File: NUM_EXP_CONV.doc

package info (click to toggle)
hol-light 20170109-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 36,568 kB
  • ctags: 8,549
  • sloc: ml: 540,018; cpp: 439; lisp: 286; java: 279; makefile: 262; sh: 229; yacc: 108; perl: 78; ansic: 57; sed: 39
file content (45 lines) | stat: -rw-r--r-- 1,144 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
\DOC NUM_EXP_CONV

\TYPE {NUM_EXP_CONV : term -> thm}

\SYNOPSIS
Proves what the exponential of two natural number numerals is.

\KEYWORDS
conversion, number, arithmetic.

\DESCRIBE
If {n} and {m} are numerals (e.g. {0}, {1}, {2}, {3},...), then
{NUM_EXP_CONV `n EXP m`} returns the theorem:
{
   |- n EXP m = s
}
\noindent where {s} is the numeral that denotes the natural number denoted by 
{n} raised to the power of the one denoted by {m}.

\FAILURE
{NUM_EXP_CONV tm} fails if {tm} is not of the form  {`n EXP m`}, where {n} and
{m} are numerals.

\EXAMPLE
{
  # NUM_EXP_CONV `2 EXP 64`;;
  val it : thm = |- 2 EXP 64 = 18446744073709551616

  # NUM_EXP_CONV `1 EXP 99`;;
  val it : thm = |- 1 EXP 99 = 1

  # NUM_EXP_CONV `0 EXP 0`;;
  val it : thm = |- 0 EXP 0 = 1

  # NUM_EXP_CONV `0 EXP 10000`;;
  val it : thm = |- 0 EXP 10000 = 0
}

\SEEALSO
NUM_ADD_CONV, NUM_DIV_CONV, NUM_EQ_CONV, NUM_EVEN_CONV, NUM_FACT_CONV,
NUM_GE_CONV, NUM_GT_CONV, NUM_LE_CONV, NUM_LT_CONV, NUM_MAX_CONV, NUM_MIN_CONV, 
NUM_MOD_CONV, NUM_MULT_CONV, NUM_ODD_CONV, NUM_PRE_CONV, NUM_REDUCE_CONV,
NUM_RED_CONV, NUM_REL_CONV, NUM_SUB_CONV, NUM_SUC_CONV.

\ENDDOC