File: syntax.ml

package info (click to toggle)
hol-light 20170109-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 36,568 kB
  • ctags: 8,549
  • sloc: ml: 540,018; cpp: 439; lisp: 286; java: 279; makefile: 262; sh: 229; yacc: 108; perl: 78; ansic: 57; sed: 39
file content (648 lines) | stat: -rw-r--r-- 28,847 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
(* ========================================================================= *)
(* Syntactic definitions for "core HOL", including provability.              *)
(* ========================================================================= *)

(* ------------------------------------------------------------------------- *)
(* HOL types. Just do the primitive ones for now.                            *)
(* ------------------------------------------------------------------------- *)

let type_INDUCT,type_RECURSION = define_type
  "type = Tyvar string
            | Bool
            | Ind
            | Fun type type";;

let type_DISTINCT = distinctness "type";;

let type_INJ = injectivity "type";;

let domain = define
  `domain (Fun s t) = s`;;

let codomain = define
  `codomain (Fun s t) = t`;;

(* ------------------------------------------------------------------------- *)
(* HOL terms. To avoid messing round with specification of the language,     *)
(* we just put "=" and "@" in as the only constants. For now...              *)
(* ------------------------------------------------------------------------- *)

let term_INDUCT,term_RECURSION = define_type
 "term = Var string type
       | Equal type | Select type
       | Comb term term
       | Abs string type term";;

let term_DISTINCT = distinctness "term";;

let term_INJ = injectivity "term";;

(* ------------------------------------------------------------------------- *)
(* Typing judgements.                                                        *)
(* ------------------------------------------------------------------------- *)

parse_as_infix("has_type",(12,"right"));;

let has_type_RULES,has_type_INDUCT,has_type_CASES = new_inductive_definition
  `(!n ty. (Var n ty) has_type ty) /\
   (!ty. (Equal ty) has_type (Fun ty (Fun ty Bool))) /\
   (!ty. (Select ty) has_type (Fun (Fun ty Bool) ty)) /\
   (!s t dty rty. s has_type (Fun dty rty) /\ t has_type dty
                  ==> (Comb s t) has_type rty) /\
   (!n dty t rty. t has_type rty ==> (Abs n dty t) has_type (Fun dty rty))`;;

let welltyped = new_definition
  `welltyped tm <=> ?ty. tm has_type ty`;;

let typeof = define
 `(typeof (Var n ty) = ty) /\
  (typeof (Equal ty) = Fun ty (Fun ty Bool)) /\
  (typeof (Select ty) = Fun (Fun ty Bool) ty) /\
  (typeof (Comb s t) = codomain (typeof s)) /\
  (typeof (Abs n ty t) = Fun ty (typeof t))`;;

let WELLTYPED_LEMMA = prove
 (`!tm ty. tm has_type ty ==> (typeof tm = ty)`,
  MATCH_MP_TAC has_type_INDUCT THEN
  SIMP_TAC[typeof; has_type_RULES; codomain]);;

let WELLTYPED = prove
 (`!tm. welltyped tm <=> tm has_type (typeof tm)`,
  REWRITE_TAC[welltyped] THEN MESON_TAC[WELLTYPED_LEMMA]);;

let WELLTYPED_CLAUSES = prove
 (`(!n ty. welltyped(Var n ty)) /\
   (!ty. welltyped(Equal ty)) /\
   (!ty. welltyped(Select ty)) /\
   (!s t. welltyped (Comb s t) <=>
            welltyped s /\ welltyped t /\
            ?rty. typeof s = Fun (typeof t) rty) /\
   (!n ty t. welltyped (Abs n ty t) = welltyped t)`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[welltyped] THEN
  (GEN_REWRITE_TAC BINDER_CONV [has_type_CASES] ORELSE
   GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [has_type_CASES]) THEN
  REWRITE_TAC[term_INJ; term_DISTINCT] THEN
  MESON_TAC[WELLTYPED; WELLTYPED_LEMMA]);;

(* ------------------------------------------------------------------------- *)
(* Since equations are important, a bit of derived syntax.                   *)
(* ------------------------------------------------------------------------- *)

parse_as_infix("===",(18,"right"));;

let equation = new_definition
 `(s === t) = Comb (Comb (Equal(typeof s)) s) t`;;

let EQUATION_HAS_TYPE_BOOL = prove
 (`!s t. (s === t) has_type Bool
         <=> welltyped s /\ welltyped t /\ (typeof s = typeof t)`,
  REWRITE_TAC[equation] THEN
  ONCE_REWRITE_TAC[has_type_CASES] THEN
  REWRITE_TAC[term_DISTINCT; term_INJ] THEN
  REWRITE_TAC[GSYM CONJ_ASSOC; RIGHT_EXISTS_AND_THM] THEN
  REWRITE_TAC[UNWIND_THM1] THEN REPEAT GEN_TAC THEN
  GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV o LAND_CONV) [has_type_CASES] THEN
  REWRITE_TAC[term_DISTINCT; term_INJ] THEN
  REWRITE_TAC[GSYM CONJ_ASSOC; RIGHT_EXISTS_AND_THM] THEN
  REWRITE_TAC[UNWIND_THM1] THEN
  GEN_REWRITE_TAC (LAND_CONV o funpow 2(BINDER_CONV o LAND_CONV))
    [has_type_CASES] THEN
  REWRITE_TAC[term_DISTINCT; term_INJ; type_INJ] THEN
  MESON_TAC[WELLTYPED; WELLTYPED_LEMMA]);;

(* ------------------------------------------------------------------------- *)
(* Alpha-conversion.                                                         *)
(* ------------------------------------------------------------------------- *)

let ALPHAVARS = define
  `(ALPHAVARS [] tmp <=> (FST tmp = SND tmp)) /\
   (ALPHAVARS (CONS tp oenv) tmp <=>
        (tmp = tp) \/
        ~(FST tp = FST tmp) /\ ~(SND tp = SND tmp) /\ ALPHAVARS oenv tmp)`;;

let RACONV_RULES,RACONV_INDUCT,RACONV_CASES = new_inductive_definition
 `(!env x1 ty1 x2 ty2.
       ALPHAVARS env (Var x1 ty1,Var x2 ty2)
       ==> RACONV env (Var x1 ty1,Var x2 ty2)) /\
  (!env ty. RACONV env (Equal ty,Equal ty)) /\
  (!env ty. RACONV env (Select ty,Select ty)) /\
  (!env s1 t1 s2 t2.
       RACONV env (s1,s2) /\ RACONV env (t1,t2)
       ==> RACONV env (Comb s1 t1,Comb s2 t2)) /\
  (!env x1 ty1 t1 x2 ty2 t2.
       (ty1 = ty2) /\ RACONV (CONS ((Var x1 ty1),(Var x2 ty2)) env) (t1,t2)
       ==> RACONV env (Abs x1 ty1 t1,Abs x2 ty2 t2))`;;

let RACONV = prove
 (`(RACONV env (Var x1 ty1,Var x2 ty2) <=>
        ALPHAVARS env (Var x1 ty1,Var x2 ty2)) /\
   (RACONV env (Var x1 ty1,Equal ty2) <=> F) /\
   (RACONV env (Var x1 ty1,Select ty2) <=> F) /\
   (RACONV env (Var x1 ty1,Comb l2 r2) <=> F) /\
   (RACONV env (Var x1 ty1,Abs x2 ty2 t2) <=> F) /\
   (RACONV env (Equal ty1,Var x2 ty2) <=> F) /\
   (RACONV env (Equal ty1,Equal ty2) <=> (ty1 = ty2)) /\
   (RACONV env (Equal ty1,Select ty2) <=> F) /\
   (RACONV env (Equal ty1,Comb l2 r2) <=> F) /\
   (RACONV env (Equal ty1,Abs x2 ty2 t2) <=> F) /\
   (RACONV env (Select ty1,Var x2 ty2) <=> F) /\
   (RACONV env (Select ty1,Equal ty2) <=> F) /\
   (RACONV env (Select ty1,Select ty2) <=> (ty1 = ty2)) /\
   (RACONV env (Select ty1,Comb l2 r2) <=> F) /\
   (RACONV env (Select ty1,Abs x2 ty2 t2) <=> F) /\
   (RACONV env (Comb l1 r1,Var x2 ty2) <=> F) /\
   (RACONV env (Comb l1 r1,Equal ty2) <=> F) /\
   (RACONV env (Comb l1 r1,Select ty2) <=> F) /\
   (RACONV env (Comb l1 r1,Comb l2 r2) <=>
        RACONV env (l1,l2) /\ RACONV env (r1,r2)) /\
   (RACONV env (Comb l1 r1,Abs x2 ty2 t2) <=> F) /\
   (RACONV env (Abs x1 ty1 t1,Var x2 ty2) <=> F) /\
   (RACONV env (Abs x1 ty1 t1,Equal ty2) <=> F) /\
   (RACONV env (Abs x1 ty1 t1,Select ty2) <=> F) /\
   (RACONV env (Abs x1 ty1 t1,Comb l2 r2) <=> F) /\
   (RACONV env (Abs x1 ty1 t1,Abs x2 ty2 t2) <=>
        (ty1 = ty2) /\ RACONV (CONS (Var x1 ty1,Var x2 ty2) env) (t1,t2))`,
  REPEAT CONJ_TAC THEN
  GEN_REWRITE_TAC LAND_CONV [RACONV_CASES] THEN
  REWRITE_TAC[term_INJ; term_DISTINCT; PAIR_EQ] THEN MESON_TAC[]);;

let ACONV = new_definition
 `ACONV t1 t2 <=> RACONV [] (t1,t2)`;;

(* ------------------------------------------------------------------------- *)
(* Reflexivity.                                                              *)
(* ------------------------------------------------------------------------- *)

let ALPHAVARS_REFL = prove
 (`!env t. ALL (\(s,t). s = t) env ==> ALPHAVARS env (t,t)`,
  MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[ALL; ALPHAVARS] THEN
  REWRITE_TAC[FORALL_PAIR_THM] THEN
  CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN MESON_TAC[PAIR_EQ]);;

let RACONV_REFL = prove
 (`!t env. ALL (\(s,t). s = t) env ==> RACONV env (t,t)`,
  MATCH_MP_TAC term_INDUCT THEN
  REWRITE_TAC[RACONV] THEN REPEAT STRIP_TAC THENL
   [ASM_SIMP_TAC[ALPHAVARS_REFL];
    ASM_MESON_TAC[];
    ASM_MESON_TAC[];
    FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[ALL] THEN
    CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN ASM_REWRITE_TAC[]]);;

let ACONV_REFL = prove
 (`!t. ACONV t t`,
  REWRITE_TAC[ACONV] THEN SIMP_TAC[RACONV_REFL; ALL]);;

(* ------------------------------------------------------------------------- *)
(* Alpha-convertible terms have the same type (if welltyped).                *)
(* ------------------------------------------------------------------------- *)

let ALPHAVARS_TYPE = prove
 (`!env s t. ALPHAVARS env (s,t) /\
             ALL (\(x,y). welltyped x /\ welltyped y /\
                          (typeof x = typeof y)) env /\
             welltyped s /\ welltyped t
           ==> (typeof s = typeof t)`,
  MATCH_MP_TAC list_INDUCT THEN
  REWRITE_TAC[FORALL_PAIR_THM; ALPHAVARS; ALL; PAIR_EQ] THEN
  CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
  CONJ_TAC THENL [SIMP_TAC[]; ALL_TAC] THEN REPEAT STRIP_TAC THEN
  ASM_MESON_TAC[]);;

let RACONV_TYPE = prove
 (`!env p. RACONV env p
           ==> ALL (\(x,y). welltyped x /\ welltyped y /\
                        (typeof x = typeof y)) env /\
               welltyped (FST p) /\ welltyped (SND p)
               ==> (typeof (FST p) = typeof (SND p))`,
  MATCH_MP_TAC RACONV_INDUCT THEN
  REWRITE_TAC[FORALL_PAIR_THM; typeof] THEN REPEAT STRIP_TAC THENL
   [ASM_MESON_TAC[typeof; ALPHAVARS_TYPE];
    AP_TERM_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
    ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[WELLTYPED_CLAUSES];
    ASM_REWRITE_TAC[] THEN AP_TERM_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
    ASM_REWRITE_TAC[ALL] THEN
    CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
    REWRITE_TAC[typeof] THEN ASM_MESON_TAC[WELLTYPED_CLAUSES]]);;

let ACONV_TYPE = prove
 (`!s t. ACONV s t ==> welltyped s /\ welltyped t ==> (typeof s = typeof t)`,
  REPEAT GEN_TAC THEN
  MP_TAC(SPECL [`[]:(term#term)list`; `(s:term,t:term)`] RACONV_TYPE) THEN
  REWRITE_TAC[ACONV; ALL] THEN MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* HOL version of "term_union".                                              *)
(* ------------------------------------------------------------------------- *)

let TERM_UNION = define
 `(TERM_UNION [] l2 = l2) /\
  (TERM_UNION (CONS h t) l2 =
        let subun = TERM_UNION t l2 in
        if EX (ACONV h) subun then subun else CONS h subun)`;;

let TERM_UNION_NONEW = prove
 (`!l1 l2 x. MEM x (TERM_UNION l1 l2) ==> MEM x l1 \/ MEM x l2`,
  LIST_INDUCT_TAC THEN REWRITE_TAC[TERM_UNION; MEM] THEN
  LET_TAC THEN REPEAT GEN_TAC THEN COND_CASES_TAC THEN
  REWRITE_TAC[MEM] THEN ASM_MESON_TAC[ACONV_REFL]);;

let TERM_UNION_THM = prove
 (`!l1 l2 x. MEM x l1 \/ MEM x l2
             ==> ?y. MEM y (TERM_UNION l1 l2) /\ ACONV x y`,
  LIST_INDUCT_TAC THEN REWRITE_TAC[TERM_UNION; MEM; GSYM EX_MEM] THENL
   [MESON_TAC[ACONV_REFL]; ALL_TAC] THEN
  REPEAT GEN_TAC THEN LET_TAC THEN COND_CASES_TAC THEN STRIP_TAC THEN
  ASM_REWRITE_TAC[MEM] THEN  ASM_MESON_TAC[ACONV_REFL]);;

(* ------------------------------------------------------------------------- *)
(* Handy lemma for using it in a sequent.                                    *)
(* ------------------------------------------------------------------------- *)

let ALL_BOOL_TERM_UNION = prove
 (`ALL (\a. a has_type Bool) l1 /\ ALL (\a. a has_type Bool) l2
   ==> ALL (\a. a has_type Bool) (TERM_UNION l1 l2)`,
  REWRITE_TAC[GSYM ALL_MEM] THEN MESON_TAC[TERM_UNION_NONEW]);;

(* ------------------------------------------------------------------------- *)
(* Whether a variable/constant is free in a term.                            *)
(* ------------------------------------------------------------------------- *)

let VFREE_IN = define
  `(VFREE_IN v (Var x ty) <=> (Var x ty = v)) /\
   (VFREE_IN v (Equal ty) <=> (Equal ty = v)) /\
   (VFREE_IN v (Select ty) <=> (Select ty = v)) /\
   (VFREE_IN v (Comb s t) <=> VFREE_IN v s \/ VFREE_IN v t) /\
   (VFREE_IN v (Abs x ty t) <=> ~(Var x ty = v) /\ VFREE_IN v t)`;;

let VFREE_IN_RACONV = prove
 (`!env p. RACONV env p
           ==> !x ty. VFREE_IN (Var x ty) (FST p) /\
                      ~(?y. MEM (Var x ty,y) env) <=>
                      VFREE_IN (Var x ty) (SND p) /\
                      ~(?y. MEM (y,Var x ty) env)`,
  MATCH_MP_TAC RACONV_INDUCT THEN REWRITE_TAC[VFREE_IN; term_DISTINCT] THEN
  REWRITE_TAC[PAIR_EQ; term_INJ; MEM] THEN CONJ_TAC THENL
   [ALL_TAC; MESON_TAC[]] THEN
  MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[ALPHAVARS] THEN
  REWRITE_TAC[MEM; FORALL_PAIR_THM; term_INJ; PAIR_EQ] THEN
  CONJ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN
  REPEAT GEN_TAC THEN REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
  MESON_TAC[]);;

let VFREE_IN_ACONV = prove
 (`!s t x t. ACONV s t ==> (VFREE_IN (Var x ty) s <=> VFREE_IN (Var x ty) t)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[ACONV] THEN
  DISCH_THEN(MP_TAC o MATCH_MP VFREE_IN_RACONV) THEN
  SIMP_TAC[MEM; FST; SND]);;

(* ------------------------------------------------------------------------- *)
(* Auxiliary association list function.                                      *)
(* ------------------------------------------------------------------------- *)

let REV_ASSOCD = define
  `(REV_ASSOCD a [] d = d) /\
   (REV_ASSOCD a (CONS (x,y) t) d =
        if y = a then x else REV_ASSOCD a t d)`;;

(* ------------------------------------------------------------------------- *)
(* Substition of types in types.                                             *)
(* ------------------------------------------------------------------------- *)

let TYPE_SUBST = define
 `(TYPE_SUBST i (Tyvar v) = REV_ASSOCD (Tyvar v) i (Tyvar v)) /\
  (TYPE_SUBST i Bool = Bool) /\
  (TYPE_SUBST i Ind = Ind) /\
  (TYPE_SUBST i (Fun ty1 ty2) = Fun (TYPE_SUBST i ty1) (TYPE_SUBST i ty2))`;;

(* ------------------------------------------------------------------------- *)
(* Variant function. Deliberately underspecified at the moment. In a bid to  *)
(* expunge use of sets, just pick it distinct from what's free in a term.    *)
(* ------------------------------------------------------------------------- *)

let VFREE_IN_FINITE = prove
 (`!t. FINITE {x | VFREE_IN x t}`,
  MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[VFREE_IN] THEN
  REWRITE_TAC[SET_RULE `{x | a = x} = {a}`;
              SET_RULE `{x | P x \/ Q x} = {x | P x} UNION {x | Q x}`;
              SET_RULE `{x | P x /\ Q x} = {x | P x} INTER {x | Q x}`] THEN
  SIMP_TAC[FINITE_INSERT; FINITE_RULES; FINITE_UNION; FINITE_INTER]);;

let VFREE_IN_FINITE_ALT = prove
 (`!t ty. FINITE {x | VFREE_IN (Var x ty) t}`,
  REPEAT GEN_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN
  EXISTS_TAC `IMAGE (\(Var x ty). x) {x | VFREE_IN x t}` THEN
  SIMP_TAC[VFREE_IN_FINITE; FINITE_IMAGE] THEN
  REWRITE_TAC[SUBSET; IN_IMAGE; IN_ELIM_THM] THEN
  X_GEN_TAC `x:string` THEN DISCH_TAC THEN
  EXISTS_TAC `Var x ty` THEN CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
  ASM_REWRITE_TAC[]);;

let VARIANT_EXISTS = prove
 (`!t x:string ty. ?x'. ~(VFREE_IN (Var x' ty) t)`,
  REPEAT STRIP_TAC THEN
  MP_TAC(SPECL [`t:term`; `ty:type`] VFREE_IN_FINITE_ALT) THEN
  DISCH_THEN(MP_TAC o CONJ string_INFINITE) THEN
  DISCH_THEN(MP_TAC o MATCH_MP INFINITE_DIFF_FINITE) THEN
  DISCH_THEN(MP_TAC o MATCH_MP INFINITE_NONEMPTY) THEN
  REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; IN_DIFF; IN_ELIM_THM; IN_UNIV]);;

let VARIANT = new_specification ["VARIANT"]
 (PURE_REWRITE_RULE[SKOLEM_THM] VARIANT_EXISTS);;

(* ------------------------------------------------------------------------- *)
(* Term substitution.                                                        *)
(* ------------------------------------------------------------------------- *)

let VSUBST = define
  `(VSUBST ilist (Var x ty) = REV_ASSOCD (Var x ty) ilist (Var x ty)) /\
   (VSUBST ilist (Equal ty) = Equal ty) /\
   (VSUBST ilist (Select ty) = Select ty) /\
   (VSUBST ilist (Comb s t) = Comb (VSUBST ilist s) (VSUBST ilist t)) /\
   (VSUBST ilist (Abs x ty t) =
        let ilist' = FILTER (\(s',s). ~(s = Var x ty)) ilist in
        let t' = VSUBST ilist' t in
        if EX (\(s',s). VFREE_IN (Var x ty) s' /\ VFREE_IN s t) ilist'
        then let z = VARIANT t' x ty in
             let ilist'' = CONS (Var z ty,Var x ty) ilist' in
             Abs z ty (VSUBST ilist'' t)
        else Abs x ty t')`;;

(* ------------------------------------------------------------------------- *)
(* Preservation of type.                                                     *)
(* ------------------------------------------------------------------------- *)

let VSUBST_HAS_TYPE = prove
 (`!tm ty ilist.
        tm has_type ty /\
        (!s s'. MEM (s',s) ilist ==> ?x ty. (s = Var x ty) /\ s' has_type ty)
        ==> (VSUBST ilist tm) has_type ty`,
  MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[VSUBST] THEN
  REPEAT CONJ_TAC THENL
   [MAP_EVERY X_GEN_TAC [`x:string`; `ty:type`; `tty:type`] THEN
    MATCH_MP_TAC list_INDUCT THEN
    SIMP_TAC[REV_ASSOCD; MEM; FORALL_PAIR_THM] THEN
    REWRITE_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN
    SIMP_TAC[FORALL_AND_THM; LEFT_FORALL_IMP_THM; PAIR_EQ] THEN
    REWRITE_TAC[ LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN
    ASM_CASES_TAC `(Var x ty) has_type tty` THEN ASM_REWRITE_TAC[] THEN
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [has_type_CASES]) THEN
    REWRITE_TAC[term_DISTINCT; term_INJ; LEFT_EXISTS_AND_THM] THEN
    REWRITE_TAC[GSYM EXISTS_REFL] THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THEN
    MAP_EVERY X_GEN_TAC [`s:term`; `u:term`; `ilist:(term#term)list`] THEN
    DISCH_TAC THEN DISCH_THEN(CONJUNCTS_THEN ASSUME_TAC) THEN
    FIRST_X_ASSUM(X_CHOOSE_THEN `y:string` MP_TAC) THEN
    DISCH_THEN(X_CHOOSE_THEN `aty:type` MP_TAC) THEN
    DISCH_THEN(CONJUNCTS_THEN2 SUBST_ALL_TAC ASSUME_TAC) THEN
    ASM_MESON_TAC[term_INJ];
    SIMP_TAC[];
    SIMP_TAC[];
    MAP_EVERY X_GEN_TAC [`s:term`; `t:term`] THEN REPEAT STRIP_TAC THEN
    FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [has_type_CASES]) THEN
    REWRITE_TAC[term_DISTINCT; term_INJ; GSYM CONJ_ASSOC] THEN
    REWRITE_TAC[RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN
    DISCH_THEN(X_CHOOSE_THEN `dty:type` STRIP_ASSUME_TAC) THEN
    MATCH_MP_TAC(el 3 (CONJUNCTS has_type_RULES)) THEN
    EXISTS_TAC `dty:type` THEN CONJ_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
    ASM_REWRITE_TAC[];
    ALL_TAC] THEN
  MAP_EVERY X_GEN_TAC [`x:string`; `ty:type`; `t:term`] THEN DISCH_TAC THEN
  MAP_EVERY X_GEN_TAC [`fty:type`; `ilist:(term#term)list`] THEN STRIP_TAC THEN
  LET_TAC THEN LET_TAC THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [has_type_CASES]) THEN
  REWRITE_TAC[term_DISTINCT; term_INJ; GSYM CONJ_ASSOC] THEN
  REWRITE_TAC[RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN
  DISCH_THEN(X_CHOOSE_THEN `rty:type` MP_TAC) THEN
  DISCH_THEN(CONJUNCTS_THEN2 SUBST_ALL_TAC MP_TAC) THEN DISCH_TAC THEN
  COND_CASES_TAC THEN REPEAT LET_TAC THEN
  MATCH_MP_TAC(el 4 (CONJUNCTS has_type_RULES)) THEN
  EXPAND_TAC "t'" THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THENL
   [MAP_EVERY EXPAND_TAC ["ilist''"; "ilist'"]; EXPAND_TAC "ilist'"] THEN
  REWRITE_TAC[MEM; MEM_FILTER] THEN
  CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
  REWRITE_TAC[PAIR_EQ] THEN ASM_MESON_TAC[has_type_RULES]);;

let VSUBST_WELLTYPED = prove
 (`!tm ty ilist.
        welltyped tm /\
        (!s s'. MEM (s',s) ilist ==> ?x ty. (s = Var x ty) /\ s' has_type ty)
        ==> welltyped (VSUBST ilist tm)`,
  MESON_TAC[VSUBST_HAS_TYPE; welltyped]);;

(* ------------------------------------------------------------------------- *)
(* Right set of free variables.                                              *)
(* ------------------------------------------------------------------------- *)

let REV_ASSOCD_FILTER = prove
 (`!l:(B#A)list a b d.
        REV_ASSOCD a (FILTER (\(y,x). P x) l) b =
            if P a then REV_ASSOCD a l b else b`,
  MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[REV_ASSOCD; FILTER; COND_ID] THEN
  REWRITE_TAC[FORALL_PAIR_THM] THEN
  CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
  MAP_EVERY X_GEN_TAC [`y:B`; `x:A`; `l:(B#A)list`] THEN
  REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[REV_ASSOCD] THEN
  ASM_CASES_TAC `(P:A->bool) x` THEN ASM_REWRITE_TAC[REV_ASSOCD] THEN
  ASM_MESON_TAC[]);;

let VFREE_IN_VSUBST = prove
 (`!tm u uty ilist.
      VFREE_IN (Var u uty) (VSUBST ilist tm) <=>
        ?y ty. VFREE_IN (Var y ty) tm /\
               VFREE_IN (Var u uty) (REV_ASSOCD (Var y ty) ilist (Var y ty))`,
  MATCH_MP_TAC term_INDUCT THEN
  REWRITE_TAC[VFREE_IN; VSUBST; term_DISTINCT] THEN REPEAT CONJ_TAC THENL
   [MESON_TAC[term_INJ];
    REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MESON_TAC[];
    ALL_TAC] THEN
  MAP_EVERY X_GEN_TAC [`x:string`; `ty:type`; `t:term`] THEN DISCH_TAC THEN
  REPEAT GEN_TAC THEN LET_TAC THEN LET_TAC THEN
  COND_CASES_TAC THEN REPEAT LET_TAC THEN
  ASM_REWRITE_TAC[VFREE_IN] THENL
   [MAP_EVERY EXPAND_TAC ["ilist''"; "ilist'"];
    EXPAND_TAC "t'" THEN ASM_REWRITE_TAC[] THEN EXPAND_TAC "ilist'"] THEN
  SIMP_TAC[REV_ASSOCD; REV_ASSOCD_FILTER] THEN
  ONCE_REWRITE_TAC[COND_RAND] THEN REWRITE_TAC[VFREE_IN] THEN
  REWRITE_TAC[TAUT `(if ~b then x:bool else y) <=> (if b then y else x)`] THEN
  ONCE_REWRITE_TAC[TAUT `~a /\ b <=> ~(~a ==> ~b)`] THEN
  SIMP_TAC[TAUT `(if b then F else c) <=> ~b /\ c`] THEN
  MATCH_MP_TAC(TAUT
   `(a ==> ~c) /\ (~a ==> (b <=> c)) ==> (~(~a ==> ~b) <=> c)`) THEN
  (CONJ_TAC THENL [ALL_TAC; MESON_TAC[]]) THEN
  GEN_REWRITE_TAC LAND_CONV [term_INJ] THEN
  DISCH_THEN(CONJUNCTS_THEN(SUBST_ALL_TAC o SYM)) THEN
  REWRITE_TAC[NOT_IMP] THENL
   [MP_TAC(ISPECL [`VSUBST ilist' t`; `x:string`; `ty:type`] VARIANT) THEN
    ASM_REWRITE_TAC[] THEN
    EXPAND_TAC "ilist'" THEN ASM_REWRITE_TAC[REV_ASSOCD_FILTER] THEN
    MESON_TAC[];
    ALL_TAC] THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_EX]) THEN
  EXPAND_TAC "ilist'" THEN
  SPEC_TAC(`ilist:(term#term)list`,`l:(term#term)list`) THEN
  MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[ALL; REV_ASSOCD; VFREE_IN] THEN
  REWRITE_TAC[REV_ASSOCD; FILTER; FORALL_PAIR_THM] THEN
  ONCE_REWRITE_TAC[COND_RAND] THEN REWRITE_TAC[ALL] THEN
  CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Sum type to model exception-raising.                                      *)
(* ------------------------------------------------------------------------- *)

let result_INDUCT,result_RECURSION = define_type
 "result = Clash term | Result term";;

let result_INJ = injectivity "result";;

let result_DISTINCT = distinctness "result";;

(* ------------------------------------------------------------------------- *)
(* Discriminators and extractors. (Nicer to pattern-match...)                *)
(* ------------------------------------------------------------------------- *)

let IS_RESULT = define
 `(IS_RESULT(Clash t) = F) /\
  (IS_RESULT(Result t) = T)`;;

let IS_CLASH = define
 `(IS_CLASH(Clash t) = T) /\
  (IS_CLASH(Result t) = F)`;;

let RESULT = define
 `RESULT(Result t) = t`;;

let CLASH = define
 `CLASH(Clash t) = t`;;

(* ------------------------------------------------------------------------- *)
(* We want induction/recursion on term size next.                            *)
(* ------------------------------------------------------------------------- *)

let rec sizeof = define
 `(sizeof (Var x ty) = 1) /\
  (sizeof (Equal ty) = 1) /\
  (sizeof (Select ty) = 1) /\
  (sizeof (Comb s t) = 1 + sizeof s + sizeof t) /\
  (sizeof (Abs x ty t) = 2 + sizeof t)`;;

let SIZEOF_VSUBST = prove
 (`!t ilist. (!s' s. MEM (s',s) ilist ==> ?x ty. s' = Var x ty)
             ==> (sizeof (VSUBST ilist t) = sizeof t)`,
  MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[VSUBST; sizeof] THEN
  CONJ_TAC THENL
   [MAP_EVERY X_GEN_TAC [`x:string`; `ty:type`] THEN
    MATCH_MP_TAC list_INDUCT THEN
    REWRITE_TAC[MEM; REV_ASSOCD; sizeof; FORALL_PAIR_THM] THEN
    MAP_EVERY X_GEN_TAC [`s':term`; `s:term`; `l:(term#term)list`] THEN
    REWRITE_TAC[PAIR_EQ] THEN REPEAT STRIP_TAC THEN
    COND_CASES_TAC THEN ASM_SIMP_TAC[] THEN ASM_MESON_TAC[sizeof];
    ALL_TAC] THEN
  CONJ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN
  MAP_EVERY X_GEN_TAC [`x:string`; `ty:type`; `t:term`] THEN
  DISCH_TAC THEN X_GEN_TAC `ilist:(term#term)list` THEN DISCH_TAC THEN
  LET_TAC THEN LET_TAC THEN COND_CASES_TAC THEN
  REPEAT LET_TAC THEN REWRITE_TAC[sizeof; EQ_ADD_LCANCEL] THENL
   [ALL_TAC; ASM_MESON_TAC[MEM_FILTER]] THEN
  FIRST_X_ASSUM MATCH_MP_TAC THEN
  EXPAND_TAC "ilist''" THEN REWRITE_TAC[MEM; PAIR_EQ] THEN
  ASM_MESON_TAC[MEM_FILTER]);;

(* ------------------------------------------------------------------------- *)
(* Prove existence of INST_CORE.                                             *)
(* ------------------------------------------------------------------------- *)

let INST_CORE_EXISTS = prove
 (`?INST_CORE.
  (!env tyin x ty.
        INST_CORE env tyin (Var x ty) =
          let tm = Var x ty
          and tm' = Var x (TYPE_SUBST tyin ty) in
         if REV_ASSOCD tm' env tm = tm then Result tm' else Clash tm') /\
  (!env tyin ty.
        INST_CORE env tyin (Equal ty) = Result(Equal(TYPE_SUBST tyin ty))) /\
  (!env tyin ty.
        INST_CORE env tyin (Select ty) = Result(Select(TYPE_SUBST tyin ty))) /\
  (!env tyin s t.
        INST_CORE env tyin (Comb s t) =
            let sres = INST_CORE env tyin s in
            if IS_CLASH sres then sres else
            let tres = INST_CORE env tyin t in
            if IS_CLASH tres then tres else
            let s' = RESULT sres and t' = RESULT tres in
            Result (Comb s' t')) /\
  (!env tyin x ty t.
        INST_CORE env tyin (Abs x ty t) =
            let ty' = TYPE_SUBST tyin ty in
            let env' = CONS (Var x ty,Var x ty') env in
            let tres = INST_CORE env' tyin t in
            if IS_RESULT tres then Result(Abs x ty' (RESULT tres)) else
            let w = CLASH tres in
            if ~(w = Var x ty') then tres else
            let x' = VARIANT (RESULT(INST_CORE [] tyin t)) x ty' in
            INST_CORE env tyin (Abs x' ty (VSUBST [Var x' ty,Var x ty] t)))`,
  W(fun (asl,w) -> MATCH_MP_TAC(DISCH_ALL
   (pure_prove_recursive_function_exists w))) THEN
  EXISTS_TAC `MEASURE(\(env:(term#term)list,tyin:(type#type)list,t).
                        sizeof t)` THEN
  REWRITE_TAC[WF_MEASURE; MEASURE_LE; MEASURE] THEN
  CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
  SIMP_TAC[MEM; PAIR_EQ; term_INJ; RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM;
           GSYM EXISTS_REFL; SIZEOF_VSUBST; LE_REFL; sizeof] THEN
  REPEAT STRIP_TAC THEN ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* So define it.                                                             *)
(* ------------------------------------------------------------------------- *)

let INST_CORE = new_specification ["INST_CORE"] INST_CORE_EXISTS;;

(* ------------------------------------------------------------------------- *)
(* And the overall function.                                                 *)
(* ------------------------------------------------------------------------- *)

let INST_DEF = new_definition
 `INST tyin tm = RESULT(INST_CORE [] tyin tm)`;;

(* ------------------------------------------------------------------------- *)
(* Various misc lemmas.                                                      *)
(* ------------------------------------------------------------------------- *)

let NOT_IS_RESULT = prove
 (`!r. ~(IS_RESULT r) <=> IS_CLASH r`,
  MATCH_MP_TAC result_INDUCT THEN REWRITE_TAC[IS_RESULT; IS_CLASH]);;

let letlemma = prove
 (`(let x = t in P x) = P t`,
  REWRITE_TAC[LET_DEF; LET_END_DEF]);;

(* ------------------------------------------------------------------------- *)
(* Put everything together into a deductive system.                          *)
(* ------------------------------------------------------------------------- *)

parse_as_infix("|-",(11,"right"));;

let prove_RULES,proves_INDUCT,proves_CASES = new_inductive_definition
 `(!t. welltyped t ==> [] |- t === t) /\
  (!asl1 asl2 l m1 m2 r.
        asl1 |- l === m1 /\ asl2 |- m2 === r /\ ACONV m1 m2
        ==> TERM_UNION asl1 asl2 |- l === r) /\
  (!asl1 l1 r1 asl2 l2 r2.
        asl1 |- l1 === r1 /\ asl2 |- l2 === r2 /\ welltyped(Comb l1 l2)
        ==> TERM_UNION asl1 asl2 |- Comb l1 l2 === Comb r1 r2) /\
  (!asl x ty l r.
        ~(EX (VFREE_IN (Var x ty)) asl) /\ asl |- l === r
        ==> asl |- (Abs x ty l) === (Abs x ty r)) /\
  (!x ty t. welltyped t ==> [] |- Comb (Abs x ty t) (Var x ty) === t) /\
  (!p. p has_type Bool ==> [p] |- p) /\
  (!asl1 asl2 p q p'.
        asl1 |- p === q /\ asl2 |- p' /\ ACONV p p'
        ==> TERM_UNION asl1 asl2 |- q) /\
  (!asl1 asl2 c1 c2.
        asl1 |- c1 /\ asl2 |- c2
        ==> TERM_UNION (FILTER((~) o ACONV c2) asl1)
                       (FILTER((~) o ACONV c1) asl2)
               |- c1 === c2) /\
  (!tyin asl p. asl |- p ==> MAP (INST tyin) asl |- INST tyin p) /\
  (!ilist asl p.
      (!s s'. MEM (s',s) ilist ==> ?x ty. (s = Var x ty) /\ s' has_type ty) /\
      asl |- p ==> MAP (VSUBST ilist) asl |- VSUBST ilist p)`;;