1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
|
\DOC INT_GE_CONV
\TYPE {INT_GE_CONV : conv}
\SYNOPSIS
Conversion to prove whether one integer literal of type {:int} is {>=}
another.
\DESCRIBE
The call {INT_GE_CONV `c1 >= c2`} where {c1} and {c2} are integer
literals of type {:int}, returns whichever of {|- c1 >= c2 <=> T} or
{|- c1 >= c2 <=> F} is true. By an integer literal we mean either {&n} or
{-- &n} where {n} is a numeral.
\FAILURE
Fails if applied to a term that is not the appropriate inequality comparison on
two permitted integer literals of type {:int}.
\EXAMPLE
{
# INT_GE_CONV `&7 >= &6`;;
val it : thm = |- &7 >= &6 <=> T
}
\SEEALSO
INT_REDUCE_CONV, REAL_RAT_GE_CONV.
\ENDDOC
|