1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
|
\DOC NUM_REL_CONV
\TYPE {NUM_REL_CONV : term -> thm}
\SYNOPSIS
Performs relational operation on natural number numerals by proof.
\KEYWORDS
conversion, number, arithmetic.
\DESCRIBE
When applied to a term that is a relational operator
application {`m < n`}, {`m <= n`}, {`m > n`}, {`m >= n`} or {`m = n`} applied
to numerals {m} and {n}, the conversion {NUM_REL_CONV} will `reduce' it and
return a theorem asserting its equality to {`T`} or {`F`} as appropriate.
\FAILURE
{NUM_REL_CONV tm} fails if {tm} is not of one of the forms specified.
\EXAMPLE
{
# NUM_REL_CONV `1089 < 2231`;;
val it : thm = |- 1089 < 2231 <=> T
# NUM_REL_CONV `1089 >= 2231`;;
val it : thm = |- 1089 >= 2231 <=> F
}
Note that the immediate operands must be numerals. For deeper reduction of
combinations of numerals, use {NUM_REDUCE_CONV}.
{
# NUM_REL_CONV `2 + 2 = 4`;;
Exception: Failure "REWRITES_CONV".
# NUM_REDUCE_CONV `2 + 2 = 4`;;
val it : thm = |- 2 + 2 = 4 <=> T
}
\SEEALSO
NUM_ADD_CONV, NUM_DIV_CONV, NUM_EQ_CONV, NUM_EVEN_CONV, NUM_EXP_CONV,
NUM_FACT_CONV, NUM_GE_CONV, NUM_GT_CONV, NUM_LE_CONV, NUM_LT_CONV,
NUM_MAX_CONV, NUM_MIN_CONV, NUM_MOD_CONV, NUM_MULT_CONV, NUM_ODD_CONV,
NUM_PRE_CONV, NUM_REDUCE_CONV, NUM_RED_CONV, NUM_SUB_CONV, NUM_SUC_CONV,
REAL_RAT_RED_CONV.
\ENDDOC
|