1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
|
\DOC INT_LE_CONV
\TYPE {INT_LE_CONV : conv}
\SYNOPSIS
Conversion to prove whether one integer literal of type {:int} is {<=}
another.
\DESCRIBE
The call {INT_LE_CONV `c1 <= c2`} where {c1} and {c2} are integer
literals of type {:int}, returns whichever of {|- c1 <= c2 <=> T} or
{|- c1 <= c2 <=> F} is true. By an integer literal we mean either {&n} or
{-- &n} where {n} is a numeral.
\FAILURE
Fails if applied to a term that is not the appropriate inequality comparison on
two permitted integer literals of type {:int}.
\EXAMPLE
{
# INT_LE_CONV `&11 <= &77`;;
val it : thm = |- &11 <= &77 <=> T
}
\SEEALSO
INT_REDUCE_CONV, REAL_RAT_LE_CONV.
\ENDDOC
|