File: SPEC_VAR.doc

package info (click to toggle)
hol-light 20170109-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 36,568 kB
  • ctags: 8,549
  • sloc: ml: 540,018; cpp: 439; lisp: 286; java: 279; makefile: 262; sh: 229; yacc: 108; perl: 78; ansic: 57; sed: 39
file content (36 lines) | stat: -rw-r--r-- 844 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
\DOC SPEC_VAR

\TYPE {SPEC_VAR : thm -> term * thm}

\SYNOPSIS
Specializes the conclusion of a theorem, returning the chosen variant.

\KEYWORDS
rule.

\DESCRIBE
When applied to a theorem {A |- !x. t}, the inference rule {SPEC_VAR} returns
the term {x'} and the theorem {A |- t[x'/x]}, where {x'} is a variant
of {x} chosen to avoid clashing with free variables in assumptions.
{
     A |- !x. t
   --------------  SPEC_VAR
    A |- t[x'/x]
}
\FAILURE
Fails unless the theorem's conclusion is universally quantified.

\EXAMPLE
Note how the variable is renamed to avoid the free {m} in the assumptions:
{
  # let th = ADD_ASSUM `m = 1` ADD_SYM;;
  val th : thm = m = 1 |- !m n. m + n = n + m

  # SPEC_VAR th;;
  val it : term * thm = (`m'`, m = 1 |- !n. m' + n = n + m')
}

\SEEALSO
GEN, GENL, GEN_ALL, GEN_TAC, SPEC, SPECL, SPEC_ALL.

\ENDDOC