1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
|
\DOC HAS_SIZE_CONV
\TYPE {HAS_SIZE_CONV : term -> thm}
\SYNOPSIS
Converts statement about set's size into existential enumeration.
\DESCRIBE
Given a term of the form {`s HAS_SIZE n`} for a numeral {n}, the conversion
{HAS_SIZE_CONV} returns an equivalent form postulating the existence of {n}
pairwise distinct elements that make up the set.
\FAILURE
Fails if applied to a term of the wrong form.
\EXAMPLE
{
# HAS_SIZE_CONV `s HAS_SIZE 1`;;
...
val it : thm = |- s HAS_SIZE 1 <=> (?a. s = {{a}})
# HAS_SIZE_CONV `t HAS_SIZE 3`;;
...
val it : thm =
|- t HAS_SIZE 3 <=>
(?a a' a''. ~(a' = a'') /\ ~(a = a') /\ ~(a = a'') /\ t = {{a, a', a''}})
}
\ENDDOC
|