File: REAL_INT_GE_CONV.doc

package info (click to toggle)
hol-light 20170109-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 36,568 kB
  • ctags: 8,549
  • sloc: ml: 540,018; cpp: 439; lisp: 286; java: 279; makefile: 262; sh: 229; yacc: 108; perl: 78; ansic: 57; sed: 39
file content (33 lines) | stat: -rw-r--r-- 934 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
\DOC REAL_INT_GE_CONV

\TYPE {REAL_INT_GE_CONV : conv}

\SYNOPSIS
Conversion to prove whether one integer literal of type {:real} is {>=}
another.

\DESCRIBE
The call {REAL_INT_GE_CONV `c1 >= c2`} where {c1} and {c2} are integer
literals of type {:real}, returns whichever of {|- c1 >= c2 <=> T} or
{|- c1 >= c2 <=> F} is true. By an integer literal we mean either {&n} or
{-- &n} where {n} is a numeral.

\FAILURE
Fails if applied to a term that is not the appropriate inequality comparison on
two permitted integer literals of type {:real}.

\EXAMPLE
{
  # REAL_INT_GE_CONV `&7 >= &6`;;
  val it : thm = |- &7 >= &6 <=> T
}

\COMMENTS
The related function {REAL_RAT_GE_CONV} subsumes this functionality, also
applying to rational literals. Unless the restriction to integers is desired or
a tiny efficiency difference matters, it should be used in preference.

\SEEALSO
INT_GE_CONV, REAL_RAT_GE_CONV, REAL_RAT_REDUCE_CONV.

\ENDDOC