1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
|
(* ========================================================================= *)
(* Nonlinear universal reals procedure using SOS decomposition. *)
(* ========================================================================= *)
prioritize_real();;
let debugging = ref false;;
exception Sanity;;
exception Unsolvable;;
(* ------------------------------------------------------------------------- *)
(* Turn a rational into a decimal string with d sig digits. *)
(* ------------------------------------------------------------------------- *)
let decimalize =
let rec normalize y =
if abs_num y </ Int 1 // Int 10 then normalize (Int 10 */ y) - 1
else if abs_num y >=/ Int 1 then normalize (y // Int 10) + 1
else 0 in
fun d x ->
if x =/ Int 0 then "0.0" else
let y = abs_num x in
let e = normalize y in
let z = pow10(-e) */ y +/ Int 1 in
let k = round_num(pow10 d */ z) in
(if x </ Int 0 then "-0." else "0.") ^
implode(tl(explode(string_of_num k))) ^
(if e = 0 then "" else "e"^string_of_int e);;
(* ------------------------------------------------------------------------- *)
(* Iterations over numbers, and lists indexed by numbers. *)
(* ------------------------------------------------------------------------- *)
let rec itern k l f a =
match l with
[] -> a
| h::t -> itern (k + 1) t f (f h k a);;
let rec iter (m,n) f a =
if n < m then a
else iter (m+1,n) f (f m a);;
(* ------------------------------------------------------------------------- *)
(* The main types. *)
(* ------------------------------------------------------------------------- *)
type vector = int*(int,num)func;;
type matrix = (int*int)*(int*int,num)func;;
type monomial = (term,int)func;;
type poly = (monomial,num)func;;
(* ------------------------------------------------------------------------- *)
(* Assignment avoiding zeros. *)
(* ------------------------------------------------------------------------- *)
let (|-->) x y a = if y =/ Int 0 then a else (x |-> y) a;;
(* ------------------------------------------------------------------------- *)
(* This can be generic. *)
(* ------------------------------------------------------------------------- *)
let element (d,v) i = tryapplyd v i (Int 0);;
let mapa f (d,v) =
d,foldl (fun a i c -> (i |--> f(c)) a) undefined v;;
let is_zero (d,v) = is_undefined v;;
(* ------------------------------------------------------------------------- *)
(* Vectors. Conventionally indexed 1..n. *)
(* ------------------------------------------------------------------------- *)
let vec_0 n = (n,undefined:vector);;
let vec_dim (v:vector) = fst v;;
let vec_const c n =
if c =/ Int 0 then vec_0 n
else (n,itlist (fun k -> k |-> c) (1--n) undefined :vector);;
let vec_1 = vec_const (Int 1);;
let vec_cmul c (v:vector) =
let n = vec_dim v in
if c =/ Int 0 then vec_0 n
else n,mapf (fun x -> c */ x) (snd v)
let vec_neg (v:vector) = (fst v,mapf minus_num (snd v) :vector);;
let vec_add (v1:vector) (v2:vector) =
let m = vec_dim v1 and n = vec_dim v2 in
if m <> n then failwith "vec_add: incompatible dimensions" else
(n,combine (+/) (fun x -> x =/ Int 0) (snd v1) (snd v2) :vector);;
let vec_sub v1 v2 = vec_add v1 (vec_neg v2);;
let vec_dot (v1:vector) (v2:vector) =
let m = vec_dim v1 and n = vec_dim v2 in
if m <> n then failwith "vec_add: incompatible dimensions" else
foldl (fun a i x -> x +/ a) (Int 0)
(combine ( */ ) (fun x -> x =/ Int 0) (snd v1) (snd v2));;
let vec_of_list l =
let n = length l in
(n,itlist2 (|->) (1--n) l undefined :vector);;
(* ------------------------------------------------------------------------- *)
(* Matrices; again rows and columns indexed from 1. *)
(* ------------------------------------------------------------------------- *)
let matrix_0 (m,n) = ((m,n),undefined:matrix);;
let dimensions (m:matrix) = fst m;;
let matrix_const c (m,n as mn) =
if m <> n then failwith "matrix_const: needs to be square"
else if c =/ Int 0 then matrix_0 mn
else (mn,itlist (fun k -> (k,k) |-> c) (1--n) undefined :matrix);;
let matrix_1 = matrix_const (Int 1);;
let matrix_cmul c (m:matrix) =
let (i,j) = dimensions m in
if c =/ Int 0 then matrix_0 (i,j)
else (i,j),mapf (fun x -> c */ x) (snd m);;
let matrix_neg (m:matrix) = (dimensions m,mapf minus_num (snd m) :matrix);;
let matrix_add (m1:matrix) (m2:matrix) =
let d1 = dimensions m1 and d2 = dimensions m2 in
if d1 <> d2 then failwith "matrix_add: incompatible dimensions"
else (d1,combine (+/) (fun x -> x =/ Int 0) (snd m1) (snd m2) :matrix);;
let matrix_sub m1 m2 = matrix_add m1 (matrix_neg m2);;
let row k (m:matrix) =
let i,j = dimensions m in
(j,
foldl (fun a (i,j) c -> if i = k then (j |-> c) a else a) undefined (snd m)
: vector);;
let column k (m:matrix) =
let i,j = dimensions m in
(i,
foldl (fun a (i,j) c -> if j = k then (i |-> c) a else a) undefined (snd m)
: vector);;
let transp (m:matrix) =
let i,j = dimensions m in
((j,i),foldl (fun a (i,j) c -> ((j,i) |-> c) a) undefined (snd m) :matrix);;
let diagonal (v:vector) =
let n = vec_dim v in
((n,n),foldl (fun a i c -> ((i,i) |-> c) a) undefined (snd v) : matrix);;
let matrix_of_list l =
let m = length l in
if m = 0 then matrix_0 (0,0) else
let n = length (hd l) in
(m,n),itern 1 l (fun v i -> itern 1 v (fun c j -> (i,j) |-> c)) undefined;;
(* ------------------------------------------------------------------------- *)
(* Monomials. *)
(* ------------------------------------------------------------------------- *)
let monomial_eval assig (m:monomial) =
foldl (fun a x k -> a */ power_num (apply assig x) (Int k))
(Int 1) m;;
let monomial_1 = (undefined:monomial);;
let monomial_var x = (x |=> 1 :monomial);;
let (monomial_mul:monomial->monomial->monomial) =
combine (+) (fun x -> false);;
let monomial_pow (m:monomial) k =
if k = 0 then monomial_1
else mapf (fun x -> k * x) m;;
let monomial_divides (m1:monomial) (m2:monomial) =
foldl (fun a x k -> tryapplyd m2 x 0 >= k && a) true m1;;
let monomial_div (m1:monomial) (m2:monomial) =
let m = combine (+) (fun x -> x = 0) m1 (mapf (fun x -> -x) m2) in
if foldl (fun a x k -> k >= 0 && a) true m then m
else failwith "monomial_div: non-divisible";;
let monomial_degree x (m:monomial) = tryapplyd m x 0;;
let monomial_lcm (m1:monomial) (m2:monomial) =
(itlist (fun x -> x |-> max (monomial_degree x m1) (monomial_degree x m2))
(union (dom m1) (dom m2)) undefined :monomial);;
let monomial_multidegree (m:monomial) = foldl (fun a x k -> k + a) 0 m;;
let monomial_variables m = dom m;;
(* ------------------------------------------------------------------------- *)
(* Polynomials. *)
(* ------------------------------------------------------------------------- *)
let eval assig (p:poly) =
foldl (fun a m c -> a +/ c */ monomial_eval assig m) (Int 0) p;;
let poly_0 = (undefined:poly);;
let poly_isconst (p:poly) = foldl (fun a m c -> m = monomial_1 && a) true p;;
let poly_var x = ((monomial_var x) |=> Int 1 :poly);;
let poly_const c =
if c =/ Int 0 then poly_0 else (monomial_1 |=> c);;
let poly_cmul c (p:poly) =
if c =/ Int 0 then poly_0
else mapf (fun x -> c */ x) p;;
let poly_neg (p:poly) = (mapf minus_num p :poly);;
let poly_add (p1:poly) (p2:poly) =
(combine (+/) (fun x -> x =/ Int 0) p1 p2 :poly);;
let poly_sub p1 p2 = poly_add p1 (poly_neg p2);;
let poly_cmmul (c,m) (p:poly) =
if c =/ Int 0 then poly_0
else if m = monomial_1 then mapf (fun d -> c */ d) p
else foldl (fun a m' d -> (monomial_mul m m' |-> c */ d) a) poly_0 p;;
let poly_mul (p1:poly) (p2:poly) =
foldl (fun a m c -> poly_add (poly_cmmul (c,m) p2) a) poly_0 p1;;
let poly_div (p1:poly) (p2:poly) =
if not(poly_isconst p2) then failwith "poly_div: non-constant" else
let c = eval undefined p2 in
if c =/ Int 0 then failwith "poly_div: division by zero"
else poly_cmul (Int 1 // c) p1;;
let poly_square p = poly_mul p p;;
let rec poly_pow p k =
if k = 0 then poly_const (Int 1)
else if k = 1 then p
else let q = poly_square(poly_pow p (k / 2)) in
if k mod 2 = 1 then poly_mul p q else q;;
let poly_exp p1 p2 =
if not(poly_isconst p2) then failwith "poly_exp: not a constant" else
poly_pow p1 (Num.int_of_num (eval undefined p2));;
let degree x (p:poly) = foldl (fun a m c -> max (monomial_degree x m) a) 0 p;;
let multidegree (p:poly) =
foldl (fun a m c -> max (monomial_multidegree m) a) 0 p;;
let poly_variables (p:poly) =
foldr (fun m c -> union (monomial_variables m)) p [];;
(* ------------------------------------------------------------------------- *)
(* Order monomials for human presentation. *)
(* ------------------------------------------------------------------------- *)
let humanorder_varpow (x1,k1) (x2,k2) = x1 < x2 || x1 = x2 && k1 > k2;;
let humanorder_monomial =
let rec ord l1 l2 = match (l1,l2) with
_,[] -> true
| [],_ -> false
| h1::t1,h2::t2 -> humanorder_varpow h1 h2 || h1 = h2 && ord t1 t2 in
fun m1 m2 -> m1 = m2 ||
ord (sort humanorder_varpow (graph m1))
(sort humanorder_varpow (graph m2));;
(* ------------------------------------------------------------------------- *)
(* Conversions to strings. *)
(* ------------------------------------------------------------------------- *)
let string_of_vector min_size max_size (v:vector) =
let n_raw = vec_dim v in
if n_raw = 0 then "[]" else
let n = max min_size (min n_raw max_size) in
let xs = map (string_of_num o element v) (1--n) in
"[" ^ end_itlist (fun s t -> s ^ ", " ^ t) xs ^
(if n_raw > max_size then ", ...]" else "]");;
let string_of_matrix max_size (m:matrix) =
let i_raw,j_raw = dimensions m in
let i = min max_size i_raw and j = min max_size j_raw in
let rstr = map (fun k -> string_of_vector j j (row k m)) (1--i) in
"["^end_itlist(fun s t -> s^";\n "^t) rstr ^
(if j > max_size then "\n ...]" else "]");;
let rec string_of_term t =
if (is_comb t) then
let (a,b) = (dest_comb t) in
"("^(string_of_term a)^" "^(string_of_term b)^")"
else if (is_abs t) then
let (a,b) = (dest_abs t) in
"(\\"^(string_of_term a)^"."^(string_of_term b)^")"
else if (is_const t) then
let (a,_) = (dest_const t) in a
else if (is_var t) then
let (a,_) = (dest_var t) in a
else failwith "string_of_term";;
let string_of_varpow x k =
if k = 1 then string_of_term x else string_of_term x^"^"^string_of_int k;;
let string_of_monomial m =
if m = monomial_1 then "1" else
let vps = List.fold_right (fun (x,k) a -> string_of_varpow x k :: a)
(sort humanorder_varpow (graph m)) [] in
end_itlist (fun s t -> s^"*"^t) vps;;
let string_of_cmonomial (c,m) =
if m = monomial_1 then string_of_num c
else if c =/ Int 1 then string_of_monomial m
else string_of_num c ^ "*" ^ string_of_monomial m;;
let string_of_poly (p:poly) =
if p = poly_0 then "<<0>>" else
let cms = sort (fun (m1,_) (m2,_) -> humanorder_monomial m1 m2) (graph p) in
let s =
List.fold_left (fun a (m,c) ->
if c </ Int 0 then a ^ " - " ^ string_of_cmonomial(minus_num c,m)
else a ^ " + " ^ string_of_cmonomial(c,m))
"" cms in
let s1 = String.sub s 0 3
and s2 = String.sub s 3 (String.length s - 3) in
"<<" ^(if s1 = " + " then s2 else "-"^s2)^">>";;
(* ------------------------------------------------------------------------- *)
(* Printers. *)
(* ------------------------------------------------------------------------- *)
let print_vector v = Format.print_string(string_of_vector 0 20 v);;
let print_matrix m = Format.print_string(string_of_matrix 20 m);;
let print_monomial m = Format.print_string(string_of_monomial m);;
let print_poly m = Format.print_string(string_of_poly m);;
#install_printer print_vector;;
#install_printer print_matrix;;
#install_printer print_monomial;;
#install_printer print_poly;;
(* ------------------------------------------------------------------------- *)
(* Conversion from HOL term. *)
(* ------------------------------------------------------------------------- *)
let poly_of_term =
let neg_tm = `(--):real->real`
and add_tm = `(+):real->real->real`
and sub_tm = `(-):real->real->real`
and mul_tm = `(*):real->real->real`
and inv_tm = `(inv):real->real`
and div_tm = `(/):real->real->real`
and pow_tm = `(pow):real->num->real`
and zero_tm = `&0:real`
and real_ty = `:real` in
let rec poly_of_term tm =
if tm = zero_tm then poly_0
else if is_ratconst tm then poly_const(rat_of_term tm)
else if not(is_comb tm) then poly_var tm else
let lop,r = dest_comb tm in
if lop = neg_tm then poly_neg(poly_of_term r)
else if lop = inv_tm then
let p = poly_of_term r in
if poly_isconst p then poly_const(Int 1 // eval undefined p)
else failwith "poly_of_term: inverse of non-constant polyomial"
else if not(is_comb lop) then poly_var tm else
let op,l = dest_comb lop in
if op = pow_tm && is_numeral r then
poly_pow (poly_of_term l) (dest_small_numeral r)
else if op = add_tm then poly_add (poly_of_term l) (poly_of_term r)
else if op = sub_tm then poly_sub (poly_of_term l) (poly_of_term r)
else if op = mul_tm then poly_mul (poly_of_term l) (poly_of_term r)
else if op = div_tm then
let p = poly_of_term l and q = poly_of_term r in
if poly_isconst q then poly_cmul (Int 1 // eval undefined q) p
else failwith "poly_of_term: division by non-constant polynomial"
else poly_var tm in
fun tm -> if type_of tm = real_ty then poly_of_term tm
else failwith "poly_of_term: term does not have real type";;
(* ------------------------------------------------------------------------- *)
(* String of vector (just a list of space-separated numbers). *)
(* ------------------------------------------------------------------------- *)
let sdpa_of_vector (v:vector) =
let n = vec_dim v in
let strs = map (decimalize 20 o element v) (1--n) in
end_itlist (fun x y -> x ^ " " ^ y) strs ^ "\n";;
(* ------------------------------------------------------------------------- *)
(* String for block diagonal matrix numbered k. *)
(* ------------------------------------------------------------------------- *)
let sdpa_of_blockdiagonal k m =
let pfx = string_of_int k ^" " in
let ents =
foldl (fun a (b,i,j) c -> if i > j then a else ((b,i,j),c)::a) [] m in
let entss = sort (increasing fst) ents in
itlist (fun ((b,i,j),c) a ->
pfx ^ string_of_int b ^ " " ^ string_of_int i ^ " " ^ string_of_int j ^
" " ^ decimalize 20 c ^ "\n" ^ a) entss "";;
(* ------------------------------------------------------------------------- *)
(* String for a matrix numbered k, in SDPA sparse format. *)
(* ------------------------------------------------------------------------- *)
let sdpa_of_matrix k (m:matrix) =
let pfx = string_of_int k ^ " 1 " in
let ms = foldr (fun (i,j) c a -> if i > j then a else ((i,j),c)::a)
(snd m) [] in
let mss = sort (increasing fst) ms in
itlist (fun ((i,j),c) a ->
pfx ^ string_of_int i ^ " " ^ string_of_int j ^
" " ^ decimalize 20 c ^ "\n" ^ a) mss "";;
(* ------------------------------------------------------------------------- *)
(* String in SDPA sparse format for standard SDP problem: *)
(* *)
(* X = v_1 * [M_1] + ... + v_m * [M_m] - [M_0] must be PSD *)
(* Minimize obj_1 * v_1 + ... obj_m * v_m *)
(* ------------------------------------------------------------------------- *)
let sdpa_of_problem comment obj mats =
let m = length mats - 1
and n,_ = dimensions (hd mats) in
"\"" ^ comment ^ "\"\n" ^
string_of_int m ^ "\n" ^
"1\n" ^
string_of_int n ^ "\n" ^
sdpa_of_vector obj ^
itlist2 (fun k m a -> sdpa_of_matrix (k - 1) m ^ a)
(1--length mats) mats "";;
(* ------------------------------------------------------------------------- *)
(* More parser basics. *)
(* ------------------------------------------------------------------------- *)
let word s =
end_itlist (fun p1 p2 -> (p1 ++ p2) >> (fun (s,t) -> s^t))
(map a (explode s));;
let token s =
many (some isspace) ++ word s ++ many (some isspace)
>> (fun ((_,t),_) -> t);;
let decimal =
let numeral = some isnum in
let decimalint = atleast 1 numeral >> (Num.num_of_string o implode) in
let decimalfrac = atleast 1 numeral
>> (fun s -> Num.num_of_string(implode s) // pow10 (length s)) in
let decimalsig =
decimalint ++ possibly (a "." ++ decimalfrac >> snd)
>> (function (h,[]) -> h | (h,[x]) -> h +/ x) in
let signed prs =
a "-" ++ prs >> (minus_num o snd)
||| (a "+" ++ prs >> snd)
||| prs in
let exponent = (a "e" ||| a "E") ++ signed decimalint >> snd in
signed decimalsig ++ possibly exponent
>> (function (h,[]) -> h | (h,[x]) -> h */ power_num (Int 10) x);;
let mkparser p s =
let x,rst = p(explode s) in
if rst = [] then x else failwith "mkparser: unparsed input";;
let parse_decimal = mkparser decimal;;
(* ------------------------------------------------------------------------- *)
(* Parse back a vector. *)
(* ------------------------------------------------------------------------- *)
let parse_sdpaoutput,parse_csdpoutput =
let vector =
token "{" ++ listof decimal (token ",") "decimal" ++ token "}"
>> (fun ((_,v),_) -> vec_of_list v) in
let parse_vector = mkparser vector in
let rec skipupto dscr prs inp =
(dscr ++ prs >> snd
||| (some (fun c -> true) ++ skipupto dscr prs >> snd)) inp in
let ignore inp = (),[] in
let sdpaoutput =
skipupto (word "xVec" ++ token "=")
(vector ++ ignore >> fst) in
let csdpoutput =
(decimal ++ many(a " " ++ decimal >> snd) >> (fun (h,t) -> h::t)) ++
(a " " ++ a "\n" ++ ignore) >> (vec_of_list o fst) in
mkparser sdpaoutput,mkparser csdpoutput;;
(* ------------------------------------------------------------------------- *)
(* Also parse the SDPA output to test success (CSDP yields a return code). *)
(* ------------------------------------------------------------------------- *)
let sdpa_run_succeeded =
let rec skipupto dscr prs inp =
(dscr ++ prs >> snd
||| (some (fun c -> true) ++ skipupto dscr prs >> snd)) inp in
let prs = skipupto (word "phase.value" ++ token "=")
(possibly (a "p") ++ possibly (a "d") ++
(word "OPT" ||| word "FEAS")) in
fun s -> try prs (explode s); true with Noparse -> false;;
(* ------------------------------------------------------------------------- *)
(* The default parameters. Unfortunately this goes to a fixed file. *)
(* ------------------------------------------------------------------------- *)
let sdpa_default_parameters =
"100 unsigned int maxIteration;
1.0E-7 double 0.0 < epsilonStar;
1.0E2 double 0.0 < lambdaStar;
2.0 double 1.0 < omegaStar;
-1.0E5 double lowerBound;
1.0E5 double upperBound;
0.1 double 0.0 <= betaStar < 1.0;
0.2 double 0.0 <= betaBar < 1.0, betaStar <= betaBar;
0.9 double 0.0 < gammaStar < 1.0;
1.0E-7 double 0.0 < epsilonDash;
";;
(* ------------------------------------------------------------------------- *)
(* These were suggested by Makoto Yamashita for problems where we are *)
(* right at the edge of the semidefinite cone, as sometimes happens. *)
(* ------------------------------------------------------------------------- *)
let sdpa_alt_parameters =
"1000 unsigned int maxIteration;
1.0E-7 double 0.0 < epsilonStar;
1.0E4 double 0.0 < lambdaStar;
2.0 double 1.0 < omegaStar;
-1.0E5 double lowerBound;
1.0E5 double upperBound;
0.1 double 0.0 <= betaStar < 1.0;
0.2 double 0.0 <= betaBar < 1.0, betaStar <= betaBar;
0.9 double 0.0 < gammaStar < 1.0;
1.0E-7 double 0.0 < epsilonDash;
";;
let sdpa_params = sdpa_alt_parameters;;
(* ------------------------------------------------------------------------- *)
(* CSDP parameters; so far I'm sticking with the defaults. *)
(* ------------------------------------------------------------------------- *)
let csdp_default_parameters =
"axtol=1.0e-8
atytol=1.0e-8
objtol=1.0e-8
pinftol=1.0e8
dinftol=1.0e8
maxiter=100
minstepfrac=0.9
maxstepfrac=0.97
minstepp=1.0e-8
minstepd=1.0e-8
usexzgap=1
tweakgap=0
affine=0
printlevel=1
";;
let csdp_params = csdp_default_parameters;;
(* ------------------------------------------------------------------------- *)
(* Now call SDPA on a problem and parse back the output. *)
(* ------------------------------------------------------------------------- *)
let run_sdpa dbg obj mats =
let input_file = Filename.temp_file "sos" ".dat-s" in
let output_file =
String.sub input_file 0 (String.length input_file - 6) ^ ".out"
and params_file = Filename.concat (!temp_path) "param.sdpa" in
file_of_string input_file (sdpa_of_problem "" obj mats);
file_of_string params_file sdpa_params;
Sys.command("cd "^ !temp_path ^
"; sdpa "^input_file ^ " " ^ output_file ^
(if dbg then "" else "> /dev/null"));
let op = string_of_file output_file in
if not(sdpa_run_succeeded op) then failwith "sdpa: call failed" else
let res = parse_sdpaoutput op in
((if dbg then ()
else (Sys.remove input_file; Sys.remove output_file));
res);;
let sdpa obj mats = run_sdpa (!debugging) obj mats;;
(* ------------------------------------------------------------------------- *)
(* The same thing with CSDP. *)
(* ------------------------------------------------------------------------- *)
let run_csdp dbg obj mats =
let input_file = Filename.temp_file "sos" ".dat-s" in
let output_file =
String.sub input_file 0 (String.length input_file - 6) ^ ".out"
and params_file = Filename.concat (!temp_path) "param.csdp" in
file_of_string input_file (sdpa_of_problem "" obj mats);
file_of_string params_file csdp_params;
let rv = Sys.command("cd "^(!temp_path)^"; csdp "^input_file ^
" " ^ output_file ^
(if dbg then "" else "> /dev/null")) in
let op = string_of_file output_file in
let res = parse_csdpoutput op in
((if dbg then ()
else (Sys.remove input_file; Sys.remove output_file));
rv,res);;
let csdp obj mats =
let rv,res = run_csdp (!debugging) obj mats in
(if rv = 1 || rv = 2 then failwith "csdp: Problem is infeasible"
else if rv = 3 then
(Format.print_string "csdp warning: Reduced accuracy";
Format.print_newline())
else if rv <> 0 then failwith("csdp: error "^string_of_int rv)
else ());
res;;
(* ------------------------------------------------------------------------- *)
(* Try some apparently sensible scaling first. Note that this is purely to *)
(* get a cleaner translation to floating-point, and doesn't affect any of *)
(* the results, in principle. In practice it seems a lot better when there *)
(* are extreme numbers in the original problem. *)
(* ------------------------------------------------------------------------- *)
let scale_then =
let common_denominator amat acc =
foldl (fun a m c -> lcm_num (denominator c) a) acc amat
and maximal_element amat acc =
foldl (fun maxa m c -> max_num maxa (abs_num c)) acc amat in
fun solver obj mats ->
let cd1 = itlist common_denominator mats (Int 1)
and cd2 = common_denominator (snd obj) (Int 1) in
let mats' = map (mapf (fun x -> cd1 */ x)) mats
and obj' = vec_cmul cd2 obj in
let max1 = itlist maximal_element mats' (Int 0)
and max2 = maximal_element (snd obj') (Int 0) in
let scal1 = pow2 (20-int_of_float(log(float_of_num max1) /. log 2.0))
and scal2 = pow2 (20-int_of_float(log(float_of_num max2) /. log 2.0)) in
let mats'' = map (mapf (fun x -> x */ scal1)) mats'
and obj'' = vec_cmul scal2 obj' in
solver obj'' mats'';;
(* ------------------------------------------------------------------------- *)
(* Round a vector to "nice" rationals. *)
(* ------------------------------------------------------------------------- *)
let nice_rational n x = round_num (n */ x) // n;;
let nice_vector n = mapa (nice_rational n);;
(* ------------------------------------------------------------------------- *)
(* Reduce linear program to SDP (diagonal matrices) and test with CSDP. This *)
(* one tests A [-1;x1;..;xn] >= 0 (i.e. left column is negated constants). *)
(* ------------------------------------------------------------------------- *)
let linear_program_basic a =
let m,n = dimensions a in
let mats = map (fun j -> diagonal (column j a)) (1--n)
and obj = vec_const (Int 1) m in
let rv,res = run_csdp false obj mats in
if rv = 1 || rv = 2 then false
else if rv = 0 then true
else failwith "linear_program: An error occurred in the SDP solver";;
(* ------------------------------------------------------------------------- *)
(* Alternative interface testing A x >= b for matrix A, vector b. *)
(* ------------------------------------------------------------------------- *)
let linear_program a b =
let m,n = dimensions a in
if vec_dim b <> m then failwith "linear_program: incompatible dimensions" else
let mats = diagonal b :: map (fun j -> diagonal (column j a)) (1--n)
and obj = vec_const (Int 1) m in
let rv,res = run_csdp false obj mats in
if rv = 1 || rv = 2 then false
else if rv = 0 then true
else failwith "linear_program: An error occurred in the SDP solver";;
(* ------------------------------------------------------------------------- *)
(* Test whether a point is in the convex hull of others. Rather than use *)
(* computational geometry, express as linear inequalities and call CSDP. *)
(* This is a bit lazy of me, but it's easy and not such a bottleneck so far. *)
(* ------------------------------------------------------------------------- *)
let in_convex_hull pts pt =
let pts1 = (1::pt) :: map (fun x -> 1::x) pts in
let pts2 = map (fun p -> map (fun x -> -x) p @ p) pts1 in
let n = length pts + 1
and v = 2 * (length pt + 1) in
let m = v + n - 1 in
let mat =
(m,n),
itern 1 pts2 (fun pts j -> itern 1 pts (fun x i -> (i,j) |-> Int x))
(iter (1,n) (fun i -> (v + i,i+1) |-> Int 1) undefined) in
linear_program_basic mat;;
(* ------------------------------------------------------------------------- *)
(* Filter down a set of points to a minimal set with the same convex hull. *)
(* ------------------------------------------------------------------------- *)
let minimal_convex_hull =
let augment1 (m::ms) = if in_convex_hull ms m then ms else ms@[m] in
let augment m ms = funpow 3 augment1 (m::ms) in
fun mons ->
let mons' = itlist augment (tl mons) [hd mons] in
funpow (length mons') augment1 mons';;
(* ------------------------------------------------------------------------- *)
(* Stuff for "equations" (generic A->num functions). *)
(* ------------------------------------------------------------------------- *)
let equation_cmul c eq =
if c =/ Int 0 then undefined else mapf (fun d -> c */ d) eq;;
let equation_add eq1 eq2 = combine (+/) (fun x -> x =/ Int 0) eq1 eq2;;
let equation_eval assig eq =
let value v = apply assig v in
foldl (fun a v c -> a +/ value(v) */ c) (Int 0) eq;;
(* ------------------------------------------------------------------------- *)
(* Eliminate among linear equations: return unconstrained variables and *)
(* assignments for the others in terms of them. We give one pseudo-variable *)
(* "one" that's used for a constant term. *)
(* ------------------------------------------------------------------------- *)
let eliminate_equations =
let rec extract_first p l =
match l with
[] -> failwith "extract_first"
| h::t -> if p(h) then h,t else
let k,s = extract_first p t in
k,h::s in
let rec eliminate vars dun eqs =
match vars with
[] -> if forall is_undefined eqs then dun
else raise Unsolvable
| v::vs ->
try let eq,oeqs = extract_first (fun e -> defined e v) eqs in
let a = apply eq v in
let eq' = equation_cmul (Int(-1) // a) (undefine v eq) in
let elim e =
let b = tryapplyd e v (Int 0) in
if b =/ Int 0 then e else
equation_add e (equation_cmul (minus_num b // a) eq) in
eliminate vs ((v |-> eq') (mapf elim dun)) (map elim oeqs)
with Failure _ -> eliminate vs dun eqs in
fun one vars eqs ->
let assig = eliminate vars undefined eqs in
let vs = foldl (fun a x f -> subtract (dom f) [one] @ a) [] assig in
setify vs,assig;;
(* ------------------------------------------------------------------------- *)
(* Eliminate all variables, in an essentially arbitrary order. *)
(* ------------------------------------------------------------------------- *)
let eliminate_all_equations one =
let choose_variable eq =
let (v,_) = choose eq in
if v = one then
let eq' = undefine v eq in
if is_undefined eq' then failwith "choose_variable" else
let (w,_) = choose eq' in w
else v in
let rec eliminate dun eqs =
match eqs with
[] -> dun
| eq::oeqs ->
if is_undefined eq then eliminate dun oeqs else
let v = choose_variable eq in
let a = apply eq v in
let eq' = equation_cmul (Int(-1) // a) (undefine v eq) in
let elim e =
let b = tryapplyd e v (Int 0) in
if b =/ Int 0 then e else
equation_add e (equation_cmul (minus_num b // a) eq) in
eliminate ((v |-> eq') (mapf elim dun)) (map elim oeqs) in
fun eqs ->
let assig = eliminate undefined eqs in
let vs = foldl (fun a x f -> subtract (dom f) [one] @ a) [] assig in
setify vs,assig;;
(* ------------------------------------------------------------------------- *)
(* Solve equations by assigning arbitrary numbers. *)
(* ------------------------------------------------------------------------- *)
let solve_equations one eqs =
let vars,assigs = eliminate_all_equations one eqs in
let vfn = itlist (fun v -> (v |-> Int 0)) vars (one |=> Int(-1)) in
let ass =
combine (+/) (fun c -> false) (mapf (equation_eval vfn) assigs) vfn in
if forall (fun e -> equation_eval ass e =/ Int 0) eqs
then undefine one ass else raise Sanity;;
(* ------------------------------------------------------------------------- *)
(* Hence produce the "relevant" monomials: those whose squares lie in the *)
(* Newton polytope of the monomials in the input. (This is enough according *)
(* to Reznik: "Extremal PSD forms with few terms", Duke Math. Journal, *)
(* vol 45, pp. 363--374, 1978. *)
(* *)
(* These are ordered in sort of decreasing degree. In particular the *)
(* constant monomial is last; this gives an order in diagonalization of the *)
(* quadratic form that will tend to display constants. *)
(* ------------------------------------------------------------------------- *)
let newton_polytope pol =
let vars = poly_variables pol in
let mons = map (fun m -> map (fun x -> monomial_degree x m) vars) (dom pol)
and ds = map (fun x -> (degree x pol + 1) / 2) vars in
let all = itlist (fun n -> allpairs (fun h t -> h::t) (0--n)) ds [[]]
and mons' = minimal_convex_hull mons in
let all' =
filter (fun m -> in_convex_hull mons' (map (fun x -> 2 * x) m)) all in
map (fun m -> itlist2 (fun v i a -> if i = 0 then a else (v |-> i) a)
vars m monomial_1) (rev all');;
(* ------------------------------------------------------------------------- *)
(* Diagonalize (Cholesky/LDU) the matrix corresponding to a quadratic form. *)
(* ------------------------------------------------------------------------- *)
let diag m =
let nn = dimensions m in
let n = fst nn in
if snd nn <> n then failwith "diagonalize: non-square matrix" else
let rec diagonalize i m =
if is_zero m then [] else
let a11 = element m (i,i) in
if a11 </ Int 0 then failwith "diagonalize: not PSD"
else if a11 =/ Int 0 then
if is_zero(row i m) then diagonalize (i + 1) m
else failwith "diagonalize: not PSD"
else
let v = row i m in
let v' = mapa (fun a1k -> a1k // a11) v in
let m' =
(n,n),
iter (i+1,n) (fun j ->
iter (i+1,n) (fun k ->
((j,k) |--> (element m (j,k) -/ element v j */ element v' k))))
undefined in
(a11,v')::diagonalize (i + 1) m' in
diagonalize 1 m;;
(* ------------------------------------------------------------------------- *)
(* Adjust a diagonalization to collect rationals at the start. *)
(* ------------------------------------------------------------------------- *)
let deration d =
if d = [] then Int 0,d else
let adj(c,l) =
let a = foldl (fun a i c -> lcm_num a (denominator c)) (Int 1) (snd l) //
foldl (fun a i c -> gcd_num a (numerator c)) (Int 0) (snd l) in
(c // (a */ a)),mapa (fun x -> a */ x) l in
let d' = map adj d in
let a = itlist (lcm_num o denominator o fst) d' (Int 1) //
itlist (gcd_num o numerator o fst) d' (Int 0) in
(Int 1 // a),map (fun (c,l) -> (a */ c,l)) d';;
(* ------------------------------------------------------------------------- *)
(* Enumeration of monomials with given multidegree bound. *)
(* ------------------------------------------------------------------------- *)
let rec enumerate_monomials d vars =
if d < 0 then []
else if d = 0 then [undefined]
else if vars = [] then [monomial_1] else
let alts =
map (fun k -> let oths = enumerate_monomials (d - k) (tl vars) in
map (fun ks -> if k = 0 then ks else (hd vars |-> k) ks) oths)
(0--d) in
end_itlist (@) alts;;
(* ------------------------------------------------------------------------- *)
(* Enumerate products of distinct input polys with degree <= d. *)
(* We ignore any constant input polynomials. *)
(* Give the output polynomial and a record of how it was derived. *)
(* ------------------------------------------------------------------------- *)
let rec enumerate_products d pols =
if d = 0 then [poly_const num_1,Rational_lt num_1] else if d < 0 then [] else
match pols with
[] -> [poly_const num_1,Rational_lt num_1]
| (p,b)::ps -> let e = multidegree p in
if e = 0 then enumerate_products d ps else
enumerate_products d ps @
map (fun (q,c) -> poly_mul p q,Product(b,c))
(enumerate_products (d - e) ps);;
(* ------------------------------------------------------------------------- *)
(* Multiply equation-parametrized poly by regular poly and add accumulator. *)
(* ------------------------------------------------------------------------- *)
let epoly_pmul p q acc =
foldl (fun a m1 c ->
foldl (fun b m2 e ->
let m = monomial_mul m1 m2 in
let es = tryapplyd b m undefined in
(m |-> equation_add (equation_cmul c e) es) b)
a q) acc p;;
(* ------------------------------------------------------------------------- *)
(* Usual operations on equation-parametrized poly. *)
(* ------------------------------------------------------------------------- *)
let epoly_cmul c l =
if c =/ Int 0 then undefined else mapf (equation_cmul c) l;;
(* ------------------------------------------------------------------------- *)
(* Convert regular polynomial. Note that we treat (0,0,0) as -1. *)
(* ------------------------------------------------------------------------- *)
let epoly_of_poly p =
foldl (fun a m c -> (m |-> ((0,0,0) |=> minus_num c)) a) undefined p;;
(* ------------------------------------------------------------------------- *)
(* String for block diagonal matrix numbered k. *)
(* ------------------------------------------------------------------------- *)
let sdpa_of_blockdiagonal k m =
let pfx = string_of_int k ^" " in
let ents =
foldl (fun a (b,i,j) c -> if i > j then a else ((b,i,j),c)::a) [] m in
let entss = sort (increasing fst) ents in
itlist (fun ((b,i,j),c) a ->
pfx ^ string_of_int b ^ " " ^ string_of_int i ^ " " ^ string_of_int j ^
" " ^ decimalize 20 c ^ "\n" ^ a) entss "";;
(* ------------------------------------------------------------------------- *)
(* SDPA for problem using block diagonal (i.e. multiple SDPs) *)
(* ------------------------------------------------------------------------- *)
let sdpa_of_blockproblem comment nblocks blocksizes obj mats =
let m = length mats - 1 in
"\"" ^ comment ^ "\"\n" ^
string_of_int m ^ "\n" ^
string_of_int nblocks ^ "\n" ^
(end_itlist (fun s t -> s^" "^t) (map string_of_int blocksizes)) ^
"\n" ^
sdpa_of_vector obj ^
itlist2 (fun k m a -> sdpa_of_blockdiagonal (k - 1) m ^ a)
(1--length mats) mats "";;
(* ------------------------------------------------------------------------- *)
(* Hence run CSDP on a problem in block diagonal form. *)
(* ------------------------------------------------------------------------- *)
let run_csdp dbg nblocks blocksizes obj mats =
let input_file = Filename.temp_file "sos" ".dat-s" in
let output_file =
String.sub input_file 0 (String.length input_file - 6) ^ ".out"
and params_file = Filename.concat (!temp_path) "param.csdp" in
file_of_string input_file
(sdpa_of_blockproblem "" nblocks blocksizes obj mats);
file_of_string params_file csdp_params;
let rv = Sys.command("cd "^(!temp_path)^"; csdp "^input_file ^
" " ^ output_file ^
(if dbg then "" else "> /dev/null")) in
let op = string_of_file output_file in
let res = parse_csdpoutput op in
((if dbg then ()
else (Sys.remove input_file; Sys.remove output_file));
rv,res);;
let csdp nblocks blocksizes obj mats =
let rv,res = run_csdp (!debugging) nblocks blocksizes obj mats in
(if rv = 1 || rv = 2 then failwith "csdp: Problem is infeasible"
else if rv = 3 then
(Format.print_string "csdp warning: Reduced accuracy";
Format.print_newline())
else if rv <> 0 then failwith("csdp: error "^string_of_int rv)
else ());
res;;
(* ------------------------------------------------------------------------- *)
(* 3D versions of matrix operations to consider blocks separately. *)
(* ------------------------------------------------------------------------- *)
let bmatrix_add = combine (+/) (fun x -> x =/ Int 0);;
let bmatrix_cmul c bm =
if c =/ Int 0 then undefined
else mapf (fun x -> c */ x) bm;;
let bmatrix_neg = bmatrix_cmul (Int(-1));;
let bmatrix_sub m1 m2 = bmatrix_add m1 (bmatrix_neg m2);;
(* ------------------------------------------------------------------------- *)
(* Smash a block matrix into components. *)
(* ------------------------------------------------------------------------- *)
let blocks blocksizes bm =
map (fun (bs,b0) ->
let m = foldl
(fun a (b,i,j) c -> if b = b0 then ((i,j) |-> c) a else a)
undefined bm in
let d = foldl (fun a (i,j) c -> max a (max i j)) 0 m in
(((bs,bs),m):matrix))
(zip blocksizes (1--length blocksizes));;
(* ------------------------------------------------------------------------- *)
(* Positiv- and Nullstellensatz. Flag "linf" forces a linear representation. *)
(* ------------------------------------------------------------------------- *)
let real_positivnullstellensatz_general linf d eqs leqs pol =
let vars = itlist (union o poly_variables) (pol::eqs @ map fst leqs) [] in
let monoid =
if linf then
(poly_const num_1,Rational_lt num_1)::
(filter (fun (p,c) -> multidegree p <= d) leqs)
else enumerate_products d leqs in
let nblocks = length monoid in
let mk_idmultiplier k p =
let e = d - multidegree p in
let mons = enumerate_monomials e vars in
let nons = zip mons (1--length mons) in
mons,
itlist (fun (m,n) -> (m |-> ((-k,-n,n) |=> Int 1))) nons undefined in
let mk_sqmultiplier k (p,c) =
let e = (d - multidegree p) / 2 in
let mons = enumerate_monomials e vars in
let nons = zip mons (1--length mons) in
mons,
itlist (fun (m1,n1) ->
itlist (fun (m2,n2) a ->
let m = monomial_mul m1 m2 in
if n1 > n2 then a else
let c = if n1 = n2 then Int 1 else Int 2 in
let e = tryapplyd a m undefined in
(m |-> equation_add ((k,n1,n2) |=> c) e) a)
nons)
nons undefined in
let sqmonlist,sqs = unzip(map2 mk_sqmultiplier (1--length monoid) monoid)
and idmonlist,ids = unzip(map2 mk_idmultiplier (1--length eqs) eqs) in
let blocksizes = map length sqmonlist in
let bigsum =
itlist2 (fun p q a -> epoly_pmul p q a) eqs ids
(itlist2 (fun (p,c) s a -> epoly_pmul p s a) monoid sqs
(epoly_of_poly(poly_neg pol))) in
let eqns = foldl (fun a m e -> e::a) [] bigsum in
let pvs,assig = eliminate_all_equations (0,0,0) eqns in
let qvars = (0,0,0)::pvs in
let allassig = itlist (fun v -> (v |-> (v |=> Int 1))) pvs assig in
let mk_matrix v =
foldl (fun m (b,i,j) ass -> if b < 0 then m else
let c = tryapplyd ass v (Int 0) in
if c =/ Int 0 then m else
((b,j,i) |-> c) (((b,i,j) |-> c) m))
undefined allassig in
let diagents = foldl
(fun a (b,i,j) e -> if b > 0 && i = j then equation_add e a else a)
undefined allassig in
let mats = map mk_matrix qvars
and obj = length pvs,
itern 1 pvs (fun v i -> (i |--> tryapplyd diagents v (Int 0)))
undefined in
let raw_vec = if pvs = [] then vec_0 0
else scale_then (csdp nblocks blocksizes) obj mats in
let find_rounding d =
(if !debugging then
(Format.print_string("Trying rounding with limit "^string_of_num d);
Format.print_newline())
else ());
let vec = nice_vector d raw_vec in
let blockmat = iter (1,vec_dim vec)
(fun i a -> bmatrix_add (bmatrix_cmul (element vec i) (el i mats)) a)
(bmatrix_neg (el 0 mats)) in
let allmats = blocks blocksizes blockmat in
vec,map diag allmats in
let vec,ratdias =
if pvs = [] then find_rounding num_1
else tryfind find_rounding (map Num.num_of_int (1--31) @
map pow2 (5--66)) in
let newassigs =
itlist (fun k -> el (k - 1) pvs |-> element vec k)
(1--vec_dim vec) ((0,0,0) |=> Int(-1)) in
let finalassigs =
foldl (fun a v e -> (v |-> equation_eval newassigs e) a) newassigs
allassig in
let poly_of_epoly p =
foldl (fun a v e -> (v |--> equation_eval finalassigs e) a)
undefined p in
let mk_sos mons =
let mk_sq (c,m) =
c,itlist (fun k a -> (el (k - 1) mons |--> element m k) a)
(1--length mons) undefined in
map mk_sq in
let sqs = map2 mk_sos sqmonlist ratdias
and cfs = map poly_of_epoly ids in
let msq = filter (fun (a,b) -> b <> []) (map2 (fun a b -> a,b) monoid sqs) in
let eval_sq sqs = itlist
(fun (c,q) -> poly_add (poly_cmul c (poly_mul q q))) sqs poly_0 in
let sanity =
itlist (fun ((p,c),s) -> poly_add (poly_mul p (eval_sq s))) msq
(itlist2 (fun p q -> poly_add (poly_mul p q)) cfs eqs
(poly_neg pol)) in
if not(is_undefined sanity) then raise Sanity else
cfs,map (fun (a,b) -> snd a,b) msq;;
(* ------------------------------------------------------------------------- *)
(* Iterative deepening. *)
(* ------------------------------------------------------------------------- *)
let rec deepen f n =
try print_string "Searching with depth limit ";
print_int n; print_newline(); f n
with Failure _ -> deepen f (n + 1);;
(* ------------------------------------------------------------------------- *)
(* The ordering so we can create canonical HOL polynomials. *)
(* ------------------------------------------------------------------------- *)
let dest_monomial mon = sort (increasing fst) (graph mon);;
let monomial_order =
let rec lexorder l1 l2 =
match (l1,l2) with
[],[] -> true
| vps,[] -> false
| [],vps -> true
| ((x1,n1)::vs1),((x2,n2)::vs2) ->
if x1 < x2 then true
else if x2 < x1 then false
else if n1 < n2 then false
else if n2 < n1 then true
else lexorder vs1 vs2 in
fun m1 m2 ->
if m2 = monomial_1 then true else if m1 = monomial_1 then false else
let mon1 = dest_monomial m1 and mon2 = dest_monomial m2 in
let deg1 = itlist ((+) o snd) mon1 0
and deg2 = itlist ((+) o snd) mon2 0 in
if deg1 < deg2 then false else if deg1 > deg2 then true
else lexorder mon1 mon2;;
let dest_poly p =
map (fun (m,c) -> c,dest_monomial m)
(sort (fun (m1,_) (m2,_) -> monomial_order m1 m2) (graph p));;
(* ------------------------------------------------------------------------- *)
(* Map back polynomials and their composites to HOL. *)
(* ------------------------------------------------------------------------- *)
let term_of_varpow =
let pow_tm = `(pow):real->num->real` in
fun x k ->
if k = 1 then x else mk_comb(mk_comb(pow_tm,x),mk_small_numeral k);;
let term_of_monomial =
let one_tm = `&1:real`
and mul_tm = `(*):real->real->real` in
fun m -> if m = monomial_1 then one_tm else
let m' = dest_monomial m in
let vps = itlist (fun (x,k) a -> term_of_varpow x k :: a) m' [] in
end_itlist (fun s t -> mk_comb(mk_comb(mul_tm,s),t)) vps;;
let term_of_cmonomial =
let mul_tm = `(*):real->real->real` in
fun (m,c) ->
if m = monomial_1 then term_of_rat c
else if c =/ num_1 then term_of_monomial m
else mk_comb(mk_comb(mul_tm,term_of_rat c),term_of_monomial m);;
let term_of_poly =
let zero_tm = `&0:real`
and add_tm = `(+):real->real->real` in
fun p ->
if p = poly_0 then zero_tm else
let cms = map term_of_cmonomial
(sort (fun (m1,_) (m2,_) -> monomial_order m1 m2) (graph p)) in
end_itlist (fun t1 t2 -> mk_comb(mk_comb(add_tm,t1),t2)) cms;;
let term_of_sqterm (c,p) =
Product(Rational_lt c,Square(term_of_poly p));;
let term_of_sos (pr,sqs) =
if sqs = [] then pr
else Product(pr,end_itlist (fun a b -> Sum(a,b)) (map term_of_sqterm sqs));;
(* ------------------------------------------------------------------------- *)
(* Interface to HOL. *)
(* ------------------------------------------------------------------------- *)
let REAL_NONLINEAR_PROVER translator (eqs,les,lts) =
let eq0 = map (poly_of_term o lhand o concl) eqs
and le0 = map (poly_of_term o lhand o concl) les
and lt0 = map (poly_of_term o lhand o concl) lts in
let eqp0 = map (fun (t,i) -> t,Axiom_eq i) (zip eq0 (0--(length eq0 - 1)))
and lep0 = map (fun (t,i) -> t,Axiom_le i) (zip le0 (0--(length le0 - 1)))
and ltp0 = map (fun (t,i) -> t,Axiom_lt i) (zip lt0 (0--(length lt0 - 1))) in
let keq,eq = partition (fun (p,_) -> multidegree p = 0) eqp0
and klep,lep = partition (fun (p,_) -> multidegree p = 0) lep0
and kltp,ltp = partition (fun (p,_) -> multidegree p = 0) ltp0 in
let trivial_axiom (p,ax) =
match ax with
Axiom_eq n when eval undefined p <>/ num_0 -> el n eqs
| Axiom_le n when eval undefined p </ num_0 -> el n les
| Axiom_lt n when eval undefined p <=/ num_0 -> el n lts
| _ -> failwith "not a trivial axiom" in
try let th = tryfind trivial_axiom (keq @ klep @ kltp) in
CONV_RULE (LAND_CONV REAL_POLY_CONV THENC REAL_RAT_RED_CONV) th
with Failure _ ->
let pol = itlist poly_mul (map fst ltp) (poly_const num_1) in
let leq = lep @ ltp in
let tryall d =
let e = multidegree pol in
let k = if e = 0 then 0 else d / e in
let eq' = map fst eq in
tryfind (fun i -> d,i,real_positivnullstellensatz_general false d eq' leq
(poly_neg(poly_pow pol i)))
(0--k) in
let d,i,(cert_ideal,cert_cone) = deepen tryall 0 in
let proofs_ideal =
map2 (fun q (p,ax) -> Eqmul(term_of_poly q,ax)) cert_ideal eq
and proofs_cone = map term_of_sos cert_cone
and proof_ne =
if ltp = [] then Rational_lt num_1 else
let p = end_itlist (fun s t -> Product(s,t)) (map snd ltp) in
funpow i (fun q -> Product(p,q)) (Rational_lt num_1) in
let proof = end_itlist (fun s t -> Sum(s,t))
(proof_ne :: proofs_ideal @ proofs_cone) in
print_string("Translating proof certificate to HOL");
print_newline();
translator (eqs,les,lts) proof;;
(* ------------------------------------------------------------------------- *)
(* A wrapper that tries to substitute away variables first. *)
(* ------------------------------------------------------------------------- *)
let REAL_NONLINEAR_SUBST_PROVER =
let zero = `&0:real`
and mul_tm = `( * ):real->real->real`
and shuffle1 =
CONV_RULE(REWR_CONV(REAL_ARITH `a + x = (y:real) <=> x = y - a`))
and shuffle2 =
CONV_RULE(REWR_CONV(REAL_ARITH `x + a = (y:real) <=> x = y - a`)) in
let rec substitutable_monomial fvs tm =
match tm with
Var(_,Tyapp("real",[])) when not (mem tm fvs) -> Int 1,tm
| Comb(Comb(Const("real_mul",_),c),(Var(_,_) as t))
when is_ratconst c && not (mem t fvs)
-> rat_of_term c,t
| Comb(Comb(Const("real_add",_),s),t) ->
(try substitutable_monomial (union (frees t) fvs) s
with Failure _ -> substitutable_monomial (union (frees s) fvs) t)
| _ -> failwith "substitutable_monomial"
and isolate_variable v th =
match lhs(concl th) with
x when x = v -> th
| Comb(Comb(Const("real_add",_),(Var(_,Tyapp("real",[])) as x)),t)
when x = v -> shuffle2 th
| Comb(Comb(Const("real_add",_),s),t) ->
isolate_variable v(shuffle1 th) in
let make_substitution th =
let (c,v) = substitutable_monomial [] (lhs(concl th)) in
let th1 = AP_TERM (mk_comb(mul_tm,term_of_rat(Int 1 // c))) th in
let th2 = CONV_RULE(BINOP_CONV REAL_POLY_MUL_CONV) th1 in
CONV_RULE (RAND_CONV REAL_POLY_CONV) (isolate_variable v th2) in
fun translator ->
let rec substfirst(eqs,les,lts) =
try let eth = tryfind make_substitution eqs in
let modify =
CONV_RULE(LAND_CONV(SUBS_CONV[eth] THENC REAL_POLY_CONV)) in
substfirst(filter (fun t -> lhand(concl t) <> zero) (map modify eqs),
map modify les,map modify lts)
with Failure _ -> REAL_NONLINEAR_PROVER translator (eqs,les,lts) in
substfirst;;
(* ------------------------------------------------------------------------- *)
(* Overall function. *)
(* ------------------------------------------------------------------------- *)
let REAL_SOS =
let init = GEN_REWRITE_CONV ONCE_DEPTH_CONV [DECIMAL]
and pure = GEN_REAL_ARITH REAL_NONLINEAR_SUBST_PROVER in
fun tm -> let th = init tm in EQ_MP (SYM th) (pure(rand(concl th)));;
(* ------------------------------------------------------------------------- *)
(* Add hacks for division. *)
(* ------------------------------------------------------------------------- *)
let REAL_SOSFIELD =
let inv_tm = `inv:real->real` in
let prenex_conv =
TOP_DEPTH_CONV BETA_CONV THENC
PURE_REWRITE_CONV[FORALL_SIMP; EXISTS_SIMP; real_div;
REAL_INV_INV; REAL_INV_MUL; GSYM REAL_POW_INV] THENC
NNFC_CONV THENC DEPTH_BINOP_CONV `(/\)` CONDS_CELIM_CONV THENC
PRENEX_CONV
and setup_conv = NNF_CONV THENC WEAK_CNF_CONV THENC CONJ_CANON_CONV
and core_rule t =
try REAL_ARITH t
with Failure _ -> try REAL_RING t
with Failure _ -> REAL_SOS t
and is_inv =
let is_div = is_binop `(/):real->real->real` in
fun tm -> (is_div tm || (is_comb tm && rator tm = inv_tm)) &
not(is_ratconst(rand tm)) in
let BASIC_REAL_FIELD tm =
let is_freeinv t = is_inv t && free_in t tm in
let itms = setify(map rand (find_terms is_freeinv tm)) in
let hyps = map (fun t -> SPEC t REAL_MUL_RINV) itms in
let tm' = itlist (fun th t -> mk_imp(concl th,t)) hyps tm in
let itms' = map (curry mk_comb inv_tm) itms in
let gvs = map (genvar o type_of) itms' in
let tm'' = subst (zip gvs itms') tm' in
let th1 = setup_conv tm'' in
let cjs = conjuncts(rand(concl th1)) in
let ths = map core_rule cjs in
let th2 = EQ_MP (SYM th1) (end_itlist CONJ ths) in
rev_itlist (C MP) hyps (INST (zip itms' gvs) th2) in
fun tm ->
let th0 = prenex_conv tm in
let tm0 = rand(concl th0) in
let avs,bod = strip_forall tm0 in
let th1 = setup_conv bod in
let ths = map BASIC_REAL_FIELD (conjuncts(rand(concl th1))) in
EQ_MP (SYM th0) (GENL avs (EQ_MP (SYM th1) (end_itlist CONJ ths)));;
(* ------------------------------------------------------------------------- *)
(* Integer version. *)
(* ------------------------------------------------------------------------- *)
let INT_SOS =
let atom_CONV =
let pth = prove
(`(~(x <= y) <=> y + &1 <= x:int) /\
(~(x < y) <=> y <= x) /\
(~(x = y) <=> x + &1 <= y \/ y + &1 <= x) /\
(x < y <=> x + &1 <= y)`,
REWRITE_TAC[INT_NOT_LE; INT_NOT_LT; INT_NOT_EQ; INT_LT_DISCRETE]) in
GEN_REWRITE_CONV I [pth]
and bub_CONV = GEN_REWRITE_CONV TOP_SWEEP_CONV
[int_eq; int_le; int_lt; int_ge; int_gt;
int_of_num_th; int_neg_th; int_add_th; int_mul_th;
int_sub_th; int_pow_th; int_abs_th; int_max_th; int_min_th] in
let base_CONV = TRY_CONV atom_CONV THENC bub_CONV in
let NNF_NORM_CONV = GEN_NNF_CONV false
(base_CONV,fun t -> base_CONV t,base_CONV(mk_neg t)) in
let init_CONV =
GEN_REWRITE_CONV DEPTH_CONV [FORALL_SIMP; EXISTS_SIMP] THENC
GEN_REWRITE_CONV DEPTH_CONV [INT_GT; INT_GE] THENC
CONDS_ELIM_CONV THENC NNF_NORM_CONV in
let p_tm = `p:bool`
and not_tm = `(~)` in
let pth = TAUT(mk_eq(mk_neg(mk_neg p_tm),p_tm)) in
fun tm ->
let th0 = INST [tm,p_tm] pth
and th1 = NNF_NORM_CONV(mk_neg tm) in
let th2 = REAL_SOS(mk_neg(rand(concl th1))) in
EQ_MP th0 (EQ_MP (AP_TERM not_tm (SYM th1)) th2);;
(* ------------------------------------------------------------------------- *)
(* Natural number version. *)
(* ------------------------------------------------------------------------- *)
let SOS_RULE tm =
let avs = frees tm in
let tm' = list_mk_forall(avs,tm) in
let th1 = NUM_TO_INT_CONV tm' in
let th2 = INT_SOS (rand(concl th1)) in
SPECL avs (EQ_MP (SYM th1) th2);;
(* ------------------------------------------------------------------------- *)
(* Now pure SOS stuff. *)
(* ------------------------------------------------------------------------- *)
prioritize_real();;
(* ------------------------------------------------------------------------- *)
(* Some combinatorial helper functions. *)
(* ------------------------------------------------------------------------- *)
let rec allpermutations l =
if l = [] then [[]] else
itlist (fun h acc -> map (fun t -> h::t)
(allpermutations (subtract l [h])) @ acc) l [];;
let allvarorders l =
map (fun vlis x -> index x vlis) (allpermutations l);;
let changevariables_monomial zoln (m:monomial) =
foldl (fun a x k -> (assoc x zoln |-> k) a) monomial_1 m;;
let changevariables zoln pol =
foldl (fun a m c -> (changevariables_monomial zoln m |-> c) a)
poly_0 pol;;
(* ------------------------------------------------------------------------- *)
(* Return to original non-block matrices. *)
(* ------------------------------------------------------------------------- *)
let sdpa_of_vector (v:vector) =
let n = vec_dim v in
let strs = map (decimalize 20 o element v) (1--n) in
end_itlist (fun x y -> x ^ " " ^ y) strs ^ "\n";;
let sdpa_of_blockdiagonal k m =
let pfx = string_of_int k ^" " in
let ents =
foldl (fun a (b,i,j) c -> if i > j then a else ((b,i,j),c)::a) [] m in
let entss = sort (increasing fst) ents in
itlist (fun ((b,i,j),c) a ->
pfx ^ string_of_int b ^ " " ^ string_of_int i ^ " " ^ string_of_int j ^
" " ^ decimalize 20 c ^ "\n" ^ a) entss "";;
let sdpa_of_matrix k (m:matrix) =
let pfx = string_of_int k ^ " 1 " in
let ms = foldr (fun (i,j) c a -> if i > j then a else ((i,j),c)::a)
(snd m) [] in
let mss = sort (increasing fst) ms in
itlist (fun ((i,j),c) a ->
pfx ^ string_of_int i ^ " " ^ string_of_int j ^
" " ^ decimalize 20 c ^ "\n" ^ a) mss "";;
let sdpa_of_problem comment obj mats =
let m = length mats - 1
and n,_ = dimensions (hd mats) in
"\"" ^ comment ^ "\"\n" ^
string_of_int m ^ "\n" ^
"1\n" ^
string_of_int n ^ "\n" ^
sdpa_of_vector obj ^
itlist2 (fun k m a -> sdpa_of_matrix (k - 1) m ^ a)
(1--length mats) mats "";;
let run_sdpa dbg obj mats =
let input_file = Filename.temp_file "sos" ".dat-s" in
let output_file =
String.sub input_file 0 (String.length input_file - 6) ^ ".out"
and params_file = Filename.concat (!temp_path) "param.sdpa" in
file_of_string input_file (sdpa_of_problem "" obj mats);
file_of_string params_file sdpa_params;
Sys.command("cd "^(!temp_path)^"; sdpa "^input_file ^ " " ^ output_file ^
(if dbg then "" else "> /dev/null"));
let op = string_of_file output_file in
if not(sdpa_run_succeeded op) then failwith "sdpa: call failed" else
let res = parse_sdpaoutput op in
((if dbg then ()
else (Sys.remove input_file; Sys.remove output_file));
res);;
let sdpa obj mats = run_sdpa (!debugging) obj mats;;
let run_csdp dbg obj mats =
let input_file = Filename.temp_file "sos" ".dat-s" in
let output_file =
String.sub input_file 0 (String.length input_file - 6) ^ ".out"
and params_file = Filename.concat (!temp_path) "param.csdp" in
file_of_string input_file (sdpa_of_problem "" obj mats);
file_of_string params_file csdp_params;
let rv = Sys.command("cd "^(!temp_path)^"; csdp "^input_file ^
" " ^ output_file ^
(if dbg then "" else "> /dev/null")) in
let op = string_of_file output_file in
let res = parse_csdpoutput op in
((if dbg then ()
else (Sys.remove input_file; Sys.remove output_file));
rv,res);;
let csdp obj mats =
let rv,res = run_csdp (!debugging) obj mats in
(if rv = 1 || rv = 2 then failwith "csdp: Problem is infeasible"
else if rv = 3 then
(Format.print_string "csdp warning: Reduced accuracy";
Format.print_newline())
else if rv <> 0 then failwith("csdp: error "^string_of_int rv)
else ());
res;;
(* ------------------------------------------------------------------------- *)
(* Sum-of-squares function with some lowbrow symmetry reductions. *)
(* ------------------------------------------------------------------------- *)
let sumofsquares_general_symmetry tool pol =
let vars = poly_variables pol
and lpps = newton_polytope pol in
let n = length lpps in
let sym_eqs =
let invariants = filter
(fun vars' ->
is_undefined(poly_sub pol (changevariables (zip vars vars') pol)))
(allpermutations vars) in
let lpps2 = allpairs monomial_mul lpps lpps in
let lpp2_classes =
setify(map (fun m ->
setify(map (fun vars' -> changevariables_monomial (zip vars vars') m)
invariants)) lpps2) in
let lpns = zip lpps (1--length lpps) in
let lppcs =
filter (fun (m,(n1,n2)) -> n1 <= n2)
(allpairs
(fun (m1,n1) (m2,n2) -> (m1,m2),(n1,n2)) lpns lpns) in
let clppcs = end_itlist (@)
(map (fun ((m1,m2),(n1,n2)) ->
map (fun vars' ->
(changevariables_monomial (zip vars vars') m1,
changevariables_monomial (zip vars vars') m2),(n1,n2))
invariants)
lppcs) in
let clppcs_dom = setify(map fst clppcs) in
let clppcs_cls = map (fun d -> filter (fun (e,_) -> e = d) clppcs)
clppcs_dom in
let eqvcls = map (setify o map snd) clppcs_cls in
let mk_eq cls acc =
match cls with
[] -> raise Sanity
| [h] -> acc
| h::t -> map (fun k -> (k |-> Int(-1)) (h |=> Int 1)) t @ acc in
itlist mk_eq eqvcls [] in
let eqs = foldl (fun a x y -> y::a) []
(itern 1 lpps (fun m1 n1 ->
itern 1 lpps (fun m2 n2 f ->
let m = monomial_mul m1 m2 in
if n1 > n2 then f else
let c = if n1 = n2 then Int 1 else Int 2 in
(m |-> ((n1,n2) |-> c) (tryapplyd f m undefined)) f))
(foldl (fun a m c -> (m |-> ((0,0)|=>c)) a)
undefined pol)) @
sym_eqs in
let pvs,assig = eliminate_all_equations (0,0) eqs in
let allassig = itlist (fun v -> (v |-> (v |=> Int 1))) pvs assig in
let qvars = (0,0)::pvs in
let diagents =
end_itlist equation_add (map (fun i -> apply allassig (i,i)) (1--n)) in
let mk_matrix v =
((n,n),
foldl (fun m (i,j) ass -> let c = tryapplyd ass v (Int 0) in
if c =/ Int 0 then m else
((j,i) |-> c) (((i,j) |-> c) m))
undefined allassig :matrix) in
let mats = map mk_matrix qvars
and obj = length pvs,
itern 1 pvs (fun v i -> (i |--> tryapplyd diagents v (Int 0)))
undefined in
let raw_vec = if pvs = [] then vec_0 0 else tool obj mats in
let find_rounding d =
(if !debugging then
(Format.print_string("Trying rounding with limit "^string_of_num d);
Format.print_newline())
else ());
let vec = nice_vector d raw_vec in
let mat = iter (1,vec_dim vec)
(fun i a -> matrix_add (matrix_cmul (element vec i) (el i mats)) a)
(matrix_neg (el 0 mats)) in
deration(diag mat) in
let rat,dia =
if pvs = [] then
let mat = matrix_neg (el 0 mats) in
deration(diag mat)
else
tryfind find_rounding (map Num.num_of_int (1--31) @
map pow2 (5--66)) in
let poly_of_lin(d,v) =
d,foldl(fun a i c -> (el (i - 1) lpps |-> c) a) undefined (snd v) in
let lins = map poly_of_lin dia in
let sqs = map (fun (d,l) -> poly_mul (poly_const d) (poly_pow l 2)) lins in
let sos = poly_cmul rat (end_itlist poly_add sqs) in
if is_undefined(poly_sub sos pol) then rat,lins else raise Sanity;;
let sumofsquares = sumofsquares_general_symmetry csdp;;
(* ------------------------------------------------------------------------- *)
(* Pure HOL SOS conversion. *)
(* ------------------------------------------------------------------------- *)
let SOS_CONV =
let mk_square =
let pow_tm = `(pow)` and two_tm = `2` in
fun tm -> mk_comb(mk_comb(pow_tm,tm),two_tm)
and mk_prod = mk_binop `(*)`
and mk_sum = mk_binop `(+)` in
fun tm ->
let k,sos = sumofsquares(poly_of_term tm) in
let mk_sqtm(c,p) =
mk_prod (term_of_rat(k */ c)) (mk_square(term_of_poly p)) in
let tm' = end_itlist mk_sum (map mk_sqtm sos) in
let th = REAL_POLY_CONV tm and th' = REAL_POLY_CONV tm' in
TRANS th (SYM th');;
(* ------------------------------------------------------------------------- *)
(* Attempt to prove &0 <= x by direct SOS decomposition. *)
(* ------------------------------------------------------------------------- *)
let PURE_SOS_TAC =
let tac =
MATCH_ACCEPT_TAC(REWRITE_RULE[GSYM REAL_POW_2] REAL_LE_SQUARE) ORELSE
MATCH_ACCEPT_TAC REAL_LE_SQUARE ORELSE
(MATCH_MP_TAC REAL_LE_ADD THEN CONJ_TAC) ORELSE
(MATCH_MP_TAC REAL_LE_MUL THEN CONJ_TAC) ORELSE
CONV_TAC(RAND_CONV REAL_RAT_REDUCE_CONV THENC REAL_RAT_LE_CONV) in
REPEAT GEN_TAC THEN REWRITE_TAC[real_ge] THEN
GEN_REWRITE_TAC I [GSYM REAL_SUB_LE] THEN
CONV_TAC(RAND_CONV SOS_CONV) THEN
REPEAT tac THEN NO_TAC;;
let PURE_SOS tm = prove(tm,PURE_SOS_TAC);;
(* ------------------------------------------------------------------------- *)
(* Examples. *)
(* ------------------------------------------------------------------------- *)
(*****
time REAL_SOS
`a1 >= &0 /\ a2 >= &0 /\
(a1 * a1 + a2 * a2 = b1 * b1 + b2 * b2 + &2) /\
(a1 * b1 + a2 * b2 = &0)
==> a1 * a2 - b1 * b2 >= &0`;;
time REAL_SOS `&3 * x + &7 * a < &4 /\ &3 < &2 * x ==> a < &0`;;
time REAL_SOS
`b pow 2 < &4 * a * c ==> ~(a * x pow 2 + b * x + c = &0)`;;
time REAL_SOS
`(a * x pow 2 + b * x + c = &0) ==> b pow 2 >= &4 * a * c`;;
time REAL_SOS
`&0 <= x /\ x <= &1 /\ &0 <= y /\ y <= &1
==> x pow 2 + y pow 2 < &1 \/
(x - &1) pow 2 + y pow 2 < &1 \/
x pow 2 + (y - &1) pow 2 < &1 \/
(x - &1) pow 2 + (y - &1) pow 2 < &1`;;
time REAL_SOS
`&0 <= b /\ &0 <= c /\ &0 <= x /\ &0 <= y /\
(x pow 2 = c) /\ (y pow 2 = a pow 2 * c + b)
==> a * c <= y * x`;;
time REAL_SOS
`&0 <= x /\ &0 <= y /\ &0 <= z /\ x + y + z <= &3
==> x * y + x * z + y * z >= &3 * x * y * z`;;
time REAL_SOS
`(x pow 2 + y pow 2 + z pow 2 = &1) ==> (x + y + z) pow 2 <= &3`;;
time REAL_SOS
`(w pow 2 + x pow 2 + y pow 2 + z pow 2 = &1)
==> (w + x + y + z) pow 2 <= &4`;;
time REAL_SOS
`x >= &1 /\ y >= &1 ==> x * y >= x + y - &1`;;
time REAL_SOS
`x > &1 /\ y > &1 ==> x * y > x + y - &1`;;
time REAL_SOS
`abs(x) <= &1
==> abs(&64 * x pow 7 - &112 * x pow 5 + &56 * x pow 3 - &7 * x) <= &1`;;
time REAL_SOS
`abs(x - z) <= e /\ abs(y - z) <= e /\ &0 <= u /\ &0 <= v /\ (u + v = &1)
==> abs((u * x + v * y) - z) <= e`;;
(* ------------------------------------------------------------------------- *)
(* One component of denominator in dodecahedral example. *)
(* ------------------------------------------------------------------------- *)
time REAL_SOS
`&2 <= x /\ x <= &125841 / &50000 /\
&2 <= y /\ y <= &125841 / &50000 /\
&2 <= z /\ z <= &125841 / &50000
==> &2 * (x * z + x * y + y * z) - (x * x + y * y + z * z) >= &0`;;
(* ------------------------------------------------------------------------- *)
(* Over a larger but simpler interval. *)
(* ------------------------------------------------------------------------- *)
time REAL_SOS
`&2 <= x /\ x <= &4 /\ &2 <= y /\ y <= &4 /\ &2 <= z /\ z <= &4
==> &0 <= &2 * (x * z + x * y + y * z) - (x * x + y * y + z * z)`;;
(* ------------------------------------------------------------------------- *)
(* We can do 12. I think 12 is a sharp bound; see PP's certificate. *)
(* ------------------------------------------------------------------------- *)
time REAL_SOS
`&2 <= x /\ x <= &4 /\ &2 <= y /\ y <= &4 /\ &2 <= z /\ z <= &4
==> &12 <= &2 * (x * z + x * y + y * z) - (x * x + y * y + z * z)`;;
(* ------------------------------------------------------------------------- *)
(* Gloptipoly example. *)
(* ------------------------------------------------------------------------- *)
(*** This works but normalization takes minutes
time REAL_SOS
`(x - y - &2 * x pow 4 = &0) /\ &0 <= x /\ x <= &2 /\ &0 <= y /\ y <= &3
==> y pow 2 - &7 * y - &12 * x + &17 >= &0`;;
***)
(* ------------------------------------------------------------------------- *)
(* Inequality from sci.math (see "Leon-Sotelo, por favor"). *)
(* ------------------------------------------------------------------------- *)
time REAL_SOS
`&0 <= x /\ &0 <= y /\ (x * y = &1)
==> x + y <= x pow 2 + y pow 2`;;
time REAL_SOS
`&0 <= x /\ &0 <= y /\ (x * y = &1)
==> x * y * (x + y) <= x pow 2 + y pow 2`;;
time REAL_SOS
`&0 <= x /\ &0 <= y ==> x * y * (x + y) pow 2 <= (x pow 2 + y pow 2) pow 2`;;
(* ------------------------------------------------------------------------- *)
(* Some examples over integers and natural numbers. *)
(* ------------------------------------------------------------------------- *)
time SOS_RULE `!m n. 2 * m + n = (n + m) + m`;;
time SOS_RULE `!n. ~(n = 0) ==> (0 MOD n = 0)`;;
time SOS_RULE `!m n. m < n ==> (m DIV n = 0)`;;
time SOS_RULE `!n:num. n <= n * n`;;
time SOS_RULE `!m n. n * (m DIV n) <= m`;;
time SOS_RULE `!n. ~(n = 0) ==> (0 DIV n = 0)`;;
time SOS_RULE `!m n p. ~(p = 0) /\ m <= n ==> m DIV p <= n DIV p`;;
time SOS_RULE `!a b n. ~(a = 0) ==> (n <= b DIV a <=> a * n <= b)`;;
(* ------------------------------------------------------------------------- *)
(* This is particularly gratifying --- cf hideous manual proof in arith.ml *)
(* ------------------------------------------------------------------------- *)
(*** This doesn't now seem to work as well as it did; what changed?
time SOS_RULE
`!a b c d. ~(b = 0) /\ b * c < (a + 1) * d ==> c DIV d <= a DIV b`;;
***)
(* ------------------------------------------------------------------------- *)
(* Key lemma for injectivity of Cantor-type pairing functions. *)
(* ------------------------------------------------------------------------- *)
time SOS_RULE
`!x1 y1 x2 y2. ((x1 + y1) EXP 2 + x1 + 1 = (x2 + y2) EXP 2 + x2 + 1)
==> (x1 + y1 = x2 + y2)`;;
time SOS_RULE
`!x1 y1 x2 y2. ((x1 + y1) EXP 2 + x1 + 1 = (x2 + y2) EXP 2 + x2 + 1) /\
(x1 + y1 = x2 + y2)
==> (x1 = x2) /\ (y1 = y2)`;;
time SOS_RULE
`!x1 y1 x2 y2.
(((x1 + y1) EXP 2 + 3 * x1 + y1) DIV 2 =
((x2 + y2) EXP 2 + 3 * x2 + y2) DIV 2)
==> (x1 + y1 = x2 + y2)`;;
time SOS_RULE
`!x1 y1 x2 y2.
(((x1 + y1) EXP 2 + 3 * x1 + y1) DIV 2 =
((x2 + y2) EXP 2 + 3 * x2 + y2) DIV 2) /\
(x1 + y1 = x2 + y2)
==> (x1 = x2) /\ (y1 = y2)`;;
(* ------------------------------------------------------------------------- *)
(* Reciprocal multiplication (actually just ARITH_RULE does these). *)
(* ------------------------------------------------------------------------- *)
time SOS_RULE `x <= 127 ==> ((86 * x) DIV 256 = x DIV 3)`;;
time SOS_RULE `x < 2 EXP 16 ==> ((104858 * x) DIV (2 EXP 20) = x DIV 10)`;;
(* ------------------------------------------------------------------------- *)
(* This is more impressive since it's really nonlinear. See REMAINDER_DECODE *)
(* ------------------------------------------------------------------------- *)
time SOS_RULE `0 < m /\ m < n ==> ((m * ((n * x) DIV m + 1)) DIV n = x)`;;
(* ------------------------------------------------------------------------- *)
(* Some conversion examples. *)
(* ------------------------------------------------------------------------- *)
time SOS_CONV
`&2 * x pow 4 + &2 * x pow 3 * y - x pow 2 * y pow 2 + &5 * y pow 4`;;
time SOS_CONV
`x pow 4 - (&2 * y * z + &1) * x pow 2 +
(y pow 2 * z pow 2 + &2 * y * z + &2)`;;
time SOS_CONV `&4 * x pow 4 +
&4 * x pow 3 * y - &7 * x pow 2 * y pow 2 - &2 * x * y pow 3 +
&10 * y pow 4`;;
time SOS_CONV `&4 * x pow 4 * y pow 6 + x pow 2 - x * y pow 2 + y pow 2`;;
time SOS_CONV
`&4096 * (x pow 4 + x pow 2 + z pow 6 - &3 * x pow 2 * z pow 2) + &729`;;
time SOS_CONV
`&120 * x pow 2 - &63 * x pow 4 + &10 * x pow 6 +
&30 * x * y - &120 * y pow 2 + &120 * y pow 4 + &31`;;
time SOS_CONV
`&9 * x pow 2 * y pow 4 + &9 * x pow 2 * z pow 4 + &36 * x pow 2 * y pow 3 +
&36 * x pow 2 * y pow 2 - &48 * x * y * z pow 2 + &4 * y pow 4 +
&4 * z pow 4 - &16 * y pow 3 + &16 * y pow 2`;;
time SOS_CONV
`(x pow 2 + y pow 2 + z pow 2) *
(x pow 4 * y pow 2 + x pow 2 * y pow 4 +
z pow 6 - &3 * x pow 2 * y pow 2 * z pow 2)`;;
time SOS_CONV
`x pow 4 + y pow 4 + z pow 4 - &4 * x * y * z + x + y + z + &3`;;
(*** I think this will work, but normalization is slow
time SOS_CONV
`&100 * (x pow 4 + y pow 4 + z pow 4 - &4 * x * y * z + x + y + z) + &212`;;
***)
time SOS_CONV
`&100 * ((&2 * x - &2) pow 2 + (x pow 3 - &8 * x - &2) pow 2) - &588`;;
time SOS_CONV
`x pow 2 * (&120 - &63 * x pow 2 + &10 * x pow 4) + &30 * x * y +
&30 * y pow 2 * (&4 * y pow 2 - &4) + &31`;;
(* ------------------------------------------------------------------------- *)
(* Example of basic rule. *)
(* ------------------------------------------------------------------------- *)
time PURE_SOS
`!x. x pow 4 + y pow 4 + z pow 4 - &4 * x * y * z + x + y + z + &3
>= &1 / &7`;;
time PURE_SOS
`&0 <= &98 * x pow 12 +
-- &980 * x pow 10 +
&3038 * x pow 8 +
-- &2968 * x pow 6 +
&1022 * x pow 4 +
-- &84 * x pow 2 +
&2`;;
time PURE_SOS
`!x. &0 <= &2 * x pow 14 +
-- &84 * x pow 12 +
&1022 * x pow 10 +
-- &2968 * x pow 8 +
&3038 * x pow 6 +
-- &980 * x pow 4 +
&98 * x pow 2`;;
(* ------------------------------------------------------------------------- *)
(* From Zeng et al, JSC vol 37 (2004), p83-99. *)
(* All of them work nicely with pure SOS_CONV, except (maybe) the one noted. *)
(* ------------------------------------------------------------------------- *)
PURE_SOS
`x pow 6 + y pow 6 + z pow 6 - &3 * x pow 2 * y pow 2 * z pow 2 >= &0`;;
PURE_SOS `x pow 4 + y pow 4 + z pow 4 + &1 - &4*x*y*z >= &0`;;
PURE_SOS `x pow 4 + &2*x pow 2*z + x pow 2 - &2*x*y*z + &2*y pow 2*z pow 2 +
&2*y*z pow 2 + &2*z pow 2 - &2*x + &2* y*z + &1 >= &0`;;
(**** This is harder. Interestingly, this fails the pure SOS test, it seems.
Yet only on rounding(!?) Poor Newton polytope optimization or something?
But REAL_SOS does finally converge on the second run at level 12!
REAL_SOS
`x pow 4*y pow 4 - &2*x pow 5*y pow 3*z pow 2 + x pow 6*y pow 2*z pow 4 + &2*x
pow 2*y pow 3*z - &4* x pow 3*y pow 2*z pow 3 + &2*x pow 4*y*z pow 5 + z pow
2*y pow 2 - &2*z pow 4*y*x + z pow 6*x pow 2 >= &0`;;
****)
PURE_SOS
`x pow 4 + &4*x pow 2*y pow 2 + &2*x*y*z pow 2 + &2*x*y*w pow 2 + y pow 4 + z
pow 4 + w pow 4 + &2*z pow 2*w pow 2 + &2*x pow 2*w + &2*y pow 2*w + &2*x*y +
&3*w pow 2 + &2*z pow 2 + &1 >= &0`;;
PURE_SOS
`w pow 6 + &2*z pow 2*w pow 3 + x pow 4 + y pow 4 + z pow 4 + &2*x pow 2*w +
&2*x pow 2*z + &3*x pow 2 + w pow 2 + &2*z*w + z pow 2 + &2*z + &2*w + &1 >=
&0`;;
*****)
|