File: primitive.ml

package info (click to toggle)
hol-light 20170109-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 36,568 kB
  • ctags: 8,549
  • sloc: ml: 540,018; cpp: 439; lisp: 286; java: 279; makefile: 262; sh: 229; yacc: 108; perl: 78; ansic: 57; sed: 39
file content (765 lines) | stat: -rw-r--r-- 39,079 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
(* ========================================================================= *)
(* Existence of primitive roots modulo certain numbers.                      *)
(* ========================================================================= *)

needs "Library/integer.ml";;
needs "Library/isum.ml";;
needs "Library/binomial.ml";;
needs "Library/pocklington.ml";;
needs "Library/multiplicative.ml";;

(* ------------------------------------------------------------------------- *)
(* Some lemmas connecting concepts in the various background theories.       *)
(* ------------------------------------------------------------------------- *)

let DIVIDES_BINOM_PRIME = prove
 (`!n p. prime p /\ 0 < n /\ n < p ==> p divides binom(p,n)`,
  REPEAT STRIP_TAC THEN
  MP_TAC(AP_TERM `(divides) p` (SPECL [`p - n:num`; `n:num`] BINOM_FACT)) THEN
  ASM_SIMP_TAC[DIVIDES_FACT_PRIME; PRIME_DIVPROD_EQ; SUB_ADD; LT_IMP_LE] THEN
  ASM_REWRITE_TAC[GSYM NOT_LT; LT_REFL] THEN
  ASM_SIMP_TAC[ARITH_RULE `0 < n /\ n < p ==> p - n < p`]);;

let INT_PRIME = prove
 (`!p. int_prime(&p) <=> prime p`,
  GEN_TAC THEN REWRITE_TAC[prime; int_prime] THEN
  ONCE_REWRITE_TAC[GSYM INT_DIVIDES_LABS] THEN
  REWRITE_TAC[GSYM INT_FORALL_ABS; GSYM num_divides; INT_ABS_NUM] THEN
  REWRITE_TAC[INT_OF_NUM_GT; INT_OF_NUM_EQ] THEN ASM_CASES_TAC `p = 0` THENL
   [ASM_REWRITE_TAC[ARITH; DIVIDES_0] THEN DISCH_THEN(MP_TAC o SPEC `2`);
    AP_THM_TAC THEN AP_TERM_TAC] THEN
  ASM_ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Explicit formula for difference of real/integer polynomials.              *)
(* ------------------------------------------------------------------------- *)

let REAL_POLY_DIFF_EXPLICIT = prove
 (`!n a x y.
        sum(0..n) (\i. a(i) * x pow i) - sum(0..n) (\i. a(i) * y pow i) =
        (x - y) *
        sum(0..n-1) (\i. sum(i+1..n) (\j. a j * y pow (j - 1 - i)) * x pow i)`,
  REPEAT GEN_TAC THEN
  REWRITE_TAC[GSYM SUM_SUB_NUMSEG; GSYM REAL_SUB_LDISTRIB] THEN
  MP_TAC(ISPEC `n:num` LE_0) THEN SIMP_TAC[SUM_CLAUSES_LEFT; ADD_CLAUSES] THEN
  DISCH_THEN(K ALL_TAC) THEN
  REWRITE_TAC[REAL_SUB_REFL; REAL_MUL_RZERO; REAL_ADD_LID; real_pow] THEN
  SIMP_TAC[REAL_SUB_POW] THEN
  ONCE_REWRITE_TAC[REAL_ARITH `a * b * c:real = b * a * c`] THEN
  REWRITE_TAC[SUM_LMUL] THEN AP_TERM_TAC THEN
  SIMP_TAC[GSYM SUM_LMUL; GSYM SUM_RMUL; SUM_SUM_PRODUCT; FINITE_NUMSEG] THEN
  MATCH_MP_TAC SUM_EQ_GENERAL_INVERSES THEN
  REPEAT(EXISTS_TAC `\(a:num,b:num). (b,a)`) THEN
  REWRITE_TAC[IN_ELIM_PAIR_THM; FORALL_PAIR_THM; REAL_MUL_AC] THEN
  REWRITE_TAC[IN_NUMSEG] THEN ARITH_TAC);;

let INT_POLY_DIFF_EXPLICIT = INT_OF_REAL_THM REAL_POLY_DIFF_EXPLICIT;;

(* ------------------------------------------------------------------------- *)
(* Lagrange's theorem on number of roots modulo a prime.                     *)
(* ------------------------------------------------------------------------- *)

let FINITE_INTSEG_RESTRICT = prove
 (`!P a b. FINITE {x:int | a <= x /\ x <= b /\ P x}`,
  SIMP_TAC[FINITE_RESTRICT; FINITE_INTSEG; SET_RULE
   `{x | P x /\ Q x /\ R x} = {x | x IN {x | P x /\ Q x} /\ R x}`]);;

let INT_POLY_LAGRANGE = prove
 (`!p l r.
    int_prime p /\ r - l < p
    ==> !n a. ~(!i. i <= n ==> (a i == &0) (mod p))
              ==> CARD {x | l <= x /\ x <= r /\
                            (isum(0..n) (\i. a(i) * x pow i) == &0) (mod p)}
                  <= n`,
  REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[INT_CONG_0_DIVIDES] THEN
  MATCH_MP_TAC num_WF THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC(MESON[]
   `!a. (~(s = a) ==> CARD s <= n) /\ CARD a <= n ==> CARD s <= n`) THEN
  EXISTS_TAC `{}:int->bool` THEN REWRITE_TAC[LE_0; CARD_CLAUSES] THEN
  REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; LEFT_IMP_EXISTS_THM; IN_ELIM_THM] THEN
  X_GEN_TAC `c:int` THEN STRIP_TAC THEN ASM_CASES_TAC `n = 0` THENL
   [MAP_EVERY UNDISCH_TAC
     [`~(!i:num. i <= n ==> (p:int) divides (a i))`;
      `p divides (isum (0..n) (\i. a i * c pow i))`] THEN
    ASM_SIMP_TAC[CONJUNCT1 LE; ISUM_CLAUSES_NUMSEG] THEN
    REWRITE_TAC[INT_POW; LEFT_FORALL_IMP_THM; EXISTS_REFL; INT_MUL_RID] THEN
    CONV_TAC TAUT;
    ALL_TAC] THEN
  ASM_CASES_TAC `p divides ((a:num->int) n)` THENL
   [ASM_SIMP_TAC[ISUM_CLAUSES_RIGHT; LE_0; LE_1] THEN
    ASM_SIMP_TAC[INTEGER_RULE
     `(p:int) divides y ==> (p divides (x + y * z) <=> p divides x)`] THEN
    MATCH_MP_TAC(ARITH_RULE `x <= n - 1 ==> x <= n`) THEN
    FIRST_X_ASSUM(MP_TAC o SPEC `n - 1`) THEN
    ASM_REWRITE_TAC[ARITH_RULE `n - 1 < n <=> ~(n = 0)`] THEN
    DISCH_THEN MATCH_MP_TAC THEN
    ASM_MESON_TAC[ARITH_RULE `i <= n <=> i <= n - 1 \/ i = n`]; ALL_TAC] THEN
  MP_TAC(GEN `x:int` (MATCH_MP
     (INTEGER_RULE
       `a - b:int = c ==> p divides b ==> (p divides a <=> p divides c)`)
     (ISPECL [`n:num`; `a:num->int`; `x:int`; `c:int`]
             INT_POLY_DIFF_EXPLICIT))) THEN
  ASM_SIMP_TAC[INT_PRIME_DIVPROD_EQ] THEN DISCH_THEN(K ALL_TAC) THEN
  ASM_REWRITE_TAC[LEFT_OR_DISTRIB; SET_RULE
   `{x | q x \/ r x} = {x | q x} UNION {x | r x}`] THEN
  SUBGOAL_THEN
   `{x:int | l <= x /\ x <= r /\ p divides (x - c)} = {c}`
  SUBST1_TAC THENL
   [MATCH_MP_TAC(SET_RULE `P c /\ (!x y. P x /\ P y ==> x = y)
                           ==> {x | P x} = {c}`) THEN
    ASM_REWRITE_TAC[INT_SUB_REFL; INT_DIVIDES_0] THEN
    MAP_EVERY X_GEN_TAC [`u:int`; `v:int`] THEN STRIP_TAC THEN
    SUBGOAL_THEN `p divides (u - v:int)` MP_TAC THENL
     [ASM_MESON_TAC[INT_CONG; INT_CONG_SYM; INT_CONG_TRANS]; ALL_TAC] THEN
    DISCH_THEN(MP_TAC o MATCH_MP INT_DIVIDES_LE) THEN ASM_INT_ARITH_TAC;
    ALL_TAC] THEN
  REWRITE_TAC[SET_RULE `{a} UNION s = a INSERT s`] THEN
  SIMP_TAC[CARD_CLAUSES; FINITE_INTSEG_RESTRICT] THEN
  MATCH_MP_TAC(ARITH_RULE
   `~(n = 0) /\ x <= n - 1 ==> (if p then x else SUC x) <= n`) THEN
  ASM_REWRITE_TAC[] THEN
  RULE_ASSUM_TAC(REWRITE_RULE[RIGHT_IMP_FORALL_THM; IMP_IMP]) THEN
  FIRST_ASSUM MATCH_MP_TAC THEN
  ASM_REWRITE_TAC[ARITH_RULE `n - 1 < n <=> ~(n = 0)`] THEN
  DISCH_THEN(MP_TAC o SPEC `n - 1`) THEN
  ASM_SIMP_TAC[LE_REFL; SUB_ADD; LE_1; ISUM_SING_NUMSEG; SUB_REFL] THEN
  ASM_REWRITE_TAC[INT_POW; INT_MUL_RID]);;

(* ------------------------------------------------------------------------- *)
(* Laborious instantiation to (x^d == 1) (mod p) over natural numbers.       *)
(* ------------------------------------------------------------------------- *)

let NUM_LAGRANGE_LEMMA = prove
 (`!p d. prime p /\ 1 <= d
         ==> CARD {x | x IN 1..p-1 /\ (x EXP d == 1) (mod p)} <= d`,
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPECL [`&p:int`; `&1:int`; `&(p-1):int`] INT_POLY_LAGRANGE) THEN
  ANTS_TAC THENL
   [ASM_SIMP_TAC[INT_PRIME; INT_LT_SUB_RADD; INT_OF_NUM_ADD; INT_OF_NUM_LT] THEN
    ARITH_TAC;
    ALL_TAC] THEN
  DISCH_THEN(MP_TAC o SPECL
   [`d:num`; `\i. if i = d then &1 else if i = 0 then -- &1 else &0:int`]) THEN
  REWRITE_TAC[] THEN ANTS_TAC THENL
   [DISCH_THEN(MP_TAC o SPEC `d:num`) THEN REWRITE_TAC[LE_REFL] THEN
    REWRITE_TAC[INT_CONG_0_DIVIDES; GSYM num_divides; DIVIDES_ONE] THEN
    ASM_MESON_TAC[PRIME_1];
    ALL_TAC] THEN
  REWRITE_TAC[MESON[]
   `(if p then x else y) * z:int = if p then x * z else y * z`] THEN
  SIMP_TAC[ISUM_CASES; FINITE_NUMSEG; FINITE_RESTRICT] THEN
  REWRITE_TAC[INT_POW; INT_MUL_LZERO; ISUM_0; INT_ADD_RID] THEN
  MATCH_MP_TAC(ARITH_RULE `x:num <= y ==> y <= d ==> x <= d`) THEN
  REWRITE_TAC[IN_ELIM_THM; IN_NUMSEG] THEN
  ASM_SIMP_TAC[ARITH_RULE `(0 <= i /\ i <= d) /\ i = d <=> i = d`;
               ARITH_RULE `1 <= d
                           ==> (((0 <= i /\ i <= d) /\ ~(i = d)) /\ i = 0 <=>
                                i = 0)`] THEN
  REWRITE_TAC[SING_GSPEC; ISUM_SING] THEN
  REWRITE_TAC[INT_ARITH `&1 * x + -- &1 * &1:int = x - &1`] THEN
  REWRITE_TAC[INTEGER_RULE `(x - a:int == &0) (mod p) <=>
                            (x == a) (mod p)`] THEN
  MATCH_MP_TAC CARD_SUBSET_IMAGE THEN EXISTS_TAC `num_of_int` THEN
  REWRITE_TAC[FINITE_INTSEG_RESTRICT; SUBSET; IN_IMAGE; IN_ELIM_THM] THEN
  X_GEN_TAC `n:num` THEN DISCH_TAC THEN EXISTS_TAC `&n:int` THEN
  ASM_REWRITE_TAC[NUM_OF_INT_OF_NUM; INT_OF_NUM_LE; INT_OF_NUM_POW] THEN
  ASM_REWRITE_TAC[GSYM num_congruent]);;

(* ------------------------------------------------------------------------- *)
(* Count of elements with a given order modulo a prime.                      *)
(* ------------------------------------------------------------------------- *)

let COUNT_ORDERS_MODULO_PRIME = prove
 (`!p d. prime p /\ d divides (p - 1)
         ==> CARD {x | x IN 1..p-1 /\ order p x = d} = phi(d)`,
  let lemma = prove
   (`!s f g:A->num.
          FINITE s /\ (!x. x IN s ==> f(x) <= g(x)) /\ nsum s f = nsum s g
          ==> !x. x IN s ==> f x = g x`,
    REWRITE_TAC[GSYM LE_ANTISYM] THEN MESON_TAC[NSUM_LE; NSUM_LT; NOT_LE]) in
  REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN DISCH_TAC THEN
  ONCE_REWRITE_TAC[SET_RULE
   `(!x. p x ==> q x) <=> (!x. x IN {x | p x} ==> q x)`] THEN
  MATCH_MP_TAC lemma THEN SUBGOAL_THEN `~(p - 1 = 0)` ASSUME_TAC THENL
   [FIRST_ASSUM(MP_TAC o MATCH_MP PRIME_GE_2) THEN ARITH_TAC; ALL_TAC] THEN
  ASM_SIMP_TAC[REWRITE_RULE[ETA_AX] PHI_DIVISORSUM; FINITE_DIVISORS] THEN
  CONJ_TAC THENL
   [ALL_TAC;
    SIMP_TAC[CARD_EQ_NSUM; FINITE_RESTRICT; FINITE_NUMSEG] THEN
    W(MP_TAC o PART_MATCH (lhs o rand) NSUM_GROUP o lhs o snd) THEN
    REWRITE_TAC[NSUM_CONST_NUMSEG; FINITE_NUMSEG; ADD_SUB; MULT_CLAUSES] THEN
    DISCH_THEN MATCH_MP_TAC THEN
    REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_ELIM_THM; IN_NUMSEG] THEN
    X_GEN_TAC `x:num` THEN STRIP_TAC THEN ASM_SIMP_TAC[GSYM PHI_PRIME] THEN
    MATCH_MP_TAC ORDER_DIVIDES_PHI THEN ONCE_REWRITE_TAC[COPRIME_SYM] THEN
    MATCH_MP_TAC PRIME_COPRIME_LT THEN ASM_REWRITE_TAC[] THEN
    ASM_ARITH_TAC] THEN
  X_GEN_TAC `d:num` THEN REWRITE_TAC[IN_ELIM_THM] THEN DISCH_TAC THEN
  ASM_CASES_TAC `{x | x IN 1..p-1 /\ order p x = d} = {}` THEN
  ASM_REWRITE_TAC[CARD_CLAUSES; LE_0] THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN
  REWRITE_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `a:num` THEN
  REWRITE_TAC[IN_NUMSEG] THEN STRIP_TAC THEN REWRITE_TAC[PHI_ALT] THEN
  MATCH_MP_TAC CARD_SUBSET_IMAGE THEN EXISTS_TAC `\m. (a EXP m) MOD p` THEN
  REWRITE_TAC[PHI_FINITE_LEMMA] THEN
  SUBGOAL_THEN `1 <= d` ASSUME_TAC THENL
   [ASM_MESON_TAC[LE_1; DIVIDES_ZERO]; ALL_TAC] THEN
  SUBGOAL_THEN `coprime(p,a)` ASSUME_TAC THENL
   [ONCE_REWRITE_TAC[COPRIME_SYM] THEN
    MATCH_MP_TAC PRIME_COPRIME_LT THEN ASM_REWRITE_TAC[] THEN
    ASM_ARITH_TAC;
    ALL_TAC] THEN
  SUBGOAL_THEN
   `{x | x IN 1..p-1 /\ (x EXP d == 1) (mod p)} =
    IMAGE (\m. (a EXP m) MOD p) {m | m < d}`
  MP_TAC THENL
   [CONV_TAC SYM_CONV THEN MATCH_MP_TAC CARD_SUBSET_LE THEN
    SIMP_TAC[FINITE_RESTRICT; FINITE_NUMSEG] THEN CONJ_TAC THENL
     [REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_ELIM_THM] THEN
      X_GEN_TAC `m:num` THEN DISCH_TAC THEN REWRITE_TAC[IN_NUMSEG] THEN
      ASM_SIMP_TAC[ARITH_RULE `~(p - 1 = 0) ==> (x <= p - 1 <=> x < p)`] THEN
      ASM_SIMP_TAC[DIVISION; PRIME_IMP_NZ] THEN CONJ_TAC THENL
       [REWRITE_TAC[ARITH_RULE `1 <= x <=> ~(x = 0)`] THEN
        ASM_SIMP_TAC[GSYM DIVIDES_MOD; PRIME_IMP_NZ] THEN
        ASM_MESON_TAC[PRIME_DIVEXP; PRIME_COPRIME_EQ];
        ASM_SIMP_TAC[CONG; PRIME_IMP_NZ; MOD_EXP_MOD] THEN
        REWRITE_TAC[EXP_EXP] THEN ONCE_REWRITE_TAC[MULT_SYM] THEN
        REWRITE_TAC[GSYM EXP_EXP] THEN
        SUBST1_TAC(SYM(SPEC `m:num` EXP_ONE)) THEN
        ASM_SIMP_TAC[GSYM CONG; PRIME_IMP_NZ] THEN
        MATCH_MP_TAC CONG_EXP THEN ASM_MESON_TAC[ORDER]];
      MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `d:num` THEN
      ASM_SIMP_TAC[NUM_LAGRANGE_LEMMA] THEN
      GEN_REWRITE_TAC LAND_CONV [GSYM CARD_NUMSEG_LT] THEN
      MATCH_MP_TAC EQ_IMP_LE THEN CONV_TAC SYM_CONV THEN
      MATCH_MP_TAC CARD_IMAGE_INJ THEN
      ASM_SIMP_TAC[GSYM CONG; PRIME_IMP_NZ; FINITE_NUMSEG_LT; IN_ELIM_THM] THEN
      ASM_SIMP_TAC[ORDER_DIVIDES_EXPDIFF] THEN REWRITE_TAC[CONG_IMP_EQ]];
    MATCH_MP_TAC(SET_RULE
     `s' SUBSET s /\ (!x. x IN t /\ f x IN s' ==> x IN t')
      ==> s = IMAGE f t ==> s' SUBSET IMAGE f t'`) THEN
    SIMP_TAC[SUBSET; IN_ELIM_THM; IN_NUMSEG] THEN
    CONJ_TAC THENL [MESON_TAC[ORDER]; ALL_TAC] THEN
    X_GEN_TAC `m:num` THEN ABBREV_TAC `b = (a EXP m) MOD p` THEN STRIP_TAC THEN
    REWRITE_TAC[coprime; divides] THEN X_GEN_TAC `e:num` THEN
    DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `m':num` (ASSUME_TAC o SYM))
                              (X_CHOOSE_THEN `d':num` (ASSUME_TAC o SYM))) THEN
    MP_TAC(ISPECL [`p:num`; `b:num`] ORDER_WORKS) THEN
    DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `d':num`)) THEN
    ASM_REWRITE_TAC[] THEN
    MATCH_MP_TAC(TAUT `a /\ c /\ (~b ==> d) ==> (a /\ b ==> ~c) ==> d`) THEN
    REPEAT CONJ_TAC THENL
     [UNDISCH_TAC `1 <= d` THEN EXPAND_TAC "d" THEN
      REWRITE_TAC[ARITH_RULE `1 <= d <=> ~(d = 0)`; MULT_EQ_0] THEN
      SIMP_TAC[DE_MORGAN_THM; ARITH_RULE `0 < d <=> ~(d = 0)`];
      EXPAND_TAC "b" THEN ASM_SIMP_TAC[CONG; PRIME_IMP_NZ; MOD_EXP_MOD] THEN
      EXPAND_TAC "m" THEN REWRITE_TAC[EXP_EXP] THEN
      ONCE_REWRITE_TAC[ARITH_RULE `(e * m') * d':num = (e * d') * m'`] THEN
      ASM_REWRITE_TAC[] THEN REWRITE_TAC[GSYM EXP_EXP] THEN
      SUBST1_TAC(SYM(SPEC `m':num` EXP_ONE)) THEN
      ASM_SIMP_TAC[GSYM CONG; PRIME_IMP_NZ] THEN
      MATCH_MP_TAC CONG_EXP THEN ASM_MESON_TAC[ORDER];
      EXPAND_TAC "d" THEN
      REWRITE_TAC[ARITH_RULE `~(d < e * d) <=> e * d <= 1 * d`] THEN
      REWRITE_TAC[LE_MULT_RCANCEL] THEN
      REWRITE_TAC[ARITH_RULE `e <= 1 <=> e = 0 \/ e = 1`] THEN
      STRIP_TAC THEN UNDISCH_TAC `e * d':num = d` THEN
      ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC]]);;

(* ------------------------------------------------------------------------- *)
(* In particular, primitive roots modulo a prime.                            *)
(* ------------------------------------------------------------------------- *)

let PRIMITIVE_ROOTS_MODULO_PRIME = prove
 (`!p. prime p ==> CARD {x | x IN 1..p-1 /\ order p x = p - 1} = phi(p - 1)`,
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPECL [`p:num`; `p - 1`] COUNT_ORDERS_MODULO_PRIME) THEN
  ASM_REWRITE_TAC[DIVIDES_REFL]);;

let PRIMITIVE_ROOT_MODULO_PRIME = prove
 (`!p. prime p ==> ?x. x IN 1..p-1 /\ order p x = p - 1`,
  REPEAT STRIP_TAC THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP PRIMITIVE_ROOTS_MODULO_PRIME) THEN
  ASM_CASES_TAC `{x | x IN 1..p-1 /\ order p x = p - 1} = {}` THENL
   [ASM_REWRITE_TAC[CARD_CLAUSES]; ASM SET_TAC[]] THEN
  ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN DISCH_THEN(K ALL_TAC) THEN
  MATCH_MP_TAC(ARITH_RULE `1 <= p ==> ~(0 = p)`) THEN
  MATCH_MP_TAC PHI_LOWERBOUND_1_STRONG THEN
  FIRST_X_ASSUM(MP_TAC o MATCH_MP PRIME_GE_2) THEN ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Now primitive roots modulo odd prime powers.                              *)
(* ------------------------------------------------------------------------- *)

let COPRIME_1_PLUS_POWER_STEP = prove
 (`!p z k. prime p /\ coprime(z,p) /\ 3 <= p /\ 1 <= k
           ==> ?w. coprime(w,p) /\
                   (1 + z * p EXP k) EXP p = 1 + w * p EXP (k + 1)`,
  REPEAT STRIP_TAC THEN
  ONCE_REWRITE_TAC[ARITH_RULE `1 + a * b = a * b + 1`] THEN
  REWRITE_TAC[BINOMIAL_THEOREM; EXP_ONE; MULT_CLAUSES] THEN
  SIMP_TAC[NSUM_CLAUSES_LEFT; LE_0; EXP; binom; MULT_CLAUSES; ADD_CLAUSES] THEN
  SUBGOAL_THEN `1 <= p` MP_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
  SIMP_TAC[NSUM_CLAUSES_LEFT; BINOM_1; EXP_1; ARITH] THEN DISCH_TAC THEN
  SUBGOAL_THEN
   `(p EXP (k + 2)) divides (nsum(2..p) (\i. binom(p,i) * (z * p EXP k) EXP i))`
  MP_TAC THENL
   [ALL_TAC;
    REWRITE_TAC[divides; LEFT_IMP_EXISTS_THM] THEN
    X_GEN_TAC `d:num` THEN DISCH_THEN SUBST1_TAC THEN
    EXISTS_TAC `z + p * d:num` THEN
    ASM_REWRITE_TAC[NUMBER_RULE
     `coprime(z + p * d:num,p) <=> coprime(z,p)`] THEN
    REWRITE_TAC[EXP_ADD] THEN ARITH_TAC] THEN
  MATCH_MP_TAC NSUM_CLOSED THEN
  REWRITE_TAC[DIVIDES_0; DIVIDES_ADD; IN_NUMSEG] THEN
  X_GEN_TAC `j:num` THEN STRIP_TAC THEN REWRITE_TAC[MULT_EXP] THEN
  ONCE_REWRITE_TAC[ARITH_RULE `a * b * c:num = b * c * a`] THEN
  REWRITE_TAC[EXP_EXP] THEN
  MATCH_MP_TAC DIVIDES_LMUL THEN ASM_CASES_TAC `j:num = p` THENL
   [MATCH_MP_TAC DIVIDES_RMUL THEN
    ASM_SIMP_TAC[DIVIDES_EXP_LE; ARITH_RULE `3 <= p ==> 2 <= p`] THEN
    MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `k * 3` THEN CONJ_TAC THENL
     [ASM_ARITH_TAC; ASM_REWRITE_TAC[LE_MULT_LCANCEL]];
    ONCE_REWRITE_TAC[MULT_SYM] THEN
    REWRITE_TAC[EXP; ARITH_RULE `k + 2 = SUC(k + 1)`] THEN
    MATCH_MP_TAC DIVIDES_MUL2 THEN CONJ_TAC THENL
     [MATCH_MP_TAC DIVIDES_BINOM_PRIME THEN ASM_REWRITE_TAC[] THEN
      ASM_ARITH_TAC;
      ASM_SIMP_TAC[DIVIDES_EXP_LE; ARITH_RULE `3 <= p ==> 2 <= p`] THEN
      MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `k * 2` THEN CONJ_TAC THENL
       [ASM_ARITH_TAC; ASM_REWRITE_TAC[LE_MULT_LCANCEL]]]]);;

let COPRIME_1_PLUS_POWER = prove
 (`!p z k. prime p /\ coprime(z,p) /\ 3 <= p
           ==> ?w. coprime(w,p) /\
                   (1 + z * p) EXP (p EXP k) = 1 + w * p EXP (k + 1)`,
  GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN
  REWRITE_TAC[ADD_CLAUSES; EXP_1; EXP] THENL [MESON_TAC[]; ALL_TAC] THEN
  REWRITE_TAC[GSYM(ONCE_REWRITE_RULE[MULT_SYM] EXP_EXP)] THEN
  DISCH_THEN(fun th -> POP_ASSUM MP_TAC THEN STRIP_ASSUME_TAC th) THEN
  ASM_REWRITE_TAC[] THEN
  DISCH_THEN(X_CHOOSE_THEN `w:num` STRIP_ASSUME_TAC) THEN
  MP_TAC(ISPECL [`p:num`; `w:num`; `k + 1`] COPRIME_1_PLUS_POWER_STEP) THEN
  ASM_REWRITE_TAC[ARITH_RULE `1 <= k + 1`] THEN
  REWRITE_TAC[EXP_ADD; EXP_1; MULT_AC]);;

let PRIMITIVE_ROOT_MODULO_PRIMEPOWS = prove
 (`!p. prime p /\ 3 <= p
       ==> ?g. !j. 1 <= j ==> order(p EXP j) g = phi(p EXP j)`,
  REPEAT STRIP_TAC THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP PRIMITIVE_ROOT_MODULO_PRIME) THEN
  REWRITE_TAC[IN_NUMSEG] THEN
  DISCH_THEN(X_CHOOSE_THEN `g:num` STRIP_ASSUME_TAC) THEN
  MP_TAC(ISPECL [`p:num`; `g:num`] ORDER) THEN
  ASM_SIMP_TAC[CONG_TO_1; EXP_EQ_0; LE_1] THEN
  DISCH_THEN(X_CHOOSE_THEN `y:num` STRIP_ASSUME_TAC) THEN
  SUBGOAL_THEN `?x. coprime(p,y + (p - 1) * g EXP (p - 2) * x)` CHOOSE_TAC THENL
   [MP_TAC(ISPECL [`(&p - &1:int) * &g pow (p - 2)`; `&1 - &y:int`; `&p:int`]
                  INT_CONG_SOLVE_POS) THEN
    ANTS_TAC THENL
     [REWRITE_TAC[INT_COPRIME_LMUL; INT_COPRIME_LPOW] THEN
      REWRITE_TAC[INTEGER_RULE `coprime(p - &1,p)`; GSYM num_coprime] THEN
      ASM_SIMP_TAC[INT_OF_NUM_EQ; ARITH_RULE `3 <= p ==> ~(p = 0)`] THEN
      DISJ1_TAC THEN MATCH_MP_TAC PRIME_COPRIME_LT THEN
      ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC;
      REWRITE_TAC[GSYM INT_EXISTS_POS] THEN MATCH_MP_TAC MONO_EXISTS THEN
      GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP (INTEGER_RULE
       `(x:int == &1 - y) (mod n) ==> coprime(n,y + x)`)) THEN
      ASM_SIMP_TAC[INT_OF_NUM_SUB; INT_OF_NUM_POW; INT_OF_NUM_MUL;
                   INT_OF_NUM_ADD; GSYM num_coprime;
                    ARITH_RULE `3 <= p ==> 1 <= p`] THEN
      REWRITE_TAC[MULT_ASSOC]];
    ALL_TAC] THEN
  EXISTS_TAC `g + p * x:num` THEN X_GEN_TAC `j:num` THEN DISCH_TAC THEN
  STRIP_ASSUME_TAC(ISPECL [`p EXP j`; `g + p * x:num`] ORDER_WORKS) THEN
  MP_TAC(SPECL [`p:num`; `g + p * x:num`; `order (p EXP j) (g + p * x)`]
      ORDER_DIVIDES) THEN
  SUBGOAL_THEN `order p (g + p * x) = p - 1` SUBST1_TAC THENL
   [ASM_MESON_TAC[ORDER_CONG; NUMBER_RULE `(g:num == g + p * x) (mod p)`];
    ALL_TAC] THEN
  MATCH_MP_TAC(TAUT `a /\ (b ==> c) ==> (a <=> b) ==> c`) THEN CONJ_TAC THENL
   [MATCH_MP_TAC(NUMBER_RULE
     `!y. (a == 1) (mod y) /\ x divides y ==> (a == 1) (mod x)`) THEN
    EXISTS_TAC `p EXP j` THEN ASM_REWRITE_TAC[] THEN
    ASM_SIMP_TAC[DIVIDES_REFL; DIVIDES_REXP; LE_1];
    REWRITE_TAC[divides; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `d:num` THEN
    DISCH_THEN(fun th -> SUBST_ALL_TAC th THEN ASSUME_TAC th)] THEN
  MP_TAC(ISPECL [`g + p * x:num`; `p EXP j`] ORDER_DIVIDES_PHI) THEN
  ASM_SIMP_TAC[PHI_PRIMEPOW; LE_1; COPRIME_LEXP] THEN ANTS_TAC THENL
   [REWRITE_TAC[NUMBER_RULE `coprime(p,g + p * x) <=> coprime(g,p)`] THEN
    MATCH_MP_TAC PRIME_COPRIME_LT THEN
    ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC;
    ALL_TAC] THEN
  SUBGOAL_THEN `p EXP j - p EXP (j - 1) = (p - 1) * p EXP (j - 1)`
  SUBST1_TAC THENL
   [UNDISCH_TAC `1 <= j` THEN SPEC_TAC(`j:num`,`j:num`) THEN
    INDUCT_TAC THEN REWRITE_TAC[ARITH; SUC_SUB1] THEN
    REWRITE_TAC[EXP; RIGHT_SUB_DISTRIB] THEN ARITH_TAC;
    ALL_TAC] THEN
  DISCH_THEN(MP_TAC o MATCH_MP (NUMBER_RULE
   `(a * x:num) divides (a * y) ==> ~(a = 0) ==> x divides y`)) THEN
  ASM_SIMP_TAC[DIVIDES_PRIMEPOW; ARITH_RULE `3 <= p ==> ~(p - 1 = 0)`] THEN
  DISCH_THEN(X_CHOOSE_THEN `k:num`
   (CONJUNCTS_THEN2 ASSUME_TAC SUBST_ALL_TAC)) THEN
  AP_TERM_TAC THEN AP_TERM_TAC THEN
  SUBGOAL_THEN `?z. (g + p * x) EXP (p - 1) = 1 + z * p /\ coprime(z,p)`
  STRIP_ASSUME_TAC THENL
   [REWRITE_TAC[BINOMIAL_THEOREM] THEN
    ASM_SIMP_TAC[NSUM_CLAUSES_RIGHT; LE_0; ARITH_RULE
     `3 <= p ==> 0 < p - 1`] THEN
    REWRITE_TAC[BINOM_REFL; SUB_REFL; EXP; MULT_CLAUSES] THEN
    EXISTS_TAC
     `y + nsum(0..p-2) (\k. binom(p - 1,k) * g EXP k *
                            p EXP (p - 2 - k) * x EXP (p - 1 - k))` THEN
    REWRITE_TAC[ARITH_RULE `n - 1 - 1 = n - 2`] THEN
    SIMP_TAC[ARITH_RULE `s + 1 + y * p = 1 + (y + t) * p <=> s = p * t`] THEN
    CONJ_TAC THENL
     [REWRITE_TAC[GSYM NSUM_LMUL] THEN MATCH_MP_TAC NSUM_EQ THEN
      X_GEN_TAC `i:num` THEN REWRITE_TAC[IN_NUMSEG] THEN STRIP_TAC THEN
      SIMP_TAC[ARITH_RULE `p * b * g * pp * x:num = b * g * (p * pp) * x`] THEN
      AP_TERM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[MULT_EXP] THEN
      REWRITE_TAC[GSYM(CONJUNCT2 EXP)] THEN
      AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN ASM_ARITH_TAC;
      ALL_TAC] THEN
    ASM_SIMP_TAC[NSUM_CLAUSES_RIGHT; LE_0; ARITH_RULE
     `3 <= p ==> 0 < p - 2`] THEN
    REWRITE_TAC[BINOM_REFL; SUB_REFL; EXP; MULT_CLAUSES] THEN
    ASM_SIMP_TAC[EXP_1; ARITH_RULE `3 <= p ==> p - 1 - (p - 2) = 1`] THEN
    SUBGOAL_THEN `binom(p - 1,p - 2) = p - 1` SUBST1_TAC THENL
     [SUBGOAL_THEN `p - 1 = SUC(p - 2)` SUBST1_TAC THENL
       [ASM_ARITH_TAC; REWRITE_TAC[BINOM_PENULT]];
      ALL_TAC] THEN
    MATCH_MP_TAC(NUMBER_RULE
     `coprime(p:num,y + x) /\ p divides z ==> coprime(y + z + x,p)`) THEN
    ASM_REWRITE_TAC[] THEN MATCH_MP_TAC NSUM_CLOSED THEN
    REWRITE_TAC[DIVIDES_0; DIVIDES_ADD; IN_NUMSEG] THEN
    X_GEN_TAC `i:num` THEN STRIP_TAC THEN
    REPLICATE_TAC 2 (MATCH_MP_TAC DIVIDES_LMUL) THEN
    MATCH_MP_TAC DIVIDES_RMUL THEN MATCH_MP_TAC DIVIDES_REXP THEN
    REWRITE_TAC[DIVIDES_REFL] THEN ASM_ARITH_TAC;
    ALL_TAC] THEN
  SUBGOAL_THEN
   `?w. (g + p * x) EXP ((p - 1) * p EXP k) = 1 + p EXP (k + 1) * w /\
        coprime(w,p)`
  STRIP_ASSUME_TAC THENL
   [ASM_REWRITE_TAC[GSYM EXP_EXP] THEN
    ONCE_REWRITE_TAC[CONJ_SYM] THEN
    GEN_REWRITE_TAC (BINDER_CONV o funpow 3 RAND_CONV) [MULT_SYM] THEN
    MATCH_MP_TAC COPRIME_1_PLUS_POWER THEN ASM_REWRITE_TAC[];
    UNDISCH_TAC
     `((g + p * x) EXP ((p - 1) * p EXP k) == 1) (mod (p EXP j))` THEN
    ASM_REWRITE_TAC[NUMBER_RULE `(1 + x == 1) (mod n) <=> n divides x`] THEN
    ONCE_REWRITE_TAC[MULT_SYM] THEN DISCH_TAC THEN
    MP_TAC(SPECL [`p:num`; `j:num`; `w:num`; `p EXP (k + 1)`]
       COPRIME_EXP_DIVPROD) THEN
    ONCE_REWRITE_TAC[COPRIME_SYM] THEN ASM_REWRITE_TAC[] THEN
    ASM_SIMP_TAC[DIVIDES_EXP_LE; ARITH_RULE `3 <= p ==> 2 <= p`] THEN
    UNDISCH_TAC `k <= j - 1` THEN ARITH_TAC]);;

let PRIMITIVE_ROOT_MODULO_PRIMEPOW = prove
 (`!p k. prime p /\ 3 <= p /\ 1 <= k
         ==> ?x. x IN 1..(p EXP k - 1) /\ order (p EXP k) x = phi(p EXP k)`,
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPEC `p:num` PRIMITIVE_ROOT_MODULO_PRIMEPOWS) THEN
  ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
  X_GEN_TAC `x:num` THEN DISCH_THEN(MP_TAC o SPEC `k:num`) THEN
  ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
  EXISTS_TAC `x MOD (p EXP k)` THEN CONJ_TAC THENL
   [REWRITE_TAC[IN_NUMSEG; ARITH_RULE `1 <= x <=> ~(x = 0)`] THEN
    CONJ_TAC THENL
     [MP_TAC(ISPECL [`p EXP k`; `x:num`] DIVIDES_MOD) THEN
      ASM_SIMP_TAC[EXP_EQ_0; ARITH_RULE `3 <= p ==> ~(p = 0)`] THEN
      DISCH_THEN(SUBST1_TAC o SYM) THEN DISCH_TAC THEN
      MP_TAC(ISPECL [`p EXP k`; `x:num`] ORDER) THEN
      DISCH_THEN(MP_TAC o MATCH_MP (NUMBER_RULE
       `(x == 1) (mod p) ==> p divides x ==> p divides 1`)) THEN
      ASM_SIMP_TAC[EXP_EQ_1; DIVIDES_ONE; LE_1] THEN
      ASM_SIMP_TAC[ARITH_RULE `3 <= p ==> ~(p = 1)`] THEN
      MATCH_MP_TAC DIVIDES_REXP THEN ASM_REWRITE_TAC[] THEN
      MATCH_MP_TAC(ARITH_RULE `1 <= p ==> ~(p = 0)`) THEN
      MATCH_MP_TAC PHI_LOWERBOUND_1_STRONG THEN
      MATCH_MP_TAC(ARITH_RULE `~(p = 0) ==> 1 <= p`) THEN
      ASM_SIMP_TAC[EXP_EQ_0] THEN ASM_ARITH_TAC;
      MATCH_MP_TAC(ARITH_RULE `a < b ==> a <= b - 1`) THEN
      MP_TAC(ISPECL [`x:num`; `p EXP k`] DIVISION) THEN
      ASM_SIMP_TAC[EXP_EQ_0; ARITH_RULE `3 <= p ==> ~(p = 0)`]];
    MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `order (p EXP k) x` THEN
    CONJ_TAC THENL [ALL_TAC; ASM_REWRITE_TAC[]] THEN
    MATCH_MP_TAC ORDER_CONG THEN MATCH_MP_TAC CONG_MOD THEN
    ASM_SIMP_TAC[EXP_EQ_0; ARITH_RULE `3 <= p ==> ~(p = 0)`]]);;

(* ------------------------------------------------------------------------- *)
(* Double prime powers and the other remaining positive cases 2 and 4.       *)
(* ------------------------------------------------------------------------- *)

let PRIMITIVE_ROOT_MODULO_2 = prove
 (`?x. x IN 1..1 /\ order 2 x = phi(2)`,
  EXISTS_TAC `1` THEN REWRITE_TAC[IN_NUMSEG; ARITH] THEN
  SIMP_TAC[PHI_PRIME; PRIME_2] THEN CONV_TAC NUM_REDUCE_CONV THEN
  MATCH_MP_TAC ORDER_UNIQUE THEN
  REWRITE_TAC[ARITH_RULE `~(0 < m /\ m < 1)`] THEN
  CONV_TAC NUM_REDUCE_CONV THEN CONV_TAC(ONCE_DEPTH_CONV CONG_CONV) THEN
  REWRITE_TAC[]);;

let PRIMITIVE_ROOT_MODULO_4 = prove
 (`?x. x IN 1..3 /\ order 4 x = phi(4)`,
  EXISTS_TAC `3` THEN REWRITE_TAC[IN_NUMSEG; ARITH] THEN
  SUBST1_TAC(ARITH_RULE `4 = 2 EXP 2`) THEN
  SIMP_TAC[PHI_PRIMEPOW; PRIME_2] THEN CONV_TAC NUM_REDUCE_CONV THEN
  MATCH_MP_TAC ORDER_UNIQUE THEN
  REWRITE_TAC[FORALL_UNWIND_THM2; ARITH_RULE `0 < m /\ m < 2 <=> m = 1`] THEN
  CONV_TAC NUM_REDUCE_CONV THEN CONV_TAC(ONCE_DEPTH_CONV CONG_CONV) THEN
  REWRITE_TAC[]);;

let PRIMITIVE_ROOT_DOUBLE_LEMMA = prove
 (`!n a. ODD n /\ ODD a /\ order n a = phi n
         ==> order (2 * n) a = phi(2 * n)`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC ORDER_UNIQUE THEN
  ASM_SIMP_TAC[CONG_CHINESE_EQ; COPRIME_2; PHI_MULTIPLICATIVE] THEN
  REWRITE_TAC[PHI_2; MULT_CLAUSES] THEN REPEAT CONJ_TAC THENL
   [ASM_MESON_TAC[ODD; LE_1; PHI_LOWERBOUND_1_STRONG];
    ASM_REWRITE_TAC[GSYM ODD_MOD_2; ODD_EXP];
    ASM_MESON_TAC[ORDER_WORKS];
    ASM_MESON_TAC[ORDER_WORKS]]);;

let PRIMITIVE_ROOT_MODULO_DOUBLE_PRIMEPOW = prove
 (`!p k. prime p /\ 3 <= p /\ 1 <= k
         ==> ?x. x IN 1..(2 * p EXP k - 1) /\
                 order (2 * p EXP k) x = phi(2 * p EXP k)`,
  REPEAT GEN_TAC THEN DISCH_TAC THEN MP_TAC(SPEC `p:num` PRIME_ODD) THEN
  ASM_SIMP_TAC[ARITH_RULE `3 <= p ==> ~(p = 2)`] THEN DISCH_TAC THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP PRIMITIVE_ROOT_MODULO_PRIMEPOW) THEN
  DISCH_THEN(X_CHOOSE_THEN `g:num` MP_TAC) THEN REWRITE_TAC[IN_NUMSEG] THEN
  STRIP_TAC THEN DISJ_CASES_TAC (SPEC `g:num` EVEN_OR_ODD) THENL
   [EXISTS_TAC `g + p EXP k` THEN CONJ_TAC THENL
     [CONJ_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
      MATCH_MP_TAC(ARITH_RULE
       `g <= x - 1 /\ p EXP 1 <= x ==> g + p <= 2 * x - 1`) THEN
      ASM_REWRITE_TAC[LE_EXP] THEN ASM_ARITH_TAC;
      ALL_TAC];
    EXISTS_TAC `g:num` THEN CONJ_TAC THENL [ASM_ARITH_TAC; ALL_TAC]] THEN
  MATCH_MP_TAC PRIMITIVE_ROOT_DOUBLE_LEMMA THEN
  ASM_REWRITE_TAC[ODD_ADD; ODD_EXP; NOT_ODD] THEN
  FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN MATCH_MP_TAC ORDER_CONG THEN
  CONV_TAC NUMBER_RULE);;

(* ------------------------------------------------------------------------- *)
(* A couple of degenerate case not usually considered.                       *)
(* ------------------------------------------------------------------------- *)

let PRIMITIVE_ROOT_MODULO_0 = prove
 (`(?x. order 0 x = phi(0))`,
  EXISTS_TAC `2` THEN REWRITE_TAC[PHI_0; ORDER_EQ_0; COPRIME_2; ODD]);;

let PRIMITIVE_ROOT_MODULO_1 = prove
 (`?x. order 1 x = phi(1)`,
  EXISTS_TAC `1` THEN REWRITE_TAC[PHI_1] THEN MATCH_MP_TAC ORDER_UNIQUE THEN
  REWRITE_TAC[ARITH_RULE `0 < m /\ m < 1 <=> F`; EXP_1; CONG_REFL] THEN
  ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* The negative results.                                                     *)
(* ------------------------------------------------------------------------- *)

let CONG_TO_1_POW2 = prove
 (`!k x. ODD x /\ 1 <= k ==> (x EXP (2 EXP k) == 1) (mod (2 EXP (k + 2)))`,
  INDUCT_TAC THEN REWRITE_TAC[ADD_CLAUSES; EXP] THEN
  CONV_TAC NUM_REDUCE_CONV THEN GEN_TAC THEN ASM_CASES_TAC `k = 0` THENL
   [ASM_REWRITE_TAC[] THEN CONV_TAC NUM_REDUCE_CONV THEN
    SIMP_TAC[ODD_EXISTS; LEFT_IMP_EXISTS_THM] THEN
    REPEAT STRIP_TAC THEN REWRITE_TAC[CONG_TO_1] THEN DISJ2_TAC THEN
    REWRITE_TAC[GSYM EVEN_EXISTS; ARITH_RULE
     `SUC(2 * m) EXP 2 = 1 + q * 8 <=> m * (m + 1) = 2 * q`] THEN
    REWRITE_TAC[EVEN_MULT; EVEN_ADD; ARITH] THEN CONV_TAC TAUT;
    STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:num`) THEN
    ASM_SIMP_TAC[ONCE_REWRITE_RULE[MULT_SYM] EXP_MULT; LE_1] THEN
    REWRITE_TAC[CONG_TO_1; EXP_EQ_1; ADD_EQ_0; MULT_EQ_1] THEN
    CONV_TAC NUM_REDUCE_CONV THEN
    DISCH_THEN(X_CHOOSE_THEN `m:num` SUBST1_TAC) THEN
    REWRITE_TAC[EQ_MULT_LCANCEL; EXP_EQ_0; ARITH; GSYM EVEN_EXISTS; ARITH_RULE
     `(1 + m * n) EXP 2 = 1 + q * 2 * n <=>
      n * m * (2 + m * n) = n * 2 * q`] THEN
    REWRITE_TAC[EVEN_MULT; EVEN_ADD; EVEN_EXP; ARITH] THEN ARITH_TAC]);;

let NO_PRIMITIVE_ROOT_MODULO_POW2 = prove
 (`!k. 3 <= k ==> ~(?x. order (2 EXP k) x = phi(2 EXP k))`,
  REPEAT STRIP_TAC THEN DISJ_CASES_TAC(SPEC `x:num` EVEN_OR_ODD) THENL
   [FIRST_X_ASSUM(MP_TAC o MATCH_MP (ARITH_RULE
     `a = b ==> 1 <= b /\ a = 0 ==> F`)) THEN
    ASM_SIMP_TAC[ORDER_EQ_0; PHI_LOWERBOUND_1_STRONG; LE_1; EXP_EQ_0; ARITH;
                 COPRIME_LEXP; COPRIME_2; DE_MORGAN_THM; NOT_ODD] THEN
    ASM_ARITH_TAC;
    MP_TAC(CONJUNCT2(ISPECL [`2 EXP k`; `x:num`] ORDER_WORKS)) THEN
    ASM_REWRITE_TAC[] THEN
    DISCH_THEN(MP_TAC o SPEC `2 EXP (k - 2)`) THEN
    ASM_SIMP_TAC[PHI_PRIMEPOW; PRIME_2; ARITH_RULE `3 <= k ==> ~(k = 0)`] THEN
    ABBREV_TAC `j = k - 2` THEN
    SUBGOAL_THEN `k - 1 = j + 1` SUBST1_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
    SUBGOAL_THEN `k = j + 2` SUBST1_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
    SUBGOAL_THEN `1 <= j` ASSUME_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
    ASM_SIMP_TAC[CONG_TO_1_POW2; ARITH_RULE `0 < x <=> ~(x = 0)`] THEN
    REWRITE_TAC[EXP_EQ_0; ARITH] THEN
    MATCH_MP_TAC(ARITH_RULE `a + b:num < c ==> a < c - b`) THEN
    REWRITE_TAC[EXP_ADD] THEN CONV_TAC NUM_REDUCE_CONV THEN
    REWRITE_TAC[ARITH_RULE `x + x * 2 < x * 4 <=> ~(x = 0)`] THEN
    REWRITE_TAC[EXP_EQ_0; ARITH]]);;

let NO_PRIMITIVE_ROOT_MODULO_COMPOSITE = prove
 (`!a b. 3 <= a /\ 3 <= b /\ coprime(a,b)
         ==> ~(?x. order (a * b) x = phi(a * b))`,
  SIMP_TAC[PHI_MULTIPLICATIVE] THEN REPEAT STRIP_TAC THEN
  MP_TAC(SPECL [`a * b:num`; `x:num`] ORDER_WORKS) THEN
  ASM_SIMP_TAC[CONG_CHINESE_EQ] THEN STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `(phi a * phi b) DIV 2`) THEN
  REWRITE_TAC[ARITH_RULE `0 < a DIV 2 /\ a DIV 2 < a <=> 2 <= a`; NOT_IMP] THEN
  REPEAT CONJ_TAC THENL
   [MATCH_MP_TAC(ARITH_RULE `2 * 2 <= x ==> 2 <= x`) THEN
    MATCH_MP_TAC LE_MULT2 THEN ASM_SIMP_TAC[PHI_LOWERBOUND_2];
    SUBGOAL_THEN `EVEN(phi b)` MP_TAC THENL
     [ASM_SIMP_TAC[EVEN_PHI]; SIMP_TAC[EVEN_EXISTS; LEFT_IMP_EXISTS_THM]] THEN
    REWRITE_TAC[ARITH_RULE `(a * 2 * b) DIV 2 = a * b`];
    SUBGOAL_THEN `EVEN(phi a)` MP_TAC THENL
     [ASM_SIMP_TAC[EVEN_PHI]; SIMP_TAC[EVEN_EXISTS; LEFT_IMP_EXISTS_THM]] THEN
    REWRITE_TAC[ARITH_RULE `((2 * a) * b) DIV 2 = b * a`]] THEN
  X_GEN_TAC `m:num` THEN DISCH_THEN SUBST1_TAC THEN
  ASM_REWRITE_TAC[GSYM EXP_EXP] THEN SUBST1_TAC(SYM(SPEC `m:num` EXP_ONE)) THEN
  MATCH_MP_TAC CONG_EXP THEN MATCH_MP_TAC FERMAT_LITTLE THEN
  MP_TAC(ISPECL [`a * b:num`; `x:num`] ORDER_EQ_0) THEN
  ASM_SIMP_TAC[MULT_EQ_0; LE_1; PHI_LOWERBOUND_1_STRONG;
               ARITH_RULE `3 <= p ==> 1 <= p`] THEN
  CONV_TAC NUMBER_RULE);;

(* ------------------------------------------------------------------------- *)
(* Equivalences, one with some degenerate cases, one more conventional.      *)
(* ------------------------------------------------------------------------- *)

let PRIMITIVE_ROOT_EXISTS = prove
 (`!n. (?x. order n x = phi n) <=>
       n = 0 \/ n = 2 \/ n = 4 \/
       ?p k. prime p /\ 3 <= p /\ (n = p EXP k \/ n = 2 * p EXP k)`,
  GEN_TAC THEN
  ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[PRIMITIVE_ROOT_MODULO_0] THEN
  ASM_CASES_TAC `n = 2` THENL
   [ASM_MESON_TAC[PRIMITIVE_ROOT_MODULO_2]; ALL_TAC] THEN
  ASM_CASES_TAC `n = 4` THENL
   [ASM_MESON_TAC[PRIMITIVE_ROOT_MODULO_4]; ALL_TAC] THEN
  ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `n = 1` THENL
   [ASM_REWRITE_TAC[PRIMITIVE_ROOT_MODULO_1] THEN
    MAP_EVERY EXISTS_TAC [`3`; `0`] THEN
    CONV_TAC(ONCE_DEPTH_CONV PRIME_CONV) THEN CONV_TAC NUM_REDUCE_CONV;
    ALL_TAC] THEN
  EQ_TAC THENL
   [ALL_TAC;
    REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
    MAP_EVERY X_GEN_TAC [`p:num`; `k:num`] THEN
    ASM_CASES_TAC `k = 0` THEN ASM_REWRITE_TAC[EXP; MULT_CLAUSES] THEN
    STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
    ASM_MESON_TAC[LE_1; PRIMITIVE_ROOT_MODULO_PRIMEPOW;
                  PRIMITIVE_ROOT_MODULO_DOUBLE_PRIMEPOW]] THEN
  ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN
  REWRITE_TAC[NOT_EXISTS_THM; TAUT `~(a /\ b /\ c) <=> a /\ b ==> ~c`] THEN
  REWRITE_TAC[DE_MORGAN_THM] THEN STRIP_TAC THEN
  MP_TAC(ISPEC `n:num` PRIMEPOW_FACTOR) THEN
  ANTS_TAC THENL [ASM_ARITH_TAC; REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN
  MAP_EVERY X_GEN_TAC [`p:num`; `k:num`; `m:num`] THEN
  ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[MULT_CLAUSES] THEN
  ASM_CASES_TAC `m = 1` THENL
   [ASM_REWRITE_TAC[MULT_CLAUSES] THEN
    REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
    DISCH_THEN SUBST_ALL_TAC THEN
    FIRST_X_ASSUM(MP_TAC o SPECL [`p:num`; `k:num`]) THEN
    ASM_SIMP_TAC[PRIME_GE_2; ARITH_RULE
     `2 <= p ==> (~(3 <= p) <=> p = 2)`] THEN
    DISCH_THEN SUBST_ALL_TAC THEN ASM_CASES_TAC `3 <= k` THENL
     [ASM_MESON_TAC[NO_PRIMITIVE_ROOT_MODULO_POW2]; ALL_TAC] THEN
    FIRST_X_ASSUM(MP_TAC o MATCH_MP (ARITH_RULE
      `~(3 <= k) ==> 1 <= k ==> k = 1 \/ k = 2`)) THEN
    ASM_REWRITE_TAC[] THEN DISCH_THEN(DISJ_CASES_THEN SUBST_ALL_TAC) THEN
    REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC NUM_REDUCE_CONV;
    ALL_TAC] THEN
  ASM_CASES_TAC `m = 2` THENL
   [ASM_REWRITE_TAC[COPRIME_2] THEN
    ASM_CASES_TAC `p = 2` THEN ASM_REWRITE_TAC[ARITH] THEN
    STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP PRIME_GE_2) THEN
    SUBGOAL_THEN `3 <= p` ASSUME_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
    ASM_MESON_TAC[MULT_SYM];
    ALL_TAC] THEN
  STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
  ASM_CASES_TAC `k = 1` THENL
   [UNDISCH_THEN `k = 1` SUBST_ALL_TAC;
    MP_TAC(SPECL [`p EXP k`; `m:num`] NO_PRIMITIVE_ROOT_MODULO_COMPOSITE) THEN
    REWRITE_TAC[NOT_EXISTS_THM] THEN DISCH_THEN MATCH_MP_TAC THEN
    ASM_REWRITE_TAC[COPRIME_LEXP] THEN
    CONJ_TAC THENL [ALL_TAC; ASM_ARITH_TAC] THEN
    MATCH_MP_TAC(ARITH_RULE `2 EXP 2 <= x ==> 3 <= x`) THEN
    MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `p EXP 2` THEN
    ASM_REWRITE_TAC[EXP_MONO_LE; LE_EXP] THEN
    ASM_SIMP_TAC[PRIME_GE_2; PRIME_IMP_NZ] THEN ASM_ARITH_TAC] THEN
  ASM_CASES_TAC `p = 2` THENL
   [UNDISCH_THEN `p = 2` SUBST_ALL_TAC;
    MP_TAC(SPECL [`p EXP 1`; `m:num`] NO_PRIMITIVE_ROOT_MODULO_COMPOSITE) THEN
    REWRITE_TAC[NOT_EXISTS_THM] THEN DISCH_THEN MATCH_MP_TAC THEN
    ASM_REWRITE_TAC[COPRIME_LEXP] THEN REWRITE_TAC[EXP_1] THEN
    FIRST_ASSUM(MP_TAC o MATCH_MP PRIME_GE_2) THEN ASM_ARITH_TAC] THEN
  RULE_ASSUM_TAC(REWRITE_RULE[EXP_1]) THEN REWRITE_TAC[EXP_1] THEN
  MP_TAC(ISPEC `m:num` PRIMEPOW_FACTOR) THEN
  ANTS_TAC THENL [ASM_ARITH_TAC; REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN
  MAP_EVERY X_GEN_TAC [`q:num`; `j:num`; `r:num`] THEN
  ASM_CASES_TAC `r = 0` THEN ASM_REWRITE_TAC[MULT_CLAUSES] THEN
  STRIP_TAC THEN UNDISCH_TAC `coprime(2,m)` THEN
  ASM_SIMP_TAC[COPRIME_RMUL; COPRIME_REXP; LE_1] THEN
  REWRITE_TAC[COPRIME_2] THEN STRIP_TAC THEN
  SUBGOAL_THEN `3 <= q` ASSUME_TAC THENL
   [MATCH_MP_TAC(ARITH_RULE `~(p = 2) /\ 2 <= p ==> 3 <= p`) THEN
    ASM_SIMP_TAC[PRIME_GE_2] THEN DISCH_TAC THEN
    UNDISCH_TAC `ODD q` THEN ASM_REWRITE_TAC[ARITH];
    ALL_TAC] THEN
  FIRST_X_ASSUM(MP_TAC o SPECL [`q:num`; `j:num`]) THEN
  ASM_CASES_TAC `r = 1` THEN ASM_REWRITE_TAC[MULT_CLAUSES] THEN STRIP_TAC THEN
  MP_TAC(SPECL [`2 * r`; `q EXP j`] NO_PRIMITIVE_ROOT_MODULO_COMPOSITE) THEN
  REWRITE_TAC[COPRIME_LMUL; COPRIME_REXP] THEN ASM_REWRITE_TAC[COPRIME_2] THEN
  ONCE_REWRITE_TAC[COPRIME_SYM] THEN ASM_REWRITE_TAC[] THEN
  REWRITE_TAC[MULT_AC; NOT_EXISTS_THM] THEN DISCH_THEN MATCH_MP_TAC THEN
  ASM_REWRITE_TAC[ARITH_RULE `3 <= r * 2 <=> ~(r = 0 \/ r = 1)`] THEN
  MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `q EXP 1` THEN
  ASM_REWRITE_TAC[LE_EXP; ARITH; COND_ID] THEN ASM_REWRITE_TAC[EXP_1]);;

let PRIMITIVE_ROOT_EXISTS_NONTRIVIAL = prove
 (`!n. (?x. x IN 1..n-1 /\ order n x = phi n) <=>
       n = 2 \/ n = 4 \/
       ?p k. prime p /\ 3 <= p /\ 1 <= k /\ (n = p EXP k \/ n = 2 * p EXP k)`,
  GEN_TAC THEN ASM_CASES_TAC `n = 0` THENL
   [ASM_REWRITE_TAC[IN_NUMSEG] THEN CONV_TAC NUM_REDUCE_CONV THEN
    MATCH_MP_TAC(TAUT `~a /\ ~b ==> (a <=> b)`) THEN
    CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN
    REWRITE_TAC[MULT_EQ_0; EXP_EQ_0] THEN ARITH_TAC;
    ALL_TAC] THEN
  ASM_CASES_TAC `n = 1` THENL
   [ASM_REWRITE_TAC[IN_NUMSEG] THEN CONV_TAC NUM_REDUCE_CONV THEN
    MATCH_MP_TAC(TAUT `~a /\ ~b ==> (a <=> b)`) THEN
    CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN
    REWRITE_TAC[MULT_EQ_1; EXP_EQ_1] THEN ARITH_TAC;
    ALL_TAC] THEN
  MATCH_MP_TAC EQ_TRANS THEN
  EXISTS_TAC `?x. order n x = phi n` THEN CONJ_TAC THENL
   [EQ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN
    DISCH_THEN(X_CHOOSE_TAC `x:num`) THEN EXISTS_TAC `x MOD n` THEN
    ASM_SIMP_TAC[IN_NUMSEG; DIVISION; ARITH_RULE
     `~(n = 0) /\ ~(n = 1) ==> (x <= n - 1 <=> x < n)`] THEN
    CONJ_TAC THENL
     [REWRITE_TAC[ARITH_RULE `1 <= x <=> ~(x = 0)`] THEN
      ASM_SIMP_TAC[GSYM DIVIDES_MOD] THEN DISCH_TAC THEN
      MP_TAC(SPECL [`n:num`; `x:num`] ORDER_EQ_0) THEN
      ASM_SIMP_TAC[LE_1; PHI_LOWERBOUND_1_STRONG] THEN
      REWRITE_TAC[coprime] THEN DISCH_THEN(MP_TAC o SPEC `n:num`) THEN
      ASM_REWRITE_TAC[DIVIDES_REFL];
      FIRST_ASSUM(SUBST1_TAC o SYM) THEN MATCH_MP_TAC ORDER_CONG THEN
      ASM_SIMP_TAC[CONG_MOD]];
    ASM_REWRITE_TAC[PRIMITIVE_ROOT_EXISTS] THEN
    ASM_CASES_TAC `n = 2` THEN ASM_REWRITE_TAC[] THEN
    ASM_CASES_TAC `n = 4` THEN ASM_REWRITE_TAC[] THEN
    AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `p:num` THEN
    AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `k:num` THEN
    CONV_TAC(BINOP_CONV(ONCE_DEPTH_CONV SYM_CONV)) THEN
    ASM_CASES_TAC `k = 0` THEN ASM_SIMP_TAC[LE_1] THEN
    AP_TERM_TAC THEN ASM_ARITH_TAC]);;