1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
  
     | 
    
      \DOC FORALL_UNWIND_CONV
\TYPE {FORALL_UNWIND_CONV : term -> thm}
\SYNOPSIS
Eliminates universally quantified variables that are equated to something.
\KEYWORDS
conversion.
\DESCRIBE
The conversion {FORALL_UNWIND_CONV}, applied to a formula with one or more 
universal quantifiers around an implication, eliminates any quantifiers where 
the antecedent of the implication contains a conjunct equating its variable to
some other term (with that variable not free in it).
\FAILURE
{FORALL_UNWIND_CONV tm} fails if {tm} is not reducible according to that
description.
\EXAMPLE
{
  # FORALL_UNWIND_CONV
     `!a b c d. a + 1 = b /\ b + 1 = c + 1 /\ d = e ==> a + b + c + d + e = 2`;;
  val it : thm =
    |- (!a b c d.
            a + 1 = b /\ b + 1 = c + 1 /\ d = e ==> a + b + c + d + e = 2) <=>
       (!a c. (a + 1) + 1 = c + 1 ==> a + (a + 1) + c + e + e = 2)
  # FORALL_UNWIND_CONV `!a b c. a = b /\ b = c ==> a + b = b + c`;;
  val it : thm =
    |- (!a b c. a = b /\ b = c ==> a + b = b + c) <=> (!c. c + c = c + c)
}
\SEEALSO
UNWIND_CONV.
\ENDDOC
 
     |