1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
|
\DOC ARITH_TAC
\TYPE {ARITH_TAC : tactic}
\SYNOPSIS
Tactic for proving arithmetic goals needing basic rearrangement and linear
inequality reasoning only.
\DESCRIBE
{ARITH_TAC} will automatically prove goals that require basic algebraic
normalization and inequality reasoning over the natural numbers. For nonlinear
equational reasoning use {NUM_RING} and derivatives.
\FAILURE
Fails if the automated methods do not suffice.
\EXAMPLE
{
# g `1 <= x /\ x <= 3 ==> x = 1 \/ x = 2 \/ x = 3`;;
Warning: Free variables in goal: x
val it : goalstack = 1 subgoal (1 total)
`1 <= x /\ x <= 3 ==> x = 1 \/ x = 2 \/ x = 3`
# e ARITH_TAC;;
val it : goalstack = No subgoals
}
\USES
Solving basic arithmetic goals.
\SEEALSO
ARITH_RULE, ASM_ARITH_TAC, INT_ARITH_TAC, NUM_RING, REAL_ARITH_TAC.
\ENDDOC
|