File: INT_ARITH.doc

package info (click to toggle)
hol-light 20170109-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 36,568 kB
  • ctags: 8,549
  • sloc: ml: 540,018; cpp: 439; lisp: 286; java: 279; makefile: 262; sh: 229; yacc: 108; perl: 78; ansic: 57; sed: 39
file content (32 lines) | stat: -rw-r--r-- 853 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
\DOC INT_ARITH

\TYPE {INT_ARITH : term -> thm}

\SYNOPSIS
Proves integer theorems needing basic rearrangement and linear inequality
reasoning only.

\DESCRIBE
{INT_ARITH} is a rule for automatically proving natural number theorems using
basic algebraic normalization and inequality reasoning.

\FAILURE
Fails if the term is not boolean or if it cannot be proved using the basic
methods employed, e.g. requiring nonlinear inequality reasoning.

\EXAMPLE
{
  # INT_ARITH `!x y:int. x <= y + &1 ==> x + &2 < y + &4`;;
  val it : thm = |- !x y. x <= y + &1 ==> x + &2 < y + &4

  # INT_ARITH `(x + y:int) pow 2 = x pow 2 + &2 * x * y + y pow 2`;;
  val it : thm = |- (x + y) pow 2 = x pow 2 + &2 * x * y + y pow 2
}

\USES
Disposing of elementary arithmetic goals.

\SEEALSO
ARITH_RULE, INT_ARITH_TAC, NUM_RING, REAL_ARITH, REAL_FIELD, REAL_RING.

\ENDDOC