File: ALPHA_UPPERCASE.doc

package info (click to toggle)
hol-light 20170109-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 36,568 kB
  • ctags: 8,549
  • sloc: ml: 540,018; cpp: 439; lisp: 286; java: 279; makefile: 262; sh: 229; yacc: 108; perl: 78; ansic: 57; sed: 39
file content (34 lines) | stat: -rw-r--r-- 621 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
\DOC ALPHA

\TYPE {ALPHA : term -> term -> thm}

\SYNOPSIS
Proves equality of alpha-equivalent terms.

\KEYWORDS
rule, alpha.

\DESCRIBE
When applied to a pair of terms {t1} and {t1'} which are
alpha-equivalent, {ALPHA} returns the theorem {|- t1 = t1'}.
{

   -------------  ALPHA `t1` `t1'`
    |- t1 = t1'
}
\FAILURE
Fails unless the terms provided are alpha-equivalent.

\EXAMPLE
{
  # ALPHA `!x:num. x = x` `!y:num. y = y`;;
  val it : thm = |- (!x. x = x) <=> (!y. y = y)

  # ALPHA `\w. w + z` `\z'. z' + z`;;
  val it : thm = |- (\w. w + z) = (\z'. z' + z)
}

\SEEALSO
aconv, ALPHA_CONV, GEN_ALPHA_CONV.

\ENDDOC