1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
|
(* ========================================================================= *)
(* Syntactic definitions for "core HOL", including provability. *)
(* ========================================================================= *)
(* ------------------------------------------------------------------------- *)
(* HOL types. Just do the primitive ones for now. *)
(* ------------------------------------------------------------------------- *)
let type_INDUCT,type_RECURSION = define_type
"type = Tyvar string
| Bool
| Ind
| Fun type type";;
let type_DISTINCT = distinctness "type";;
let type_INJ = injectivity "type";;
let domain = define
`domain (Fun s t) = s`;;
let codomain = define
`codomain (Fun s t) = t`;;
(* ------------------------------------------------------------------------- *)
(* HOL terms. To avoid messing round with specification of the language, *)
(* we just put "=" and "@" in as the only constants. For now... *)
(* ------------------------------------------------------------------------- *)
let term_INDUCT,term_RECURSION = define_type
"term = Var string type
| Equal type | Select type
| Comb term term
| Abs string type term";;
let term_DISTINCT = distinctness "term";;
let term_INJ = injectivity "term";;
(* ------------------------------------------------------------------------- *)
(* Typing judgements. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("has_type",(12,"right"));;
let has_type_RULES,has_type_INDUCT,has_type_CASES = new_inductive_definition
`(!n ty. (Var n ty) has_type ty) /\
(!ty. (Equal ty) has_type (Fun ty (Fun ty Bool))) /\
(!ty. (Select ty) has_type (Fun (Fun ty Bool) ty)) /\
(!s t dty rty. s has_type (Fun dty rty) /\ t has_type dty
==> (Comb s t) has_type rty) /\
(!n dty t rty. t has_type rty ==> (Abs n dty t) has_type (Fun dty rty))`;;
let welltyped = new_definition
`welltyped tm <=> ?ty. tm has_type ty`;;
let typeof = define
`(typeof (Var n ty) = ty) /\
(typeof (Equal ty) = Fun ty (Fun ty Bool)) /\
(typeof (Select ty) = Fun (Fun ty Bool) ty) /\
(typeof (Comb s t) = codomain (typeof s)) /\
(typeof (Abs n ty t) = Fun ty (typeof t))`;;
let WELLTYPED_LEMMA = prove
(`!tm ty. tm has_type ty ==> (typeof tm = ty)`,
MATCH_MP_TAC has_type_INDUCT THEN
SIMP_TAC[typeof; has_type_RULES; codomain]);;
let WELLTYPED = prove
(`!tm. welltyped tm <=> tm has_type (typeof tm)`,
REWRITE_TAC[welltyped] THEN MESON_TAC[WELLTYPED_LEMMA]);;
let WELLTYPED_CLAUSES = prove
(`(!n ty. welltyped(Var n ty)) /\
(!ty. welltyped(Equal ty)) /\
(!ty. welltyped(Select ty)) /\
(!s t. welltyped (Comb s t) <=>
welltyped s /\ welltyped t /\
?rty. typeof s = Fun (typeof t) rty) /\
(!n ty t. welltyped (Abs n ty t) = welltyped t)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[welltyped] THEN
(GEN_REWRITE_TAC BINDER_CONV [has_type_CASES] ORELSE
GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [has_type_CASES]) THEN
REWRITE_TAC[term_INJ; term_DISTINCT] THEN
MESON_TAC[WELLTYPED; WELLTYPED_LEMMA]);;
(* ------------------------------------------------------------------------- *)
(* Since equations are important, a bit of derived syntax. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("===",(18,"right"));;
let equation = new_definition
`(s === t) = Comb (Comb (Equal(typeof s)) s) t`;;
let EQUATION_HAS_TYPE_BOOL = prove
(`!s t. (s === t) has_type Bool
<=> welltyped s /\ welltyped t /\ (typeof s = typeof t)`,
REWRITE_TAC[equation] THEN
ONCE_REWRITE_TAC[has_type_CASES] THEN
REWRITE_TAC[term_DISTINCT; term_INJ] THEN
REWRITE_TAC[GSYM CONJ_ASSOC; RIGHT_EXISTS_AND_THM] THEN
REWRITE_TAC[UNWIND_THM1] THEN REPEAT GEN_TAC THEN
GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV o LAND_CONV) [has_type_CASES] THEN
REWRITE_TAC[term_DISTINCT; term_INJ] THEN
REWRITE_TAC[GSYM CONJ_ASSOC; RIGHT_EXISTS_AND_THM] THEN
REWRITE_TAC[UNWIND_THM1] THEN
GEN_REWRITE_TAC (LAND_CONV o funpow 2(BINDER_CONV o LAND_CONV))
[has_type_CASES] THEN
REWRITE_TAC[term_DISTINCT; term_INJ; type_INJ] THEN
MESON_TAC[WELLTYPED; WELLTYPED_LEMMA]);;
(* ------------------------------------------------------------------------- *)
(* Alpha-conversion. *)
(* ------------------------------------------------------------------------- *)
let ALPHAVARS = define
`(ALPHAVARS [] tmp <=> (FST tmp = SND tmp)) /\
(ALPHAVARS (CONS tp oenv) tmp <=>
(tmp = tp) \/
~(FST tp = FST tmp) /\ ~(SND tp = SND tmp) /\ ALPHAVARS oenv tmp)`;;
let RACONV_RULES,RACONV_INDUCT,RACONV_CASES = new_inductive_definition
`(!env x1 ty1 x2 ty2.
ALPHAVARS env (Var x1 ty1,Var x2 ty2)
==> RACONV env (Var x1 ty1,Var x2 ty2)) /\
(!env ty. RACONV env (Equal ty,Equal ty)) /\
(!env ty. RACONV env (Select ty,Select ty)) /\
(!env s1 t1 s2 t2.
RACONV env (s1,s2) /\ RACONV env (t1,t2)
==> RACONV env (Comb s1 t1,Comb s2 t2)) /\
(!env x1 ty1 t1 x2 ty2 t2.
(ty1 = ty2) /\ RACONV (CONS ((Var x1 ty1),(Var x2 ty2)) env) (t1,t2)
==> RACONV env (Abs x1 ty1 t1,Abs x2 ty2 t2))`;;
let RACONV = prove
(`(RACONV env (Var x1 ty1,Var x2 ty2) <=>
ALPHAVARS env (Var x1 ty1,Var x2 ty2)) /\
(RACONV env (Var x1 ty1,Equal ty2) <=> F) /\
(RACONV env (Var x1 ty1,Select ty2) <=> F) /\
(RACONV env (Var x1 ty1,Comb l2 r2) <=> F) /\
(RACONV env (Var x1 ty1,Abs x2 ty2 t2) <=> F) /\
(RACONV env (Equal ty1,Var x2 ty2) <=> F) /\
(RACONV env (Equal ty1,Equal ty2) <=> (ty1 = ty2)) /\
(RACONV env (Equal ty1,Select ty2) <=> F) /\
(RACONV env (Equal ty1,Comb l2 r2) <=> F) /\
(RACONV env (Equal ty1,Abs x2 ty2 t2) <=> F) /\
(RACONV env (Select ty1,Var x2 ty2) <=> F) /\
(RACONV env (Select ty1,Equal ty2) <=> F) /\
(RACONV env (Select ty1,Select ty2) <=> (ty1 = ty2)) /\
(RACONV env (Select ty1,Comb l2 r2) <=> F) /\
(RACONV env (Select ty1,Abs x2 ty2 t2) <=> F) /\
(RACONV env (Comb l1 r1,Var x2 ty2) <=> F) /\
(RACONV env (Comb l1 r1,Equal ty2) <=> F) /\
(RACONV env (Comb l1 r1,Select ty2) <=> F) /\
(RACONV env (Comb l1 r1,Comb l2 r2) <=>
RACONV env (l1,l2) /\ RACONV env (r1,r2)) /\
(RACONV env (Comb l1 r1,Abs x2 ty2 t2) <=> F) /\
(RACONV env (Abs x1 ty1 t1,Var x2 ty2) <=> F) /\
(RACONV env (Abs x1 ty1 t1,Equal ty2) <=> F) /\
(RACONV env (Abs x1 ty1 t1,Select ty2) <=> F) /\
(RACONV env (Abs x1 ty1 t1,Comb l2 r2) <=> F) /\
(RACONV env (Abs x1 ty1 t1,Abs x2 ty2 t2) <=>
(ty1 = ty2) /\ RACONV (CONS (Var x1 ty1,Var x2 ty2) env) (t1,t2))`,
REPEAT CONJ_TAC THEN
GEN_REWRITE_TAC LAND_CONV [RACONV_CASES] THEN
REWRITE_TAC[term_INJ; term_DISTINCT; PAIR_EQ] THEN MESON_TAC[]);;
let ACONV = new_definition
`ACONV t1 t2 <=> RACONV [] (t1,t2)`;;
(* ------------------------------------------------------------------------- *)
(* Reflexivity. *)
(* ------------------------------------------------------------------------- *)
let ALPHAVARS_REFL = prove
(`!env t. ALL (\(s,t). s = t) env ==> ALPHAVARS env (t,t)`,
MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[ALL; ALPHAVARS] THEN
REWRITE_TAC[FORALL_PAIR_THM] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN MESON_TAC[PAIR_EQ]);;
let RACONV_REFL = prove
(`!t env. ALL (\(s,t). s = t) env ==> RACONV env (t,t)`,
MATCH_MP_TAC term_INDUCT THEN
REWRITE_TAC[RACONV] THEN REPEAT STRIP_TAC THENL
[ASM_SIMP_TAC[ALPHAVARS_REFL];
ASM_MESON_TAC[];
ASM_MESON_TAC[];
FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[ALL] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN ASM_REWRITE_TAC[]]);;
let ACONV_REFL = prove
(`!t. ACONV t t`,
REWRITE_TAC[ACONV] THEN SIMP_TAC[RACONV_REFL; ALL]);;
(* ------------------------------------------------------------------------- *)
(* Alpha-convertible terms have the same type (if welltyped). *)
(* ------------------------------------------------------------------------- *)
let ALPHAVARS_TYPE = prove
(`!env s t. ALPHAVARS env (s,t) /\
ALL (\(x,y). welltyped x /\ welltyped y /\
(typeof x = typeof y)) env /\
welltyped s /\ welltyped t
==> (typeof s = typeof t)`,
MATCH_MP_TAC list_INDUCT THEN
REWRITE_TAC[FORALL_PAIR_THM; ALPHAVARS; ALL; PAIR_EQ] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
CONJ_TAC THENL [SIMP_TAC[]; ALL_TAC] THEN REPEAT STRIP_TAC THEN
ASM_MESON_TAC[]);;
let RACONV_TYPE = prove
(`!env p. RACONV env p
==> ALL (\(x,y). welltyped x /\ welltyped y /\
(typeof x = typeof y)) env /\
welltyped (FST p) /\ welltyped (SND p)
==> (typeof (FST p) = typeof (SND p))`,
MATCH_MP_TAC RACONV_INDUCT THEN
REWRITE_TAC[FORALL_PAIR_THM; typeof] THEN REPEAT STRIP_TAC THENL
[ASM_MESON_TAC[typeof; ALPHAVARS_TYPE];
AP_TERM_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[WELLTYPED_CLAUSES];
ASM_REWRITE_TAC[] THEN AP_TERM_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[ALL] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
REWRITE_TAC[typeof] THEN ASM_MESON_TAC[WELLTYPED_CLAUSES]]);;
let ACONV_TYPE = prove
(`!s t. ACONV s t ==> welltyped s /\ welltyped t ==> (typeof s = typeof t)`,
REPEAT GEN_TAC THEN
MP_TAC(SPECL [`[]:(term#term)list`; `(s:term,t:term)`] RACONV_TYPE) THEN
REWRITE_TAC[ACONV; ALL] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* HOL version of "term_union". *)
(* ------------------------------------------------------------------------- *)
let TERM_UNION = define
`(TERM_UNION [] l2 = l2) /\
(TERM_UNION (CONS h t) l2 =
let subun = TERM_UNION t l2 in
if EX (ACONV h) subun then subun else CONS h subun)`;;
let TERM_UNION_NONEW = prove
(`!l1 l2 x. MEM x (TERM_UNION l1 l2) ==> MEM x l1 \/ MEM x l2`,
LIST_INDUCT_TAC THEN REWRITE_TAC[TERM_UNION; MEM] THEN
LET_TAC THEN REPEAT GEN_TAC THEN COND_CASES_TAC THEN
REWRITE_TAC[MEM] THEN ASM_MESON_TAC[ACONV_REFL]);;
let TERM_UNION_THM = prove
(`!l1 l2 x. MEM x l1 \/ MEM x l2
==> ?y. MEM y (TERM_UNION l1 l2) /\ ACONV x y`,
LIST_INDUCT_TAC THEN REWRITE_TAC[TERM_UNION; MEM; GSYM EX_MEM] THENL
[MESON_TAC[ACONV_REFL]; ALL_TAC] THEN
REPEAT GEN_TAC THEN LET_TAC THEN COND_CASES_TAC THEN STRIP_TAC THEN
ASM_REWRITE_TAC[MEM] THEN ASM_MESON_TAC[ACONV_REFL]);;
(* ------------------------------------------------------------------------- *)
(* Handy lemma for using it in a sequent. *)
(* ------------------------------------------------------------------------- *)
let ALL_BOOL_TERM_UNION = prove
(`ALL (\a. a has_type Bool) l1 /\ ALL (\a. a has_type Bool) l2
==> ALL (\a. a has_type Bool) (TERM_UNION l1 l2)`,
REWRITE_TAC[GSYM ALL_MEM] THEN MESON_TAC[TERM_UNION_NONEW]);;
(* ------------------------------------------------------------------------- *)
(* Whether a variable/constant is free in a term. *)
(* ------------------------------------------------------------------------- *)
let VFREE_IN = define
`(VFREE_IN v (Var x ty) <=> (Var x ty = v)) /\
(VFREE_IN v (Equal ty) <=> (Equal ty = v)) /\
(VFREE_IN v (Select ty) <=> (Select ty = v)) /\
(VFREE_IN v (Comb s t) <=> VFREE_IN v s \/ VFREE_IN v t) /\
(VFREE_IN v (Abs x ty t) <=> ~(Var x ty = v) /\ VFREE_IN v t)`;;
let VFREE_IN_RACONV = prove
(`!env p. RACONV env p
==> !x ty. VFREE_IN (Var x ty) (FST p) /\
~(?y. MEM (Var x ty,y) env) <=>
VFREE_IN (Var x ty) (SND p) /\
~(?y. MEM (y,Var x ty) env)`,
MATCH_MP_TAC RACONV_INDUCT THEN REWRITE_TAC[VFREE_IN; term_DISTINCT] THEN
REWRITE_TAC[PAIR_EQ; term_INJ; MEM] THEN CONJ_TAC THENL
[ALL_TAC; MESON_TAC[]] THEN
MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[ALPHAVARS] THEN
REWRITE_TAC[MEM; FORALL_PAIR_THM; term_INJ; PAIR_EQ] THEN
CONJ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN
REPEAT GEN_TAC THEN REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
MESON_TAC[]);;
let VFREE_IN_ACONV = prove
(`!s t x t. ACONV s t ==> (VFREE_IN (Var x ty) s <=> VFREE_IN (Var x ty) t)`,
REPEAT GEN_TAC THEN REWRITE_TAC[ACONV] THEN
DISCH_THEN(MP_TAC o MATCH_MP VFREE_IN_RACONV) THEN
SIMP_TAC[MEM; FST; SND]);;
(* ------------------------------------------------------------------------- *)
(* Auxiliary association list function. *)
(* ------------------------------------------------------------------------- *)
let REV_ASSOCD = define
`(REV_ASSOCD a [] d = d) /\
(REV_ASSOCD a (CONS (x,y) t) d =
if y = a then x else REV_ASSOCD a t d)`;;
(* ------------------------------------------------------------------------- *)
(* Substition of types in types. *)
(* ------------------------------------------------------------------------- *)
let TYPE_SUBST = define
`(TYPE_SUBST i (Tyvar v) = REV_ASSOCD (Tyvar v) i (Tyvar v)) /\
(TYPE_SUBST i Bool = Bool) /\
(TYPE_SUBST i Ind = Ind) /\
(TYPE_SUBST i (Fun ty1 ty2) = Fun (TYPE_SUBST i ty1) (TYPE_SUBST i ty2))`;;
(* ------------------------------------------------------------------------- *)
(* Variant function. Deliberately underspecified at the moment. In a bid to *)
(* expunge use of sets, just pick it distinct from what's free in a term. *)
(* ------------------------------------------------------------------------- *)
let VFREE_IN_FINITE = prove
(`!t. FINITE {x | VFREE_IN x t}`,
MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[VFREE_IN] THEN
REWRITE_TAC[SET_RULE `{x | a = x} = {a}`;
SET_RULE `{x | P x \/ Q x} = {x | P x} UNION {x | Q x}`;
SET_RULE `{x | P x /\ Q x} = {x | P x} INTER {x | Q x}`] THEN
SIMP_TAC[FINITE_INSERT; FINITE_RULES; FINITE_UNION; FINITE_INTER]);;
let VFREE_IN_FINITE_ALT = prove
(`!t ty. FINITE {x | VFREE_IN (Var x ty) t}`,
REPEAT GEN_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN
EXISTS_TAC `IMAGE (\(Var x ty). x) {x | VFREE_IN x t}` THEN
SIMP_TAC[VFREE_IN_FINITE; FINITE_IMAGE] THEN
REWRITE_TAC[SUBSET; IN_IMAGE; IN_ELIM_THM] THEN
X_GEN_TAC `x:string` THEN DISCH_TAC THEN
EXISTS_TAC `Var x ty` THEN CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
ASM_REWRITE_TAC[]);;
let VARIANT_EXISTS = prove
(`!t x:string ty. ?x'. ~(VFREE_IN (Var x' ty) t)`,
REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`t:term`; `ty:type`] VFREE_IN_FINITE_ALT) THEN
DISCH_THEN(MP_TAC o CONJ string_INFINITE) THEN
DISCH_THEN(MP_TAC o MATCH_MP INFINITE_DIFF_FINITE) THEN
DISCH_THEN(MP_TAC o MATCH_MP INFINITE_NONEMPTY) THEN
REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; IN_DIFF; IN_ELIM_THM; IN_UNIV]);;
let VARIANT = new_specification ["VARIANT"]
(PURE_REWRITE_RULE[SKOLEM_THM] VARIANT_EXISTS);;
(* ------------------------------------------------------------------------- *)
(* Term substitution. *)
(* ------------------------------------------------------------------------- *)
let VSUBST = define
`(VSUBST ilist (Var x ty) = REV_ASSOCD (Var x ty) ilist (Var x ty)) /\
(VSUBST ilist (Equal ty) = Equal ty) /\
(VSUBST ilist (Select ty) = Select ty) /\
(VSUBST ilist (Comb s t) = Comb (VSUBST ilist s) (VSUBST ilist t)) /\
(VSUBST ilist (Abs x ty t) =
let ilist' = FILTER (\(s',s). ~(s = Var x ty)) ilist in
let t' = VSUBST ilist' t in
if EX (\(s',s). VFREE_IN (Var x ty) s' /\ VFREE_IN s t) ilist'
then let z = VARIANT t' x ty in
let ilist'' = CONS (Var z ty,Var x ty) ilist' in
Abs z ty (VSUBST ilist'' t)
else Abs x ty t')`;;
(* ------------------------------------------------------------------------- *)
(* Preservation of type. *)
(* ------------------------------------------------------------------------- *)
let VSUBST_HAS_TYPE = prove
(`!tm ty ilist.
tm has_type ty /\
(!s s'. MEM (s',s) ilist ==> ?x ty. (s = Var x ty) /\ s' has_type ty)
==> (VSUBST ilist tm) has_type ty`,
MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[VSUBST] THEN
REPEAT CONJ_TAC THENL
[MAP_EVERY X_GEN_TAC [`x:string`; `ty:type`; `tty:type`] THEN
MATCH_MP_TAC list_INDUCT THEN
SIMP_TAC[REV_ASSOCD; MEM; FORALL_PAIR_THM] THEN
REWRITE_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN
SIMP_TAC[FORALL_AND_THM; LEFT_FORALL_IMP_THM; PAIR_EQ] THEN
REWRITE_TAC[ LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN
ASM_CASES_TAC `(Var x ty) has_type tty` THEN ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [has_type_CASES]) THEN
REWRITE_TAC[term_DISTINCT; term_INJ; LEFT_EXISTS_AND_THM] THEN
REWRITE_TAC[GSYM EXISTS_REFL] THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THEN
MAP_EVERY X_GEN_TAC [`s:term`; `u:term`; `ilist:(term#term)list`] THEN
DISCH_TAC THEN DISCH_THEN(CONJUNCTS_THEN ASSUME_TAC) THEN
FIRST_X_ASSUM(X_CHOOSE_THEN `y:string` MP_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `aty:type` MP_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN2 SUBST_ALL_TAC ASSUME_TAC) THEN
ASM_MESON_TAC[term_INJ];
SIMP_TAC[];
SIMP_TAC[];
MAP_EVERY X_GEN_TAC [`s:term`; `t:term`] THEN REPEAT STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [has_type_CASES]) THEN
REWRITE_TAC[term_DISTINCT; term_INJ; GSYM CONJ_ASSOC] THEN
REWRITE_TAC[RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN
DISCH_THEN(X_CHOOSE_THEN `dty:type` STRIP_ASSUME_TAC) THEN
MATCH_MP_TAC(el 3 (CONJUNCTS has_type_RULES)) THEN
EXISTS_TAC `dty:type` THEN CONJ_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[];
ALL_TAC] THEN
MAP_EVERY X_GEN_TAC [`x:string`; `ty:type`; `t:term`] THEN DISCH_TAC THEN
MAP_EVERY X_GEN_TAC [`fty:type`; `ilist:(term#term)list`] THEN STRIP_TAC THEN
LET_TAC THEN LET_TAC THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [has_type_CASES]) THEN
REWRITE_TAC[term_DISTINCT; term_INJ; GSYM CONJ_ASSOC] THEN
REWRITE_TAC[RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN
DISCH_THEN(X_CHOOSE_THEN `rty:type` MP_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN2 SUBST_ALL_TAC MP_TAC) THEN DISCH_TAC THEN
COND_CASES_TAC THEN REPEAT LET_TAC THEN
MATCH_MP_TAC(el 4 (CONJUNCTS has_type_RULES)) THEN
EXPAND_TAC "t'" THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THENL
[MAP_EVERY EXPAND_TAC ["ilist''"; "ilist'"]; EXPAND_TAC "ilist'"] THEN
REWRITE_TAC[MEM; MEM_FILTER] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
REWRITE_TAC[PAIR_EQ] THEN ASM_MESON_TAC[has_type_RULES]);;
let VSUBST_WELLTYPED = prove
(`!tm ty ilist.
welltyped tm /\
(!s s'. MEM (s',s) ilist ==> ?x ty. (s = Var x ty) /\ s' has_type ty)
==> welltyped (VSUBST ilist tm)`,
MESON_TAC[VSUBST_HAS_TYPE; welltyped]);;
(* ------------------------------------------------------------------------- *)
(* Right set of free variables. *)
(* ------------------------------------------------------------------------- *)
let REV_ASSOCD_FILTER = prove
(`!l:(B#A)list a b d.
REV_ASSOCD a (FILTER (\(y,x). P x) l) b =
if P a then REV_ASSOCD a l b else b`,
MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[REV_ASSOCD; FILTER; COND_ID] THEN
REWRITE_TAC[FORALL_PAIR_THM] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
MAP_EVERY X_GEN_TAC [`y:B`; `x:A`; `l:(B#A)list`] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[REV_ASSOCD] THEN
ASM_CASES_TAC `(P:A->bool) x` THEN ASM_REWRITE_TAC[REV_ASSOCD] THEN
ASM_MESON_TAC[]);;
let VFREE_IN_VSUBST = prove
(`!tm u uty ilist.
VFREE_IN (Var u uty) (VSUBST ilist tm) <=>
?y ty. VFREE_IN (Var y ty) tm /\
VFREE_IN (Var u uty) (REV_ASSOCD (Var y ty) ilist (Var y ty))`,
MATCH_MP_TAC term_INDUCT THEN
REWRITE_TAC[VFREE_IN; VSUBST; term_DISTINCT] THEN REPEAT CONJ_TAC THENL
[MESON_TAC[term_INJ];
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MESON_TAC[];
ALL_TAC] THEN
MAP_EVERY X_GEN_TAC [`x:string`; `ty:type`; `t:term`] THEN DISCH_TAC THEN
REPEAT GEN_TAC THEN LET_TAC THEN LET_TAC THEN
COND_CASES_TAC THEN REPEAT LET_TAC THEN
ASM_REWRITE_TAC[VFREE_IN] THENL
[MAP_EVERY EXPAND_TAC ["ilist''"; "ilist'"];
EXPAND_TAC "t'" THEN ASM_REWRITE_TAC[] THEN EXPAND_TAC "ilist'"] THEN
SIMP_TAC[REV_ASSOCD; REV_ASSOCD_FILTER] THEN
ONCE_REWRITE_TAC[COND_RAND] THEN REWRITE_TAC[VFREE_IN] THEN
REWRITE_TAC[TAUT `(if ~b then x:bool else y) <=> (if b then y else x)`] THEN
ONCE_REWRITE_TAC[TAUT `~a /\ b <=> ~(~a ==> ~b)`] THEN
SIMP_TAC[TAUT `(if b then F else c) <=> ~b /\ c`] THEN
MATCH_MP_TAC(TAUT
`(a ==> ~c) /\ (~a ==> (b <=> c)) ==> (~(~a ==> ~b) <=> c)`) THEN
(CONJ_TAC THENL [ALL_TAC; MESON_TAC[]]) THEN
GEN_REWRITE_TAC LAND_CONV [term_INJ] THEN
DISCH_THEN(CONJUNCTS_THEN(SUBST_ALL_TAC o SYM)) THEN
REWRITE_TAC[NOT_IMP] THENL
[MP_TAC(ISPECL [`VSUBST ilist' t`; `x:string`; `ty:type`] VARIANT) THEN
ASM_REWRITE_TAC[] THEN
EXPAND_TAC "ilist'" THEN ASM_REWRITE_TAC[REV_ASSOCD_FILTER] THEN
MESON_TAC[];
ALL_TAC] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_EX]) THEN
EXPAND_TAC "ilist'" THEN
SPEC_TAC(`ilist:(term#term)list`,`l:(term#term)list`) THEN
MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[ALL; REV_ASSOCD; VFREE_IN] THEN
REWRITE_TAC[REV_ASSOCD; FILTER; FORALL_PAIR_THM] THEN
ONCE_REWRITE_TAC[COND_RAND] THEN REWRITE_TAC[ALL] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Sum type to model exception-raising. *)
(* ------------------------------------------------------------------------- *)
let result_INDUCT,result_RECURSION = define_type
"result = Clash term | Result term";;
let result_INJ = injectivity "result";;
let result_DISTINCT = distinctness "result";;
(* ------------------------------------------------------------------------- *)
(* Discriminators and extractors. (Nicer to pattern-match...) *)
(* ------------------------------------------------------------------------- *)
let IS_RESULT = define
`(IS_RESULT(Clash t) = F) /\
(IS_RESULT(Result t) = T)`;;
let IS_CLASH = define
`(IS_CLASH(Clash t) = T) /\
(IS_CLASH(Result t) = F)`;;
let RESULT = define
`RESULT(Result t) = t`;;
let CLASH = define
`CLASH(Clash t) = t`;;
(* ------------------------------------------------------------------------- *)
(* We want induction/recursion on term size next. *)
(* ------------------------------------------------------------------------- *)
let rec sizeof = define
`(sizeof (Var x ty) = 1) /\
(sizeof (Equal ty) = 1) /\
(sizeof (Select ty) = 1) /\
(sizeof (Comb s t) = 1 + sizeof s + sizeof t) /\
(sizeof (Abs x ty t) = 2 + sizeof t)`;;
let SIZEOF_VSUBST = prove
(`!t ilist. (!s' s. MEM (s',s) ilist ==> ?x ty. s' = Var x ty)
==> (sizeof (VSUBST ilist t) = sizeof t)`,
MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[VSUBST; sizeof] THEN
CONJ_TAC THENL
[MAP_EVERY X_GEN_TAC [`x:string`; `ty:type`] THEN
MATCH_MP_TAC list_INDUCT THEN
REWRITE_TAC[MEM; REV_ASSOCD; sizeof; FORALL_PAIR_THM] THEN
MAP_EVERY X_GEN_TAC [`s':term`; `s:term`; `l:(term#term)list`] THEN
REWRITE_TAC[PAIR_EQ] THEN REPEAT STRIP_TAC THEN
COND_CASES_TAC THEN ASM_SIMP_TAC[] THEN ASM_MESON_TAC[sizeof];
ALL_TAC] THEN
CONJ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN
MAP_EVERY X_GEN_TAC [`x:string`; `ty:type`; `t:term`] THEN
DISCH_TAC THEN X_GEN_TAC `ilist:(term#term)list` THEN DISCH_TAC THEN
LET_TAC THEN LET_TAC THEN COND_CASES_TAC THEN
REPEAT LET_TAC THEN REWRITE_TAC[sizeof; EQ_ADD_LCANCEL] THENL
[ALL_TAC; ASM_MESON_TAC[MEM_FILTER]] THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN
EXPAND_TAC "ilist''" THEN REWRITE_TAC[MEM; PAIR_EQ] THEN
ASM_MESON_TAC[MEM_FILTER]);;
(* ------------------------------------------------------------------------- *)
(* Prove existence of INST_CORE. *)
(* ------------------------------------------------------------------------- *)
let INST_CORE_EXISTS = prove
(`?INST_CORE.
(!env tyin x ty.
INST_CORE env tyin (Var x ty) =
let tm = Var x ty
and tm' = Var x (TYPE_SUBST tyin ty) in
if REV_ASSOCD tm' env tm = tm then Result tm' else Clash tm') /\
(!env tyin ty.
INST_CORE env tyin (Equal ty) = Result(Equal(TYPE_SUBST tyin ty))) /\
(!env tyin ty.
INST_CORE env tyin (Select ty) = Result(Select(TYPE_SUBST tyin ty))) /\
(!env tyin s t.
INST_CORE env tyin (Comb s t) =
let sres = INST_CORE env tyin s in
if IS_CLASH sres then sres else
let tres = INST_CORE env tyin t in
if IS_CLASH tres then tres else
let s' = RESULT sres and t' = RESULT tres in
Result (Comb s' t')) /\
(!env tyin x ty t.
INST_CORE env tyin (Abs x ty t) =
let ty' = TYPE_SUBST tyin ty in
let env' = CONS (Var x ty,Var x ty') env in
let tres = INST_CORE env' tyin t in
if IS_RESULT tres then Result(Abs x ty' (RESULT tres)) else
let w = CLASH tres in
if ~(w = Var x ty') then tres else
let x' = VARIANT (RESULT(INST_CORE [] tyin t)) x ty' in
INST_CORE env tyin (Abs x' ty (VSUBST [Var x' ty,Var x ty] t)))`,
W(fun (asl,w) -> MATCH_MP_TAC(DISCH_ALL
(pure_prove_recursive_function_exists w))) THEN
EXISTS_TAC `MEASURE(\(env:(term#term)list,tyin:(type#type)list,t).
sizeof t)` THEN
REWRITE_TAC[WF_MEASURE; MEASURE_LE; MEASURE] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
SIMP_TAC[MEM; PAIR_EQ; term_INJ; RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM;
GSYM EXISTS_REFL; SIZEOF_VSUBST; LE_REFL; sizeof] THEN
REPEAT STRIP_TAC THEN ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* So define it. *)
(* ------------------------------------------------------------------------- *)
let INST_CORE = new_specification ["INST_CORE"] INST_CORE_EXISTS;;
(* ------------------------------------------------------------------------- *)
(* And the overall function. *)
(* ------------------------------------------------------------------------- *)
let INST_DEF = new_definition
`INST tyin tm = RESULT(INST_CORE [] tyin tm)`;;
(* ------------------------------------------------------------------------- *)
(* Various misc lemmas. *)
(* ------------------------------------------------------------------------- *)
let NOT_IS_RESULT = prove
(`!r. ~(IS_RESULT r) <=> IS_CLASH r`,
MATCH_MP_TAC result_INDUCT THEN REWRITE_TAC[IS_RESULT; IS_CLASH]);;
let letlemma = prove
(`(let x = t in P x) = P t`,
REWRITE_TAC[LET_DEF; LET_END_DEF]);;
(* ------------------------------------------------------------------------- *)
(* Put everything together into a deductive system. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("|-",(11,"right"));;
let prove_RULES,proves_INDUCT,proves_CASES = new_inductive_definition
`(!t. welltyped t ==> [] |- t === t) /\
(!asl1 asl2 l m1 m2 r.
asl1 |- l === m1 /\ asl2 |- m2 === r /\ ACONV m1 m2
==> TERM_UNION asl1 asl2 |- l === r) /\
(!asl1 l1 r1 asl2 l2 r2.
asl1 |- l1 === r1 /\ asl2 |- l2 === r2 /\ welltyped(Comb l1 l2)
==> TERM_UNION asl1 asl2 |- Comb l1 l2 === Comb r1 r2) /\
(!asl x ty l r.
~(EX (VFREE_IN (Var x ty)) asl) /\ asl |- l === r
==> asl |- (Abs x ty l) === (Abs x ty r)) /\
(!x ty t. welltyped t ==> [] |- Comb (Abs x ty t) (Var x ty) === t) /\
(!p. p has_type Bool ==> [p] |- p) /\
(!asl1 asl2 p q p'.
asl1 |- p === q /\ asl2 |- p' /\ ACONV p p'
==> TERM_UNION asl1 asl2 |- q) /\
(!asl1 asl2 c1 c2.
asl1 |- c1 /\ asl2 |- c2
==> TERM_UNION (FILTER((~) o ACONV c2) asl1)
(FILTER((~) o ACONV c1) asl2)
|- c1 === c2) /\
(!tyin asl p. asl |- p ==> MAP (INST tyin) asl |- INST tyin p) /\
(!ilist asl p.
(!s s'. MEM (s',s) ilist ==> ?x ty. (s = Var x ty) /\ s' has_type ty) /\
asl |- p ==> MAP (VSUBST ilist) asl |- VSUBST ilist p)`;;
|