1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
|
(* ========================================================================= *)
(* Existence of primitive roots modulo certain numbers. *)
(* ========================================================================= *)
needs "Library/integer.ml";;
needs "Library/isum.ml";;
needs "Library/binomial.ml";;
needs "Library/pocklington.ml";;
needs "Library/multiplicative.ml";;
(* ------------------------------------------------------------------------- *)
(* Some lemmas connecting concepts in the various background theories. *)
(* ------------------------------------------------------------------------- *)
let DIVIDES_BINOM_PRIME = prove
(`!n p. prime p /\ 0 < n /\ n < p ==> p divides binom(p,n)`,
REPEAT STRIP_TAC THEN
MP_TAC(AP_TERM `(divides) p` (SPECL [`p - n:num`; `n:num`] BINOM_FACT)) THEN
ASM_SIMP_TAC[DIVIDES_FACT_PRIME; PRIME_DIVPROD_EQ; SUB_ADD; LT_IMP_LE] THEN
ASM_REWRITE_TAC[GSYM NOT_LT; LT_REFL] THEN
ASM_SIMP_TAC[ARITH_RULE `0 < n /\ n < p ==> p - n < p`]);;
let INT_PRIME = prove
(`!p. int_prime(&p) <=> prime p`,
GEN_TAC THEN REWRITE_TAC[prime; int_prime] THEN
ONCE_REWRITE_TAC[GSYM INT_DIVIDES_LABS] THEN
REWRITE_TAC[GSYM INT_FORALL_ABS; GSYM num_divides; INT_ABS_NUM] THEN
REWRITE_TAC[INT_OF_NUM_GT; INT_OF_NUM_EQ] THEN ASM_CASES_TAC `p = 0` THENL
[ASM_REWRITE_TAC[ARITH; DIVIDES_0] THEN DISCH_THEN(MP_TAC o SPEC `2`);
AP_THM_TAC THEN AP_TERM_TAC] THEN
ASM_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Explicit formula for difference of real/integer polynomials. *)
(* ------------------------------------------------------------------------- *)
let REAL_POLY_DIFF_EXPLICIT = prove
(`!n a x y.
sum(0..n) (\i. a(i) * x pow i) - sum(0..n) (\i. a(i) * y pow i) =
(x - y) *
sum(0..n-1) (\i. sum(i+1..n) (\j. a j * y pow (j - 1 - i)) * x pow i)`,
REPEAT GEN_TAC THEN
REWRITE_TAC[GSYM SUM_SUB_NUMSEG; GSYM REAL_SUB_LDISTRIB] THEN
MP_TAC(ISPEC `n:num` LE_0) THEN SIMP_TAC[SUM_CLAUSES_LEFT; ADD_CLAUSES] THEN
DISCH_THEN(K ALL_TAC) THEN
REWRITE_TAC[REAL_SUB_REFL; REAL_MUL_RZERO; REAL_ADD_LID; real_pow] THEN
SIMP_TAC[REAL_SUB_POW] THEN
ONCE_REWRITE_TAC[REAL_ARITH `a * b * c:real = b * a * c`] THEN
REWRITE_TAC[SUM_LMUL] THEN AP_TERM_TAC THEN
SIMP_TAC[GSYM SUM_LMUL; GSYM SUM_RMUL; SUM_SUM_PRODUCT; FINITE_NUMSEG] THEN
MATCH_MP_TAC SUM_EQ_GENERAL_INVERSES THEN
REPEAT(EXISTS_TAC `\(a:num,b:num). (b,a)`) THEN
REWRITE_TAC[IN_ELIM_PAIR_THM; FORALL_PAIR_THM; REAL_MUL_AC] THEN
REWRITE_TAC[IN_NUMSEG] THEN ARITH_TAC);;
let INT_POLY_DIFF_EXPLICIT = INT_OF_REAL_THM REAL_POLY_DIFF_EXPLICIT;;
(* ------------------------------------------------------------------------- *)
(* Lagrange's theorem on number of roots modulo a prime. *)
(* ------------------------------------------------------------------------- *)
let FINITE_INTSEG_RESTRICT = prove
(`!P a b. FINITE {x:int | a <= x /\ x <= b /\ P x}`,
SIMP_TAC[FINITE_RESTRICT; FINITE_INTSEG; SET_RULE
`{x | P x /\ Q x /\ R x} = {x | x IN {x | P x /\ Q x} /\ R x}`]);;
let INT_POLY_LAGRANGE = prove
(`!p l r.
int_prime p /\ r - l < p
==> !n a. ~(!i. i <= n ==> (a i == &0) (mod p))
==> CARD {x | l <= x /\ x <= r /\
(isum(0..n) (\i. a(i) * x pow i) == &0) (mod p)}
<= n`,
REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[INT_CONG_0_DIVIDES] THEN
MATCH_MP_TAC num_WF THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC(MESON[]
`!a. (~(s = a) ==> CARD s <= n) /\ CARD a <= n ==> CARD s <= n`) THEN
EXISTS_TAC `{}:int->bool` THEN REWRITE_TAC[LE_0; CARD_CLAUSES] THEN
REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; LEFT_IMP_EXISTS_THM; IN_ELIM_THM] THEN
X_GEN_TAC `c:int` THEN STRIP_TAC THEN ASM_CASES_TAC `n = 0` THENL
[MAP_EVERY UNDISCH_TAC
[`~(!i:num. i <= n ==> (p:int) divides (a i))`;
`p divides (isum (0..n) (\i. a i * c pow i))`] THEN
ASM_SIMP_TAC[CONJUNCT1 LE; ISUM_CLAUSES_NUMSEG] THEN
REWRITE_TAC[INT_POW; LEFT_FORALL_IMP_THM; EXISTS_REFL; INT_MUL_RID] THEN
CONV_TAC TAUT;
ALL_TAC] THEN
ASM_CASES_TAC `p divides ((a:num->int) n)` THENL
[ASM_SIMP_TAC[ISUM_CLAUSES_RIGHT; LE_0; LE_1] THEN
ASM_SIMP_TAC[INTEGER_RULE
`(p:int) divides y ==> (p divides (x + y * z) <=> p divides x)`] THEN
MATCH_MP_TAC(ARITH_RULE `x <= n - 1 ==> x <= n`) THEN
FIRST_X_ASSUM(MP_TAC o SPEC `n - 1`) THEN
ASM_REWRITE_TAC[ARITH_RULE `n - 1 < n <=> ~(n = 0)`] THEN
DISCH_THEN MATCH_MP_TAC THEN
ASM_MESON_TAC[ARITH_RULE `i <= n <=> i <= n - 1 \/ i = n`]; ALL_TAC] THEN
MP_TAC(GEN `x:int` (MATCH_MP
(INTEGER_RULE
`a - b:int = c ==> p divides b ==> (p divides a <=> p divides c)`)
(ISPECL [`n:num`; `a:num->int`; `x:int`; `c:int`]
INT_POLY_DIFF_EXPLICIT))) THEN
ASM_SIMP_TAC[INT_PRIME_DIVPROD_EQ] THEN DISCH_THEN(K ALL_TAC) THEN
ASM_REWRITE_TAC[LEFT_OR_DISTRIB; SET_RULE
`{x | q x \/ r x} = {x | q x} UNION {x | r x}`] THEN
SUBGOAL_THEN
`{x:int | l <= x /\ x <= r /\ p divides (x - c)} = {c}`
SUBST1_TAC THENL
[MATCH_MP_TAC(SET_RULE `P c /\ (!x y. P x /\ P y ==> x = y)
==> {x | P x} = {c}`) THEN
ASM_REWRITE_TAC[INT_SUB_REFL; INT_DIVIDES_0] THEN
MAP_EVERY X_GEN_TAC [`u:int`; `v:int`] THEN STRIP_TAC THEN
SUBGOAL_THEN `p divides (u - v:int)` MP_TAC THENL
[ASM_MESON_TAC[INT_CONG; INT_CONG_SYM; INT_CONG_TRANS]; ALL_TAC] THEN
DISCH_THEN(MP_TAC o MATCH_MP INT_DIVIDES_LE) THEN ASM_INT_ARITH_TAC;
ALL_TAC] THEN
REWRITE_TAC[SET_RULE `{a} UNION s = a INSERT s`] THEN
SIMP_TAC[CARD_CLAUSES; FINITE_INTSEG_RESTRICT] THEN
MATCH_MP_TAC(ARITH_RULE
`~(n = 0) /\ x <= n - 1 ==> (if p then x else SUC x) <= n`) THEN
ASM_REWRITE_TAC[] THEN
RULE_ASSUM_TAC(REWRITE_RULE[RIGHT_IMP_FORALL_THM; IMP_IMP]) THEN
FIRST_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[ARITH_RULE `n - 1 < n <=> ~(n = 0)`] THEN
DISCH_THEN(MP_TAC o SPEC `n - 1`) THEN
ASM_SIMP_TAC[LE_REFL; SUB_ADD; LE_1; ISUM_SING_NUMSEG; SUB_REFL] THEN
ASM_REWRITE_TAC[INT_POW; INT_MUL_RID]);;
(* ------------------------------------------------------------------------- *)
(* Laborious instantiation to (x^d == 1) (mod p) over natural numbers. *)
(* ------------------------------------------------------------------------- *)
let NUM_LAGRANGE_LEMMA = prove
(`!p d. prime p /\ 1 <= d
==> CARD {x | x IN 1..p-1 /\ (x EXP d == 1) (mod p)} <= d`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`&p:int`; `&1:int`; `&(p-1):int`] INT_POLY_LAGRANGE) THEN
ANTS_TAC THENL
[ASM_SIMP_TAC[INT_PRIME; INT_LT_SUB_RADD; INT_OF_NUM_ADD; INT_OF_NUM_LT] THEN
ARITH_TAC;
ALL_TAC] THEN
DISCH_THEN(MP_TAC o SPECL
[`d:num`; `\i. if i = d then &1 else if i = 0 then -- &1 else &0:int`]) THEN
REWRITE_TAC[] THEN ANTS_TAC THENL
[DISCH_THEN(MP_TAC o SPEC `d:num`) THEN REWRITE_TAC[LE_REFL] THEN
REWRITE_TAC[INT_CONG_0_DIVIDES; GSYM num_divides; DIVIDES_ONE] THEN
ASM_MESON_TAC[PRIME_1];
ALL_TAC] THEN
REWRITE_TAC[MESON[]
`(if p then x else y) * z:int = if p then x * z else y * z`] THEN
SIMP_TAC[ISUM_CASES; FINITE_NUMSEG; FINITE_RESTRICT] THEN
REWRITE_TAC[INT_POW; INT_MUL_LZERO; ISUM_0; INT_ADD_RID] THEN
MATCH_MP_TAC(ARITH_RULE `x:num <= y ==> y <= d ==> x <= d`) THEN
REWRITE_TAC[IN_ELIM_THM; IN_NUMSEG] THEN
ASM_SIMP_TAC[ARITH_RULE `(0 <= i /\ i <= d) /\ i = d <=> i = d`;
ARITH_RULE `1 <= d
==> (((0 <= i /\ i <= d) /\ ~(i = d)) /\ i = 0 <=>
i = 0)`] THEN
REWRITE_TAC[SING_GSPEC; ISUM_SING] THEN
REWRITE_TAC[INT_ARITH `&1 * x + -- &1 * &1:int = x - &1`] THEN
REWRITE_TAC[INTEGER_RULE `(x - a:int == &0) (mod p) <=>
(x == a) (mod p)`] THEN
MATCH_MP_TAC CARD_SUBSET_IMAGE THEN EXISTS_TAC `num_of_int` THEN
REWRITE_TAC[FINITE_INTSEG_RESTRICT; SUBSET; IN_IMAGE; IN_ELIM_THM] THEN
X_GEN_TAC `n:num` THEN DISCH_TAC THEN EXISTS_TAC `&n:int` THEN
ASM_REWRITE_TAC[NUM_OF_INT_OF_NUM; INT_OF_NUM_LE; INT_OF_NUM_POW] THEN
ASM_REWRITE_TAC[GSYM num_congruent]);;
(* ------------------------------------------------------------------------- *)
(* Count of elements with a given order modulo a prime. *)
(* ------------------------------------------------------------------------- *)
let COUNT_ORDERS_MODULO_PRIME = prove
(`!p d. prime p /\ d divides (p - 1)
==> CARD {x | x IN 1..p-1 /\ order p x = d} = phi(d)`,
let lemma = prove
(`!s f g:A->num.
FINITE s /\ (!x. x IN s ==> f(x) <= g(x)) /\ nsum s f = nsum s g
==> !x. x IN s ==> f x = g x`,
REWRITE_TAC[GSYM LE_ANTISYM] THEN MESON_TAC[NSUM_LE; NSUM_LT; NOT_LE]) in
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN DISCH_TAC THEN
ONCE_REWRITE_TAC[SET_RULE
`(!x. p x ==> q x) <=> (!x. x IN {x | p x} ==> q x)`] THEN
MATCH_MP_TAC lemma THEN SUBGOAL_THEN `~(p - 1 = 0)` ASSUME_TAC THENL
[FIRST_ASSUM(MP_TAC o MATCH_MP PRIME_GE_2) THEN ARITH_TAC; ALL_TAC] THEN
ASM_SIMP_TAC[REWRITE_RULE[ETA_AX] PHI_DIVISORSUM; FINITE_DIVISORS] THEN
CONJ_TAC THENL
[ALL_TAC;
SIMP_TAC[CARD_EQ_NSUM; FINITE_RESTRICT; FINITE_NUMSEG] THEN
W(MP_TAC o PART_MATCH (lhs o rand) NSUM_GROUP o lhs o snd) THEN
REWRITE_TAC[NSUM_CONST_NUMSEG; FINITE_NUMSEG; ADD_SUB; MULT_CLAUSES] THEN
DISCH_THEN MATCH_MP_TAC THEN
REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_ELIM_THM; IN_NUMSEG] THEN
X_GEN_TAC `x:num` THEN STRIP_TAC THEN ASM_SIMP_TAC[GSYM PHI_PRIME] THEN
MATCH_MP_TAC ORDER_DIVIDES_PHI THEN ONCE_REWRITE_TAC[COPRIME_SYM] THEN
MATCH_MP_TAC PRIME_COPRIME_LT THEN ASM_REWRITE_TAC[] THEN
ASM_ARITH_TAC] THEN
X_GEN_TAC `d:num` THEN REWRITE_TAC[IN_ELIM_THM] THEN DISCH_TAC THEN
ASM_CASES_TAC `{x | x IN 1..p-1 /\ order p x = d} = {}` THEN
ASM_REWRITE_TAC[CARD_CLAUSES; LE_0] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN
REWRITE_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `a:num` THEN
REWRITE_TAC[IN_NUMSEG] THEN STRIP_TAC THEN REWRITE_TAC[PHI_ALT] THEN
MATCH_MP_TAC CARD_SUBSET_IMAGE THEN EXISTS_TAC `\m. (a EXP m) MOD p` THEN
REWRITE_TAC[PHI_FINITE_LEMMA] THEN
SUBGOAL_THEN `1 <= d` ASSUME_TAC THENL
[ASM_MESON_TAC[LE_1; DIVIDES_ZERO]; ALL_TAC] THEN
SUBGOAL_THEN `coprime(p,a)` ASSUME_TAC THENL
[ONCE_REWRITE_TAC[COPRIME_SYM] THEN
MATCH_MP_TAC PRIME_COPRIME_LT THEN ASM_REWRITE_TAC[] THEN
ASM_ARITH_TAC;
ALL_TAC] THEN
SUBGOAL_THEN
`{x | x IN 1..p-1 /\ (x EXP d == 1) (mod p)} =
IMAGE (\m. (a EXP m) MOD p) {m | m < d}`
MP_TAC THENL
[CONV_TAC SYM_CONV THEN MATCH_MP_TAC CARD_SUBSET_LE THEN
SIMP_TAC[FINITE_RESTRICT; FINITE_NUMSEG] THEN CONJ_TAC THENL
[REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_ELIM_THM] THEN
X_GEN_TAC `m:num` THEN DISCH_TAC THEN REWRITE_TAC[IN_NUMSEG] THEN
ASM_SIMP_TAC[ARITH_RULE `~(p - 1 = 0) ==> (x <= p - 1 <=> x < p)`] THEN
ASM_SIMP_TAC[DIVISION; PRIME_IMP_NZ] THEN CONJ_TAC THENL
[REWRITE_TAC[ARITH_RULE `1 <= x <=> ~(x = 0)`] THEN
ASM_SIMP_TAC[GSYM DIVIDES_MOD; PRIME_IMP_NZ] THEN
ASM_MESON_TAC[PRIME_DIVEXP; PRIME_COPRIME_EQ];
ASM_SIMP_TAC[CONG; PRIME_IMP_NZ; MOD_EXP_MOD] THEN
REWRITE_TAC[EXP_EXP] THEN ONCE_REWRITE_TAC[MULT_SYM] THEN
REWRITE_TAC[GSYM EXP_EXP] THEN
SUBST1_TAC(SYM(SPEC `m:num` EXP_ONE)) THEN
ASM_SIMP_TAC[GSYM CONG; PRIME_IMP_NZ] THEN
MATCH_MP_TAC CONG_EXP THEN ASM_MESON_TAC[ORDER]];
MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `d:num` THEN
ASM_SIMP_TAC[NUM_LAGRANGE_LEMMA] THEN
GEN_REWRITE_TAC LAND_CONV [GSYM CARD_NUMSEG_LT] THEN
MATCH_MP_TAC EQ_IMP_LE THEN CONV_TAC SYM_CONV THEN
MATCH_MP_TAC CARD_IMAGE_INJ THEN
ASM_SIMP_TAC[GSYM CONG; PRIME_IMP_NZ; FINITE_NUMSEG_LT; IN_ELIM_THM] THEN
ASM_SIMP_TAC[ORDER_DIVIDES_EXPDIFF] THEN REWRITE_TAC[CONG_IMP_EQ]];
MATCH_MP_TAC(SET_RULE
`s' SUBSET s /\ (!x. x IN t /\ f x IN s' ==> x IN t')
==> s = IMAGE f t ==> s' SUBSET IMAGE f t'`) THEN
SIMP_TAC[SUBSET; IN_ELIM_THM; IN_NUMSEG] THEN
CONJ_TAC THENL [MESON_TAC[ORDER]; ALL_TAC] THEN
X_GEN_TAC `m:num` THEN ABBREV_TAC `b = (a EXP m) MOD p` THEN STRIP_TAC THEN
REWRITE_TAC[coprime; divides] THEN X_GEN_TAC `e:num` THEN
DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `m':num` (ASSUME_TAC o SYM))
(X_CHOOSE_THEN `d':num` (ASSUME_TAC o SYM))) THEN
MP_TAC(ISPECL [`p:num`; `b:num`] ORDER_WORKS) THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `d':num`)) THEN
ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC(TAUT `a /\ c /\ (~b ==> d) ==> (a /\ b ==> ~c) ==> d`) THEN
REPEAT CONJ_TAC THENL
[UNDISCH_TAC `1 <= d` THEN EXPAND_TAC "d" THEN
REWRITE_TAC[ARITH_RULE `1 <= d <=> ~(d = 0)`; MULT_EQ_0] THEN
SIMP_TAC[DE_MORGAN_THM; ARITH_RULE `0 < d <=> ~(d = 0)`];
EXPAND_TAC "b" THEN ASM_SIMP_TAC[CONG; PRIME_IMP_NZ; MOD_EXP_MOD] THEN
EXPAND_TAC "m" THEN REWRITE_TAC[EXP_EXP] THEN
ONCE_REWRITE_TAC[ARITH_RULE `(e * m') * d':num = (e * d') * m'`] THEN
ASM_REWRITE_TAC[] THEN REWRITE_TAC[GSYM EXP_EXP] THEN
SUBST1_TAC(SYM(SPEC `m':num` EXP_ONE)) THEN
ASM_SIMP_TAC[GSYM CONG; PRIME_IMP_NZ] THEN
MATCH_MP_TAC CONG_EXP THEN ASM_MESON_TAC[ORDER];
EXPAND_TAC "d" THEN
REWRITE_TAC[ARITH_RULE `~(d < e * d) <=> e * d <= 1 * d`] THEN
REWRITE_TAC[LE_MULT_RCANCEL] THEN
REWRITE_TAC[ARITH_RULE `e <= 1 <=> e = 0 \/ e = 1`] THEN
STRIP_TAC THEN UNDISCH_TAC `e * d':num = d` THEN
ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC]]);;
(* ------------------------------------------------------------------------- *)
(* In particular, primitive roots modulo a prime. *)
(* ------------------------------------------------------------------------- *)
let PRIMITIVE_ROOTS_MODULO_PRIME = prove
(`!p. prime p ==> CARD {x | x IN 1..p-1 /\ order p x = p - 1} = phi(p - 1)`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`p:num`; `p - 1`] COUNT_ORDERS_MODULO_PRIME) THEN
ASM_REWRITE_TAC[DIVIDES_REFL]);;
let PRIMITIVE_ROOT_MODULO_PRIME = prove
(`!p. prime p ==> ?x. x IN 1..p-1 /\ order p x = p - 1`,
REPEAT STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP PRIMITIVE_ROOTS_MODULO_PRIME) THEN
ASM_CASES_TAC `{x | x IN 1..p-1 /\ order p x = p - 1} = {}` THENL
[ASM_REWRITE_TAC[CARD_CLAUSES]; ASM SET_TAC[]] THEN
ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN DISCH_THEN(K ALL_TAC) THEN
MATCH_MP_TAC(ARITH_RULE `1 <= p ==> ~(0 = p)`) THEN
MATCH_MP_TAC PHI_LOWERBOUND_1_STRONG THEN
FIRST_X_ASSUM(MP_TAC o MATCH_MP PRIME_GE_2) THEN ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Now primitive roots modulo odd prime powers. *)
(* ------------------------------------------------------------------------- *)
let COPRIME_1_PLUS_POWER_STEP = prove
(`!p z k. prime p /\ coprime(z,p) /\ 3 <= p /\ 1 <= k
==> ?w. coprime(w,p) /\
(1 + z * p EXP k) EXP p = 1 + w * p EXP (k + 1)`,
REPEAT STRIP_TAC THEN
ONCE_REWRITE_TAC[ARITH_RULE `1 + a * b = a * b + 1`] THEN
REWRITE_TAC[BINOMIAL_THEOREM; EXP_ONE; MULT_CLAUSES] THEN
SIMP_TAC[NSUM_CLAUSES_LEFT; LE_0; EXP; binom; MULT_CLAUSES; ADD_CLAUSES] THEN
SUBGOAL_THEN `1 <= p` MP_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
SIMP_TAC[NSUM_CLAUSES_LEFT; BINOM_1; EXP_1; ARITH] THEN DISCH_TAC THEN
SUBGOAL_THEN
`(p EXP (k + 2)) divides (nsum(2..p) (\i. binom(p,i) * (z * p EXP k) EXP i))`
MP_TAC THENL
[ALL_TAC;
REWRITE_TAC[divides; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `d:num` THEN DISCH_THEN SUBST1_TAC THEN
EXISTS_TAC `z + p * d:num` THEN
ASM_REWRITE_TAC[NUMBER_RULE
`coprime(z + p * d:num,p) <=> coprime(z,p)`] THEN
REWRITE_TAC[EXP_ADD] THEN ARITH_TAC] THEN
MATCH_MP_TAC NSUM_CLOSED THEN
REWRITE_TAC[DIVIDES_0; DIVIDES_ADD; IN_NUMSEG] THEN
X_GEN_TAC `j:num` THEN STRIP_TAC THEN REWRITE_TAC[MULT_EXP] THEN
ONCE_REWRITE_TAC[ARITH_RULE `a * b * c:num = b * c * a`] THEN
REWRITE_TAC[EXP_EXP] THEN
MATCH_MP_TAC DIVIDES_LMUL THEN ASM_CASES_TAC `j:num = p` THENL
[MATCH_MP_TAC DIVIDES_RMUL THEN
ASM_SIMP_TAC[DIVIDES_EXP_LE; ARITH_RULE `3 <= p ==> 2 <= p`] THEN
MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `k * 3` THEN CONJ_TAC THENL
[ASM_ARITH_TAC; ASM_REWRITE_TAC[LE_MULT_LCANCEL]];
ONCE_REWRITE_TAC[MULT_SYM] THEN
REWRITE_TAC[EXP; ARITH_RULE `k + 2 = SUC(k + 1)`] THEN
MATCH_MP_TAC DIVIDES_MUL2 THEN CONJ_TAC THENL
[MATCH_MP_TAC DIVIDES_BINOM_PRIME THEN ASM_REWRITE_TAC[] THEN
ASM_ARITH_TAC;
ASM_SIMP_TAC[DIVIDES_EXP_LE; ARITH_RULE `3 <= p ==> 2 <= p`] THEN
MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `k * 2` THEN CONJ_TAC THENL
[ASM_ARITH_TAC; ASM_REWRITE_TAC[LE_MULT_LCANCEL]]]]);;
let COPRIME_1_PLUS_POWER = prove
(`!p z k. prime p /\ coprime(z,p) /\ 3 <= p
==> ?w. coprime(w,p) /\
(1 + z * p) EXP (p EXP k) = 1 + w * p EXP (k + 1)`,
GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN
REWRITE_TAC[ADD_CLAUSES; EXP_1; EXP] THENL [MESON_TAC[]; ALL_TAC] THEN
REWRITE_TAC[GSYM(ONCE_REWRITE_RULE[MULT_SYM] EXP_EXP)] THEN
DISCH_THEN(fun th -> POP_ASSUM MP_TAC THEN STRIP_ASSUME_TAC th) THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `w:num` STRIP_ASSUME_TAC) THEN
MP_TAC(ISPECL [`p:num`; `w:num`; `k + 1`] COPRIME_1_PLUS_POWER_STEP) THEN
ASM_REWRITE_TAC[ARITH_RULE `1 <= k + 1`] THEN
REWRITE_TAC[EXP_ADD; EXP_1; MULT_AC]);;
let PRIMITIVE_ROOT_MODULO_PRIMEPOWS = prove
(`!p. prime p /\ 3 <= p
==> ?g. !j. 1 <= j ==> order(p EXP j) g = phi(p EXP j)`,
REPEAT STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP PRIMITIVE_ROOT_MODULO_PRIME) THEN
REWRITE_TAC[IN_NUMSEG] THEN
DISCH_THEN(X_CHOOSE_THEN `g:num` STRIP_ASSUME_TAC) THEN
MP_TAC(ISPECL [`p:num`; `g:num`] ORDER) THEN
ASM_SIMP_TAC[CONG_TO_1; EXP_EQ_0; LE_1] THEN
DISCH_THEN(X_CHOOSE_THEN `y:num` STRIP_ASSUME_TAC) THEN
SUBGOAL_THEN `?x. coprime(p,y + (p - 1) * g EXP (p - 2) * x)` CHOOSE_TAC THENL
[MP_TAC(ISPECL [`(&p - &1:int) * &g pow (p - 2)`; `&1 - &y:int`; `&p:int`]
INT_CONG_SOLVE_POS) THEN
ANTS_TAC THENL
[REWRITE_TAC[INT_COPRIME_LMUL; INT_COPRIME_LPOW] THEN
REWRITE_TAC[INTEGER_RULE `coprime(p - &1,p)`; GSYM num_coprime] THEN
ASM_SIMP_TAC[INT_OF_NUM_EQ; ARITH_RULE `3 <= p ==> ~(p = 0)`] THEN
DISJ1_TAC THEN MATCH_MP_TAC PRIME_COPRIME_LT THEN
ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC;
REWRITE_TAC[GSYM INT_EXISTS_POS] THEN MATCH_MP_TAC MONO_EXISTS THEN
GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP (INTEGER_RULE
`(x:int == &1 - y) (mod n) ==> coprime(n,y + x)`)) THEN
ASM_SIMP_TAC[INT_OF_NUM_SUB; INT_OF_NUM_POW; INT_OF_NUM_MUL;
INT_OF_NUM_ADD; GSYM num_coprime;
ARITH_RULE `3 <= p ==> 1 <= p`] THEN
REWRITE_TAC[MULT_ASSOC]];
ALL_TAC] THEN
EXISTS_TAC `g + p * x:num` THEN X_GEN_TAC `j:num` THEN DISCH_TAC THEN
STRIP_ASSUME_TAC(ISPECL [`p EXP j`; `g + p * x:num`] ORDER_WORKS) THEN
MP_TAC(SPECL [`p:num`; `g + p * x:num`; `order (p EXP j) (g + p * x)`]
ORDER_DIVIDES) THEN
SUBGOAL_THEN `order p (g + p * x) = p - 1` SUBST1_TAC THENL
[ASM_MESON_TAC[ORDER_CONG; NUMBER_RULE `(g:num == g + p * x) (mod p)`];
ALL_TAC] THEN
MATCH_MP_TAC(TAUT `a /\ (b ==> c) ==> (a <=> b) ==> c`) THEN CONJ_TAC THENL
[MATCH_MP_TAC(NUMBER_RULE
`!y. (a == 1) (mod y) /\ x divides y ==> (a == 1) (mod x)`) THEN
EXISTS_TAC `p EXP j` THEN ASM_REWRITE_TAC[] THEN
ASM_SIMP_TAC[DIVIDES_REFL; DIVIDES_REXP; LE_1];
REWRITE_TAC[divides; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `d:num` THEN
DISCH_THEN(fun th -> SUBST_ALL_TAC th THEN ASSUME_TAC th)] THEN
MP_TAC(ISPECL [`g + p * x:num`; `p EXP j`] ORDER_DIVIDES_PHI) THEN
ASM_SIMP_TAC[PHI_PRIMEPOW; LE_1; COPRIME_LEXP] THEN ANTS_TAC THENL
[REWRITE_TAC[NUMBER_RULE `coprime(p,g + p * x) <=> coprime(g,p)`] THEN
MATCH_MP_TAC PRIME_COPRIME_LT THEN
ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC;
ALL_TAC] THEN
SUBGOAL_THEN `p EXP j - p EXP (j - 1) = (p - 1) * p EXP (j - 1)`
SUBST1_TAC THENL
[UNDISCH_TAC `1 <= j` THEN SPEC_TAC(`j:num`,`j:num`) THEN
INDUCT_TAC THEN REWRITE_TAC[ARITH; SUC_SUB1] THEN
REWRITE_TAC[EXP; RIGHT_SUB_DISTRIB] THEN ARITH_TAC;
ALL_TAC] THEN
DISCH_THEN(MP_TAC o MATCH_MP (NUMBER_RULE
`(a * x:num) divides (a * y) ==> ~(a = 0) ==> x divides y`)) THEN
ASM_SIMP_TAC[DIVIDES_PRIMEPOW; ARITH_RULE `3 <= p ==> ~(p - 1 = 0)`] THEN
DISCH_THEN(X_CHOOSE_THEN `k:num`
(CONJUNCTS_THEN2 ASSUME_TAC SUBST_ALL_TAC)) THEN
AP_TERM_TAC THEN AP_TERM_TAC THEN
SUBGOAL_THEN `?z. (g + p * x) EXP (p - 1) = 1 + z * p /\ coprime(z,p)`
STRIP_ASSUME_TAC THENL
[REWRITE_TAC[BINOMIAL_THEOREM] THEN
ASM_SIMP_TAC[NSUM_CLAUSES_RIGHT; LE_0; ARITH_RULE
`3 <= p ==> 0 < p - 1`] THEN
REWRITE_TAC[BINOM_REFL; SUB_REFL; EXP; MULT_CLAUSES] THEN
EXISTS_TAC
`y + nsum(0..p-2) (\k. binom(p - 1,k) * g EXP k *
p EXP (p - 2 - k) * x EXP (p - 1 - k))` THEN
REWRITE_TAC[ARITH_RULE `n - 1 - 1 = n - 2`] THEN
SIMP_TAC[ARITH_RULE `s + 1 + y * p = 1 + (y + t) * p <=> s = p * t`] THEN
CONJ_TAC THENL
[REWRITE_TAC[GSYM NSUM_LMUL] THEN MATCH_MP_TAC NSUM_EQ THEN
X_GEN_TAC `i:num` THEN REWRITE_TAC[IN_NUMSEG] THEN STRIP_TAC THEN
SIMP_TAC[ARITH_RULE `p * b * g * pp * x:num = b * g * (p * pp) * x`] THEN
AP_TERM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[MULT_EXP] THEN
REWRITE_TAC[GSYM(CONJUNCT2 EXP)] THEN
AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN ASM_ARITH_TAC;
ALL_TAC] THEN
ASM_SIMP_TAC[NSUM_CLAUSES_RIGHT; LE_0; ARITH_RULE
`3 <= p ==> 0 < p - 2`] THEN
REWRITE_TAC[BINOM_REFL; SUB_REFL; EXP; MULT_CLAUSES] THEN
ASM_SIMP_TAC[EXP_1; ARITH_RULE `3 <= p ==> p - 1 - (p - 2) = 1`] THEN
SUBGOAL_THEN `binom(p - 1,p - 2) = p - 1` SUBST1_TAC THENL
[SUBGOAL_THEN `p - 1 = SUC(p - 2)` SUBST1_TAC THENL
[ASM_ARITH_TAC; REWRITE_TAC[BINOM_PENULT]];
ALL_TAC] THEN
MATCH_MP_TAC(NUMBER_RULE
`coprime(p:num,y + x) /\ p divides z ==> coprime(y + z + x,p)`) THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC NSUM_CLOSED THEN
REWRITE_TAC[DIVIDES_0; DIVIDES_ADD; IN_NUMSEG] THEN
X_GEN_TAC `i:num` THEN STRIP_TAC THEN
REPLICATE_TAC 2 (MATCH_MP_TAC DIVIDES_LMUL) THEN
MATCH_MP_TAC DIVIDES_RMUL THEN MATCH_MP_TAC DIVIDES_REXP THEN
REWRITE_TAC[DIVIDES_REFL] THEN ASM_ARITH_TAC;
ALL_TAC] THEN
SUBGOAL_THEN
`?w. (g + p * x) EXP ((p - 1) * p EXP k) = 1 + p EXP (k + 1) * w /\
coprime(w,p)`
STRIP_ASSUME_TAC THENL
[ASM_REWRITE_TAC[GSYM EXP_EXP] THEN
ONCE_REWRITE_TAC[CONJ_SYM] THEN
GEN_REWRITE_TAC (BINDER_CONV o funpow 3 RAND_CONV) [MULT_SYM] THEN
MATCH_MP_TAC COPRIME_1_PLUS_POWER THEN ASM_REWRITE_TAC[];
UNDISCH_TAC
`((g + p * x) EXP ((p - 1) * p EXP k) == 1) (mod (p EXP j))` THEN
ASM_REWRITE_TAC[NUMBER_RULE `(1 + x == 1) (mod n) <=> n divides x`] THEN
ONCE_REWRITE_TAC[MULT_SYM] THEN DISCH_TAC THEN
MP_TAC(SPECL [`p:num`; `j:num`; `w:num`; `p EXP (k + 1)`]
COPRIME_EXP_DIVPROD) THEN
ONCE_REWRITE_TAC[COPRIME_SYM] THEN ASM_REWRITE_TAC[] THEN
ASM_SIMP_TAC[DIVIDES_EXP_LE; ARITH_RULE `3 <= p ==> 2 <= p`] THEN
UNDISCH_TAC `k <= j - 1` THEN ARITH_TAC]);;
let PRIMITIVE_ROOT_MODULO_PRIMEPOW = prove
(`!p k. prime p /\ 3 <= p /\ 1 <= k
==> ?x. x IN 1..(p EXP k - 1) /\ order (p EXP k) x = phi(p EXP k)`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPEC `p:num` PRIMITIVE_ROOT_MODULO_PRIMEPOWS) THEN
ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `x:num` THEN DISCH_THEN(MP_TAC o SPEC `k:num`) THEN
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
EXISTS_TAC `x MOD (p EXP k)` THEN CONJ_TAC THENL
[REWRITE_TAC[IN_NUMSEG; ARITH_RULE `1 <= x <=> ~(x = 0)`] THEN
CONJ_TAC THENL
[MP_TAC(ISPECL [`p EXP k`; `x:num`] DIVIDES_MOD) THEN
ASM_SIMP_TAC[EXP_EQ_0; ARITH_RULE `3 <= p ==> ~(p = 0)`] THEN
DISCH_THEN(SUBST1_TAC o SYM) THEN DISCH_TAC THEN
MP_TAC(ISPECL [`p EXP k`; `x:num`] ORDER) THEN
DISCH_THEN(MP_TAC o MATCH_MP (NUMBER_RULE
`(x == 1) (mod p) ==> p divides x ==> p divides 1`)) THEN
ASM_SIMP_TAC[EXP_EQ_1; DIVIDES_ONE; LE_1] THEN
ASM_SIMP_TAC[ARITH_RULE `3 <= p ==> ~(p = 1)`] THEN
MATCH_MP_TAC DIVIDES_REXP THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC(ARITH_RULE `1 <= p ==> ~(p = 0)`) THEN
MATCH_MP_TAC PHI_LOWERBOUND_1_STRONG THEN
MATCH_MP_TAC(ARITH_RULE `~(p = 0) ==> 1 <= p`) THEN
ASM_SIMP_TAC[EXP_EQ_0] THEN ASM_ARITH_TAC;
MATCH_MP_TAC(ARITH_RULE `a < b ==> a <= b - 1`) THEN
MP_TAC(ISPECL [`x:num`; `p EXP k`] DIVISION) THEN
ASM_SIMP_TAC[EXP_EQ_0; ARITH_RULE `3 <= p ==> ~(p = 0)`]];
MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `order (p EXP k) x` THEN
CONJ_TAC THENL [ALL_TAC; ASM_REWRITE_TAC[]] THEN
MATCH_MP_TAC ORDER_CONG THEN MATCH_MP_TAC CONG_MOD THEN
ASM_SIMP_TAC[EXP_EQ_0; ARITH_RULE `3 <= p ==> ~(p = 0)`]]);;
(* ------------------------------------------------------------------------- *)
(* Double prime powers and the other remaining positive cases 2 and 4. *)
(* ------------------------------------------------------------------------- *)
let PRIMITIVE_ROOT_MODULO_2 = prove
(`?x. x IN 1..1 /\ order 2 x = phi(2)`,
EXISTS_TAC `1` THEN REWRITE_TAC[IN_NUMSEG; ARITH] THEN
SIMP_TAC[PHI_PRIME; PRIME_2] THEN CONV_TAC NUM_REDUCE_CONV THEN
MATCH_MP_TAC ORDER_UNIQUE THEN
REWRITE_TAC[ARITH_RULE `~(0 < m /\ m < 1)`] THEN
CONV_TAC NUM_REDUCE_CONV THEN CONV_TAC(ONCE_DEPTH_CONV CONG_CONV) THEN
REWRITE_TAC[]);;
let PRIMITIVE_ROOT_MODULO_4 = prove
(`?x. x IN 1..3 /\ order 4 x = phi(4)`,
EXISTS_TAC `3` THEN REWRITE_TAC[IN_NUMSEG; ARITH] THEN
SUBST1_TAC(ARITH_RULE `4 = 2 EXP 2`) THEN
SIMP_TAC[PHI_PRIMEPOW; PRIME_2] THEN CONV_TAC NUM_REDUCE_CONV THEN
MATCH_MP_TAC ORDER_UNIQUE THEN
REWRITE_TAC[FORALL_UNWIND_THM2; ARITH_RULE `0 < m /\ m < 2 <=> m = 1`] THEN
CONV_TAC NUM_REDUCE_CONV THEN CONV_TAC(ONCE_DEPTH_CONV CONG_CONV) THEN
REWRITE_TAC[]);;
let PRIMITIVE_ROOT_DOUBLE_LEMMA = prove
(`!n a. ODD n /\ ODD a /\ order n a = phi n
==> order (2 * n) a = phi(2 * n)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC ORDER_UNIQUE THEN
ASM_SIMP_TAC[CONG_CHINESE_EQ; COPRIME_2; PHI_MULTIPLICATIVE] THEN
REWRITE_TAC[PHI_2; MULT_CLAUSES] THEN REPEAT CONJ_TAC THENL
[ASM_MESON_TAC[ODD; LE_1; PHI_LOWERBOUND_1_STRONG];
ASM_REWRITE_TAC[GSYM ODD_MOD_2; ODD_EXP];
ASM_MESON_TAC[ORDER_WORKS];
ASM_MESON_TAC[ORDER_WORKS]]);;
let PRIMITIVE_ROOT_MODULO_DOUBLE_PRIMEPOW = prove
(`!p k. prime p /\ 3 <= p /\ 1 <= k
==> ?x. x IN 1..(2 * p EXP k - 1) /\
order (2 * p EXP k) x = phi(2 * p EXP k)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN MP_TAC(SPEC `p:num` PRIME_ODD) THEN
ASM_SIMP_TAC[ARITH_RULE `3 <= p ==> ~(p = 2)`] THEN DISCH_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP PRIMITIVE_ROOT_MODULO_PRIMEPOW) THEN
DISCH_THEN(X_CHOOSE_THEN `g:num` MP_TAC) THEN REWRITE_TAC[IN_NUMSEG] THEN
STRIP_TAC THEN DISJ_CASES_TAC (SPEC `g:num` EVEN_OR_ODD) THENL
[EXISTS_TAC `g + p EXP k` THEN CONJ_TAC THENL
[CONJ_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
MATCH_MP_TAC(ARITH_RULE
`g <= x - 1 /\ p EXP 1 <= x ==> g + p <= 2 * x - 1`) THEN
ASM_REWRITE_TAC[LE_EXP] THEN ASM_ARITH_TAC;
ALL_TAC];
EXISTS_TAC `g:num` THEN CONJ_TAC THENL [ASM_ARITH_TAC; ALL_TAC]] THEN
MATCH_MP_TAC PRIMITIVE_ROOT_DOUBLE_LEMMA THEN
ASM_REWRITE_TAC[ODD_ADD; ODD_EXP; NOT_ODD] THEN
FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN MATCH_MP_TAC ORDER_CONG THEN
CONV_TAC NUMBER_RULE);;
(* ------------------------------------------------------------------------- *)
(* A couple of degenerate case not usually considered. *)
(* ------------------------------------------------------------------------- *)
let PRIMITIVE_ROOT_MODULO_0 = prove
(`(?x. order 0 x = phi(0))`,
EXISTS_TAC `2` THEN REWRITE_TAC[PHI_0; ORDER_EQ_0; COPRIME_2; ODD]);;
let PRIMITIVE_ROOT_MODULO_1 = prove
(`?x. order 1 x = phi(1)`,
EXISTS_TAC `1` THEN REWRITE_TAC[PHI_1] THEN MATCH_MP_TAC ORDER_UNIQUE THEN
REWRITE_TAC[ARITH_RULE `0 < m /\ m < 1 <=> F`; EXP_1; CONG_REFL] THEN
ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* The negative results. *)
(* ------------------------------------------------------------------------- *)
let CONG_TO_1_POW2 = prove
(`!k x. ODD x /\ 1 <= k ==> (x EXP (2 EXP k) == 1) (mod (2 EXP (k + 2)))`,
INDUCT_TAC THEN REWRITE_TAC[ADD_CLAUSES; EXP] THEN
CONV_TAC NUM_REDUCE_CONV THEN GEN_TAC THEN ASM_CASES_TAC `k = 0` THENL
[ASM_REWRITE_TAC[] THEN CONV_TAC NUM_REDUCE_CONV THEN
SIMP_TAC[ODD_EXISTS; LEFT_IMP_EXISTS_THM] THEN
REPEAT STRIP_TAC THEN REWRITE_TAC[CONG_TO_1] THEN DISJ2_TAC THEN
REWRITE_TAC[GSYM EVEN_EXISTS; ARITH_RULE
`SUC(2 * m) EXP 2 = 1 + q * 8 <=> m * (m + 1) = 2 * q`] THEN
REWRITE_TAC[EVEN_MULT; EVEN_ADD; ARITH] THEN CONV_TAC TAUT;
STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:num`) THEN
ASM_SIMP_TAC[ONCE_REWRITE_RULE[MULT_SYM] EXP_MULT; LE_1] THEN
REWRITE_TAC[CONG_TO_1; EXP_EQ_1; ADD_EQ_0; MULT_EQ_1] THEN
CONV_TAC NUM_REDUCE_CONV THEN
DISCH_THEN(X_CHOOSE_THEN `m:num` SUBST1_TAC) THEN
REWRITE_TAC[EQ_MULT_LCANCEL; EXP_EQ_0; ARITH; GSYM EVEN_EXISTS; ARITH_RULE
`(1 + m * n) EXP 2 = 1 + q * 2 * n <=>
n * m * (2 + m * n) = n * 2 * q`] THEN
REWRITE_TAC[EVEN_MULT; EVEN_ADD; EVEN_EXP; ARITH] THEN ARITH_TAC]);;
let NO_PRIMITIVE_ROOT_MODULO_POW2 = prove
(`!k. 3 <= k ==> ~(?x. order (2 EXP k) x = phi(2 EXP k))`,
REPEAT STRIP_TAC THEN DISJ_CASES_TAC(SPEC `x:num` EVEN_OR_ODD) THENL
[FIRST_X_ASSUM(MP_TAC o MATCH_MP (ARITH_RULE
`a = b ==> 1 <= b /\ a = 0 ==> F`)) THEN
ASM_SIMP_TAC[ORDER_EQ_0; PHI_LOWERBOUND_1_STRONG; LE_1; EXP_EQ_0; ARITH;
COPRIME_LEXP; COPRIME_2; DE_MORGAN_THM; NOT_ODD] THEN
ASM_ARITH_TAC;
MP_TAC(CONJUNCT2(ISPECL [`2 EXP k`; `x:num`] ORDER_WORKS)) THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(MP_TAC o SPEC `2 EXP (k - 2)`) THEN
ASM_SIMP_TAC[PHI_PRIMEPOW; PRIME_2; ARITH_RULE `3 <= k ==> ~(k = 0)`] THEN
ABBREV_TAC `j = k - 2` THEN
SUBGOAL_THEN `k - 1 = j + 1` SUBST1_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
SUBGOAL_THEN `k = j + 2` SUBST1_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
SUBGOAL_THEN `1 <= j` ASSUME_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
ASM_SIMP_TAC[CONG_TO_1_POW2; ARITH_RULE `0 < x <=> ~(x = 0)`] THEN
REWRITE_TAC[EXP_EQ_0; ARITH] THEN
MATCH_MP_TAC(ARITH_RULE `a + b:num < c ==> a < c - b`) THEN
REWRITE_TAC[EXP_ADD] THEN CONV_TAC NUM_REDUCE_CONV THEN
REWRITE_TAC[ARITH_RULE `x + x * 2 < x * 4 <=> ~(x = 0)`] THEN
REWRITE_TAC[EXP_EQ_0; ARITH]]);;
let NO_PRIMITIVE_ROOT_MODULO_COMPOSITE = prove
(`!a b. 3 <= a /\ 3 <= b /\ coprime(a,b)
==> ~(?x. order (a * b) x = phi(a * b))`,
SIMP_TAC[PHI_MULTIPLICATIVE] THEN REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`a * b:num`; `x:num`] ORDER_WORKS) THEN
ASM_SIMP_TAC[CONG_CHINESE_EQ] THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `(phi a * phi b) DIV 2`) THEN
REWRITE_TAC[ARITH_RULE `0 < a DIV 2 /\ a DIV 2 < a <=> 2 <= a`; NOT_IMP] THEN
REPEAT CONJ_TAC THENL
[MATCH_MP_TAC(ARITH_RULE `2 * 2 <= x ==> 2 <= x`) THEN
MATCH_MP_TAC LE_MULT2 THEN ASM_SIMP_TAC[PHI_LOWERBOUND_2];
SUBGOAL_THEN `EVEN(phi b)` MP_TAC THENL
[ASM_SIMP_TAC[EVEN_PHI]; SIMP_TAC[EVEN_EXISTS; LEFT_IMP_EXISTS_THM]] THEN
REWRITE_TAC[ARITH_RULE `(a * 2 * b) DIV 2 = a * b`];
SUBGOAL_THEN `EVEN(phi a)` MP_TAC THENL
[ASM_SIMP_TAC[EVEN_PHI]; SIMP_TAC[EVEN_EXISTS; LEFT_IMP_EXISTS_THM]] THEN
REWRITE_TAC[ARITH_RULE `((2 * a) * b) DIV 2 = b * a`]] THEN
X_GEN_TAC `m:num` THEN DISCH_THEN SUBST1_TAC THEN
ASM_REWRITE_TAC[GSYM EXP_EXP] THEN SUBST1_TAC(SYM(SPEC `m:num` EXP_ONE)) THEN
MATCH_MP_TAC CONG_EXP THEN MATCH_MP_TAC FERMAT_LITTLE THEN
MP_TAC(ISPECL [`a * b:num`; `x:num`] ORDER_EQ_0) THEN
ASM_SIMP_TAC[MULT_EQ_0; LE_1; PHI_LOWERBOUND_1_STRONG;
ARITH_RULE `3 <= p ==> 1 <= p`] THEN
CONV_TAC NUMBER_RULE);;
(* ------------------------------------------------------------------------- *)
(* Equivalences, one with some degenerate cases, one more conventional. *)
(* ------------------------------------------------------------------------- *)
let PRIMITIVE_ROOT_EXISTS = prove
(`!n. (?x. order n x = phi n) <=>
n = 0 \/ n = 2 \/ n = 4 \/
?p k. prime p /\ 3 <= p /\ (n = p EXP k \/ n = 2 * p EXP k)`,
GEN_TAC THEN
ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[PRIMITIVE_ROOT_MODULO_0] THEN
ASM_CASES_TAC `n = 2` THENL
[ASM_MESON_TAC[PRIMITIVE_ROOT_MODULO_2]; ALL_TAC] THEN
ASM_CASES_TAC `n = 4` THENL
[ASM_MESON_TAC[PRIMITIVE_ROOT_MODULO_4]; ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `n = 1` THENL
[ASM_REWRITE_TAC[PRIMITIVE_ROOT_MODULO_1] THEN
MAP_EVERY EXISTS_TAC [`3`; `0`] THEN
CONV_TAC(ONCE_DEPTH_CONV PRIME_CONV) THEN CONV_TAC NUM_REDUCE_CONV;
ALL_TAC] THEN
EQ_TAC THENL
[ALL_TAC;
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`p:num`; `k:num`] THEN
ASM_CASES_TAC `k = 0` THEN ASM_REWRITE_TAC[EXP; MULT_CLAUSES] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[LE_1; PRIMITIVE_ROOT_MODULO_PRIMEPOW;
PRIMITIVE_ROOT_MODULO_DOUBLE_PRIMEPOW]] THEN
ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN
REWRITE_TAC[NOT_EXISTS_THM; TAUT `~(a /\ b /\ c) <=> a /\ b ==> ~c`] THEN
REWRITE_TAC[DE_MORGAN_THM] THEN STRIP_TAC THEN
MP_TAC(ISPEC `n:num` PRIMEPOW_FACTOR) THEN
ANTS_TAC THENL [ASM_ARITH_TAC; REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN
MAP_EVERY X_GEN_TAC [`p:num`; `k:num`; `m:num`] THEN
ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[MULT_CLAUSES] THEN
ASM_CASES_TAC `m = 1` THENL
[ASM_REWRITE_TAC[MULT_CLAUSES] THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
DISCH_THEN SUBST_ALL_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`p:num`; `k:num`]) THEN
ASM_SIMP_TAC[PRIME_GE_2; ARITH_RULE
`2 <= p ==> (~(3 <= p) <=> p = 2)`] THEN
DISCH_THEN SUBST_ALL_TAC THEN ASM_CASES_TAC `3 <= k` THENL
[ASM_MESON_TAC[NO_PRIMITIVE_ROOT_MODULO_POW2]; ALL_TAC] THEN
FIRST_X_ASSUM(MP_TAC o MATCH_MP (ARITH_RULE
`~(3 <= k) ==> 1 <= k ==> k = 1 \/ k = 2`)) THEN
ASM_REWRITE_TAC[] THEN DISCH_THEN(DISJ_CASES_THEN SUBST_ALL_TAC) THEN
REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC NUM_REDUCE_CONV;
ALL_TAC] THEN
ASM_CASES_TAC `m = 2` THENL
[ASM_REWRITE_TAC[COPRIME_2] THEN
ASM_CASES_TAC `p = 2` THEN ASM_REWRITE_TAC[ARITH] THEN
STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP PRIME_GE_2) THEN
SUBGOAL_THEN `3 <= p` ASSUME_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
ASM_MESON_TAC[MULT_SYM];
ALL_TAC] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
ASM_CASES_TAC `k = 1` THENL
[UNDISCH_THEN `k = 1` SUBST_ALL_TAC;
MP_TAC(SPECL [`p EXP k`; `m:num`] NO_PRIMITIVE_ROOT_MODULO_COMPOSITE) THEN
REWRITE_TAC[NOT_EXISTS_THM] THEN DISCH_THEN MATCH_MP_TAC THEN
ASM_REWRITE_TAC[COPRIME_LEXP] THEN
CONJ_TAC THENL [ALL_TAC; ASM_ARITH_TAC] THEN
MATCH_MP_TAC(ARITH_RULE `2 EXP 2 <= x ==> 3 <= x`) THEN
MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `p EXP 2` THEN
ASM_REWRITE_TAC[EXP_MONO_LE; LE_EXP] THEN
ASM_SIMP_TAC[PRIME_GE_2; PRIME_IMP_NZ] THEN ASM_ARITH_TAC] THEN
ASM_CASES_TAC `p = 2` THENL
[UNDISCH_THEN `p = 2` SUBST_ALL_TAC;
MP_TAC(SPECL [`p EXP 1`; `m:num`] NO_PRIMITIVE_ROOT_MODULO_COMPOSITE) THEN
REWRITE_TAC[NOT_EXISTS_THM] THEN DISCH_THEN MATCH_MP_TAC THEN
ASM_REWRITE_TAC[COPRIME_LEXP] THEN REWRITE_TAC[EXP_1] THEN
FIRST_ASSUM(MP_TAC o MATCH_MP PRIME_GE_2) THEN ASM_ARITH_TAC] THEN
RULE_ASSUM_TAC(REWRITE_RULE[EXP_1]) THEN REWRITE_TAC[EXP_1] THEN
MP_TAC(ISPEC `m:num` PRIMEPOW_FACTOR) THEN
ANTS_TAC THENL [ASM_ARITH_TAC; REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN
MAP_EVERY X_GEN_TAC [`q:num`; `j:num`; `r:num`] THEN
ASM_CASES_TAC `r = 0` THEN ASM_REWRITE_TAC[MULT_CLAUSES] THEN
STRIP_TAC THEN UNDISCH_TAC `coprime(2,m)` THEN
ASM_SIMP_TAC[COPRIME_RMUL; COPRIME_REXP; LE_1] THEN
REWRITE_TAC[COPRIME_2] THEN STRIP_TAC THEN
SUBGOAL_THEN `3 <= q` ASSUME_TAC THENL
[MATCH_MP_TAC(ARITH_RULE `~(p = 2) /\ 2 <= p ==> 3 <= p`) THEN
ASM_SIMP_TAC[PRIME_GE_2] THEN DISCH_TAC THEN
UNDISCH_TAC `ODD q` THEN ASM_REWRITE_TAC[ARITH];
ALL_TAC] THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`q:num`; `j:num`]) THEN
ASM_CASES_TAC `r = 1` THEN ASM_REWRITE_TAC[MULT_CLAUSES] THEN STRIP_TAC THEN
MP_TAC(SPECL [`2 * r`; `q EXP j`] NO_PRIMITIVE_ROOT_MODULO_COMPOSITE) THEN
REWRITE_TAC[COPRIME_LMUL; COPRIME_REXP] THEN ASM_REWRITE_TAC[COPRIME_2] THEN
ONCE_REWRITE_TAC[COPRIME_SYM] THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[MULT_AC; NOT_EXISTS_THM] THEN DISCH_THEN MATCH_MP_TAC THEN
ASM_REWRITE_TAC[ARITH_RULE `3 <= r * 2 <=> ~(r = 0 \/ r = 1)`] THEN
MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `q EXP 1` THEN
ASM_REWRITE_TAC[LE_EXP; ARITH; COND_ID] THEN ASM_REWRITE_TAC[EXP_1]);;
let PRIMITIVE_ROOT_EXISTS_NONTRIVIAL = prove
(`!n. (?x. x IN 1..n-1 /\ order n x = phi n) <=>
n = 2 \/ n = 4 \/
?p k. prime p /\ 3 <= p /\ 1 <= k /\ (n = p EXP k \/ n = 2 * p EXP k)`,
GEN_TAC THEN ASM_CASES_TAC `n = 0` THENL
[ASM_REWRITE_TAC[IN_NUMSEG] THEN CONV_TAC NUM_REDUCE_CONV THEN
MATCH_MP_TAC(TAUT `~a /\ ~b ==> (a <=> b)`) THEN
CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN
REWRITE_TAC[MULT_EQ_0; EXP_EQ_0] THEN ARITH_TAC;
ALL_TAC] THEN
ASM_CASES_TAC `n = 1` THENL
[ASM_REWRITE_TAC[IN_NUMSEG] THEN CONV_TAC NUM_REDUCE_CONV THEN
MATCH_MP_TAC(TAUT `~a /\ ~b ==> (a <=> b)`) THEN
CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN
REWRITE_TAC[MULT_EQ_1; EXP_EQ_1] THEN ARITH_TAC;
ALL_TAC] THEN
MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC `?x. order n x = phi n` THEN CONJ_TAC THENL
[EQ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_TAC `x:num`) THEN EXISTS_TAC `x MOD n` THEN
ASM_SIMP_TAC[IN_NUMSEG; DIVISION; ARITH_RULE
`~(n = 0) /\ ~(n = 1) ==> (x <= n - 1 <=> x < n)`] THEN
CONJ_TAC THENL
[REWRITE_TAC[ARITH_RULE `1 <= x <=> ~(x = 0)`] THEN
ASM_SIMP_TAC[GSYM DIVIDES_MOD] THEN DISCH_TAC THEN
MP_TAC(SPECL [`n:num`; `x:num`] ORDER_EQ_0) THEN
ASM_SIMP_TAC[LE_1; PHI_LOWERBOUND_1_STRONG] THEN
REWRITE_TAC[coprime] THEN DISCH_THEN(MP_TAC o SPEC `n:num`) THEN
ASM_REWRITE_TAC[DIVIDES_REFL];
FIRST_ASSUM(SUBST1_TAC o SYM) THEN MATCH_MP_TAC ORDER_CONG THEN
ASM_SIMP_TAC[CONG_MOD]];
ASM_REWRITE_TAC[PRIMITIVE_ROOT_EXISTS] THEN
ASM_CASES_TAC `n = 2` THEN ASM_REWRITE_TAC[] THEN
ASM_CASES_TAC `n = 4` THEN ASM_REWRITE_TAC[] THEN
AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `p:num` THEN
AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `k:num` THEN
CONV_TAC(BINOP_CONV(ONCE_DEPTH_CONV SYM_CONV)) THEN
ASM_CASES_TAC `k = 0` THEN ASM_SIMP_TAC[LE_1] THEN
AP_TERM_TAC THEN ASM_ARITH_TAC]);;
|