File: MK_FORALL_UPPERCASE.doc

package info (click to toggle)
hol-light 20170109-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 36,568 kB
  • ctags: 8,549
  • sloc: ml: 540,018; cpp: 439; lisp: 286; java: 279; makefile: 262; sh: 229; yacc: 108; perl: 78; ansic: 57; sed: 39
file content (34 lines) | stat: -rw-r--r-- 919 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
\DOC MK_FORALL

\TYPE {MK_FORALL : term -> thm -> thm}

\SYNOPSIS
Universally quantifies both sides of equational theorem.

\DESCRIBE
Given a theorem {th} whose conclusion is a Boolean equation (iff), the rule 
{MK_FORALL `v` th} universally quantifies both sides of {th} over the variable 
{v}, provided it is not free in the hypotheses
{
             A |- p <=> q
      ---------------------------- MK_FORALL `v` [where v not free in A]
        A |- (!v. p) <=> (!v. q)
}

\FAILURE
Fails if the term is not a variable or is free in the hypotheses of the 
theorem, or if the theorem does not have a Boolean equation for its conclusion.

\EXAMPLE
{
  # let th = ARITH_RULE `f(x:A) >= 1 <=> ~(f(x) = 0)`;;
  val th : thm = |- f x >= 1 <=> ~(f x = 0)
  
  # MK_FORALL `x:A` th;;
  val it : thm = |- (!x. f x >= 1) <=> (!x. ~(f x = 0))
}

\SEEALSO
AP_TERM, AP_THM, MK_BINOP, MK_COMB, MK_CONJ, MK_DISJ, MK_EXISTS.

\ENDDOC