1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
|
\DOC REAL_RAT_MIN_CONV
\TYPE {REAL_RAT_MIN_CONV : conv}
\SYNOPSIS
Conversion to perform addition on two rational literals of type {:real}.
\DESCRIBE
The call {REAL_RAT_MIN_CONV `min c1 c2`} where {c1} and {c2} are rational
literals of type {:real}, returns {|- min c1 c2 = d} where {d} is the canonical
rational literal that is equal to {min c1 c2}. The literals {c1} and {c2} may
be integer literals ({&n} or {-- &n}), ratios ({&p / &q} or {-- &p / &q}), or
decimals ({#DDD.DDDD} or {#DDD.DDDDeNN}). The result {d} is always put in the
form {&p / &q} or {-- &p / &q} with {q > 1} and {p} and {q} sharing no common
factor, or simply {&p} or {-- &p} when that is impossible.
\FAILURE
Fails if applied to a term that is not the minimum operator applied to two
permitted rational literals of type {:real}.
\EXAMPLE
{
# REAL_RAT_MIN_CONV `min (-- &9) (&22 / &7)`;;
val it : thm = |- min (-- &9) (&22 / &7) = -- &9
}
\SEEALSO
REAL_RAT_ABS_CONV, REAL_RAT_DIV_CONV, REAL_RAT_EQ_CONV, REAL_RAT_GE_CONV,
REAL_RAT_GT_CONV, REAL_RAT_INV_CONV, REAL_RAT_LE_CONV, REAL_RAT_LT_CONV,
REAL_RAT_MAX_CONV, REAL_RAT_MUL_CONV, REAL_RAT_NEG_CONV, REAL_RAT_POW_CONV,
REAL_RAT_REDUCE_CONV, REAL_RAT_RED_CONV, REAL_RAT_SUB_CONV.
\ENDDOC
|