1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
|
(* ========================================================================= *)
(* Schnirelmann density and its basic properties (not Mann's theorem yet). *)
(* ========================================================================= *)
needs "Multivariate/misc.ml";;
needs "Library/products.ml";;
prioritize_real();;
(* ------------------------------------------------------------------------- *)
(* The basic definition. *)
(* ------------------------------------------------------------------------- *)
let count = new_definition
`count s n = CARD (s INTER (1..n))`;;
let schnirelmann = new_definition
`schnirelmann s = inf { &(count s n) / &n | 1 <= n}`;;
(* ------------------------------------------------------------------------- *)
(* Basic properties of the "count" function. *)
(* ------------------------------------------------------------------------- *)
let COUNT_BOUND = prove
(`!s. count s n <= n`,
GEN_TAC THEN REWRITE_TAC[count] THEN
GEN_REWRITE_TAC RAND_CONV [GSYM CARD_NUMSEG_1] THEN
MATCH_MP_TAC CARD_SUBSET THEN REWRITE_TAC[FINITE_NUMSEG] THEN SET_TAC[]);;
let COUNT_UNIV = prove
(`!n. count (:num) n = n`,
REWRITE_TAC[count; INTER_UNIV; CARD_NUMSEG_1]);;
let COUNT_MONO = prove
(`!s t n. s SUBSET t ==> count s n <= count t n`,
REPEAT STRIP_TAC THEN REWRITE_TAC[count] THEN
MATCH_MP_TAC CARD_SUBSET THEN
ASM_SIMP_TAC[FINITE_INTER; FINITE_NUMSEG] THEN ASM SET_TAC[]);;
let COUNT_INSENSITIVE = prove
(`!s t n. (!m. 1 <= m ==> (m IN s <=> m IN t))
==> count s n = count t n`,
REPEAT STRIP_TAC THEN REWRITE_TAC[count] THEN
AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_INTER; IN_NUMSEG] THEN
ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* The straightforward properties of Schnirelmann density. *)
(* ------------------------------------------------------------------------- *)
let SCHNIRELMANN_UBOUND,SCHNIRELMANN_LBOUND = (CONJ_PAIR o prove)
(`(!n. 1 <= n ==> schnirelmann s <= &(count s n) / &n) /\
(!b. (!n. 1 <= n ==> b <= &(count s n) / &n) ==> b <= schnirelmann s)`,
MP_TAC(ISPEC `{ &(count s n) / &n | 1 <= n}` INF) THEN
SIMP_TAC[SET_RULE `(!x. x IN {f x | P x} ==> Q x) <=> !x. P x ==> Q(f x)`;
GSYM schnirelmann] THEN
ANTS_TAC THENL
[CONJ_TAC THENL [SET_TAC[LE_REFL]; ALL_TAC] THEN
EXISTS_TAC `&0` THEN SIMP_TAC[REAL_LE_DIV; REAL_POS];
MESON_TAC[]]);;
let SCHNIRELMANN_UBOUND_MUL = prove
(`!n s. schnirelmann s * &n <= &(count s n)`,
REPEAT GEN_TAC THEN
DISJ_CASES_TAC(ARITH_RULE `n = 0 \/ 1 <= n`) THEN
ASM_REWRITE_TAC[REAL_MUL_RZERO; REAL_POS] THEN
ASM_SIMP_TAC[GSYM REAL_LE_RDIV_EQ; REAL_OF_NUM_LT; LE_1;
SCHNIRELMANN_UBOUND]);;
let SCHNIRELMANN_BOUNDS = prove
(`!s. &0 <= schnirelmann s /\ schnirelmann s <= &1`,
GEN_TAC THEN REWRITE_TAC[schnirelmann] THEN
MATCH_MP_TAC REAL_INF_BOUNDS THEN
CONJ_TAC THENL [SET_TAC[LE_REFL]; ALL_TAC] THEN
SIMP_TAC[SET_RULE `(!x. x IN {f x | P x} ==> Q x) <=> !x. P x ==> Q(f x)`;
REAL_LE_DIV; REAL_POS; REAL_LE_LDIV_EQ; REAL_OF_NUM_LT; LE_1] THEN
REWRITE_TAC[REAL_MUL_LID; REAL_OF_NUM_LE; COUNT_BOUND]);;
let SCHNIRELMANN_MONO = prove
(`!s t. s SUBSET t ==> schnirelmann s <= schnirelmann t`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC SCHNIRELMANN_LBOUND THEN
X_GEN_TAC `n:num` THEN DISCH_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `&(count s n) / &n` THEN ASM_SIMP_TAC[SCHNIRELMANN_UBOUND] THEN
ASM_SIMP_TAC[REAL_LE_DIV2_EQ; REAL_OF_NUM_LT; LE_1] THEN
ASM_SIMP_TAC[REAL_OF_NUM_LE; COUNT_MONO]);;
let SCHNIRELMANN_INSENSITIVE = prove
(`!s t. (!n. 1 <= n ==> (n IN s <=> n IN t))
==> schnirelmann s = schnirelmann t`,
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP COUNT_INSENSITIVE) THEN
SIMP_TAC[schnirelmann]);;
let SCHNIRELMANN_SENSITIVE = prove
(`!s k. 1 <= k /\ ~(k IN s) ==> schnirelmann s <= &1 - &1 / &k`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `&(count s k) / &k` THEN
ASM_SIMP_TAC[SCHNIRELMANN_UBOUND] THEN
ASM_SIMP_TAC[REAL_FIELD `&1 <= x ==> (&1 - &1 / x) = (x - &1) / x`;
REAL_OF_NUM_LE; REAL_LE_DIV2_EQ; REAL_OF_NUM_LT; LE_1] THEN
ASM_SIMP_TAC[REAL_OF_NUM_SUB; REAL_OF_NUM_LE; count] THEN
GEN_REWRITE_TAC RAND_CONV [GSYM CARD_NUMSEG_1] THEN
MATCH_MP_TAC CARD_SUBSET THEN REWRITE_TAC[FINITE_NUMSEG] THEN
REWRITE_TAC[SUBSET; IN_NUMSEG; IN_INTER] THEN
ASM_MESON_TAC[ARITH_RULE `1 <= k ==> (x <= k - 1 <=> x <= k /\ ~(x = k))`]);;
let SCHNIRELMANN_SENSITIVE_1 = prove
(`!s. ~(1 IN s) ==> schnirelmann s = &0`,
REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`s:num->bool`; `1`] SCHNIRELMANN_SENSITIVE) THEN
MP_TAC(SPEC `s:num->bool` SCHNIRELMANN_BOUNDS) THEN
ASM_REWRITE_TAC[LE_REFL] THEN REAL_ARITH_TAC);;
let SCHNIRELMANN_UNIV = prove
(`schnirelmann(:num) = &1`,
REWRITE_TAC[GSYM REAL_LE_ANTISYM; SCHNIRELMANN_BOUNDS] THEN
MATCH_MP_TAC SCHNIRELMANN_LBOUND THEN
SIMP_TAC[COUNT_UNIV; REAL_DIV_REFL; REAL_OF_NUM_EQ; LE_1; REAL_LE_REFL]);;
let SCHNIRELMANN_EQ_1 = prove
(`!s. schnirelmann s = &1 <=> !n. 1 <= n ==> n IN s`,
GEN_TAC THEN EQ_TAC THENL
[ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN
REWRITE_TAC[EXTENSION; NOT_FORALL_THM; IN_UNIV; NOT_IMP] THEN
DISCH_THEN(CHOOSE_THEN ASSUME_TAC) THEN
FIRST_ASSUM(MP_TAC o MATCH_MP SCHNIRELMANN_SENSITIVE) THEN
MATCH_MP_TAC(REAL_ARITH `&0 < x ==> s <= &1 - x ==> ~(s = &1)`) THEN
ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; LE_1; ARITH];
REPEAT STRIP_TAC THEN
GEN_REWRITE_TAC RAND_CONV [GSYM SCHNIRELMANN_UNIV] THEN
MATCH_MP_TAC SCHNIRELMANN_INSENSITIVE THEN
ASM_REWRITE_TAC[IN_UNIV]]);;
(* ------------------------------------------------------------------------- *)
(* Sum-sets. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("+++",(16,"right"));;
let sumset = new_definition
`s +++ t = {x + y:num | x IN s /\ y IN t}`;;
let SUMSET_0 = prove
(`!s t. 0 IN s /\ 0 IN t ==> 0 IN (s +++ t)`,
SIMP_TAC[sumset; IN_ELIM_THM] THEN MESON_TAC[ADD_CLAUSES]);;
let SUMSET_SUPERSET_LZERO = prove
(`!s t. 0 IN s ==> t SUBSET (s +++ t)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[SUBSET; sumset; IN_ELIM_THM] THEN
X_GEN_TAC `n:num` THEN DISCH_TAC THEN
MAP_EVERY EXISTS_TAC [`0`; `n:num`] THEN ASM_REWRITE_TAC[ADD_CLAUSES]);;
let SUMSET_SUPERSET_RZERO = prove
(`!s t. 0 IN t ==> s SUBSET (s +++ t)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[SUBSET; sumset; IN_ELIM_THM] THEN
X_GEN_TAC `n:num` THEN DISCH_TAC THEN
MAP_EVERY EXISTS_TAC [`n:num`; `0`] THEN ASM_REWRITE_TAC[ADD_CLAUSES]);;
let SUMSET_SYM = prove
(`!s t. s +++ t = t +++ s`,
REWRITE_TAC[EXTENSION; IN_ELIM_THM; sumset] THEN MESON_TAC[ADD_SYM]);;
let SUMSET_ASSOC = prove
(`!s t u. s +++ (t +++ u) = (s +++ t) +++ u`,
REWRITE_TAC[EXTENSION; IN_ELIM_THM; sumset] THEN MESON_TAC[ADD_ASSOC]);;
let NEUTRAL_SUMSET = prove
(`neutral(+++) = {0}`,
REWRITE_TAC[neutral] THEN MATCH_MP_TAC SELECT_UNIQUE THEN
X_GEN_TAC `s:num->bool` THEN
REWRITE_TAC[sumset; IN_ELIM_THM; EXTENSION; IN_SING] THEN EQ_TAC THENL
[DISCH_THEN(MP_TAC o SPEC `{0}`) THEN REWRITE_TAC[IN_SING]; ALL_TAC] THEN
MESON_TAC[ADD_CLAUSES]);;
let MONOIDAL_SUMSET = prove
(`monoidal (+++)`,
REWRITE_TAC[monoidal; NEUTRAL_SUMSET; SUMSET_ASSOC] THEN
REWRITE_TAC[EQT_INTRO(SPEC_ALL SUMSET_SYM)] THEN
REWRITE_TAC[EXTENSION; sumset; IN_ELIM_THM; IN_SING] THEN
MESON_TAC[ADD_CLAUSES]);;
let SUMSET_0_ITER = prove
(`!a s. FINITE s /\ (!k. k IN s ==> 0 IN a k) ==> 0 IN iterate(+++) s a`,
GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[ITERATE_CLAUSES; MONOIDAL_SUMSET; NEUTRAL_SUMSET; IN_SING] THEN
SIMP_TAC[IN_INSERT; SUMSET_0]);;
(* ------------------------------------------------------------------------- *)
(* Basic Schnirelmann theorem. *)
(* ------------------------------------------------------------------------- *)
let SCHNIRELMAN_LEMMA = prove
(`!s t n. 0 IN (s INTER t) /\ count s n + count t n >= n ==> n IN (s +++ t)`,
REWRITE_TAC[IN_INTER] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC(TAUT `(~p ==> F) ==> p`) THEN DISCH_TAC THEN
ASM_CASES_TAC `(n:num) IN s` THENL
[ASM_MESON_TAC[SUMSET_SUPERSET_RZERO; SUBSET]; ALL_TAC] THEN
ASM_CASES_TAC `(n:num) IN t` THENL
[ASM_MESON_TAC[SUMSET_SUPERSET_LZERO; SUBSET]; ALL_TAC] THEN
ASM_CASES_TAC `n = 0` THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN
`~((s INTER (1..n-1)) INTER (IMAGE (\b. n - b) (t INTER (1..n-1))) = {})`
MP_TAC THENL
[MATCH_MP_TAC CARD_UNION_OVERLAP THEN
SIMP_TAC[FINITE_IMAGE; FINITE_INTER; FINITE_NUMSEG; GT] THEN
MATCH_MP_TAC LET_TRANS THEN EXISTS_TAC `CARD(1..n-1)` THEN CONJ_TAC THENL
[MATCH_MP_TAC CARD_SUBSET THEN
REWRITE_TAC[SUBSET; IN_UNION; FORALL_IN_IMAGE; FORALL_AND_THM;
TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`] THEN
SIMP_TAC[FINITE_NUMSEG; IN_INTER; IN_NUMSEG] THEN ARITH_TAC;
ALL_TAC] THEN
REWRITE_TAC[CARD_NUMSEG_1] THEN
MATCH_MP_TAC(ARITH_RULE `~(n = 0) /\ n <= x ==> n - 1 < x`) THEN
ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (ARITH_RULE
`s + t:num >= n ==> a = s /\ b = t ==> n <= a + b`)) THEN
SUBGOAL_THEN `CARD(IMAGE (\b. n - b) (t INTER (1..n-1))) = count t (n - 1)`
SUBST1_TAC THENL
[REWRITE_TAC[count] THEN MATCH_MP_TAC CARD_IMAGE_INJ THEN
SIMP_TAC[FINITE_INTER; FINITE_NUMSEG; IN_INTER; IN_NUMSEG] THEN
ARITH_TAC;
ALL_TAC] THEN
REWRITE_TAC[count] THEN CONJ_TAC THEN AP_TERM_TAC THEN
ASM_SIMP_TAC[EXTENSION; IN_INTER; IN_NUMSEG;
ARITH_RULE `~(n = 0) ==> (x <= n - 1 <=> x <= n /\ ~(x = n))`] THEN
ASM_MESON_TAC[];
UNDISCH_TAC `~(n IN s +++ t)` THEN
REWRITE_TAC[] THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN
REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; IN_INTER; IN_IMAGE; IN_NUMSEG;
NOT_FORALL_THM; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `a:num` THEN REWRITE_TAC[sumset; IN_ELIM_THM] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_TAC `b:num`)) THEN
MAP_EVERY EXISTS_TAC [`a:num`; `b:num`] THEN ASM_REWRITE_TAC[] THEN
ASM_ARITH_TAC]);;
let SCHNIRELMANN_THEOREM = prove
(`!s t. 0 IN (s INTER t) /\ schnirelmann s + schnirelmann t >= &1
==> s +++ t = (:num)`,
REWRITE_TAC[IN_INTER] THEN REPEAT STRIP_TAC THEN
REWRITE_TAC[EXTENSION; IN_UNIV] THEN X_GEN_TAC `n:num` THEN
ASM_CASES_TAC `n = 0` THENL
[ASM_MESON_TAC[SUMSET_SUPERSET_LZERO; SUBSET; IN_INTER]; ALL_TAC] THEN
MATCH_MP_TAC SCHNIRELMAN_LEMMA THEN ASM_REWRITE_TAC[IN_INTER] THEN
REWRITE_TAC[GE; GSYM REAL_OF_NUM_LE; GSYM REAL_OF_NUM_ADD] THEN
GEN_REWRITE_TAC LAND_CONV [GSYM REAL_MUL_LID] THEN
ASM_SIMP_TAC[GSYM REAL_LE_RDIV_EQ; REAL_OF_NUM_LT; LE_1] THEN
REWRITE_TAC[real_div; REAL_ADD_RDISTRIB] THEN REWRITE_TAC[GSYM real_div] THEN
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
`a + b >= &1 ==> a <= x /\ b <= y ==> &1 <= x + y`)) THEN
CONJ_TAC THEN MATCH_MP_TAC SCHNIRELMANN_UBOUND THEN ASM_ARITH_TAC);;
let SCHNIRELMANN_THEOREM_2 = prove
(`!s. 0 IN s /\ schnirelmann s >= &1 / &2 ==> s +++ s = (:num)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC SCHNIRELMANN_THEOREM THEN
ASM_REWRITE_TAC[IN_INTER] THEN ASM_REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Additional additivity properties and full Schnirelmann theorem. *)
(* ------------------------------------------------------------------------- *)
let ENUMERATION_LEMMA = prove
(`!n s p. s HAS_SIZE n /\ (!k. k IN s ==> 1 <= k /\ k <= p)
==> ?a:num->num.
a(0) = 0 /\
a(n + 1) = p + 1 /\
s = IMAGE a (1..n) /\
(!j k. j <= n /\ k <= n + 1 /\ j < k ==> a(j) < a(k)) /\
(!j k. j <= n /\ k <= n + 1 /\ j <= k ==> a(j) <= a(k))`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPEC `(<=):num->num->bool` TOPOLOGICAL_SORT) THEN
REWRITE_TAC[LE_TRANS; LE_ANTISYM] THEN
DISCH_THEN(MP_TAC o SPECL [`n:num`; `s:num->bool`]) THEN
ASM_REWRITE_TAC[NOT_LE; IN_NUMSEG] THEN
DISCH_THEN(X_CHOOSE_THEN `f:num->num` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `\i. if 1 <= i then if i <= n then f i else p + 1 else 0` THEN
ASM_REWRITE_TAC[ARITH; ARITH_RULE `1 <= n + 1 /\ ~(n + 1 <= n)`] THEN
CONJ_TAC THENL
[REWRITE_TAC[EXTENSION; IN_IMAGE; IN_NUMSEG] THEN MESON_TAC[]; ALL_TAC] THEN
MATCH_MP_TAC(TAUT `(a ==> b) /\ a ==> a /\ b`) THEN
CONJ_TAC THENL [MESON_TAC[LE_LT]; ALL_TAC] THEN
SUBGOAL_THEN `!k. 1 <= k /\ k <= n ==> 1 <= f(k) /\ f(k) <= p`
ASSUME_TAC THENL
[GEN_TAC THEN STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[IN_IMAGE; IN_NUMSEG] THEN ASM_MESON_TAC[];
ALL_TAC] THEN
MAP_EVERY X_GEN_TAC [`i:num`; `j:num`] THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`i:num`; `j:num`]) THEN ASM_REWRITE_TAC[] THEN
REPEAT(COND_CASES_TAC THEN ASM_SIMP_TAC[]) THEN
FIRST_X_ASSUM(fun th ->
MP_TAC(SPEC `i:num` th) THEN MP_TAC(SPEC `j:num` th)) THEN
ASM_ARITH_TAC);;
let CARD_INTER_0_1 = prove
(`!n s. 0 IN s ==> CARD(s INTER (0..n)) = SUC(CARD(s INTER (1..n)))`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `s INTER (0..n) = 0 INSERT (s INTER (1..n))` SUBST1_TAC THENL
[MATCH_MP_TAC(SET_RULE
`a IN s /\ (t = a INSERT u)
==> (s INTER t = a INSERT (s INTER u))`) THEN
ASM_REWRITE_TAC[EXTENSION; IN_INSERT; IN_NUMSEG] THEN ARITH_TAC;
SIMP_TAC[CARD_CLAUSES; FINITE_INTER; FINITE_NUMSEG; IN_INTER; ARITH;
IN_NUMSEG; GSYM REAL_OF_NUM_SUC]]);;
let SCHNIRELMANN_SUMSET = prove
(`!s t. 0 IN (s INTER t)
==> schnirelmann(s +++ t)
>= (schnirelmann s + schnirelmann t) -
schnirelmann s * schnirelmann t`,
REWRITE_TAC[IN_INTER] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[real_ge] THEN
MATCH_MP_TAC SCHNIRELMANN_LBOUND THEN X_GEN_TAC `n:num` THEN STRIP_TAC THEN
ASM_SIMP_TAC[REAL_LE_RDIV_EQ; REAL_OF_NUM_LT; LE_1] THEN
MP_TAC(SPECL [`count s n`; `s INTER (1..n)`; `n:num`] ENUMERATION_LEMMA) THEN
SIMP_TAC[count; HAS_SIZE; FINITE_INTER; FINITE_NUMSEG] THEN
SIMP_TAC[IN_INTER; IN_NUMSEG] THEN
DISCH_THEN(X_CHOOSE_THEN `a:num->num` STRIP_ASSUME_TAC) THEN
ABBREV_TAC `A = CARD(s INTER (1..n))` THEN
SUBGOAL_THEN `!k. k <= A ==> (a:num->num)(k) IN s /\ a(k) <= n`
ASSUME_TAC THENL
[GEN_TAC THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [EXTENSION]) THEN
DISCH_THEN(MP_TAC o SPEC `(a:num->num)(k)`) THEN
DISJ_CASES_TAC(ARITH_RULE `k = 0 \/ 1 <= k`) THEN
ASM_REWRITE_TAC[LE_0; IN_INTER; IN_NUMSEG] THEN
MATCH_MP_TAC(TAUT `d ==> (a /\ b /\ c <=> d) ==> a /\ c`) THEN
REWRITE_TAC[IN_IMAGE; IN_NUMSEG] THEN ASM_MESON_TAC[];
ALL_TAC] THEN
MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `&(CARD ((s +++ t) INTER (0..n))) - &1` THEN CONJ_TAC THENL
[ALL_TAC;
ASM_SIMP_TAC[CARD_INTER_0_1; SUMSET_0; GSYM REAL_OF_NUM_SUC] THEN
REAL_ARITH_TAC] THEN
REWRITE_TAC[REAL_LE_SUB_LADD] THEN MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC
`&(CARD(UNIONS(IMAGE (\i. (IMAGE (\b. a i + b)
(t INTER (0..(a(i+1) - a(i) - 1)))))
(0..A))))` THEN
CONJ_TAC THENL
[ALL_TAC;
REWRITE_TAC[REAL_OF_NUM_LE] THEN MATCH_MP_TAC CARD_SUBSET THEN
SIMP_TAC[FINITE_INTER; FINITE_NUMSEG; UNIONS_SUBSET; FORALL_IN_IMAGE] THEN
REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN
X_GEN_TAC `k:num` THEN DISCH_TAC THEN X_GEN_TAC `l:num` THEN
REWRITE_TAC[IN_INTER] THEN REPEAT STRIP_TAC THEN
RULE_ASSUM_TAC(REWRITE_RULE[IN_NUMSEG]) THENL
[REWRITE_TAC[sumset; IN_ELIM_THM] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
REWRITE_TAC[IN_NUMSEG; LE_0] THEN
MATCH_MP_TAC(ARITH_RULE
`a(k) < a(k + 1) /\ a(k + 1) <= n + 1 /\ l <= a(k + 1) - a(k) - 1
==> a(k) + l <= n`) THEN
ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
[FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_ARITH_TAC; ALL_TAC] THEN
ASM_CASES_TAC `k:num = A` THEN ASM_REWRITE_TAC[LE_REFL] THEN
REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `k + 1`)) THEN ASM_ARITH_TAC] THEN
W(MP_TAC o PART_MATCH (lhs o rand) CARD_UNIONS o rand o rand o snd) THEN
REWRITE_TAC[FORALL_IN_IMAGE; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
SIMP_TAC[FINITE_IMAGE; FINITE_NUMSEG; FINITE_INTER] THEN
SUBGOAL_THEN
`!i j. i IN 0..A /\ j IN 0..A /\ ~(i = j)
==> IMAGE (\b. a i + b) (t INTER (0..a (i + 1) - a i - 1)) INTER
IMAGE (\b. a j + b) (t INTER (0..a (j + 1) - a j - 1)) = {}`
(LABEL_TAC "*") THENL
[MAP_EVERY X_GEN_TAC [`i:num`; `j:num`] THEN STRIP_TAC THEN
REWRITE_TAC[SET_RULE
`IMAGE f s INTER t = {} <=> !x. x IN s ==> ~(f x IN t)`] THEN
X_GEN_TAC `k:num` THEN DISCH_TAC THEN REWRITE_TAC[IN_IMAGE] THEN
DISCH_THEN(X_CHOOSE_THEN `l:num` STRIP_ASSUME_TAC) THEN
RULE_ASSUM_TAC(REWRITE_RULE[IN_NUMSEG; IN_INTER]) THEN
SUBGOAL_THEN `a(i + 1):num <= a(j) \/ a(j + 1) <= a(i)` MP_TAC THENL
[FIRST_X_ASSUM(DISJ_CASES_TAC o MATCH_MP (ARITH_RULE
`~(i = j) ==> i + 1 <= j \/ j + 1 <= i`))
THENL [DISJ1_TAC; DISJ2_TAC] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_ARITH_TAC;
ALL_TAC] THEN
SUBGOAL_THEN `(a:num->num)(i) < a(i + 1) /\ a(j) < a(j + 1)`
STRIP_ASSUME_TAC THENL
[CONJ_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC; ALL_TAC] THEN
ASM_ARITH_TAC;
ALL_TAC] THEN
ANTS_TAC THENL
[X_GEN_TAC `i:num` THEN DISCH_TAC THEN
X_GEN_TAC `j:num` THEN DISCH_TAC THEN
ASM_CASES_TAC `i:num = j` THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[];
ALL_TAC] THEN
DISCH_THEN SUBST1_TAC THEN
W(MP_TAC o PART_MATCH (lhs o rand) NSUM_IMAGE_NONZERO o
rand o rand o snd) THEN
REWRITE_TAC[] THEN ANTS_TAC THENL
[REWRITE_TAC[FINITE_NUMSEG] THEN MAP_EVERY X_GEN_TAC [`i:num`; `j:num`] THEN
STRIP_TAC THEN REMOVE_THEN "*" (MP_TAC o SPECL [`i:num`; `j:num`]) THEN
ASM_REWRITE_TAC[INTER_ACI] THEN SIMP_TAC[CARD_CLAUSES];
ALL_TAC] THEN
DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[o_DEF] THEN
SIMP_TAC[EQ_ADD_LCANCEL; CARD_IMAGE_INJ; FINITE_INTER; FINITE_NUMSEG] THEN
SIMP_TAC[REAL_OF_NUM_SUM; FINITE_INTER; FINITE_NUMSEG] THEN
MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC
`sum(0..A) (\i. schnirelmann t * &(a(i + 1) - a(i) - 1) + &1)` THEN
CONJ_TAC THENL
[ALL_TAC;
MATCH_MP_TAC SUM_LE_NUMSEG THEN REWRITE_TAC[] THEN
ASM_SIMP_TAC[CARD_INTER_0_1; SUMSET_0; GSYM REAL_OF_NUM_SUC] THEN
SIMP_TAC[GSYM count; SCHNIRELMANN_UBOUND_MUL; REAL_LE_RADD]] THEN
REWRITE_TAC[SUM_ADD_NUMSEG; SUM_CONST_NUMSEG] THEN
REWRITE_TAC[SUB_0; GSYM REAL_OF_NUM_ADD; REAL_MUL_RID] THEN
REWRITE_TAC[REAL_ADD_ASSOC; REAL_LE_RADD] THEN
MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC
`sum(0..A) (\i. schnirelmann t * (&(a(i + 1)) - &(a i) - &1)) + &A` THEN
CONJ_TAC THENL
[ALL_TAC;
REWRITE_TAC[REAL_LE_RADD] THEN MATCH_MP_TAC SUM_LE_NUMSEG THEN
X_GEN_TAC `i:num` THEN STRIP_TAC THEN
SUBGOAL_THEN `a(i):num < a(i + 1)` ASSUME_TAC THENL
[FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_ARITH_TAC; ALL_TAC] THEN
ASM_SIMP_TAC[REAL_OF_NUM_SUB; LT_IMP_LE; ARITH_RULE `a < b ==> 1 <= b - a`;
REAL_LE_REFL]] THEN
REWRITE_TAC[SUM_LMUL] THEN
ONCE_REWRITE_TAC[REAL_ARITH `a - b - c:real = --((b - a) + c)`] THEN
REWRITE_TAC[SUM_NEG; SUM_ADD_NUMSEG; SUM_DIFFS; LE_0] THEN
ASM_REWRITE_TAC[REAL_ARITH `--(&0 - a + b) = a - b`; SUM_CONST_NUMSEG] THEN
REWRITE_TAC[SUB_0; GSYM REAL_OF_NUM_ADD; REAL_MUL_RID] THEN
REWRITE_TAC[REAL_ARITH `(n + &1) - (a + &1) = n - a`] THEN
MATCH_MP_TAC(REAL_ARITH
`(&1 - t) * s * n <= (&1 - t) * a
==> ((s + t) - s * t) * n <= t * (n - a) + a`) THEN
MATCH_MP_TAC REAL_LE_LMUL THEN EXPAND_TAC "A" THEN
REWRITE_TAC[REAL_SUB_LE; SCHNIRELMANN_UBOUND_MUL; GSYM count] THEN
REWRITE_TAC[SCHNIRELMANN_BOUNDS]);;
(* ------------------------------------------------------------------------- *)
(* Now an iterative form. *)
(* ------------------------------------------------------------------------- *)
let SCHNIRELMANN_SUMSET_GEN = prove
(`!a s. FINITE s /\ (!i:A. i IN s ==> 0 IN a i)
==> schnirelmann(iterate(+++) s a)
>= &1 - product s (\i. &1 - schnirelmann(a i))`,
GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[PRODUCT_CLAUSES; real_ge; REAL_SUB_REFL; SCHNIRELMANN_BOUNDS] THEN
MAP_EVERY X_GEN_TAC [`k:A`; `s:A->bool`] THEN STRIP_TAC THEN
DISCH_TAC THEN FIRST_ASSUM(MP_TAC o check (is_imp o concl)) THEN
ANTS_TAC THENL [ASM_MESON_TAC[IN_INSERT]; DISCH_TAC] THEN
ASM_SIMP_TAC[ITERATE_CLAUSES; MONOIDAL_SUMSET] THEN
MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `&1 - (&1 - schnirelmann(a(k:A))) *
(&1 - schnirelmann(iterate (+++) s a))` THEN
CONJ_TAC THENL
[MATCH_MP_TAC(REAL_ARITH `a <= b ==> &1 - b <= &1 - a`) THEN
MATCH_MP_TAC REAL_LE_LMUL THEN
ASM_REWRITE_TAC[REAL_SUB_LE; SCHNIRELMANN_BOUNDS] THEN
ASM_REAL_ARITH_TAC;
REWRITE_TAC[REAL_ARITH `&1 - (&1 - s) * (&1 - t) <= u <=>
u >= (s + t) - s * t`] THEN
MATCH_MP_TAC SCHNIRELMANN_SUMSET THEN
ASM_SIMP_TAC[IN_INTER; IN_INSERT; SUMSET_0_ITER]]);;
let SCHNIRELMANN_SUMSET_POW = prove
(`!i s. FINITE i /\ 0 IN s
==> schnirelmann(iterate(+++) i (\k:A. s))
>= &1 - (&1 - schnirelmann s) pow (CARD i)`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`\i:A. (s:num->bool)`; `i:A->bool`]
SCHNIRELMANN_SUMSET_GEN) THEN
ASM_SIMP_TAC[PRODUCT_CONST]);;
let SCHNIRELMANN = prove
(`!s. 0 IN s /\ schnirelmann s > &0
==> ?k. !i. i HAS_SIZE k ==> iterate(+++) i (\a:A. s) = (:num)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[HAS_SIZE] THEN
MP_TAC(ISPECL [`&1 - schnirelmann s`; `&1 / &2`] REAL_ARCH_POW_INV) THEN
ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_TAC `n:num`) THEN EXISTS_TAC `2 * n` THEN
X_GEN_TAC `i:A->bool` THEN STRIP_TAC THEN
SUBGOAL_THEN
`?j k:A->bool. i = j UNION k /\ j INTER k = {} /\
j HAS_SIZE n /\ k HAS_SIZE n`
(REPEAT_TCL CHOOSE_THEN (CONJUNCTS_THEN2 SUBST1_TAC STRIP_ASSUME_TAC))
THENL
[FIRST_ASSUM(MP_TAC o SPEC `n:num` o MATCH_MP CHOOSE_SUBSET) THEN
ASM_REWRITE_TAC[ARITH_RULE `n <= 2 * n`] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `j:A->bool` THEN
STRIP_TAC THEN EXISTS_TAC `i DIFF j:A->bool` THEN
MATCH_MP_TAC(TAUT
`(a /\ b /\ c) /\ (a /\ b /\ c ==> d) ==> a /\ b /\ c /\ d`) THEN
CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN STRIP_TAC THEN
GEN_REWRITE_TAC RAND_CONV [ARITH_RULE `n = 2 * n - n`] THEN
MATCH_MP_TAC HAS_SIZE_DIFF THEN ASM_REWRITE_TAC[HAS_SIZE];
ALL_TAC] THEN
RULE_ASSUM_TAC(REWRITE_RULE[GSYM DISJOINT; HAS_SIZE]) THEN
ASM_SIMP_TAC[MONOIDAL_SUMSET; ITERATE_UNION] THEN
MATCH_MP_TAC SCHNIRELMANN_THEOREM THEN
ASM_SIMP_TAC[SUMSET_0_ITER; IN_INTER] THEN
MP_TAC(SPECL [`j:A->bool`; `s:num->bool`] SCHNIRELMANN_SUMSET_POW) THEN
MP_TAC(SPECL [`k:A->bool`; `s:num->bool`] SCHNIRELMANN_SUMSET_POW) THEN
ASM_SIMP_TAC[] THEN MATCH_MP_TAC(REAL_ARITH
`a < &1 / &2 ==> y >= &1 - a ==> x >= &1 - a ==> x + y >= &1`) THEN
ASM_REWRITE_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* A more direct version, without the techicality of 0 and sumsets. *)
(* ------------------------------------------------------------------------- *)
let SCHNIRELMANN_DIRECT = prove
(`!s. schnirelmann s > &0
==> ?k. !n. ?m f. m <= k /\ (!i. i IN 1..m ==> f(i) IN s) /\
n = nsum (1..m) f`,
GEN_TAC THEN STRIP_TAC THEN
SUBGOAL_THEN
`?k. !i:num->bool.
i HAS_SIZE k ==> iterate (+++) i (\a. 0 INSERT s) = (:num)`
MP_TAC THENL
[MATCH_MP_TAC SCHNIRELMANN THEN REWRITE_TAC[IN_INSERT] THEN
POP_ASSUM MP_TAC THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN
AP_TERM_TAC THEN MATCH_MP_TAC SCHNIRELMANN_INSENSITIVE THEN
SIMP_TAC[IN_INSERT; LE_1];
ALL_TAC] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `k:num` THEN
DISCH_THEN(MP_TAC o SPEC `1..k`) THEN
REWRITE_TAC[EXTENSION; HAS_SIZE_NUMSEG_1; IN_UNIV] THEN
MATCH_MP_TAC MONO_FORALL THEN
SPEC_TAC(`k:num`,`k:num`) THEN POP_ASSUM_LIST(K ALL_TAC) THEN
INDUCT_TAC THEN SIMP_TAC[NUMSEG_CLAUSES; ARITH; ARITH_RULE `1 <= SUC k`] THEN
SIMP_TAC[ITERATE_CLAUSES; MONOIDAL_SUMSET; FINITE_NUMSEG] THENL
[REWRITE_TAC[NEUTRAL_SUMSET; IN_SING] THEN GEN_TAC THEN
DISCH_THEN SUBST1_TAC THEN EXISTS_TAC `0` THEN
SIMP_TAC[NSUM_CLAUSES_NUMSEG; CARD_CLAUSES; EMPTY_SUBSET; FINITE_RULES;
IN_NUMSEG; LE_REFL; ARITH] THEN
REWRITE_TAC[ARITH_RULE `~(1 <= i /\ i <= 0)`];
ALL_TAC] THEN
REWRITE_TAC[IN_NUMSEG; ARITH_RULE `~(SUC n <= n)`] THEN
ONCE_REWRITE_TAC[sumset] THEN REWRITE_TAC[IN_ELIM_THM; IN_INSERT] THEN
X_GEN_TAC `n:num` THEN DISCH_THEN(X_CHOOSE_THEN `x:num` MP_TAC) THEN
ASM_CASES_TAC `x = 0` THEN ASM_REWRITE_TAC[ADD_CLAUSES] THENL
[ASM_MESON_TAC[IN_NUMSEG; ARITH_RULE `x <= k ==> x <= SUC k`]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `y:num` STRIP_ASSUME_TAC) THEN
FIRST_X_ASSUM(MP_TAC o SPEC `y:num`) THEN
ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`m:num`; `f:num->num`] THEN STRIP_TAC THEN
MAP_EVERY EXISTS_TAC [`SUC m`; `\i. if i = SUC m then x:num else f i`] THEN
ASM_SIMP_TAC[LE_SUC; LE; NSUM_CLAUSES_NUMSEG] THEN CONJ_TAC THENL
[ASM_MESON_TAC[ARITH_RULE `~(SUC n <= n)`; IN_NUMSEG]; ALL_TAC] THEN
REWRITE_TAC[ARITH_RULE `1 = SUC m \/ 1 <= m`] THEN
GEN_REWRITE_TAC RAND_CONV [ADD_SYM] THEN AP_TERM_TAC THEN
MATCH_MP_TAC NSUM_EQ THEN
ASM_MESON_TAC[ARITH_RULE `~(SUC n <= n)`; IN_NUMSEG]);;
|