1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
|
\DOC EXISTENCE
\TYPE {EXISTENCE : thm -> thm}
\SYNOPSIS
Deduces existence from unique existence.
\KEYWORDS
rule, unique, existential.
\DESCRIBE
When applied to a theorem with a unique-existentially quantified
conclusion, {EXISTENCE} returns the same theorem with normal existential
quantification over the same variable.
{
A |- ?!x. p
------------- EXISTENCE
A |- ?x. p
}
\FAILURE
Fails unless the conclusion of the theorem is unique-existentially quantified.
\EXAMPLE
{
# let th = MESON[] `?!n. n = m`;;
...
val th : thm = |- ?!n. n = m
# EXISTENCE th;;
val it : thm = |- ?n. n = m
}
\SEEALSO
EXISTS, SIMPLE_EXISTS.
\ENDDOC
|