`,
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPECL [`\i:A. (s:num->bool)`; `i:A->bool`]
    SCHNIRELMANN_SUMSET_GEN) THEN
  ASM_SIMP_TAC[PRODUCT_CONST]);;

let SCHNIRELMANN = prove
 (`!s. 0 IN s /\ schnirelmann s > &0
       ==> ?k. !i. i HAS_SIZE k ==> iterate(+++) i (\a:A. s) = (:num)`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[HAS_SIZE] THEN
  MP_TAC(ISPECL [`&1 - schnirelmann s`; `&1 / &2`] REAL_ARCH_POW_INV) THEN
  ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
  DISCH_THEN(X_CHOOSE_TAC `n:num`) THEN EXISTS_TAC `2 * n` THEN
  X_GEN_TAC `i:A->bool` THEN STRIP_TAC THEN
  SUBGOAL_THEN
   `?j k:A->bool. i = j UNION k /\ j INTER k = {} /\
                  j HAS_SIZE n /\ k HAS_SIZE n`
   (REPEAT_TCL CHOOSE_THEN (CONJUNCTS_THEN2 SUBST1_TAC STRIP_ASSUME_TAC))
  THENL
   [FIRST_ASSUM(MP_TAC o SPEC `n:num` o MATCH_MP CHOOSE_SUBSET) THEN
    ASM_REWRITE_TAC[ARITH_RULE `n <= 2 * n`] THEN
    MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `j:A->bool` THEN
    STRIP_TAC THEN EXISTS_TAC `i DIFF j:A->bool` THEN
    MATCH_MP_TAC(TAUT
     `(a /\ b /\ c) /\ (a /\ b /\ c ==> d) ==> a /\ b /\ c /\ d`) THEN
    CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN STRIP_TAC THEN
    GEN_REWRITE_TAC RAND_CONV [ARITH_RULE `n = 2 * n - n`] THEN
    MATCH_MP_TAC HAS_SIZE_DIFF THEN ASM_REWRITE_TAC[HAS_SIZE];
    ALL_TAC] THEN
  RULE_ASSUM_TAC(REWRITE_RULE[GSYM DISJOINT; HAS_SIZE]) THEN
  ASM_SIMP_TAC[MONOIDAL_SUMSET; ITERATE_UNION] THEN
  MATCH_MP_TAC SCHNIRELMANN_THEOREM THEN
  ASM_SIMP_TAC[SUMSET_0_ITER; IN_INTER] THEN
  MP_TAC(SPECL [`j:A->bool`; `s:num->bool`] SCHNIRELMANN_SUMSET_POW) THEN
  MP_TAC(SPECL [`k:A->bool`; `s:num->bool`] SCHNIRELMANN_SUMSET_POW) THEN
  ASM_SIMP_TAC[] THEN MATCH_MP_TAC(REAL_ARITH
   `a < &1 / &2 ==> y >= &1 - a ==> x >= &1 - a ==> x + y >= &1`) THEN
  ASM_REWRITE_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* A more direct version, without the techicality of 0 and sumsets.          *)
(* ------------------------------------------------------------------------- *)

let SCHNIRELMANN_DIRECT = prove
 (`!s. schnirelmann s > &0
       ==> ?k. !n. ?m f. m <= k /\ (!i. i IN 1..m ==> f(i) IN s) /\
                         n = nsum (1..m) f`,
  GEN_TAC THEN STRIP_TAC THEN
  SUBGOAL_THEN
   `?k. !i:num->bool.
           i HAS_SIZE k ==> iterate (+++) i (\a. 0 INSERT s) = (:num)`
  MP_TAC THENL
   [MATCH_MP_TAC SCHNIRELMANN THEN REWRITE_TAC[IN_INSERT] THEN
    POP_ASSUM MP_TAC THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN
    AP_TERM_TAC THEN MATCH_MP_TAC SCHNIRELMANN_INSENSITIVE THEN
    SIMP_TAC[IN_INSERT; LE_1];
    ALL_TAC] THEN
  MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `k:num` THEN
  DISCH_THEN(MP_TAC o SPEC `1..k`) THEN
  REWRITE_TAC[EXTENSION; HAS_SIZE_NUMSEG_1; IN_UNIV] THEN
  MATCH_MP_TAC MONO_FORALL THEN
  SPEC_TAC(`k:num`,`k:num`) THEN POP_ASSUM_LIST(K ALL_TAC) THEN
  INDUCT_TAC THEN SIMP_TAC[NUMSEG_CLAUSES; ARITH; ARITH_RULE `1 <= SUC k`] THEN
  SIMP_TAC[ITERATE_CLAUSES; MONOIDAL_SUMSET; FINITE_NUMSEG] THENL
   [REWRITE_TAC[NEUTRAL_SUMSET; IN_SING] THEN GEN_TAC THEN
    DISCH_THEN SUBST1_TAC THEN EXISTS_TAC `0` THEN
    SIMP_TAC[NSUM_CLAUSES_NUMSEG; CARD_CLAUSES; EMPTY_SUBSET; FINITE_RULES;
             IN_NUMSEG; LE_REFL; ARITH] THEN
    REWRITE_TAC[ARITH_RULE `~(1 <= i /\ i <= 0)`];
    ALL_TAC] THEN
  REWRITE_TAC[IN_NUMSEG; ARITH_RULE `~(SUC n <= n)`] THEN
  ONCE_REWRITE_TAC[sumset] THEN REWRITE_TAC[IN_ELIM_THM; IN_INSERT] THEN
  X_GEN_TAC `n:num` THEN DISCH_THEN(X_CHOOSE_THEN `x:num` MP_TAC) THEN
  ASM_CASES_TAC `x = 0` THEN ASM_REWRITE_TAC[ADD_CLAUSES] THENL
   [ASM_MESON_TAC[IN_NUMSEG; ARITH_RULE `x <= k ==> x <= SUC k`]; ALL_TAC] THEN
  DISCH_THEN(X_CHOOSE_THEN `y:num` STRIP_ASSUME_TAC) THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `y:num`) THEN
  ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
  MAP_EVERY X_GEN_TAC [`m:num`; `f:num->num`] THEN STRIP_TAC THEN
  MAP_EVERY EXISTS_TAC [`SUC m`; `\i. if i = SUC m then x:num else f i`] THEN
  ASM_SIMP_TAC[LE_SUC; LE; NSUM_CLAUSES_NUMSEG] THEN CONJ_TAC THENL
   [ASM_MESON_TAC[ARITH_RULE `~(SUC n <= n)`; IN_NUMSEG]; ALL_TAC] THEN
  REWRITE_TAC[ARITH_RULE `1 = SUC m \/ 1 <= m`] THEN
  GEN_REWRITE_TAC RAND_CONV [ADD_SYM] THEN AP_TERM_TAC THEN
  MATCH_MP_TAC NSUM_EQ THEN
  ASM_MESON_TAC[ARITH_RULE `~(SUC n <= n)`; IN_NUMSEG]);;