1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
|
\DOC NUM_MULT_CONV
\TYPE {NUM_MULT_CONV : term -> thm}
\SYNOPSIS
Proves what the product of two natural number numerals is.
\KEYWORDS
conversion, number, arithmetic.
\DESCRIBE
If {n} and {m} are numerals (e.g. {0}, {1}, {2}, {3},...), then
{NUM_MULT_CONV `n * m`} returns the theorem:
{
|- n * m = s
}
\noindent where {s} is the numeral that denotes the product of the natural
numbers denoted by {n} and {m}.
\FAILURE
{NUM_MULT_CONV tm} fails if {tm} is not of the form {`n * m`}, where {n} and
{m} are numerals.
\EXAMPLE
{
# NUM_MULT_CONV `12345 * 12345`;;
val it : thm = |- 12345 * 12345 = 152399025
}
\SEEALSO
NUM_ADD_CONV, NUM_DIV_CONV, NUM_EQ_CONV, NUM_EVEN_CONV,
NUM_EXP_CONV,NUM_FACT_CONV, NUM_GE_CONV, NUM_GT_CONV, NUM_LE_CONV, NUM_LT_CONV,
NUM_MAX_CONV, NUM_MIN_CONV, NUM_MOD_CONV, NUM_ODD_CONV, NUM_PRE_CONV,
NUM_REDUCE_CONV, NUM_RED_CONV, NUM_REL_CONV, NUM_SUB_CONV, NUM_SUC_CONV.
\ENDDOC
|