1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589 15590 15591 15592 15593 15594 15595 15596 15597 15598 15599 15600 15601 15602 15603 15604 15605 15606 15607 15608 15609 15610 15611 15612 15613 15614 15615 15616 15617 15618 15619 15620 15621 15622 15623 15624 15625 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 15643 15644 15645 15646 15647 15648 15649 15650 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 15671 15672 15673 15674 15675 15676 15677 15678 15679 15680 15681 15682 15683 15684 15685 15686 15687 15688 15689 15690 15691 15692 15693 15694 15695 15696 15697 15698 15699 15700 15701 15702 15703 15704 15705 15706 15707 15708 15709 15710 15711 15712 15713 15714 15715 15716 15717 15718 15719 15720 15721 15722 15723 15724 15725 15726 15727 15728 15729 15730 15731 15732 15733 15734 15735 15736 15737 15738 15739 15740 15741 15742 15743 15744 15745 15746 15747 15748 15749 15750 15751 15752 15753 15754 15755 15756 15757 15758 15759 15760 15761 15762 15763 15764 15765 15766 15767 15768 15769 15770 15771 15772 15773 15774 15775 15776 15777 15778 15779 15780 15781 15782 15783 15784 15785 15786 15787 15788 15789 15790 15791 15792 15793 15794 15795 15796 15797 15798 15799 15800 15801 15802 15803 15804 15805 15806 15807 15808 15809 15810 15811 15812 15813 15814 15815 15816 15817 15818 15819 15820 15821 15822 15823 15824 15825 15826 15827 15828 15829 15830 15831 15832 15833 15834 15835 15836 15837 15838 15839 15840 15841 15842 15843 15844 15845 15846 15847 15848 15849 15850 15851 15852 15853 15854 15855 15856 15857 15858 15859 15860 15861 15862 15863 15864 15865 15866 15867 15868 15869 15870 15871 15872 15873 15874 15875 15876 15877 15878 15879 15880 15881 15882 15883 15884 15885 15886 15887 15888 15889 15890 15891 15892 15893 15894 15895 15896 15897 15898 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 15914 15915 15916 15917 15918 15919 15920 15921 15922 15923 15924 15925 15926 15927 15928 15929 15930 15931 15932 15933 15934 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 15950 15951 15952 15953 15954 15955 15956 15957 15958 15959 15960 15961 15962 15963 15964 15965 15966 15967 15968 15969 15970 15971 15972 15973 15974 15975 15976 15977 15978 15979 15980 15981 15982 15983 15984 15985 15986 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005 16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018 16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031 16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044 16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057 16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 16103 16104 16105 16106 16107 16108 16109 16110 16111 16112 16113 16114 16115 16116 16117 16118 16119 16120 16121 16122 16123 16124 16125 16126 16127 16128 16129 16130 16131 16132 16133 16134 16135 16136 16137 16138 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 16154 16155 16156 16157 16158 16159 16160 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 16183 16184 16185 16186 16187 16188 16189 16190 16191 16192 16193 16194 16195 16196 16197 16198 16199 16200 16201 16202 16203 16204 16205 16206 16207 16208 16209 16210 16211 16212 16213 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 16260 16261 16262 16263 16264 16265 16266 16267 16268 16269 16270 16271 16272 16273 16274 16275 16276 16277 16278 16279 16280 16281 16282 16283 16284 16285 16286 16287 16288 16289 16290 16291 16292 16293 16294 16295 16296 16297 16298 16299 16300 16301 16302 16303 16304 16305 16306 16307 16308 16309 16310 16311 16312 16313 16314 16315 16316 16317 16318 16319 16320 16321 16322 16323 16324 16325 16326 16327 16328 16329 16330 16331 16332 16333 16334 16335 16336 16337 16338 16339 16340 16341 16342 16343 16344 16345 16346 16347 16348 16349 16350 16351 16352 16353 16354 16355 16356 16357 16358 16359 16360 16361 16362 16363 16364 16365 16366 16367 16368 16369 16370 16371 16372 16373 16374 16375 16376 16377 16378 16379 16380 16381 16382 16383 16384 16385 16386 16387 16388 16389 16390 16391 16392 16393 16394 16395 16396 16397 16398 16399 16400 16401 16402 16403 16404 16405 16406 16407 16408 16409 16410 16411 16412 16413 16414 16415 16416 16417 16418 16419 16420 16421 16422
|
(* ========================================================================= *)
(* Some analytic concepts for R instead of R^1. *)
(* *)
(* (c) Copyright, John Harrison 1998-2008 *)
(* ========================================================================= *)
needs "Library/binomial.ml";;
needs "Multivariate/polytope.ml";;
needs "Multivariate/measure.ml";;
needs "Multivariate/transcendentals.ml";;
(* ------------------------------------------------------------------------- *)
(* Open-ness and closedness of a set of reals. *)
(* ------------------------------------------------------------------------- *)
let real_open = new_definition
`real_open s <=>
!x. x IN s ==> ?e. &0 < e /\ !x'. abs(x' - x) < e ==> x' IN s`;;
let real_closed = new_definition
`real_closed s <=> real_open((:real) DIFF s)`;;
let euclideanreal = new_definition
`euclideanreal = topology real_open`;;
let REAL_OPEN_EMPTY = prove
(`real_open {}`,
REWRITE_TAC[real_open; NOT_IN_EMPTY]);;
let REAL_OPEN_UNIV = prove
(`real_open(:real)`,
REWRITE_TAC[real_open; IN_UNIV] THEN MESON_TAC[REAL_LT_01]);;
let REAL_OPEN_INTER = prove
(`!s t. real_open s /\ real_open t ==> real_open (s INTER t)`,
REPEAT GEN_TAC THEN REWRITE_TAC[real_open; AND_FORALL_THM; IN_INTER] THEN
MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN
DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN
ASM_REWRITE_TAC[] THEN DISCH_THEN(CONJUNCTS_THEN2
(X_CHOOSE_TAC `d1:real`) (X_CHOOSE_TAC `d2:real`)) THEN
MP_TAC(SPECL [`d1:real`; `d2:real`] REAL_DOWN2) THEN
ASM_MESON_TAC[REAL_LT_TRANS]);;
let REAL_OPEN_UNIONS = prove
(`(!s. s IN f ==> real_open s) ==> real_open(UNIONS f)`,
REWRITE_TAC[real_open; IN_UNIONS] THEN MESON_TAC[]);;
let REAL_OPEN_IN = prove
(`!s. real_open s <=> open_in euclideanreal s`,
GEN_TAC THEN REWRITE_TAC[euclideanreal] THEN CONV_TAC SYM_CONV THEN
AP_THM_TAC THEN REWRITE_TAC[GSYM(CONJUNCT2 topology_tybij)] THEN
REWRITE_TAC[REWRITE_RULE[IN] istopology] THEN
REWRITE_TAC[REAL_OPEN_EMPTY; REAL_OPEN_INTER; SUBSET] THEN
MESON_TAC[IN; REAL_OPEN_UNIONS]);;
let TOPSPACE_EUCLIDEANREAL = prove
(`topspace euclideanreal = (:real)`,
REWRITE_TAC[topspace; EXTENSION; IN_UNIV; IN_UNIONS; IN_ELIM_THM] THEN
MESON_TAC[REAL_OPEN_UNIV; IN_UNIV; REAL_OPEN_IN]);;
let TOPSPACE_EUCLIDEANREAL_SUBTOPOLOGY = prove
(`!s. topspace (subtopology euclideanreal s) = s`,
REWRITE_TAC[TOPSPACE_EUCLIDEANREAL; TOPSPACE_SUBTOPOLOGY; INTER_UNIV]);;
let REAL_CLOSED_IN = prove
(`!s. real_closed s <=> closed_in euclideanreal s`,
REWRITE_TAC[real_closed; closed_in; TOPSPACE_EUCLIDEANREAL;
REAL_OPEN_IN; SUBSET_UNIV]);;
let REAL_OPEN_UNION = prove
(`!s t. real_open s /\ real_open t ==> real_open(s UNION t)`,
REWRITE_TAC[REAL_OPEN_IN; OPEN_IN_UNION]);;
let REAL_OPEN_SUBREAL_OPEN = prove
(`!s. real_open s <=> !x. x IN s ==> ?t. real_open t /\ x IN t /\ t SUBSET s`,
REWRITE_TAC[REAL_OPEN_IN; GSYM OPEN_IN_SUBOPEN]);;
let REAL_CLOSED_EMPTY = prove
(`real_closed {}`,
REWRITE_TAC[REAL_CLOSED_IN; CLOSED_IN_EMPTY]);;
let REAL_CLOSED_UNIV = prove
(`real_closed(:real)`,
REWRITE_TAC[REAL_CLOSED_IN; GSYM TOPSPACE_EUCLIDEANREAL; CLOSED_IN_TOPSPACE]);;
let REAL_CLOSED_UNION = prove
(`!s t. real_closed s /\ real_closed t ==> real_closed(s UNION t)`,
REWRITE_TAC[REAL_CLOSED_IN; CLOSED_IN_UNION]);;
let REAL_CLOSED_INTER = prove
(`!s t. real_closed s /\ real_closed t ==> real_closed(s INTER t)`,
REWRITE_TAC[REAL_CLOSED_IN; CLOSED_IN_INTER]);;
let REAL_CLOSED_INTERS = prove
(`!f. (!s. s IN f ==> real_closed s) ==> real_closed(INTERS f)`,
REWRITE_TAC[REAL_CLOSED_IN] THEN REPEAT STRIP_TAC THEN
ASM_CASES_TAC `f:(real->bool)->bool = {}` THEN
ASM_SIMP_TAC[CLOSED_IN_INTERS; INTERS_0] THEN
REWRITE_TAC[GSYM TOPSPACE_EUCLIDEANREAL; CLOSED_IN_TOPSPACE]);;
let REAL_OPEN_REAL_CLOSED = prove
(`!s. real_open s <=> real_closed(UNIV DIFF s)`,
SIMP_TAC[REAL_OPEN_IN; REAL_CLOSED_IN; TOPSPACE_EUCLIDEANREAL; SUBSET_UNIV;
OPEN_IN_CLOSED_IN_EQ]);;
let REAL_OPEN_DIFF = prove
(`!s t. real_open s /\ real_closed t ==> real_open(s DIFF t)`,
REWRITE_TAC[REAL_OPEN_IN; REAL_CLOSED_IN; OPEN_IN_DIFF]);;
let REAL_CLOSED_DIFF = prove
(`!s t. real_closed s /\ real_open t ==> real_closed(s DIFF t)`,
REWRITE_TAC[REAL_OPEN_IN; REAL_CLOSED_IN; CLOSED_IN_DIFF]);;
let REAL_OPEN_INTERS = prove
(`!s. FINITE s /\ (!t. t IN s ==> real_open t) ==> real_open(INTERS s)`,
REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
REWRITE_TAC[INTERS_INSERT; INTERS_0; REAL_OPEN_UNIV; IN_INSERT] THEN
MESON_TAC[REAL_OPEN_INTER]);;
let REAL_CLOSED_UNIONS = prove
(`!s. FINITE s /\ (!t. t IN s ==> real_closed t) ==> real_closed(UNIONS s)`,
REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
REWRITE_TAC[UNIONS_INSERT; UNIONS_0; REAL_CLOSED_EMPTY; IN_INSERT] THEN
MESON_TAC[REAL_CLOSED_UNION]);;
let REAL_OPEN = prove
(`!s. real_open s <=> open(IMAGE lift s)`,
REWRITE_TAC[real_open; open_def; FORALL_IN_IMAGE; FORALL_LIFT; DIST_LIFT;
LIFT_IN_IMAGE_LIFT]);;
let REAL_CLOSED = prove
(`!s. real_closed s <=> closed(IMAGE lift s)`,
GEN_TAC THEN REWRITE_TAC[real_closed; REAL_OPEN; closed] THEN
AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_IMAGE; IN_DIFF; IN_UNIV] THEN
MESON_TAC[LIFT_DROP]);;
let REAL_CLOSED_HALFSPACE_LE = prove
(`!a. real_closed {x | x <= a}`,
GEN_TAC THEN SUBGOAL_THEN `closed {x | drop x <= a}` MP_TAC THENL
[REWRITE_TAC[drop; CLOSED_HALFSPACE_COMPONENT_LE]; ALL_TAC] THEN
MATCH_MP_TAC EQ_IMP THEN REWRITE_TAC[REAL_CLOSED] THEN AP_TERM_TAC THEN
REWRITE_TAC[EXTENSION; IN_IMAGE; IN_ELIM_THM] THEN MESON_TAC[LIFT_DROP]);;
let REAL_CLOSED_HALFSPACE_GE = prove
(`!a. real_closed {x | x >= a}`,
GEN_TAC THEN SUBGOAL_THEN `closed {x | drop x >= a}` MP_TAC THENL
[REWRITE_TAC[drop; CLOSED_HALFSPACE_COMPONENT_GE]; ALL_TAC] THEN
MATCH_MP_TAC EQ_IMP THEN REWRITE_TAC[REAL_CLOSED] THEN AP_TERM_TAC THEN
REWRITE_TAC[EXTENSION; IN_IMAGE; IN_ELIM_THM] THEN MESON_TAC[LIFT_DROP]);;
let REAL_OPEN_HALFSPACE_LT = prove
(`!a. real_open {x | x < a}`,
GEN_TAC THEN SUBGOAL_THEN `open {x | drop x < a}` MP_TAC THENL
[REWRITE_TAC[drop; OPEN_HALFSPACE_COMPONENT_LT]; ALL_TAC] THEN
MATCH_MP_TAC EQ_IMP THEN REWRITE_TAC[REAL_OPEN] THEN AP_TERM_TAC THEN
REWRITE_TAC[EXTENSION; IN_IMAGE; IN_ELIM_THM] THEN MESON_TAC[LIFT_DROP]);;
let REAL_OPEN_HALFSPACE_GT = prove
(`!a. real_open {x | x > a}`,
GEN_TAC THEN SUBGOAL_THEN `open {x | drop x > a}` MP_TAC THENL
[REWRITE_TAC[drop; OPEN_HALFSPACE_COMPONENT_GT]; ALL_TAC] THEN
MATCH_MP_TAC EQ_IMP THEN REWRITE_TAC[REAL_OPEN] THEN AP_TERM_TAC THEN
REWRITE_TAC[EXTENSION; IN_IMAGE; IN_ELIM_THM] THEN MESON_TAC[LIFT_DROP]);;
(* ------------------------------------------------------------------------- *)
(* Euclidean metric on real numbers. *)
(* ------------------------------------------------------------------------- *)
let real_euclidean_metric = new_definition
`real_euclidean_metric = metric ((:real),\(x,y). abs(y-x))`;;
let REAL_EUCLIDEAN_METRIC = prove
(`mspace real_euclidean_metric = (:real) /\
(!x y. mdist real_euclidean_metric (x,y) = abs(y-x))`,
SUBGOAL_THEN `is_metric_space((:real),\ (x,y). abs(y-x))` MP_TAC THENL
[REWRITE_TAC[is_metric_space; IN_UNIV] THEN REAL_ARITH_TAC;
SIMP_TAC[real_euclidean_metric; metric_tybij; mspace; mdist]]);;
let MTOPOLOGY_REAL_EUCLIDEAN_METRIC = prove
(`mtopology real_euclidean_metric = euclideanreal`,
REWRITE_TAC[TOPOLOGY_EQ; OPEN_IN_MTOPOLOGY; REAL_EUCLIDEAN_METRIC;
GSYM REAL_OPEN_IN; real_open; IN_MBALL; REAL_EUCLIDEAN_METRIC;
SUBSET; IN_UNIV]);;
let CONTINUOUS_ON_MDIST = prove
(`!m a. a:A IN mspace m
==> topcontinuous (mtopology m) euclideanreal (\x. mdist m (a,x))`,
INTRO_TAC "!m a; a" THEN
REWRITE_TAC[GSYM MTOPOLOGY_REAL_EUCLIDEAN_METRIC; METRIC_TOPCONTINUOUS;
REAL_EUCLIDEAN_METRIC; IN_UNIV] THEN
INTRO_TAC "![b] e; epos b" THEN EXISTS_TAC `e:real` THEN
ASM_REWRITE_TAC[] THEN INTRO_TAC "!x; x dist" THEN
REWRITE_TAC[topcontinuous; TOPSPACE_EUCLIDEANREAL; IN_UNIV;
TOPSPACE_MTOPOLOGY; GSYM REAL_OPEN_IN; OPEN_IN_MTOPOLOGY] THEN
TRANS_TAC REAL_LET_TRANS `mdist m (b:A,x)` THEN
HYP REWRITE_TAC "dist" [] THEN
ASM_MESON_TAC[MDIST_REVERSE_TRIANGLE; MDIST_SYM]);;
(* ------------------------------------------------------------------------- *)
(* Compactness of a set of reals. *)
(* ------------------------------------------------------------------------- *)
let real_bounded = new_definition
`real_bounded s <=> ?B. !x. x IN s ==> abs(x) <= B`;;
let REAL_BOUNDED = prove
(`real_bounded s <=> bounded(IMAGE lift s)`,
REWRITE_TAC[BOUNDED_LIFT; real_bounded]);;
let REAL_BOUNDED_POS = prove
(`!s. real_bounded s <=> ?B. &0 < B /\ !x. x IN s ==> abs(x) <= B`,
REWRITE_TAC[real_bounded] THEN
MESON_TAC[REAL_ARITH `&0 < &1 + abs B /\ (x <= B ==> x <= &1 + abs B)`]);;
let REAL_BOUNDED_POS_LT = prove
(`!s. real_bounded s <=> ?b. &0 < b /\ !x. x IN s ==> abs(x) < b`,
REWRITE_TAC[real_bounded] THEN
MESON_TAC[REAL_LT_IMP_LE;
REAL_ARITH `&0 < &1 + abs(y) /\ (x <= y ==> x < &1 + abs(y))`]);;
let REAL_BOUNDED_SUBSET = prove
(`!s t. real_bounded t /\ s SUBSET t ==> real_bounded s`,
MESON_TAC[REAL_BOUNDED; BOUNDED_SUBSET; IMAGE_SUBSET]);;
let REAL_BOUNDED_UNION = prove
(`!s t. real_bounded(s UNION t) <=> real_bounded s /\ real_bounded t`,
REWRITE_TAC[REAL_BOUNDED; IMAGE_UNION; BOUNDED_UNION]);;
let real_compact = new_definition
`real_compact s <=> compact(IMAGE lift s)`;;
let REAL_COMPACT_IMP_BOUNDED = prove
(`!s. real_compact s ==> real_bounded s`,
REWRITE_TAC[real_compact; REAL_BOUNDED; COMPACT_IMP_BOUNDED]);;
let REAL_COMPACT_IMP_CLOSED = prove
(`!s. real_compact s ==> real_closed s`,
REWRITE_TAC[real_compact; REAL_CLOSED; COMPACT_IMP_CLOSED]);;
let REAL_COMPACT_EQ_BOUNDED_CLOSED = prove
(`!s. real_compact s <=> real_bounded s /\ real_closed s`,
REWRITE_TAC[real_compact; REAL_BOUNDED; REAL_CLOSED] THEN
REWRITE_TAC[COMPACT_EQ_BOUNDED_CLOSED]);;
let REAL_COMPACT_UNION = prove
(`!s t. real_compact s /\ real_compact t ==> real_compact(s UNION t)`,
REWRITE_TAC[real_compact; IMAGE_UNION; COMPACT_UNION]);;
let REAL_COMPACT_ATTAINS_INF = prove
(`!s. real_compact s /\ ~(s = {}) ==> ?x. x IN s /\ !y. y IN s ==> x <= y`,
REWRITE_TAC[real_compact; COMPACT_ATTAINS_INF]);;
let REAL_COMPACT_ATTAINS_SUP = prove
(`!s. real_compact s /\ ~(s = {}) ==> ?x. x IN s /\ !y. y IN s ==> y <= x`,
REWRITE_TAC[real_compact; COMPACT_ATTAINS_SUP]);;
(* ------------------------------------------------------------------------- *)
(* Limits of functions with real range. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("--->",(12,"right"));;
let tendsto_real = new_definition
`(f ---> l) net <=> !e. &0 < e ==> eventually (\x. abs(f(x) - l) < e) net`;;
let reallim = new_definition
`reallim net f = @l. (f ---> l) net`;;
let TENDSTO_REAL = prove
(`(s ---> l) = ((lift o s) --> lift l)`,
REWRITE_TAC[FUN_EQ_THM; tendsto; tendsto_real; o_THM; DIST_LIFT]);;
let REAL_TENDSTO = prove
(`(s --> l) = (drop o s ---> drop l)`,
REWRITE_TAC[TENDSTO_REAL; o_DEF; LIFT_DROP; ETA_AX]);;
let REALLIM_COMPLEX = prove
(`(s ---> l) = ((Cx o s) --> Cx(l))`,
REWRITE_TAC[FUN_EQ_THM; tendsto; tendsto_real; o_THM; dist;
GSYM CX_SUB; COMPLEX_NORM_CX]);;
let REALLIM_UNIQUE = prove
(`!net f l l'.
~trivial_limit net /\ (f ---> l) net /\ (f ---> l') net ==> l = l'`,
REPEAT GEN_TAC THEN REWRITE_TAC[TENDSTO_REAL] THEN
DISCH_THEN(MP_TAC o MATCH_MP LIM_UNIQUE) THEN REWRITE_TAC[LIFT_EQ]);;
let REALLIM_CONST = prove
(`!net a. ((\x. a) ---> a) net`,
REWRITE_TAC[TENDSTO_REAL; o_DEF; LIM_CONST]);;
let REALLIM_LMUL = prove
(`!f l c. (f ---> l) net ==> ((\x. c * f x) ---> c * l) net`,
REWRITE_TAC[TENDSTO_REAL; o_DEF; LIFT_CMUL; LIM_CMUL]);;
let REALLIM_RMUL = prove
(`!f l c. (f ---> l) net ==> ((\x. f x * c) ---> l * c) net`,
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[REALLIM_LMUL]);;
let REALLIM_LMUL_EQ = prove
(`!net f l c.
~(c = &0) ==> (((\x. c * f x) ---> c * l) net <=> (f ---> l) net)`,
REPEAT STRIP_TAC THEN EQ_TAC THEN SIMP_TAC[REALLIM_LMUL] THEN
DISCH_THEN(MP_TAC o SPEC `inv c:real` o MATCH_MP REALLIM_LMUL) THEN
ASM_SIMP_TAC[REAL_MUL_ASSOC; REAL_MUL_LINV; REAL_MUL_LID; ETA_AX]);;
let REALLIM_RMUL_EQ = prove
(`!net f l c.
~(c = &0) ==> (((\x. f x * c) ---> l * c) net <=> (f ---> l) net)`,
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[REALLIM_LMUL_EQ]);;
let REALLIM_NEG = prove
(`!net f l. (f ---> l) net ==> ((\x. --(f x)) ---> --l) net`,
REWRITE_TAC[TENDSTO_REAL; o_DEF; LIFT_NEG; LIM_NEG]);;
let REALLIM_NEG_EQ = prove
(`!net f l. ((\x. --(f x)) ---> --l) net <=> (f ---> l) net`,
REWRITE_TAC[TENDSTO_REAL; o_DEF; LIFT_NEG; LIM_NEG_EQ]);;
let REALLIM_ADD = prove
(`!net:(A)net f g l m.
(f ---> l) net /\ (g ---> m) net ==> ((\x. f(x) + g(x)) ---> l + m) net`,
REWRITE_TAC[TENDSTO_REAL; o_DEF; LIFT_ADD; LIM_ADD]);;
let REALLIM_SUB = prove
(`!net:(A)net f g l m.
(f ---> l) net /\ (g ---> m) net ==> ((\x. f(x) - g(x)) ---> l - m) net`,
REWRITE_TAC[TENDSTO_REAL; o_DEF; LIFT_SUB; LIM_SUB]);;
let REALLIM_MUL = prove
(`!net:(A)net f g l m.
(f ---> l) net /\ (g ---> m) net ==> ((\x. f(x) * g(x)) ---> l * m) net`,
REWRITE_TAC[REALLIM_COMPLEX; o_DEF; CX_MUL; LIM_COMPLEX_MUL]);;
let REALLIM_INV = prove
(`!net f l.
(f ---> l) net /\ ~(l = &0) ==> ((\x. inv(f x)) ---> inv l) net`,
REWRITE_TAC[REALLIM_COMPLEX; o_DEF; CX_INV; LIM_COMPLEX_INV; GSYM CX_INJ]);;
let REALLIM_DIV = prove
(`!net:(A)net f g l m.
(f ---> l) net /\ (g ---> m) net /\ ~(m = &0)
==> ((\x. f(x) / g(x)) ---> l / m) net`,
SIMP_TAC[real_div; REALLIM_MUL; REALLIM_INV]);;
let REALLIM_ABS = prove
(`!net f l. (f ---> l) net ==> ((\x. abs(f x)) ---> abs l) net`,
REPEAT GEN_TAC THEN REWRITE_TAC[tendsto_real] THEN
MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN
DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN
REWRITE_TAC[] THEN REAL_ARITH_TAC);;
let REALLIM_POW = prove
(`!net f l n. (f ---> l) net ==> ((\x. f x pow n) ---> l pow n) net`,
REPLICATE_TAC 3 GEN_TAC THEN
INDUCT_TAC THEN ASM_SIMP_TAC[real_pow; REALLIM_CONST; REALLIM_MUL]);;
let REALLIM_MAX = prove
(`!net:(A)net f g l m.
(f ---> l) net /\ (g ---> m) net
==> ((\x. max (f x) (g x)) ---> max l m) net`,
REWRITE_TAC[REAL_ARITH `max x y = inv(&2) * ((x + y) + abs(x - y))`] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC REALLIM_LMUL THEN
ASM_SIMP_TAC[REALLIM_ADD; REALLIM_ABS; REALLIM_SUB]);;
let REALLIM_MIN = prove
(`!net:(A)net f g l m.
(f ---> l) net /\ (g ---> m) net
==> ((\x. min (f x) (g x)) ---> min l m) net`,
REWRITE_TAC[REAL_ARITH `min x y = inv(&2) * ((x + y) - abs(x - y))`] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC REALLIM_LMUL THEN
ASM_SIMP_TAC[REALLIM_ADD; REALLIM_ABS; REALLIM_SUB]);;
let REALLIM_NULL = prove
(`!net f l. (f ---> l) net <=> ((\x. f(x) - l) ---> &0) net`,
REWRITE_TAC[tendsto_real; REAL_SUB_RZERO]);;
let REALLIM_NULL_ADD = prove
(`!net:(A)net f g.
(f ---> &0) net /\ (g ---> &0) net ==> ((\x. f(x) + g(x)) ---> &0) net`,
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP REALLIM_ADD) THEN
REWRITE_TAC[REAL_ADD_LID]);;
let REALLIM_NULL_LMUL = prove
(`!net f c. (f ---> &0) net ==> ((\x. c * f x) ---> &0) net`,
REPEAT GEN_TAC THEN
DISCH_THEN(MP_TAC o SPEC `c:real` o MATCH_MP REALLIM_LMUL) THEN
REWRITE_TAC[REAL_MUL_RZERO]);;
let REALLIM_NULL_RMUL = prove
(`!net f c. (f ---> &0) net ==> ((\x. f x * c) ---> &0) net`,
REPEAT GEN_TAC THEN
DISCH_THEN(MP_TAC o SPEC `c:real` o MATCH_MP REALLIM_RMUL) THEN
REWRITE_TAC[REAL_MUL_LZERO]);;
let REALLIM_NULL_POW = prove
(`!net f n. (f ---> &0) net /\ ~(n = 0) ==> ((\x. f x pow n) ---> &0) net`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2
(MP_TAC o SPEC `n:num` o MATCH_MP REALLIM_POW) ASSUME_TAC) THEN
ASM_REWRITE_TAC[REAL_POW_ZERO]);;
let REALLIM_NULL_LMUL_EQ = prove
(`!net f c.
~(c = &0) ==> (((\x. c * f x) ---> &0) net <=> (f ---> &0) net)`,
MESON_TAC[REALLIM_LMUL_EQ; REAL_MUL_RZERO]);;
let REALLIM_NULL_RMUL_EQ = prove
(`!net f c.
~(c = &0) ==> (((\x. f x * c) ---> &0) net <=> (f ---> &0) net)`,
MESON_TAC[REALLIM_RMUL_EQ; REAL_MUL_LZERO]);;
let REALLIM_NULL_NEG = prove
(`!net f. ((\x. --(f x)) ---> &0) net <=> (f ---> &0) net`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[REAL_ARITH `--x = --(&1) * x`] THEN
MATCH_MP_TAC REALLIM_NULL_LMUL_EQ THEN CONV_TAC REAL_RAT_REDUCE_CONV);;
let REALLIM_NULL_SUB = prove
(`!net:(A)net f g.
(f ---> &0) net /\ (g ---> &0) net ==> ((\x. f(x) - g(x)) ---> &0) net`,
SIMP_TAC[real_sub; REALLIM_NULL_ADD; REALLIM_NULL_NEG]);;
let REALLIM_RE = prove
(`!net f l. (f --> l) net ==> ((Re o f) ---> Re l) net`,
REWRITE_TAC[REALLIM_COMPLEX] THEN
REWRITE_TAC[tendsto; dist; o_THM; GSYM CX_SUB; COMPLEX_NORM_CX] THEN
REWRITE_TAC[GSYM RE_SUB; eventually] THEN
MESON_TAC[REAL_LET_TRANS; COMPLEX_NORM_GE_RE_IM]);;
let REALLIM_IM = prove
(`!net f l. (f --> l) net ==> ((Im o f) ---> Im l) net`,
REWRITE_TAC[REALLIM_COMPLEX] THEN
REWRITE_TAC[tendsto; dist; o_THM; GSYM CX_SUB; COMPLEX_NORM_CX] THEN
REWRITE_TAC[GSYM IM_SUB; eventually] THEN
MESON_TAC[REAL_LET_TRANS; COMPLEX_NORM_GE_RE_IM]);;
let REALLIM_TRANSFORM_EVENTUALLY = prove
(`!net f g l.
eventually (\x. f x = g x) net /\ (f ---> l) net ==> (g ---> l) net`,
REPEAT GEN_TAC THEN REWRITE_TAC[TENDSTO_REAL] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] LIM_TRANSFORM_EVENTUALLY) THEN
POP_ASSUM MP_TAC THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN
SIMP_TAC[o_THM]);;
let REALLIM_TRANSFORM = prove
(`!net f g l.
((\x. f x - g x) ---> &0) net /\ (f ---> l) net ==> (g ---> l) net`,
REPEAT GEN_TAC THEN REWRITE_TAC[TENDSTO_REAL] THEN
REWRITE_TAC[o_DEF; LIFT_NUM; LIFT_SUB; LIM_TRANSFORM]);;
let REALLIM_TRANSFORM_EQ = prove
(`!net f:A->real g l.
((\x. f x - g x) ---> &0) net ==> ((f ---> l) net <=> (g ---> l) net)`,
REPEAT GEN_TAC THEN REWRITE_TAC[TENDSTO_REAL] THEN
REWRITE_TAC[o_DEF; LIFT_NUM; LIFT_SUB; LIM_TRANSFORM_EQ]);;
let REAL_SEQ_OFFSET = prove
(`!f l k. (f ---> l) sequentially ==> ((\i. f (i + k)) ---> l) sequentially`,
REPEAT GEN_TAC THEN SIMP_TAC[TENDSTO_REAL; o_DEF] THEN
DISCH_THEN(MP_TAC o MATCH_MP SEQ_OFFSET) THEN SIMP_TAC[]);;
let REAL_SEQ_OFFSET_REV = prove
(`!f l k. ((\i. f (i + k)) ---> l) sequentially ==> (f ---> l) sequentially`,
SIMP_TAC[TENDSTO_REAL; o_DEF] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC SEQ_OFFSET_REV THEN EXISTS_TAC `k:num` THEN ASM_SIMP_TAC[]);;
let REALLIM_TRANSFORM_STRADDLE = prove
(`!f g h a.
eventually (\n. f(n) <= g(n)) net /\ (f ---> a) net /\
eventually (\n. g(n) <= h(n)) net /\ (h ---> a) net
==> (g ---> a) net`,
REPEAT GEN_TAC THEN
REWRITE_TAC[RIGHT_AND_FORALL_THM; tendsto_real; AND_FORALL_THM] THEN
MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN
ASM_CASES_TAC `&0 < e` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[GSYM EVENTUALLY_AND] THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN
REAL_ARITH_TAC);;
let REALLIM_TRANSFORM_BOUND = prove
(`!f g. eventually (\n. abs(f n) <= g n) net /\ (g ---> &0) net
==> (f ---> &0) net`,
REPEAT GEN_TAC THEN
REWRITE_TAC[RIGHT_AND_FORALL_THM; tendsto_real; AND_FORALL_THM] THEN
MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN
ASM_CASES_TAC `&0 < e` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[GSYM EVENTUALLY_AND] THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN
REAL_ARITH_TAC);;
let REAL_CONVERGENT_IMP_BOUNDED = prove
(`!s l. (s ---> l) sequentially ==> real_bounded (IMAGE s (:num))`,
REPEAT GEN_TAC THEN REWRITE_TAC[REAL_BOUNDED; TENDSTO_REAL] THEN
DISCH_THEN(MP_TAC o MATCH_MP CONVERGENT_IMP_BOUNDED) THEN
REWRITE_TAC[BOUNDED_POS; FORALL_IN_IMAGE; IN_UNIV] THEN
REWRITE_TAC[o_DEF; NORM_LIFT]);;
let REALLIM = prove
(`(f ---> l) net <=>
trivial_limit net \/
!e. &0 < e ==> ?y. (?x. netord(net) x y) /\
!x. netord(net) x y ==> abs(f(x) -l) < e`,
REWRITE_TAC[tendsto_real; eventually] THEN MESON_TAC[]);;
let REALLIM_NULL_ABS = prove
(`!net f. ((\x. abs(f x)) ---> &0) net <=> (f ---> &0) net`,
REWRITE_TAC[REALLIM; REAL_SUB_RZERO; REAL_ABS_ABS]);;
let REALLIM_WITHIN_LE = prove
(`!f:real^N->real l a s.
(f ---> l) (at a within s) <=>
!e. &0 < e ==> ?d. &0 < d /\
!x. x IN s /\ &0 < dist(x,a) /\ dist(x,a) <= d
==> abs(f(x) - l) < e`,
REWRITE_TAC[tendsto_real; EVENTUALLY_WITHIN_LE]);;
let REALLIM_WITHIN = prove
(`!f:real^N->real l a s.
(f ---> l) (at a within s) <=>
!e. &0 < e
==> ?d. &0 < d /\
!x. x IN s /\ &0 < dist(x,a) /\ dist(x,a) < d
==> abs(f(x) - l) < e`,
REWRITE_TAC[tendsto_real; EVENTUALLY_WITHIN] THEN MESON_TAC[]);;
let REALLIM_AT = prove
(`!f l a:real^N.
(f ---> l) (at a) <=>
!e. &0 < e
==> ?d. &0 < d /\ !x. &0 < dist(x,a) /\ dist(x,a) < d
==> abs(f(x) - l) < e`,
REWRITE_TAC[tendsto_real; EVENTUALLY_AT] THEN MESON_TAC[]);;
let REALLIM_AT_INFINITY = prove
(`!f l. (f ---> l) at_infinity <=>
!e. &0 < e ==> ?b. !x. norm(x) >= b ==> abs(f(x) - l) < e`,
REWRITE_TAC[tendsto_real; EVENTUALLY_AT_INFINITY] THEN MESON_TAC[]);;
let REALLIM_AT_INFINITY_COMPLEX_0 = prove
(`!f l. (f ---> l) at_infinity <=> ((f o inv) ---> l) (at(Cx(&0)))`,
REWRITE_TAC[REALLIM_COMPLEX; LIM_AT_INFINITY_COMPLEX_0] THEN
REWRITE_TAC[o_ASSOC]);;
let REALLIM_SEQUENTIALLY = prove
(`!s l. (s ---> l) sequentially <=>
!e. &0 < e ==> ?N. !n. N <= n ==> abs(s(n) - l) < e`,
REWRITE_TAC[tendsto_real; EVENTUALLY_SEQUENTIALLY] THEN MESON_TAC[]);;
let REALLIM_EVENTUALLY = prove
(`!net f l. eventually (\x. f x = l) net ==> (f ---> l) net`,
REWRITE_TAC[eventually; REALLIM] THEN
MESON_TAC[REAL_ARITH `abs(x - x) = &0`]);;
let LIM_COMPONENTWISE = prove
(`!net f:A->real^N.
(f --> l) net <=>
!i. 1 <= i /\ i <= dimindex(:N) ==> ((\x. (f x)$i) ---> l$i) net`,
ONCE_REWRITE_TAC[LIM_COMPONENTWISE_LIFT] THEN
REWRITE_TAC[TENDSTO_REAL; o_DEF]);;
let REALLIM_UBOUND = prove
(`!(net:A net) f l b.
(f ---> l) net /\
~trivial_limit net /\
eventually (\x. f x <= b) net
==> l <= b`,
REWRITE_TAC[FORALL_DROP; TENDSTO_REAL; LIFT_DROP] THEN
REPEAT STRIP_TAC THEN
MATCH_MP_TAC(ISPEC `net:A net` LIM_DROP_UBOUND) THEN
EXISTS_TAC `lift o (f:A->real)` THEN
ASM_REWRITE_TAC[o_THM; LIFT_DROP]);;
let REALLIM_LBOUND = prove
(`!(net:A net) f l b.
(f ---> l) net /\
~trivial_limit net /\
eventually (\x. b <= f x) net
==> b <= l`,
ONCE_REWRITE_TAC[GSYM REAL_LE_NEG2] THEN
REPEAT STRIP_TAC THEN
MATCH_MP_TAC(ISPEC `net:A net` REALLIM_UBOUND) THEN
EXISTS_TAC `\a:A. --(f a:real)` THEN
ASM_REWRITE_TAC[REALLIM_NEG_EQ]);;
let REALLIM_LE = prove
(`!net f g l m.
(f ---> l) net /\ (g ---> m) net /\
~trivial_limit net /\
eventually (\x. f x <= g x) net
==> l <= m`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[CONJ_ASSOC] THEN
DISCH_THEN(CONJUNCTS_THEN2
(MP_TAC o MATCH_MP REALLIM_SUB o ONCE_REWRITE_RULE[CONJ_SYM]) MP_TAC) THEN
ONCE_REWRITE_TAC[GSYM REAL_SUB_LE] THEN
REWRITE_TAC[GSYM IMP_CONJ_ALT; GSYM CONJ_ASSOC] THEN
DISCH_THEN(ACCEPT_TAC o MATCH_MP REALLIM_LBOUND));;
let REALLIM_CONST_EQ = prove
(`!net:(A net) c d. ((\x. c) ---> d) net <=> trivial_limit net \/ c = d`,
REWRITE_TAC[TENDSTO_REAL; LIM_CONST_EQ; o_DEF; LIFT_EQ]);;
let REALLIM_SUM = prove
(`!net f:A->B->real l s.
FINITE s /\ (!i. i IN s ==> ((f i) ---> (l i)) net)
==> ((\x. sum s (\i. f i x)) ---> sum s l) net`,
REPLICATE_TAC 3 GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[SUM_CLAUSES; REALLIM_CONST; REALLIM_ADD; IN_INSERT; ETA_AX]);;
let REALLIM_NULL_SUM = prove
(`!net f:A->B->real s.
FINITE s /\ (!a. a IN s ==> ((\x. f x a) ---> &0) net)
==> ((\x. sum s (f x)) ---> &0) net`,
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP REALLIM_SUM) THEN
REWRITE_TAC[SUM_0; ETA_AX]);;
let REALLIM_NULL_COMPARISON = prove
(`!net:(A)net f g.
eventually (\x. abs(f x) <= g x) net /\ (g ---> &0) net
==> (f ---> &0) net`,
REWRITE_TAC[TENDSTO_REAL; LIFT_NUM; o_DEF] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC LIM_NULL_COMPARISON THEN
EXISTS_TAC `g:A->real` THEN ASM_REWRITE_TAC[NORM_LIFT]);;
let CONVERGENT_REAL_BOUNDED_MONOTONE = prove
(`!s. real_bounded(IMAGE s (:num)) /\
((!n. s n <= s(SUC n)) \/ (!n. s(SUC n) <= s n))
==> ?l. (s ---> l) sequentially`,
GEN_TAC THEN REWRITE_TAC[REAL_BOUNDED; GSYM IMAGE_o] THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
DISCH_THEN(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ]
CONVERGENT_BOUNDED_MONOTONE_1)) THEN
ASM_REWRITE_TAC[o_THM; LIFT_DROP; TENDSTO_REAL; EXISTS_LIFT]);;
(* ------------------------------------------------------------------------- *)
(* Real series. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("real_sums",(12,"right"));;
let real_sums = new_definition
`(f real_sums l) s <=> ((\n. sum (s INTER (0..n)) f) ---> l) sequentially`;;
let real_infsum = new_definition
`real_infsum s f = @l. (f real_sums l) s`;;
let real_summable = new_definition
`real_summable s f = ?l. (f real_sums l) s`;;
let REAL_SUMS = prove
(`(f real_sums l) = ((lift o f) sums (lift l))`,
REWRITE_TAC[FUN_EQ_THM; sums; real_sums; TENDSTO_REAL] THEN
SIMP_TAC[LIFT_SUM; FINITE_INTER_NUMSEG; o_DEF]);;
let REAL_SUMS_RE = prove
(`!f l s. (f sums l) s ==> ((Re o f) real_sums (Re l)) s`,
REPEAT GEN_TAC THEN REWRITE_TAC[real_sums; sums] THEN
DISCH_THEN(MP_TAC o MATCH_MP REALLIM_RE) THEN
SIMP_TAC[o_DEF; RE_VSUM; FINITE_INTER_NUMSEG]);;
let REAL_SUMS_IM = prove
(`!f l s. (f sums l) s ==> ((Im o f) real_sums (Im l)) s`,
REPEAT GEN_TAC THEN REWRITE_TAC[real_sums; sums] THEN
DISCH_THEN(MP_TAC o MATCH_MP REALLIM_IM) THEN
SIMP_TAC[o_DEF; IM_VSUM; FINITE_INTER_NUMSEG]);;
let REAL_SUMS_COMPLEX = prove
(`!f l s. (f real_sums l) s <=> ((Cx o f) sums (Cx l)) s`,
REWRITE_TAC[real_sums; sums; REALLIM_COMPLEX] THEN
SIMP_TAC[o_DEF; VSUM_CX; FINITE_INTER; FINITE_NUMSEG]);;
let REAL_SUMMABLE = prove
(`real_summable s f <=> summable s (lift o f)`,
REWRITE_TAC[real_summable; summable; REAL_SUMS; GSYM EXISTS_LIFT]);;
let REAL_SUMMABLE_COMPLEX = prove
(`real_summable s f <=> summable s (Cx o f)`,
REWRITE_TAC[real_summable; summable; REAL_SUMS_COMPLEX] THEN
EQ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_TAC `l:complex`) THEN EXISTS_TAC `Re l` THEN
SUBGOAL_THEN `Cx(Re l) = l` (fun th -> ASM_REWRITE_TAC[th]) THEN
REWRITE_TAC[GSYM REAL] THEN MATCH_MP_TAC REAL_SERIES THEN
MAP_EVERY EXISTS_TAC [`Cx o (f:num->real)`; `s:num->bool`] THEN
ASM_REWRITE_TAC[o_THM; REAL_CX]);;
let REAL_SERIES_CAUCHY = prove
(`(?l. (f real_sums l) s) <=>
(!e. &0 < e ==> ?N. !m n. m >= N ==> abs(sum(s INTER (m..n)) f) < e)`,
REWRITE_TAC[REAL_SUMS; SERIES_CAUCHY; GSYM EXISTS_LIFT] THEN
SIMP_TAC[NORM_REAL; GSYM drop; DROP_VSUM; FINITE_INTER_NUMSEG] THEN
REWRITE_TAC[o_DEF; LIFT_DROP; ETA_AX]);;
let REAL_SUMMABLE_CAUCHY = prove
(`!f s. real_summable s f <=>
!e. &0 < e
==> ?N. !m n. m >= N ==> abs(sum(s INTER (m..n)) f) < e`,
REWRITE_TAC[real_summable; GSYM REAL_SERIES_CAUCHY]);;
let REAL_SUMS_SUMMABLE = prove
(`!f l s. (f real_sums l) s ==> real_summable s f`,
REWRITE_TAC[real_summable] THEN MESON_TAC[]);;
let REAL_SUMS_INFSUM = prove
(`!f s. (f real_sums (real_infsum s f)) s <=> real_summable s f`,
REWRITE_TAC[real_infsum; real_summable] THEN MESON_TAC[]);;
let REAL_INFSUM_COMPLEX = prove
(`!f s. real_summable s f ==> real_infsum s f = Re(infsum s (Cx o f))`,
REPEAT GEN_TAC THEN
REWRITE_TAC[GSYM REAL_SUMS_INFSUM; REAL_SUMS_COMPLEX] THEN
DISCH_THEN(MP_TAC o MATCH_MP INFSUM_UNIQUE) THEN
MESON_TAC[RE_CX]);;
let REAL_SERIES_FROM = prove
(`!f l k. (f real_sums l) (from k) = ((\n. sum(k..n) f) ---> l) sequentially`,
REPEAT GEN_TAC THEN REWRITE_TAC[real_sums] THEN
AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN
AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[EXTENSION; numseg; from; IN_ELIM_THM; IN_INTER] THEN ARITH_TAC);;
let REAL_SERIES_UNIQUE = prove
(`!f l l' s. (f real_sums l) s /\ (f real_sums l') s ==> l = l'`,
REWRITE_TAC[real_sums] THEN
MESON_TAC[TRIVIAL_LIMIT_SEQUENTIALLY; REALLIM_UNIQUE]);;
let REAL_INFSUM_UNIQUE = prove
(`!f l s. (f real_sums l) s ==> real_infsum s f = l`,
MESON_TAC[REAL_SERIES_UNIQUE; REAL_SUMS_INFSUM; real_summable]);;
let REAL_SERIES_FINITE = prove
(`!f s. FINITE s ==> (f real_sums (sum s f)) s`,
REPEAT GEN_TAC THEN REWRITE_TAC[num_FINITE; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `n:num` THEN REWRITE_TAC[real_sums; REALLIM_SEQUENTIALLY] THEN
DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN EXISTS_TAC `n:num` THEN
X_GEN_TAC `m:num` THEN DISCH_TAC THEN
SUBGOAL_THEN `s INTER (0..m) = s`
(fun th -> ASM_REWRITE_TAC[th; REAL_SUB_REFL; REAL_ABS_NUM]) THEN
REWRITE_TAC[EXTENSION; IN_INTER; IN_NUMSEG; LE_0] THEN
ASM_MESON_TAC[LE_TRANS]);;
let REAL_SUMMABLE_IFF_EVENTUALLY = prove
(`!f g k. (?N. !n. N <= n /\ n IN k ==> f n = g n)
==> (real_summable k f <=> real_summable k g)`,
REWRITE_TAC[REAL_SUMMABLE] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC SUMMABLE_IFF_EVENTUALLY THEN REWRITE_TAC[o_THM] THEN
ASM_MESON_TAC[]);;
let REAL_SUMMABLE_EQ_EVENTUALLY = prove
(`!f g k. (?N. !n. N <= n /\ n IN k ==> f n = g n) /\ real_summable k f
==> real_summable k g`,
MESON_TAC[REAL_SUMMABLE_IFF_EVENTUALLY]);;
let REAL_SUMMABLE_IFF_COFINITE = prove
(`!f s t. FINITE((s DIFF t) UNION (t DIFF s))
==> (real_summable s f <=> real_summable t f)`,
SIMP_TAC[REAL_SUMMABLE] THEN MESON_TAC[SUMMABLE_IFF_COFINITE]);;
let REAL_SUMMABLE_EQ_COFINITE = prove
(`!f s t. FINITE((s DIFF t) UNION (t DIFF s)) /\ real_summable s f
==> real_summable t f`,
MESON_TAC[REAL_SUMMABLE_IFF_COFINITE]);;
let REAL_SUMMABLE_FROM_ELSEWHERE = prove
(`!f m n. real_summable (from m) f ==> real_summable (from n) f`,
REPEAT GEN_TAC THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] REAL_SUMMABLE_EQ_COFINITE) THEN
MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `0..(m+n)` THEN
SIMP_TAC[FINITE_NUMSEG; SUBSET; IN_NUMSEG; IN_UNION; IN_DIFF; IN_FROM] THEN
ARITH_TAC);;
let REAL_SUMMABLE_FROM_ELSEWHERE_EQ = prove
(`!n m f. real_summable (from m) f <=> real_summable (from n) f`,
MESON_TAC[REAL_SUMMABLE_FROM_ELSEWHERE]);;
let REAL_SERIES_GOESTOZERO = prove
(`!s x. real_summable s x
==> !e. &0 < e
==> eventually (\n. n IN s ==> abs(x n) < e) sequentially`,
REPEAT GEN_TAC THEN REWRITE_TAC[REAL_SUMMABLE] THEN
DISCH_THEN(MP_TAC o MATCH_MP SERIES_GOESTOZERO) THEN
REWRITE_TAC[o_THM; NORM_LIFT]);;
let REAL_SUMMABLE_IMP_TOZERO = prove
(`!f:num->real k.
real_summable k f
==> ((\n. if n IN k then f(n) else &0) ---> &0) sequentially`,
REPEAT GEN_TAC THEN REWRITE_TAC[REAL_SUMMABLE] THEN
DISCH_THEN(MP_TAC o MATCH_MP SUMMABLE_IMP_TOZERO) THEN
REWRITE_TAC[TENDSTO_REAL] THEN
REWRITE_TAC[o_DEF; GSYM LIFT_NUM; GSYM COND_RAND]);;
let REAL_SUMMABLE_IMP_BOUNDED = prove
(`!f:num->real k. real_summable k f ==> real_bounded (IMAGE f k)`,
REWRITE_TAC[REAL_BOUNDED; REAL_SUMMABLE; GSYM IMAGE_o;
SUMMABLE_IMP_BOUNDED]);;
let REAL_SUMMABLE_IMP_REAL_SUMS_BOUNDED = prove
(`!f:num->real k.
real_summable (from k) f ==> real_bounded { sum(k..n) f | n IN (:num) }`,
REWRITE_TAC[real_summable; real_sums; LEFT_IMP_EXISTS_THM] THEN
REPEAT GEN_TAC THEN
DISCH_THEN(MP_TAC o MATCH_MP REAL_CONVERGENT_IMP_BOUNDED) THEN
REWRITE_TAC[FROM_INTER_NUMSEG; SIMPLE_IMAGE]);;
let REAL_SERIES_0 = prove
(`!s. ((\n. &0) real_sums (&0)) s`,
REWRITE_TAC[real_sums; SUM_0; REALLIM_CONST]);;
let REAL_SERIES_ADD = prove
(`!x x0 y y0 s.
(x real_sums x0) s /\ (y real_sums y0) s
==> ((\n. x n + y n) real_sums (x0 + y0)) s`,
SIMP_TAC[real_sums; FINITE_INTER_NUMSEG; SUM_ADD; REALLIM_ADD]);;
let REAL_SERIES_SUB = prove
(`!x x0 y y0 s.
(x real_sums x0) s /\ (y real_sums y0) s
==> ((\n. x n - y n) real_sums (x0 - y0)) s`,
SIMP_TAC[real_sums; FINITE_INTER_NUMSEG; SUM_SUB; REALLIM_SUB]);;
let REAL_SERIES_LMUL = prove
(`!x x0 c s. (x real_sums x0) s ==> ((\n. c * x n) real_sums (c * x0)) s`,
SIMP_TAC[real_sums; FINITE_INTER_NUMSEG; SUM_LMUL; REALLIM_LMUL]);;
let REAL_SERIES_RMUL = prove
(`!x x0 c s. (x real_sums x0) s ==> ((\n. x n * c) real_sums (x0 * c)) s`,
SIMP_TAC[real_sums; FINITE_INTER_NUMSEG; SUM_RMUL; REALLIM_RMUL]);;
let REAL_SERIES_NEG = prove
(`!x x0 s. (x real_sums x0) s ==> ((\n. --(x n)) real_sums (--x0)) s`,
SIMP_TAC[real_sums; FINITE_INTER_NUMSEG; SUM_NEG; REALLIM_NEG]);;
let REAL_SUMS_IFF = prove
(`!f g k. (!x. x IN k ==> f x = g x)
==> ((f real_sums l) k <=> (g real_sums l) k)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[real_sums] THEN
AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN
MATCH_MP_TAC SUM_EQ THEN ASM_SIMP_TAC[IN_INTER]);;
let REAL_SUMS_EQ = prove
(`!f g k. (!x. x IN k ==> f x = g x) /\ (f real_sums l) k
==> (g real_sums l) k`,
MESON_TAC[REAL_SUMS_IFF]);;
let REAL_SERIES_FINITE_SUPPORT = prove
(`!f s k.
FINITE (s INTER k) /\ (!x. ~(x IN s INTER k) ==> f x = &0)
==> (f real_sums sum(s INTER k) f) k`,
REWRITE_TAC[real_sums; REALLIM_SEQUENTIALLY] THEN REPEAT STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o ISPEC `\x:num. x` o MATCH_MP UPPER_BOUND_FINITE_SET) THEN
REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `N:num` THEN
STRIP_TAC THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN
SUBGOAL_THEN `sum (k INTER (0..n)) (f:num->real) = sum(s INTER k) f`
(fun th -> ASM_REWRITE_TAC[REAL_SUB_REFL; REAL_ABS_NUM; th]) THEN
MATCH_MP_TAC SUM_SUPERSET THEN
ASM_SIMP_TAC[SUBSET; IN_INTER; IN_NUMSEG; LE_0] THEN
ASM_MESON_TAC[IN_INTER; LE_TRANS]);;
let REAL_SERIES_DIFFS = prove
(`!f k. (f ---> &0) sequentially
==> ((\n. f(n) - f(n + 1)) real_sums f(k)) (from k)`,
REWRITE_TAC[real_sums; FROM_INTER_NUMSEG; SUM_DIFFS] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC REALLIM_TRANSFORM_EVENTUALLY THEN
EXISTS_TAC `\n. (f:num->real) k - f(n + 1)` THEN CONJ_TAC THENL
[REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN EXISTS_TAC `k:num` THEN
SIMP_TAC[];
GEN_REWRITE_TAC LAND_CONV [GSYM REAL_SUB_RZERO] THEN
MATCH_MP_TAC REALLIM_SUB THEN REWRITE_TAC[REALLIM_CONST] THEN
MATCH_MP_TAC REAL_SEQ_OFFSET THEN ASM_REWRITE_TAC[]]);;
let REAL_SERIES_TRIVIAL = prove
(`!f. (f real_sums &0) {}`,
REWRITE_TAC[real_sums; INTER_EMPTY; SUM_CLAUSES; REALLIM_CONST]);;
let REAL_SERIES_RESTRICT = prove
(`!f k l:real.
((\n. if n IN k then f(n) else &0) real_sums l) (:num) <=>
(f real_sums l) k`,
REPEAT GEN_TAC THEN REWRITE_TAC[real_sums] THEN
AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[FUN_EQ_THM; INTER_UNIV] THEN GEN_TAC THEN
MATCH_MP_TAC(MESON[] `sum s f = sum t f /\ sum t f = sum t g
==> sum s f = sum t g`) THEN
CONJ_TAC THENL
[MATCH_MP_TAC SUM_SUPERSET THEN SET_TAC[];
MATCH_MP_TAC SUM_EQ THEN SIMP_TAC[IN_INTER]]);;
let REAL_SERIES_SUM = prove
(`!f l k s. FINITE s /\ s SUBSET k /\ (!x. ~(x IN s) ==> f x = &0) /\
sum s f = l ==> (f real_sums l) k`,
REPEAT STRIP_TAC THEN EXPAND_TAC "l" THEN
SUBGOAL_THEN `s INTER k = s:num->bool` ASSUME_TAC THENL
[ASM SET_TAC[]; ASM_MESON_TAC [REAL_SERIES_FINITE_SUPPORT]]);;
let REAL_SUMS_REINDEX = prove
(`!k a l n.
((\x. a(x + k)) real_sums l) (from n) <=> (a real_sums l) (from(n + k))`,
REPEAT GEN_TAC THEN REWRITE_TAC[real_sums; FROM_INTER_NUMSEG] THEN
REPEAT GEN_TAC THEN REWRITE_TAC[GSYM SUM_OFFSET] THEN
REWRITE_TAC[REALLIM_SEQUENTIALLY] THEN
ASM_MESON_TAC[ARITH_RULE `N + k:num <= n ==> n = (n - k) + k /\ N <= n - k`;
ARITH_RULE `N + k:num <= n ==> N <= n + k`]);;
let REAL_SERIES_EVEN = prove
(`!f l n.
(f real_sums l) (from n) <=>
((\i. if EVEN i then f(i DIV 2) else &0) real_sums l) (from (2 * n))`,
REWRITE_TAC[REAL_SUMS; o_DEF; COND_RAND; LIFT_NUM] THEN
REWRITE_TAC[GSYM SERIES_EVEN]);;
let REAL_SERIES_ODD = prove
(`!f l n.
(f real_sums l) (from n) <=>
((\i. if ODD i then f(i DIV 2) else &0) real_sums l) (from (2 * n + 1))`,
REWRITE_TAC[REAL_SUMS; o_DEF; COND_RAND; LIFT_NUM] THEN
REWRITE_TAC[GSYM SERIES_ODD]);;
let REAL_INFSUM = prove
(`!f s. real_summable s f ==> real_infsum s f = drop(infsum s (lift o f))`,
REPEAT GEN_TAC THEN
REWRITE_TAC[GSYM REAL_SUMS_INFSUM; REAL_SUMS] THEN
DISCH_THEN(MP_TAC o MATCH_MP INFSUM_UNIQUE) THEN
MESON_TAC[LIFT_DROP]);;
let REAL_PARTIAL_SUMS_LE_INFSUM = prove
(`!f s n.
(!i. i IN s ==> &0 <= f i) /\ real_summable s f
==> sum (s INTER (0..n)) f <= real_infsum s f`,
REPEAT GEN_TAC THEN SIMP_TAC[REAL_INFSUM] THEN
REWRITE_TAC[REAL_SUMMABLE] THEN
GEN_REWRITE_TAC (LAND_CONV o LAND_CONV o BINDER_CONV o RAND_CONV o RAND_CONV)
[GSYM LIFT_DROP] THEN
REWRITE_TAC[o_DEF] THEN DISCH_THEN(MP_TAC o MATCH_MP
PARTIAL_SUMS_DROP_LE_INFSUM) THEN
SIMP_TAC[DROP_VSUM; FINITE_INTER; FINITE_NUMSEG; o_DEF; LIFT_DROP; ETA_AX]);;
let REAL_PARTIAL_SUMS_LE_INFSUM_GEN = prove
(`!f s t. FINITE t /\ t SUBSET s /\
(!i. i IN s ==> &0 <= f i) /\ real_summable s f
==> sum t f <= real_infsum s f`,
REPEAT STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o SPEC `\n:num. n` o MATCH_MP UPPER_BOUND_FINITE_SET) THEN
REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_TAC `n:num`) THEN
TRANS_TAC REAL_LE_TRANS `sum (s INTER (0..n)) f` THEN
ASM_SIMP_TAC[REAL_PARTIAL_SUMS_LE_INFSUM] THEN
MATCH_MP_TAC SUM_SUBSET_SIMPLE THEN
ASM_SIMP_TAC[IN_INTER; IN_DIFF; FINITE_INTER; FINITE_NUMSEG] THEN
REWRITE_TAC[SUBSET; IN_NUMSEG; IN_INTER; LE_0] THEN ASM SET_TAC[]);;
let REAL_SERIES_TERMS_TOZERO = prove
(`!f l n. (f real_sums l) (from n) ==> (f ---> &0) sequentially`,
REWRITE_TAC[REAL_SUMS; TENDSTO_REAL; LIFT_NUM; SERIES_TERMS_TOZERO]);;
let REAL_SERIES_LE = prove
(`!f g s y z.
(f real_sums y) s /\ (g real_sums z) s /\
(!i. i IN s ==> f(i) <= g(i))
==> y <= z`,
REWRITE_TAC[REAL_SUMS] THEN REPEAT STRIP_TAC THEN
ONCE_REWRITE_TAC[MESON[LIFT_DROP] `x = drop(lift x)`] THEN
MATCH_MP_TAC SERIES_DROP_LE THEN
MAP_EVERY EXISTS_TAC [`lift o (f:num->real)`; `lift o (g:num->real)`] THEN
ASM_SIMP_TAC[o_THM; LIFT_DROP] THEN ASM_MESON_TAC[]);;
let REAL_SERIES_POS = prove
(`!f s y.
(f real_sums y) s /\ (!i. i IN s ==> &0 <= f(i))
==> &0 <= y`,
REWRITE_TAC[REAL_SUMS] THEN REPEAT STRIP_TAC THEN
GEN_REWRITE_TAC RAND_CONV [GSYM LIFT_DROP] THEN
MATCH_MP_TAC SERIES_DROP_POS THEN
EXISTS_TAC `lift o (f:num->real)` THEN
ASM_SIMP_TAC[o_THM; LIFT_DROP] THEN ASM_MESON_TAC[]);;
let REAL_SERIES_BOUND = prove
(`!f g s a b.
(f real_sums a) s /\ (g real_sums b) s /\
(!i. i IN s ==> abs(f i) <= g i)
==> abs(a) <= b`,
REWRITE_TAC[REAL_SUMS; GSYM NORM_LIFT] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC SERIES_BOUND THEN
EXISTS_TAC `lift o (f:num->real)` THEN
REWRITE_TAC[o_THM] THEN ASM_MESON_TAC[]);;
let REAL_SERIES_COMPARISON_BOUND = prove
(`!f g s a.
(g real_sums a) s /\ (!i. i IN s ==> abs(f i) <= g i)
==> ?l. (f real_sums l) s /\ abs(l) <= a`,
REWRITE_TAC[REAL_SUMS; GSYM EXISTS_LIFT; GSYM NORM_LIFT] THEN
REPEAT STRIP_TAC THEN
GEN_REWRITE_TAC (BINDER_CONV o RAND_CONV o RAND_CONV) [GSYM LIFT_DROP] THEN
MATCH_MP_TAC SERIES_COMPARISON_BOUND THEN
EXISTS_TAC `lift o (g:num->real)` THEN
ASM_SIMP_TAC[o_THM; LIFT_DROP]);;
let REAL_SERIES_MUL = prove
(`!x y a b.
(x real_sums a) (from 0) /\ (y real_sums b) (from 0) /\
(real_summable (from 0) (\n. abs(x n)) \/
real_summable (from 0) (\n. abs(y n)))
==> ((\n. sum(0..n) (\i. x i * y(n - i))) real_sums (a * b))
(from 0)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
MP_TAC(ISPECL
[`\x y:real^1. drop x % y`;
`lift o (x:num->real)`; `lift o (y:num->real)`;
`lift a`; `lift b`]
SERIES_BILINEAR) THEN
ASM_REWRITE_TAC[GSYM REAL_SUMMABLE; GSYM REAL_SUMS; BILINEAR_DROP_MUL] THEN
RULE_ASSUM_TAC(REWRITE_RULE
[REAL_SUMMABLE; REAL_SUMS; o_DEF; GSYM NORM_1]) THEN
ASM_REWRITE_TAC[o_DEF; NORM_LIFT; REAL_SUMS; TENDSTO_REAL; LIFT_SUM] THEN
REWRITE_TAC[DROP_CMUL; LIFT_DROP; LIFT_CMUL]);;
let REAL_SERIES_MUL_UNIQUE = prove
(`!x y a b c.
(x real_sums a) (from 0) /\ (y real_sums b) (from 0) /\
((\n. sum (0..n) (\i. x i * y(n - i))) real_sums c) (from 0)
==> a * b = c`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL
[`\x y:real^1. drop x % y`;
`lift o (x:num->real)`; `lift o (y:num->real)`;
`lift a`; `lift b`; `lift c`]
SERIES_BILINEAR_UNIQUE) THEN
ASM_REWRITE_TAC[GSYM REAL_SUMS; BILINEAR_DROP_MUL] THEN
RULE_ASSUM_TAC(REWRITE_RULE[REAL_SUMS; o_DEF; LIFT_SUM; GSYM NORM_1]) THEN
ASM_REWRITE_TAC[o_DEF; DROP_CMUL; LIFT_DROP; GSYM LIFT_CMUL] THEN
REWRITE_TAC[LIFT_EQ]);;
(* ------------------------------------------------------------------------- *)
(* Similar combining theorems just for summability. *)
(* ------------------------------------------------------------------------- *)
let REAL_SUMMABLE_0 = prove
(`!s. real_summable s (\n. &0)`,
REWRITE_TAC[real_summable] THEN MESON_TAC[REAL_SERIES_0]);;
let REAL_SUMMABLE_ADD = prove
(`!x y s. real_summable s x /\ real_summable s y
==> real_summable s (\n. x n + y n)`,
REWRITE_TAC[real_summable] THEN MESON_TAC[REAL_SERIES_ADD]);;
let REAL_SUMMABLE_SUB = prove
(`!x y s. real_summable s x /\ real_summable s y
==> real_summable s (\n. x n - y n)`,
REWRITE_TAC[real_summable] THEN MESON_TAC[REAL_SERIES_SUB]);;
let REAL_SUMMABLE_LMUL = prove
(`!s x c. real_summable s x ==> real_summable s (\n. c * x n)`,
REWRITE_TAC[real_summable] THEN MESON_TAC[REAL_SERIES_LMUL]);;
let REAL_SUMMABLE_RMUL = prove
(`!s x c. real_summable s x ==> real_summable s (\n. x n * c)`,
REWRITE_TAC[real_summable] THEN MESON_TAC[REAL_SERIES_RMUL]);;
let REAL_SUMMABLE_NEG = prove
(`!x s. real_summable s x ==> real_summable s (\n. --(x n))`,
REWRITE_TAC[real_summable] THEN MESON_TAC[REAL_SERIES_NEG]);;
let REAL_SUMMABLE_IFF = prove
(`!f g k. (!x. x IN k ==> f x = g x)
==> (real_summable k f <=> real_summable k g)`,
REWRITE_TAC[real_summable] THEN MESON_TAC[REAL_SUMS_IFF]);;
let REAL_SUMMABLE_EQ = prove
(`!f g k. (!x. x IN k ==> f x = g x) /\ real_summable k f
==> real_summable k g`,
REWRITE_TAC[real_summable] THEN MESON_TAC[REAL_SUMS_EQ]);;
let REAL_SERIES_SUBSET = prove
(`!x s t l.
s SUBSET t /\
((\i. if i IN s then x i else &0) real_sums l) t
==> (x real_sums l) s`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
REWRITE_TAC[real_sums] THEN MATCH_MP_TAC EQ_IMP THEN
AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN
ASM_SIMP_TAC[GSYM SUM_RESTRICT_SET; FINITE_INTER_NUMSEG] THEN
AP_THM_TAC THEN AP_TERM_TAC THEN POP_ASSUM MP_TAC THEN SET_TAC[]);;
let REAL_SUMMABLE_SUBSET = prove
(`!x s t.
s SUBSET t /\
real_summable t (\i. if i IN s then x i else &0)
==> real_summable s x`,
REWRITE_TAC[real_summable] THEN MESON_TAC[REAL_SERIES_SUBSET]);;
let REAL_SUMMABLE_TRIVIAL = prove
(`!f. real_summable {} f`,
GEN_TAC THEN REWRITE_TAC[real_summable] THEN EXISTS_TAC `&0` THEN
REWRITE_TAC[REAL_SERIES_TRIVIAL]);;
let REAL_SUMMABLE_RESTRICT = prove
(`!f k.
real_summable (:num) (\n. if n IN k then f(n) else &0) <=>
real_summable k f`,
REWRITE_TAC[real_summable; REAL_SERIES_RESTRICT]);;
let REAL_SUMS_FINITE_DIFF = prove
(`!f t s l.
t SUBSET s /\ FINITE t /\ (f real_sums l) s
==> (f real_sums (l - sum t f)) (s DIFF t)`,
REPEAT GEN_TAC THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
FIRST_ASSUM(MP_TAC o ISPEC `f:num->real` o MATCH_MP REAL_SERIES_FINITE) THEN
ONCE_REWRITE_TAC[GSYM REAL_SERIES_RESTRICT] THEN
REWRITE_TAC[IMP_IMP] THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN
DISCH_THEN(MP_TAC o MATCH_MP REAL_SERIES_SUB) THEN
MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `x:num` THEN REWRITE_TAC[IN_DIFF] THEN
FIRST_ASSUM(MP_TAC o SPEC `x:num` o GEN_REWRITE_RULE I [SUBSET]) THEN
MAP_EVERY ASM_CASES_TAC [`(x:num) IN s`; `(x:num) IN t`] THEN
ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC);;
let REAL_SUMS_FINITE_UNION = prove
(`!f s t l.
FINITE t /\ (f real_sums l) s
==> (f real_sums (l + sum (t DIFF s) f)) (s UNION t)`,
REPEAT GEN_TAC THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
FIRST_ASSUM(MP_TAC o SPEC `s:num->bool` o MATCH_MP FINITE_DIFF) THEN
DISCH_THEN(MP_TAC o ISPEC `f:num->real` o MATCH_MP REAL_SERIES_FINITE) THEN
ONCE_REWRITE_TAC[GSYM REAL_SERIES_RESTRICT] THEN
REWRITE_TAC[IMP_IMP] THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN
DISCH_THEN(MP_TAC o MATCH_MP REAL_SERIES_ADD) THEN
MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `x:num` THEN
REWRITE_TAC[IN_DIFF; IN_UNION] THEN
MAP_EVERY ASM_CASES_TAC [`(x:num) IN s`; `(x:num) IN t`] THEN
ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC);;
let REAL_SUMS_OFFSET = prove
(`!f l m n.
(f real_sums l) (from m) /\ m < n
==> (f real_sums (l - sum(m..(n-1)) f)) (from n)`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `from n = from m DIFF (m..(n-1))` SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_FROM; IN_DIFF; IN_NUMSEG] THEN ASM_ARITH_TAC;
MATCH_MP_TAC REAL_SUMS_FINITE_DIFF THEN ASM_REWRITE_TAC[FINITE_NUMSEG] THEN
SIMP_TAC[SUBSET; IN_FROM; IN_NUMSEG]]);;
let REAL_SUMS_OFFSET_REV = prove
(`!f l m n.
(f real_sums l) (from m) /\ n < m
==> (f real_sums (l + sum(n..m-1) f)) (from n)`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`f:num->real`; `from m`; `n..m-1`; `l:real`]
REAL_SUMS_FINITE_UNION) THEN
ASM_REWRITE_TAC[FINITE_NUMSEG] THEN MATCH_MP_TAC EQ_IMP THEN
BINOP_TAC THENL [AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC; ALL_TAC] THEN
REWRITE_TAC[EXTENSION; IN_DIFF; IN_UNION; IN_FROM; IN_NUMSEG] THEN
ASM_ARITH_TAC);;
let REAL_SUMMABLE_EVEN = prove
(`!f n.
real_summable (from n) f <=>
real_summable (from (2 * n)) (\i. if EVEN i then f(i DIV 2) else &0)`,
REWRITE_TAC[real_summable; GSYM REAL_SERIES_EVEN]);;
let REAL_SUMMABLE_ODD = prove
(`!f n.
real_summable (from n) f <=>
real_summable (from (2 * n + 1)) (\i. if ODD i then f(i DIV 2) else &0)`,
REWRITE_TAC[real_summable; GSYM REAL_SERIES_ODD]);;
(* ------------------------------------------------------------------------- *)
(* Similar combining theorems for infsum. *)
(* ------------------------------------------------------------------------- *)
let REAL_INFSUM_0 = prove
(`real_infsum s (\i. &0) = &0`,
MATCH_MP_TAC REAL_INFSUM_UNIQUE THEN REWRITE_TAC[REAL_SERIES_0]);;
let REAL_INFSUM_ADD = prove
(`!x y s. real_summable s x /\ real_summable s y
==> real_infsum s (\i. x i + y i) =
real_infsum s x + real_infsum s y`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_INFSUM_UNIQUE THEN
MATCH_MP_TAC REAL_SERIES_ADD THEN ASM_REWRITE_TAC[REAL_SUMS_INFSUM]);;
let REAL_INFSUM_SUB = prove
(`!x y s. real_summable s x /\ real_summable s y
==> real_infsum s (\i. x i - y i) =
real_infsum s x - real_infsum s y`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_INFSUM_UNIQUE THEN
MATCH_MP_TAC REAL_SERIES_SUB THEN ASM_REWRITE_TAC[REAL_SUMS_INFSUM]);;
let REAL_INFSUM_LMUL = prove
(`!s x c. real_summable s x
==> real_infsum s (\n. c * x n) = c * real_infsum s x`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_INFSUM_UNIQUE THEN
MATCH_MP_TAC REAL_SERIES_LMUL THEN ASM_REWRITE_TAC[REAL_SUMS_INFSUM]);;
let REAL_INFSUM_RMUL = prove
(`!s x c. real_summable s x
==> real_infsum s (\n. x n * c) = real_infsum s x * c`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_INFSUM_UNIQUE THEN
MATCH_MP_TAC REAL_SERIES_RMUL THEN ASM_REWRITE_TAC[REAL_SUMS_INFSUM]);;
let REAL_INFSUM_NEG = prove
(`!s x. real_summable s x
==> real_infsum s (\n. --(x n)) = --(real_infsum s x)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_INFSUM_UNIQUE THEN
MATCH_MP_TAC REAL_SERIES_NEG THEN ASM_REWRITE_TAC[REAL_SUMS_INFSUM]);;
let REAL_INFSUM_EQ = prove
(`!f g k. real_summable k f /\ real_summable k g /\
(!x. x IN k ==> f x = g x)
==> real_infsum k f = real_infsum k g`,
REPEAT STRIP_TAC THEN REWRITE_TAC[real_infsum] THEN AP_TERM_TAC THEN
ABS_TAC THEN ASM_MESON_TAC[REAL_SUMS_EQ; REAL_SUMS_INFSUM]);;
let REAL_INFSUM_RESTRICT = prove
(`!k a. real_infsum (:num) (\n. if n IN k then a n else &0) =
real_infsum k a`,
REPEAT GEN_TAC THEN
MP_TAC(ISPECL [`a:num->real`; `k:num->bool`] REAL_SUMMABLE_RESTRICT) THEN
ASM_CASES_TAC `real_summable k a` THEN ASM_REWRITE_TAC[] THEN
STRIP_TAC THENL
[MATCH_MP_TAC REAL_INFSUM_UNIQUE THEN
ASM_REWRITE_TAC[REAL_SERIES_RESTRICT; REAL_SUMS_INFSUM];
RULE_ASSUM_TAC(REWRITE_RULE[real_summable; NOT_EXISTS_THM]) THEN
ASM_REWRITE_TAC[real_infsum]]);;
let REAL_INFSUM_EVEN = prove
(`!f n.
real_infsum (from n) f =
real_infsum (from (2 * n)) (\i. if EVEN i then f(i DIV 2) else &0)`,
REWRITE_TAC[real_infsum; GSYM REAL_SERIES_EVEN]);;
let REAL_INFSUM_ODD = prove
(`!f n.
real_infsum (from n) f =
real_infsum (from (2 * n + 1)) (\i. if ODD i then f(i DIV 2) else &0)`,
REWRITE_TAC[real_infsum; GSYM REAL_SERIES_ODD]);;
(* ------------------------------------------------------------------------- *)
(* Convergence tests for real series. *)
(* ------------------------------------------------------------------------- *)
let REAL_SERIES_CAUCHY_UNIFORM = prove
(`!P:A->bool f k.
(?l. !e. &0 < e
==> ?N. !n x. N <= n /\ P x
==> abs(sum(k INTER (0..n)) (f x) -
l x) < e) <=>
(!e. &0 < e ==> ?N. !m n x. N <= m /\ P x
==> abs(sum(k INTER (m..n)) (f x)) < e)`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`P:A->bool`; `\x:A n:num. lift(f x n)`; `k:num->bool`]
SERIES_CAUCHY_UNIFORM) THEN
SIMP_TAC[VSUM_REAL; FINITE_INTER; FINITE_NUMSEG] THEN
REWRITE_TAC[NORM_LIFT; o_DEF; LIFT_DROP; ETA_AX] THEN
DISCH_THEN(SUBST1_TAC o SYM) THEN EQ_TAC THENL
[DISCH_THEN(X_CHOOSE_TAC `l:A->real`) THEN
EXISTS_TAC `lift o (l:A->real)` THEN
ASM_SIMP_TAC[o_THM; DIST_LIFT];
DISCH_THEN(X_CHOOSE_TAC `l:A->real^1`) THEN
EXISTS_TAC `drop o (l:A->real^1)` THEN
ASM_SIMP_TAC[SUM_VSUM; FINITE_INTER; FINITE_NUMSEG] THEN
REWRITE_TAC[o_THM; GSYM DROP_SUB; GSYM ABS_DROP] THEN
SIMP_TAC[GSYM dist; VSUM_REAL; FINITE_INTER; FINITE_NUMSEG] THEN
ASM_REWRITE_TAC[o_DEF; LIFT_DROP; ETA_AX]]);;
let REAL_SERIES_COMPARISON = prove
(`!f g s. (?l. (g real_sums l) s) /\
(?N. !n. n >= N /\ n IN s ==> abs(f n) <= g n)
==> ?l. (f real_sums l) s`,
REWRITE_TAC[REAL_SUMS; GSYM EXISTS_LIFT] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC SERIES_COMPARISON THEN
EXISTS_TAC `g:num->real` THEN
REWRITE_TAC[NORM_LIFT; o_THM] THEN ASM_MESON_TAC[]);;
let REAL_SUMMABLE_COMPARISON = prove
(`!f g s. real_summable s g /\
(?N. !n. n >= N /\ n IN s ==> abs(f n) <= g n)
==> real_summable s f`,
REWRITE_TAC[real_summable; REAL_SERIES_COMPARISON]);;
let REAL_SERIES_COMPARISON_UNIFORM = prove
(`!f g P s. (?l. (g real_sums l) s) /\
(?N. !n x. N <= n /\ n IN s /\ P x ==> abs(f x n) <= g n)
==> ?l:A->real.
!e. &0 < e
==> ?N. !n x. N <= n /\ P x
==> abs(sum(s INTER (0..n)) (f x) -
l x) < e`,
REPEAT GEN_TAC THEN
SIMP_TAC[GE; REAL_SERIES_CAUCHY; REAL_SERIES_CAUCHY_UNIFORM] THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC (X_CHOOSE_TAC `N1:num`)) THEN
MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN
MATCH_MP_TAC MONO_IMP THEN REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_TAC `N2:num`) THEN
EXISTS_TAC `N1 + N2:num` THEN
MAP_EVERY X_GEN_TAC [`m:num`; `n:num`; `x:A`] THEN DISCH_TAC THEN
MATCH_MP_TAC REAL_LET_TRANS THEN
EXISTS_TAC `abs (sum (s INTER (m .. n)) g)` THEN CONJ_TAC THENL
[SIMP_TAC[GSYM LIFT_SUM; FINITE_INTER_NUMSEG; NORM_LIFT] THEN
MATCH_MP_TAC(REAL_ARITH `x <= a ==> x <= abs(a)`) THEN
MATCH_MP_TAC SUM_ABS_LE THEN
REWRITE_TAC[FINITE_INTER_NUMSEG; IN_INTER; IN_NUMSEG] THEN
ASM_MESON_TAC[ARITH_RULE `N1 + N2:num <= m /\ m <= x ==> N1 <= x`];
ASM_MESON_TAC[ARITH_RULE `N1 + N2:num <= m ==> N2 <= m`]]);;
let REAL_SERIES_RATIO = prove
(`!c a s N.
c < &1 /\
(!n. n >= N ==> abs(a(SUC n)) <= c * abs(a(n)))
==> ?l:real. (a real_sums l) s`,
REWRITE_TAC[REAL_SUMS; GSYM EXISTS_LIFT] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC SERIES_RATIO THEN
REWRITE_TAC[o_THM; NORM_LIFT] THEN ASM_MESON_TAC[]);;
let BOUNDED_PARTIAL_REAL_SUMS = prove
(`!f:num->real k.
real_bounded { sum(k..n) f | n IN (:num) }
==> real_bounded { sum(m..n) f | m IN (:num) /\ n IN (:num) }`,
REWRITE_TAC[REAL_BOUNDED] THEN
REWRITE_TAC[SET_RULE `IMAGE f {g x | P x} = {f(g x) | P x}`;
SET_RULE `IMAGE f {g x y | P x /\ Q y} = {f(g x y) | P x /\ Q y}`] THEN
SIMP_TAC[LIFT_SUM; FINITE_INTER; FINITE_NUMSEG] THEN
REWRITE_TAC[BOUNDED_PARTIAL_SUMS]);;
let REAL_SERIES_DIRICHLET = prove
(`!f:num->real g N k m.
real_bounded { sum (m..n) f | n IN (:num)} /\
(!n. N <= n ==> g(n + 1) <= g(n)) /\
(g ---> &0) sequentially
==> real_summable (from k) (\n. g(n) * f(n))`,
REWRITE_TAC[REAL_SUMMABLE; REAL_BOUNDED; TENDSTO_REAL] THEN
REWRITE_TAC[LIFT_NUM; LIFT_CMUL; o_DEF] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC SERIES_DIRICHLET THEN
MAP_EVERY EXISTS_TAC [`N:num`; `m:num`] THEN
ASM_REWRITE_TAC[o_DEF] THEN
SIMP_TAC[VSUM_REAL; FINITE_INTER; FINITE_NUMSEG] THEN
ASM_REWRITE_TAC[o_DEF; LIFT_DROP; ETA_AX] THEN
ASM_REWRITE_TAC[SET_RULE `{lift(f x) | P x} = IMAGE lift {f x | P x}`]);;
let REAL_SERIES_ABSCONV_IMP_CONV = prove
(`!x:num->real k. real_summable k (\n. abs(x n)) ==> real_summable k x`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_SUMMABLE_COMPARISON THEN
EXISTS_TAC `\n:num. abs(x n)` THEN ASM_REWRITE_TAC[REAL_LE_REFL]);;
let REAL_SUMS_GP = prove
(`!n x. abs(x) < &1
==> ((\k. x pow k) real_sums (x pow n / (&1 - x))) (from n)`,
REPEAT STRIP_TAC THEN MP_TAC(SPECL [`n:num`; `Cx x`] SUMS_GP) THEN
ASM_REWRITE_TAC[REAL_SUMS_COMPLEX; GSYM CX_SUB; GSYM CX_POW; GSYM CX_DIV;
o_DEF; COMPLEX_NORM_CX]);;
let REAL_SUMMABLE_GP = prove
(`!x k. abs(x) < &1 ==> real_summable k (\n. x pow n)`,
REPEAT STRIP_TAC THEN MP_TAC(SPECL [`Cx x`; `k:num->bool`] SUMMABLE_GP) THEN
ASM_REWRITE_TAC[REAL_SUMMABLE_COMPLEX] THEN
ASM_REWRITE_TAC[COMPLEX_NORM_CX; o_DEF; CX_POW]);;
let REAL_SUMMABLE_ZETA = prove
(`!n x. &1 < x ==> real_summable (from n) (\k. inv(&k rpow x))`,
REPEAT STRIP_TAC THEN
MATCH_MP_TAC REAL_SUMMABLE_FROM_ELSEWHERE THEN EXISTS_TAC `1` THEN
REWRITE_TAC[REAL_SUMMABLE_COMPLEX] THEN
MP_TAC(ISPECL [`1`; `Cx x`] SUMMABLE_ZETA) THEN
ASM_REWRITE_TAC[RE_CX; o_DEF] THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] SUMMABLE_EQ) THEN
SIMP_TAC[IN_FROM; cpow; rpow; REAL_OF_NUM_EQ; REAL_OF_NUM_LT; CX_INJ; LE_1;
GSYM CX_LOG; GSYM CX_MUL; GSYM CX_EXP; GSYM CX_INV]);;
let REAL_SUMMABLE_ZETA_INTEGER = prove
(`!n m. 2 <= m ==> real_summable (from n) (\k. inv(&k pow m))`,
REWRITE_TAC[REAL_SUMMABLE_COMPLEX; CX_INV; CX_POW;
SUMMABLE_ZETA_INTEGER; o_DEF]);;
let REAL_ABEL_LEMMA = prove
(`!a M r r0.
&0 <= r /\ r < r0 /\
(!n. n IN k ==> abs(a n) * r0 pow n <= M)
==> real_summable k (\n. abs(a(n)) * r pow n)`,
REWRITE_TAC[REAL_SUMMABLE_COMPLEX] THEN
REWRITE_TAC[o_DEF; CX_MUL; CX_ABS] THEN REWRITE_TAC[GSYM CX_MUL] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC ABEL_LEMMA THEN
REWRITE_TAC[COMPLEX_NORM_CX] THEN ASM_MESON_TAC[]);;
let REAL_POWER_SERIES_CONV_IMP_ABSCONV = prove
(`!a k w z.
real_summable k (\n. a(n) * z pow n) /\ abs(w) < abs(z)
==> real_summable k (\n. abs(a(n) * w pow n))`,
REWRITE_TAC[REAL_SUMMABLE_COMPLEX; o_DEF; CX_MUL; CX_ABS; CX_POW] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC POWER_SERIES_CONV_IMP_ABSCONV THEN
EXISTS_TAC `Cx z` THEN ASM_REWRITE_TAC[COMPLEX_NORM_CX]);;
let POWER_REAL_SERIES_CONV_IMP_ABSCONV_WEAK = prove
(`!a k w z.
real_summable k (\n. a(n) * z pow n) /\ abs(w) < abs(z)
==> real_summable k (\n. abs(a n) * w pow n)`,
REWRITE_TAC[REAL_SUMMABLE_COMPLEX; o_DEF; CX_MUL; CX_ABS; CX_POW] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC POWER_SERIES_CONV_IMP_ABSCONV_WEAK THEN
EXISTS_TAC `Cx z` THEN ASM_REWRITE_TAC[COMPLEX_NORM_CX]);;
let REAL_SUMMABLE_MUL_LEFT = prove
(`!x y m n p.
real_summable (from m) (\n. abs(x n)) /\
real_summable (from n) y
==> real_summable (from p) (\n. sum(0..n) (\i. x i * y(n - i)))`,
ONCE_REWRITE_TAC[SPEC `0` REAL_SUMMABLE_FROM_ELSEWHERE_EQ] THEN
REPEAT STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP REAL_SERIES_ABSCONV_IMP_CONV) THEN
UNDISCH_TAC `real_summable (from 0) y` THEN
REWRITE_TAC[real_summable; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `b:real` THEN DISCH_TAC THEN
X_GEN_TAC `a:real` THEN DISCH_TAC THEN
EXISTS_TAC `a * b:real` THEN MATCH_MP_TAC REAL_SERIES_MUL THEN
ASM_REWRITE_TAC[]);;
let REAL_SUMMABLE_MUL_RIGHT = prove
(`!x y m n p.
real_summable (from m) x /\
real_summable (from n) (\n. abs(y n))
==> real_summable (from p) (\n. sum(0..n) (\i. x i * y(n - i)))`,
ONCE_REWRITE_TAC[SPEC `0` REAL_SUMMABLE_FROM_ELSEWHERE_EQ] THEN
REPEAT STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP REAL_SERIES_ABSCONV_IMP_CONV) THEN
UNDISCH_TAC `real_summable (from 0) x` THEN
REWRITE_TAC[real_summable; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `a:real` THEN DISCH_TAC THEN
X_GEN_TAC `b:real` THEN DISCH_TAC THEN
EXISTS_TAC `a * b:real` THEN MATCH_MP_TAC REAL_SERIES_MUL THEN
ASM_REWRITE_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Nets for real limit. *)
(* ------------------------------------------------------------------------- *)
let atreal = new_definition
`atreal a = mk_net(\x y. &0 < abs(x - a) /\ abs(x - a) <= abs(y - a))`;;
let ATREAL = prove
(`!a x y.
netord(atreal a) x y <=> &0 < abs(x - a) /\ abs(x - a) <= abs(y - a)`,
GEN_TAC THEN NET_PROVE_TAC[atreal] THEN
MESON_TAC[REAL_LE_TOTAL; REAL_LE_REFL; REAL_LE_TRANS; REAL_LET_TRANS]);;
let WITHINREAL_UNIV = prove
(`!x. atreal x within (:real) = atreal x`,
REWRITE_TAC[within; atreal; IN_UNIV] THEN REWRITE_TAC[ETA_AX; net_tybij]);;
let TRIVIAL_LIMIT_ATREAL = prove
(`!a. ~(trivial_limit (atreal a))`,
X_GEN_TAC `a:real` THEN SIMP_TAC[trivial_limit; ATREAL; DE_MORGAN_THM] THEN
CONJ_TAC THENL
[DISCH_THEN(MP_TAC o SPECL [`&0`; `&1`]) THEN REAL_ARITH_TAC; ALL_TAC] THEN
REWRITE_TAC[NOT_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`b:real`; `c:real`] THEN
ASM_CASES_TAC `b:real = c` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[GSYM DE_MORGAN_THM; GSYM NOT_EXISTS_THM] THEN
SUBGOAL_THEN `~(b:real = a) \/ ~(c = a)` DISJ_CASES_TAC THENL
[ASM_MESON_TAC[];
EXISTS_TAC `(a + b) / &2` THEN ASM_REAL_ARITH_TAC;
EXISTS_TAC `(a + c) / &2` THEN ASM_REAL_ARITH_TAC]);;
let NETLIMIT_WITHINREAL = prove
(`!a s. ~(trivial_limit (atreal a within s))
==> (netlimit (atreal a within s) = a)`,
REWRITE_TAC[trivial_limit; netlimit; ATREAL; WITHIN; DE_MORGAN_THM] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC SELECT_UNIQUE THEN REWRITE_TAC[] THEN
SUBGOAL_THEN
`!x. ~(&0 < abs(x - a) /\ abs(x - a) <= abs(a - a) /\ x IN s)`
ASSUME_TAC THENL [REAL_ARITH_TAC; ASM_MESON_TAC[]]);;
let NETLIMIT_ATREAL = prove
(`!a. netlimit(atreal a) = a`,
GEN_TAC THEN ONCE_REWRITE_TAC[GSYM WITHINREAL_UNIV] THEN
MATCH_MP_TAC NETLIMIT_WITHINREAL THEN
SIMP_TAC[TRIVIAL_LIMIT_ATREAL; WITHINREAL_UNIV]);;
let EVENTUALLY_WITHINREAL_LE = prove
(`!s a p.
eventually p (atreal a within s) <=>
?d. &0 < d /\
!x. x IN s /\ &0 < abs(x - a) /\ abs(x - a) <= d ==> p(x)`,
REWRITE_TAC[eventually; ATREAL; WITHIN; trivial_limit] THEN
REWRITE_TAC[MESON[REAL_LT_01; REAL_LT_REFL] `~(!a b:real. a = b)`] THEN
REPEAT GEN_TAC THEN EQ_TAC THENL
[DISCH_THEN(DISJ_CASES_THEN(X_CHOOSE_THEN `b:real` MP_TAC)) THENL
[DISCH_THEN(X_CHOOSE_THEN `c:real` STRIP_ASSUME_TAC) THEN
FIRST_X_ASSUM(DISJ_CASES_TAC o MATCH_MP (REAL_ARITH
`~(b = c) ==> &0 < abs(b - a) \/ &0 < abs(c - a)`)) THEN
ASM_MESON_TAC[];
MESON_TAC[REAL_LTE_TRANS]];
DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
ASM_CASES_TAC `?x. x IN s /\ &0 < abs(x - a) /\ abs(x - a) <= d` THENL
[DISJ2_TAC THEN FIRST_X_ASSUM(X_CHOOSE_TAC `b:real`) THEN
EXISTS_TAC `b:real` THEN ASM_MESON_TAC[REAL_LE_TRANS; REAL_LE_REFL];
DISJ1_TAC THEN MAP_EVERY EXISTS_TAC [`a + d:real`; `a:real`] THEN
ASM_SIMP_TAC[REAL_ADD_SUB; REAL_EQ_ADD_LCANCEL_0; REAL_LT_IMP_NZ] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_EXISTS_THM]) THEN
MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `x:real` THEN
ASM_CASES_TAC `(x:real) IN s` THEN ASM_REWRITE_TAC[] THEN
ASM_REAL_ARITH_TAC]]);;
let EVENTUALLY_WITHINREAL = prove
(`!s a p.
eventually p (atreal a within s) <=>
?d. &0 < d /\ !x. x IN s /\ &0 < abs(x - a) /\ abs(x - a) < d ==> p(x)`,
REWRITE_TAC[EVENTUALLY_WITHINREAL_LE] THEN
ONCE_REWRITE_TAC[TAUT `a /\ b /\ c ==> d <=> c ==> a /\ b ==> d`] THEN
REWRITE_TAC[APPROACHABLE_LT_LE]);;
let EVENTUALLY_ATREAL = prove
(`!a p. eventually p (atreal a) <=>
?d. &0 < d /\ !x. &0 < abs(x - a) /\ abs(x - a) < d ==> p(x)`,
ONCE_REWRITE_TAC[GSYM WITHINREAL_UNIV] THEN
REWRITE_TAC[EVENTUALLY_WITHINREAL; IN_UNIV]);;
(* ------------------------------------------------------------------------- *)
(* Usual limit results with real domain and either vector or real range. *)
(* ------------------------------------------------------------------------- *)
let LIM_WITHINREAL_LE = prove
(`!f:real->real^N l a s.
(f --> l) (atreal a within s) <=>
!e. &0 < e ==> ?d. &0 < d /\
!x. x IN s /\ &0 < abs(x - a) /\ abs(x - a) <= d
==> dist(f(x),l) < e`,
REWRITE_TAC[tendsto; EVENTUALLY_WITHINREAL_LE]);;
let LIM_WITHINREAL = prove
(`!f:real->real^N l a s.
(f --> l) (atreal a within s) <=>
!e. &0 < e
==> ?d. &0 < d /\
!x. x IN s /\ &0 < abs(x - a) /\ abs(x - a) < d
==> dist(f(x),l) < e`,
REWRITE_TAC[tendsto; EVENTUALLY_WITHINREAL] THEN MESON_TAC[]);;
let LIM_ATREAL = prove
(`!f l:real^N a.
(f --> l) (atreal a) <=>
!e. &0 < e
==> ?d. &0 < d /\ !x. &0 < abs(x - a) /\ abs(x - a) < d
==> dist(f(x),l) < e`,
REWRITE_TAC[tendsto; EVENTUALLY_ATREAL] THEN MESON_TAC[]);;
let REALLIM_WITHINREAL_LE = prove
(`!f l a s.
(f ---> l) (atreal a within s) <=>
!e. &0 < e ==> ?d. &0 < d /\
!x. x IN s /\ &0 < abs(x - a) /\ abs(x - a) <= d
==> abs(f(x) - l) < e`,
REWRITE_TAC[tendsto_real; EVENTUALLY_WITHINREAL_LE]);;
let REALLIM_WITHINREAL = prove
(`!f l a s.
(f ---> l) (atreal a within s) <=>
!e. &0 < e
==> ?d. &0 < d /\
!x. x IN s /\ &0 < abs(x - a) /\ abs(x - a) < d
==> abs(f(x) - l) < e`,
REWRITE_TAC[tendsto_real; EVENTUALLY_WITHINREAL] THEN MESON_TAC[]);;
let REALLIM_ATREAL = prove
(`!f l a.
(f ---> l) (atreal a) <=>
!e. &0 < e
==> ?d. &0 < d /\ !x. &0 < abs(x - a) /\ abs(x - a) < d
==> abs(f(x) - l) < e`,
REWRITE_TAC[tendsto_real; EVENTUALLY_ATREAL] THEN MESON_TAC[]);;
let REALLIM_AT_POSINFINITY = prove
(`!f l. (f ---> l) at_posinfinity <=>
!e. &0 < e ==> ?b. !x. x >= b ==> abs(f(x) - l) < e`,
REWRITE_TAC[tendsto_real; EVENTUALLY_AT_POSINFINITY] THEN MESON_TAC[]);;
let REALLIM_AT_NEGINFINITY = prove
(`!f l. (f ---> l) at_neginfinity <=>
!e. &0 < e ==> ?b. !x. x <= b ==> abs(f(x) - l) < e`,
REWRITE_TAC[tendsto_real; EVENTUALLY_AT_NEGINFINITY] THEN MESON_TAC[]);;
let LIM_ATREAL_WITHINREAL = prove
(`!f l a s. (f --> l) (atreal a) ==> (f --> l) (atreal a within s)`,
REWRITE_TAC[LIM_ATREAL; LIM_WITHINREAL] THEN MESON_TAC[]);;
let REALLIM_AT_WITHIN = prove
(`!f l a s. (f ---> l) (at a) ==> (f ---> l) (at a within s)`,
REWRITE_TAC[TENDSTO_REAL; LIM_AT_WITHIN]);;
let REALLIM_ATREAL_WITHINREAL = prove
(`!f l a s. (f ---> l) (atreal a) ==> (f ---> l) (atreal a within s)`,
REWRITE_TAC[REALLIM_ATREAL; REALLIM_WITHINREAL] THEN MESON_TAC[]);;
let REALLIM_WITHIN_SUBSET = prove
(`!f l a s t. (f ---> l) (at a within s) /\ t SUBSET s
==> (f ---> l) (at a within t)`,
REWRITE_TAC[REALLIM_WITHIN; SUBSET] THEN MESON_TAC[]);;
let REALLIM_WITHINREAL_SUBSET = prove
(`!f l a s t. (f ---> l) (atreal a within s) /\ t SUBSET s
==> (f ---> l) (atreal a within t)`,
REWRITE_TAC[REALLIM_WITHINREAL; SUBSET] THEN MESON_TAC[]);;
let LIM_WITHINREAL_SUBSET = prove
(`!f l a s t. (f --> l) (atreal a within s) /\ t SUBSET s
==> (f --> l) (atreal a within t)`,
REWRITE_TAC[LIM_WITHINREAL; SUBSET] THEN MESON_TAC[]);;
let REALLIM_ATREAL_ID = prove
(`((\x. x) ---> a) (atreal a)`,
REWRITE_TAC[REALLIM_ATREAL] THEN MESON_TAC[]);;
let REALLIM_WITHINREAL_ID = prove
(`!a. ((\x. x) ---> a) (atreal a within s)`,
REWRITE_TAC[REALLIM_WITHINREAL] THEN MESON_TAC[]);;
let LIM_TRANSFORM_WITHINREAL_SET = prove
(`!f a s t.
eventually (\x. x IN s <=> x IN t) (atreal a)
==> ((f --> l) (atreal a within s) <=> (f --> l) (atreal a within t))`,
REPEAT GEN_TAC THEN REWRITE_TAC[EVENTUALLY_ATREAL; LIM_WITHINREAL] THEN
DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
EQ_TAC THEN DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `k:real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `min d k:real` THEN ASM_REWRITE_TAC[REAL_LT_MIN] THEN
ASM_MESON_TAC[]);;
let REALLIM_TRANSFORM_WITHIN_SET = prove
(`!f a s t.
eventually (\x. x IN s <=> x IN t) (at a)
==> ((f ---> l) (at a within s) <=> (f ---> l) (at a within t))`,
REPEAT GEN_TAC THEN REWRITE_TAC[EVENTUALLY_AT; REALLIM_WITHIN] THEN
DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
EQ_TAC THEN DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `k:real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `min d k:real` THEN ASM_REWRITE_TAC[REAL_LT_MIN] THEN
ASM_MESON_TAC[]);;
let REALLIM_TRANSFORM_WITHINREAL_SET = prove
(`!f a s t.
eventually (\x. x IN s <=> x IN t) (atreal a)
==> ((f ---> l) (atreal a within s) <=>
(f ---> l) (atreal a within t))`,
REPEAT GEN_TAC THEN REWRITE_TAC[EVENTUALLY_ATREAL; REALLIM_WITHINREAL] THEN
DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
EQ_TAC THEN DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `k:real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `min d k:real` THEN ASM_REWRITE_TAC[REAL_LT_MIN] THEN
ASM_MESON_TAC[]);;
let REALLIM_TRANSFORM_WITHIN_SET_IMP = prove
(`!f l a s t.
eventually (\x. x IN t ==> x IN s) (at a) /\ (f ---> l) (at a within s)
==> (f ---> l) (at a within t)`,
REWRITE_TAC[TENDSTO_REAL; LIM_TRANSFORM_WITHIN_SET_IMP]);;
let LIM_TRANSFORM_WITHINREAL_SET_IMP = prove
(`!f l a s t.
eventually (\x. x IN t ==> x IN s) (atreal a) /\
(f --> l) (atreal a within s)
==> (f --> l) (atreal a within t)`,
REPEAT GEN_TAC THEN
REWRITE_TAC[IMP_CONJ; EVENTUALLY_ATREAL; LIM_WITHINREAL] THEN
DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `k:real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `min d k:real` THEN ASM_REWRITE_TAC[REAL_LT_MIN] THEN
ASM_MESON_TAC[]);;
let REALLIM_TRANSFORM_WITHINREAL_SET_IMP = prove
(`!f l a s t.
eventually (\x. x IN t ==> x IN s) (atreal a) /\
(f ---> l) (atreal a within s)
==> (f ---> l) (atreal a within t)`,
REWRITE_TAC[TENDSTO_REAL; LIM_TRANSFORM_WITHINREAL_SET_IMP]);;
let REALLIM_COMPOSE_WITHIN = prove
(`!net:A net f g s y z.
(f ---> y) net /\
eventually (\w. f w IN s /\ (f w = y ==> g y = z)) net /\
(g ---> z) (atreal y within s)
==> ((g o f) ---> z) net`,
REPEAT GEN_TAC THEN REWRITE_TAC[tendsto_real; CONJ_ASSOC] THEN
ONCE_REWRITE_TAC[LEFT_AND_FORALL_THM] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN
ASM_CASES_TAC `&0 < e` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[EVENTUALLY_WITHINREAL; GSYM DIST_NZ; o_DEF] THEN
DISCH_THEN(X_CHOOSE_THEN `d:real` ASSUME_TAC) THEN
FIRST_X_ASSUM(MP_TAC o SPEC `d:real`) THEN
ASM_REWRITE_TAC[GSYM EVENTUALLY_AND] THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN
X_GEN_TAC `x:A` THEN
ASM_CASES_TAC `(f:A->real) x = y` THEN
ASM_MESON_TAC[REAL_ARITH `abs(x - y) = &0 <=> x = y`;
REAL_ARITH `&0 < abs(x - y) <=> ~(x = y)`]);;
let REALLIM_COMPOSE_AT = prove
(`!net:A net f g y z.
(f ---> y) net /\
eventually (\w. f w = y ==> g y = z) net /\
(g ---> z) (atreal y)
==> ((g o f) ---> z) net`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`net:A net`; `f:A->real`; `g:real->real`;
`(:real)`; `y:real`; `z:real`]
REALLIM_COMPOSE_WITHIN) THEN
ASM_REWRITE_TAC[IN_UNIV; WITHINREAL_UNIV]);;
(* ------------------------------------------------------------------------- *)
(* Summability of alternating seties. *)
(* ------------------------------------------------------------------------- *)
let ALTERNATING_SUM_BOUNDS = prove
(`!a. (!n. abs(a(SUC n)) <= abs(a n)) /\
(!n. EVEN n ==> &0 <= a n) /\ (!n. ODD n ==> a n <= &0)
==> !m n. (EVEN m ==> &0 <= sum(m..n) a /\ sum(m..n) a <= a(m)) /\
(ODD m ==> a(m) <= sum(m..n) a /\ sum(m..n) a <= &0)`,
GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC(MESON[LE_EXISTS; NOT_LT]
`(!m n:num. n < m ==> P m n) /\ (!n m. P m (m + n)) ==> !m n. P m n`) THEN
ASM_SIMP_TAC[GSYM NUMSEG_EMPTY; SUM_CLAUSES; REAL_LE_REFL] THEN
INDUCT_TAC THEN ASM_SIMP_TAC[ADD_CLAUSES; SUM_SING_NUMSEG; REAL_LE_REFL] THEN
SIMP_TAC[SUM_CLAUSES_LEFT; ARITH_RULE `m <= SUC(m + n)`] THEN
X_GEN_TAC `m:num` THEN SIMP_TAC[ARITH_RULE `SUC(m + n) = (m + 1) + n`] THEN
CONJ_TAC THEN DISCH_TAC THEN
FIRST_X_ASSUM(CONJUNCTS_THEN MP_TAC o SPEC `m + 1`) THEN
ASM_REWRITE_TAC[ODD_ADD; EVEN_ADD; ARITH; NOT_ODD; NOT_EVEN] THEN
SIMP_TAC[REAL_LE_ADDR; REAL_ARITH `x + y <= x <=> y <= &0`] THENL
[MATCH_MP_TAC(REAL_ARITH
`abs b <= abs a /\ &0 <= a ==> b <= s /\ u <= v ==> &0 <= a + s`);
MATCH_MP_TAC(REAL_ARITH
`abs b <= abs a /\ a <= &0 ==> u <= v /\ s <= b ==> a + s <= &0`)] THEN
ASM_SIMP_TAC[GSYM ADD1]);;
let ALTERNATING_SUM_BOUND = prove
(`!a. (!n. abs(a(SUC n)) <= abs(a n)) /\
(!n. EVEN n ==> &0 <= a n) /\ (!n. ODD n ==> a n <= &0)
==> !m n. abs(sum(m..n) a) <= abs(a m)`,
GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP ALTERNATING_SUM_BOUNDS) THEN
REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
REWRITE_TAC[GSYM NOT_EVEN] THEN ASM_CASES_TAC `EVEN m` THEN
ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC);;
let REAL_SUMMABLE_ALTERNATING_SERIES = prove
(`!a m. (!n. abs(a(SUC n)) <= abs(a n)) /\
(!n. EVEN n ==> &0 <= a n) /\ (!n. ODD n ==> a n <= &0) /\
(a ---> &0) sequentially
==> real_summable (from m) a`,
REPEAT STRIP_TAC THEN
REWRITE_TAC[REAL_SUMMABLE_CAUCHY; FROM_INTER_NUMSEG_MAX] THEN
X_GEN_TAC `e:real` THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [REALLIM_SEQUENTIALLY]) THEN
DISCH_THEN(MP_TAC o SPEC `e:real`) THEN
ASM_REWRITE_TAC[GE; REAL_SUB_RZERO] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `N:num` THEN DISCH_TAC THEN
MAP_EVERY X_GEN_TAC [`n:num`; `p:num`] THEN DISCH_TAC THEN
TRANS_TAC REAL_LET_TRANS `abs(a(MAX m n))` THEN
ASM_SIMP_TAC[ALTERNATING_SUM_BOUND] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Some real limits involving transcendentals. *)
(* ------------------------------------------------------------------------- *)
let REALLIM_1_OVER_N_OFFSET = prove
(`!a. ((\n. inv(&n + a)) ---> &0) sequentially`,
REWRITE_TAC[REALLIM_COMPLEX; o_DEF; CX_INV; CX_ADD; LIM_INV_N_OFFSET]);;
let REALLIM_1_OVER_N = prove
(`((\n. inv(&n)) ---> &0) sequentially`,
REWRITE_TAC[REALLIM_COMPLEX; o_DEF; CX_INV; LIM_INV_N]);;
let REALLIM_1_OVER_POW = prove
(`!k. 1 <= k ==> ((\n. inv(&n pow k)) ---> &0) sequentially`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REALLIM_NULL_COMPARISON THEN
EXISTS_TAC `\n. inv(&n pow 1)` THEN CONJ_TAC THENL
[REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN EXISTS_TAC `1` THEN
REPEAT STRIP_TAC THEN REWRITE_TAC[REAL_ABS_INV; REAL_ABS_POW] THEN
MATCH_MP_TAC REAL_LE_INV2 THEN REWRITE_TAC[REAL_ABS_NUM] THEN
CONJ_TAC THENL [MATCH_MP_TAC REAL_POW_LT; MATCH_MP_TAC REAL_POW_MONO] THEN
ASM_SIMP_TAC[REAL_OF_NUM_LE; REAL_OF_NUM_LT; LE_1];
REWRITE_TAC[REAL_POW_1; REALLIM_1_OVER_N]]);;
let REALLIM_LOG_OVER_N = prove
(`((\n. log(&n) / &n) ---> &0) sequentially`,
REWRITE_TAC[REALLIM_COMPLEX] THEN MP_TAC LIM_LOG_OVER_N THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] LIM_TRANSFORM_EVENTUALLY) THEN
REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN EXISTS_TAC `1` THEN
SIMP_TAC[o_DEF; CX_DIV; CX_LOG; REAL_OF_NUM_LT;
ARITH_RULE `1 <= n ==> 0 < n`]);;
let REALLIM_1_OVER_LOG = prove
(`((\n. inv(log(&n))) ---> &0) sequentially`,
REWRITE_TAC[REALLIM_COMPLEX] THEN MP_TAC LIM_1_OVER_LOG THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] LIM_TRANSFORM_EVENTUALLY) THEN
REWRITE_TAC[o_DEF; complex_div; COMPLEX_MUL_LID; CX_INV] THEN
REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN EXISTS_TAC `1` THEN
SIMP_TAC[CX_LOG; REAL_OF_NUM_LT; ARITH_RULE `1 <= n ==> 0 < n`]);;
let REALLIM_POWN = prove
(`!z. abs(z) < &1 ==> ((\n. z pow n) ---> &0) sequentially`,
REWRITE_TAC[REALLIM_COMPLEX; o_DEF; CX_POW] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC LIM_POWN THEN
ASM_REWRITE_TAC[COMPLEX_NORM_CX]);;
let REALLIM_X_TIMES_LOG = prove
(`((\x. x * log x) ---> &0) (atreal(&0) within {x | &0 <= x})`,
MP_TAC LIM_Z_TIMES_CLOG THEN
REWRITE_TAC[REALLIM_WITHINREAL; LIM_AT] THEN
REWRITE_TAC[IN_ELIM_THM; REAL_SUB_RZERO; dist; COMPLEX_SUB_RZERO] THEN
MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN
ASM_CASES_TAC `&0 < e` THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:real` THEN
ASM_CASES_TAC `&0 < d` THEN ASM_REWRITE_TAC[] THEN
DISCH_TAC THEN X_GEN_TAC `x:real` THEN
ASM_CASES_TAC `x = &0` THENL [ASM_REAL_ARITH_TAC; STRIP_TAC] THEN
SUBGOAL_THEN `&0 < x` ASSUME_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
FIRST_X_ASSUM(MP_TAC o SPEC `Cx x`) THEN
ASM_SIMP_TAC[COMPLEX_NORM_MUL; GSYM CX_LOG; COMPLEX_NORM_CX] THEN
REWRITE_TAC[REAL_ABS_MUL]);;
(* ------------------------------------------------------------------------- *)
(* Relations between limits at real and complex limit points. *)
(* ------------------------------------------------------------------------- *)
let TRIVIAL_LIMIT_WITHINREAL_WITHIN = prove
(`trivial_limit(atreal x within s) <=>
trivial_limit(at (lift x) within (IMAGE lift s))`,
REWRITE_TAC[trivial_limit; AT; WITHIN; ATREAL] THEN
REWRITE_TAC[FORALL_LIFT; EXISTS_LIFT; LIFT_EQ; DIST_LIFT] THEN
REWRITE_TAC[IN_IMAGE_LIFT_DROP; LIFT_DROP]);;
let TRIVIAL_LIMIT_WITHINREAL_WITHINCOMPLEX = prove
(`trivial_limit(atreal x within s) <=>
trivial_limit(at (Cx x) within (real INTER IMAGE Cx s))`,
REWRITE_TAC[trivial_limit; AT; WITHIN; ATREAL] THEN
REWRITE_TAC[SET_RULE `x IN real INTER s <=> real x /\ x IN s`] THEN
REWRITE_TAC[TAUT `~(p /\ x /\ q) /\ ~(r /\ x /\ s) <=>
x ==> ~(p /\ q) /\ ~(r /\ s)`] THEN
REWRITE_TAC[FORALL_REAL;
MESON[IN_IMAGE; CX_INJ] `Cx x IN IMAGE Cx s <=> x IN s`] THEN
REWRITE_TAC[dist; GSYM CX_SUB; o_THM; RE_CX; COMPLEX_NORM_CX] THEN
MATCH_MP_TAC(TAUT `~p /\ ~q /\ (r <=> s) ==> (p \/ r <=> q \/ s)`) THEN
REPEAT CONJ_TAC THEN TRY EQ_TAC THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THENL
[DISCH_THEN(MP_TAC o SPECL [`&0`; `&1`]) THEN CONV_TAC REAL_RING;
DISCH_THEN(MP_TAC o SPECL [`Cx(&0)`; `Cx(&1)`]) THEN
CONV_TAC COMPLEX_RING;
MAP_EVERY X_GEN_TAC [`a:real`; `b:real`] THEN STRIP_TAC THEN
MAP_EVERY EXISTS_TAC [`Cx a`; `Cx b`] THEN ASM_REWRITE_TAC[CX_INJ] THEN
ASM_REWRITE_TAC[GSYM CX_SUB; COMPLEX_NORM_CX];
MAP_EVERY X_GEN_TAC [`a:complex`; `b:complex`] THEN STRIP_TAC THEN
SUBGOAL_THEN
`?d. &0 < d /\
!z. &0 < abs(z - x) /\ abs(z - x) <= d ==> ~(z IN s)`
STRIP_ASSUME_TAC THENL
[MATCH_MP_TAC(MESON[] `!a b. P a \/ P b ==> ?x. P x`) THEN
MAP_EVERY EXISTS_TAC [`norm(a - Cx x)`; `norm(b - Cx x)`] THEN
ASM_REWRITE_TAC[TAUT `a ==> ~b <=> ~(a /\ b)`] THEN
UNDISCH_TAC `~(a:complex = b)` THEN NORM_ARITH_TAC;
ALL_TAC] THEN
MAP_EVERY EXISTS_TAC [`x + d:real`; `x - d:real`] THEN
ASM_SIMP_TAC[REAL_ARITH `&0 < d ==> ~(x + d = x - d)`;
REAL_ARITH `&0 < d ==> abs((x + d) - x) = d`;
REAL_ARITH `&0 < d ==> abs(x - d - x) = d`] THEN
ASM_MESON_TAC[]]);;
let LIM_WITHINREAL_WITHINCOMPLEX = prove
(`(f --> a) (atreal x within s) <=>
((f o Re) --> a) (at(Cx x) within (real INTER IMAGE Cx s))`,
REWRITE_TAC[LIM_WITHINREAL; LIM_WITHIN] THEN
REWRITE_TAC[SET_RULE `x IN real INTER s <=> real x /\ x IN s`] THEN
REWRITE_TAC[IMP_CONJ; FORALL_REAL;
MESON[IN_IMAGE; CX_INJ] `Cx x IN IMAGE Cx s <=> x IN s`] THEN
REWRITE_TAC[dist; GSYM CX_SUB; o_THM; RE_CX; COMPLEX_NORM_CX]);;
let LIM_ATREAL_ATCOMPLEX = prove
(`(f --> a) (atreal x) <=> ((f o Re) --> a) (at (Cx x) within real)`,
REWRITE_TAC[LIM_ATREAL; LIM_WITHIN] THEN
REWRITE_TAC[IMP_CONJ; FORALL_REAL; IN; dist; GSYM CX_SUB; COMPLEX_NORM_CX;
o_THM; RE_CX]);;
(* ------------------------------------------------------------------------- *)
(* Simpler theorems relating limits in real and real^1. *)
(* ------------------------------------------------------------------------- *)
let LIM_WITHINREAL_WITHIN = prove
(`(f --> a) (atreal x within s) <=>
((f o drop) --> a) (at (lift x) within (IMAGE lift s))`,
REWRITE_TAC[LIM_WITHINREAL; LIM_WITHIN] THEN
REWRITE_TAC[IMP_CONJ; FORALL_IN_IMAGE; DIST_LIFT; o_THM; LIFT_DROP]);;
let LIM_ATREAL_AT = prove
(`(f --> a) (atreal x) <=> ((f o drop) --> a) (at (lift x))`,
REWRITE_TAC[LIM_ATREAL; LIM_AT; FORALL_LIFT] THEN
REWRITE_TAC[IMP_CONJ; FORALL_IN_IMAGE; DIST_LIFT; o_THM; LIFT_DROP]);;
let REALLIM_WITHINREAL_WITHIN = prove
(`(f ---> a) (atreal x within s) <=>
((f o drop) ---> a) (at (lift x) within (IMAGE lift s))`,
REWRITE_TAC[REALLIM_WITHINREAL; REALLIM_WITHIN] THEN
REWRITE_TAC[IMP_CONJ; FORALL_IN_IMAGE; DIST_LIFT; o_THM; LIFT_DROP]);;
let REALLIM_ATREAL_AT = prove
(`(f ---> a) (atreal x) <=> ((f o drop) ---> a) (at (lift x))`,
REWRITE_TAC[REALLIM_ATREAL; REALLIM_AT; FORALL_LIFT] THEN
REWRITE_TAC[IMP_CONJ; FORALL_IN_IMAGE; DIST_LIFT; o_THM; LIFT_DROP]);;
let REALLIM_WITHIN_OPEN = prove
(`!f:real^N->real l a s.
a IN s /\ open s
==> ((f ---> l) (at a within s) <=> (f ---> l) (at a))`,
REWRITE_TAC[TENDSTO_REAL; LIM_WITHIN_OPEN]);;
let LIM_WITHIN_REAL_OPEN = prove
(`!f:real->real^N l a s.
a IN s /\ real_open s
==> ((f --> l) (atreal a within s) <=> (f --> l) (atreal a))`,
REWRITE_TAC[LIM_WITHINREAL_WITHIN; LIM_ATREAL_AT; REAL_OPEN] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC LIM_WITHIN_OPEN THEN ASM SET_TAC[]);;
let REALLIM_WITHIN_REAL_OPEN = prove
(`!f l a s.
a IN s /\ real_open s
==> ((f ---> l) (atreal a within s) <=> (f ---> l) (atreal a))`,
REWRITE_TAC[TENDSTO_REAL; LIM_WITHIN_REAL_OPEN]);;
let LIM_ATREAL_ZERO = prove
(`!f l a. (f --> l) (atreal a) <=> ((\x. f (a + x)) --> l) (atreal (&0))`,
REPEAT GEN_TAC THEN REWRITE_TAC[LIM_ATREAL_AT; LIFT_NUM; o_DEF] THEN
GEN_REWRITE_TAC LAND_CONV [LIM_AT_ZERO] THEN
REWRITE_TAC[LIFT_DROP; DROP_ADD]);;
let REALLIM_AT_ZERO = prove
(`!f l a. (f ---> l) (at a) <=> ((\x. f (a + x)) ---> l) (at (vec 0))`,
REPEAT GEN_TAC THEN REWRITE_TAC[TENDSTO_REAL] THEN
GEN_REWRITE_TAC LAND_CONV [LIM_AT_ZERO] THEN
REWRITE_TAC[o_DEF]);;
let REALLIM_ATREAL_ZERO = prove
(`!f l a. (f ---> l) (atreal a) <=> ((\x. f (a + x)) ---> l) (atreal (&0))`,
REPEAT GEN_TAC THEN REWRITE_TAC[TENDSTO_REAL] THEN
GEN_REWRITE_TAC LAND_CONV [LIM_ATREAL_ZERO] THEN
REWRITE_TAC[o_DEF]);;
(* ------------------------------------------------------------------------- *)
(* Additional congruence rules for simplifying limits. *)
(* ------------------------------------------------------------------------- *)
let LIM_CONG_WITHINREAL = prove
(`(!x. ~(x = a) ==> f x = g x)
==> (((\x. f x) --> l) (atreal a within s) <=>
((g --> l) (atreal a within s)))`,
SIMP_TAC[LIM_WITHINREAL; GSYM REAL_ABS_NZ; REAL_SUB_0]);;
let LIM_CONG_ATREAL = prove
(`(!x. ~(x = a) ==> f x = g x)
==> (((\x. f x) --> l) (atreal a) <=> ((g --> l) (atreal a)))`,
SIMP_TAC[LIM_ATREAL; GSYM REAL_ABS_NZ; REAL_SUB_0]);;
extend_basic_congs [LIM_CONG_WITHINREAL; LIM_CONG_ATREAL];;
let REALLIM_CONG_WITHIN = prove
(`(!x. ~(x = a) ==> f x = g x)
==> (((\x. f x) ---> l) (at a within s) <=> ((g ---> l) (at a within s)))`,
REWRITE_TAC[REALLIM_WITHIN; GSYM DIST_NZ] THEN SIMP_TAC[]);;
let REALLIM_CONG_AT = prove
(`(!x. ~(x = a) ==> f x = g x)
==> (((\x. f x) ---> l) (at a) <=> ((g ---> l) (at a)))`,
REWRITE_TAC[REALLIM_AT; GSYM DIST_NZ] THEN SIMP_TAC[]);;
extend_basic_congs [REALLIM_CONG_WITHIN; REALLIM_CONG_AT];;
let REALLIM_CONG_WITHINREAL = prove
(`(!x. ~(x = a) ==> f x = g x)
==> (((\x. f x) ---> l) (atreal a within s) <=>
((g ---> l) (atreal a within s)))`,
SIMP_TAC[REALLIM_WITHINREAL; GSYM REAL_ABS_NZ; REAL_SUB_0]);;
let REALLIM_CONG_ATREAL = prove
(`(!x. ~(x = a) ==> f x = g x)
==> (((\x. f x) ---> l) (atreal a) <=> ((g ---> l) (atreal a)))`,
SIMP_TAC[REALLIM_ATREAL; GSYM REAL_ABS_NZ; REAL_SUB_0]);;
extend_basic_congs [REALLIM_CONG_WITHINREAL; REALLIM_CONG_ATREAL];;
(* ------------------------------------------------------------------------- *)
(* Real version of Abel limit theorem. *)
(* ------------------------------------------------------------------------- *)
let REAL_ABEL_LIMIT_THEOREM = prove
(`!s a. real_summable s a
==> (!r. abs(r) < &1 ==> real_summable s (\i. a i * r pow i)) /\
((\r. real_infsum s (\i. a i * r pow i)) ---> real_infsum s a)
(atreal (&1) within {z | z <= &1})`,
REPEAT GEN_TAC THEN STRIP_TAC THEN
MP_TAC(ISPECL [`&1`; `s:num->bool`; `Cx o (a:num->real)`]
ABEL_LIMIT_THEOREM_1) THEN
ASM_REWRITE_TAC[GSYM REAL_SUMMABLE_COMPLEX; REAL_LT_01] THEN STRIP_TAC THEN
MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL
[X_GEN_TAC `r:real` THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `Cx r`) THEN
ASM_REWRITE_TAC[COMPLEX_NORM_CX; REAL_SUMMABLE_COMPLEX] THEN
REWRITE_TAC[o_DEF; CX_MUL; CX_POW];
DISCH_TAC] THEN
REWRITE_TAC[REALLIM_COMPLEX; LIM_WITHINREAL_WITHINCOMPLEX] THEN
MATCH_MP_TAC LIM_TRANSFORM_WITHIN THEN
EXISTS_TAC `\z. infsum s (\i. (Cx o a) i * z pow i)` THEN
EXISTS_TAC `&1` THEN REWRITE_TAC[REAL_LT_01] THEN CONJ_TAC THENL
[REWRITE_TAC[IMP_CONJ; IN_INTER; IN_ELIM_THM; IN_IMAGE] THEN
REWRITE_TAC[IN; FORALL_REAL] THEN X_GEN_TAC `r:real` THEN
REWRITE_TAC[CX_INJ; UNWIND_THM1; dist; GSYM CX_SUB; COMPLEX_NORM_CX] THEN
DISCH_TAC THEN
ASM_SIMP_TAC[REAL_ARITH `r <= &1 ==> (&0 < abs(r - &1) <=> r < &1)`] THEN
REPEAT DISCH_TAC THEN SUBGOAL_THEN `abs(r) < &1` ASSUME_TAC THENL
[ASM_REAL_ARITH_TAC; ALL_TAC] THEN
ASM_SIMP_TAC[REAL_INFSUM_COMPLEX; o_THM; RE_CX] THEN
CONV_TAC SYM_CONV THEN REWRITE_TAC[GSYM REAL; o_DEF; CX_MUL; CX_POW] THEN
MATCH_MP_TAC(ISPEC `sequentially` REAL_LIM) THEN
EXISTS_TAC `\n. vsum(s INTER (0..n)) (\i. Cx(a i) * Cx r pow i)` THEN
REWRITE_TAC[SEQUENTIALLY; TRIVIAL_LIMIT_SEQUENTIALLY; GSYM sums] THEN
SIMP_TAC[GSYM CX_POW; GSYM CX_MUL; REAL_VSUM; FINITE_INTER; FINITE_NUMSEG;
SUMS_INFSUM; REAL_CX; GE] THEN
CONJ_TAC THENL [ALL_TAC; MESON_TAC[LE_REFL]] THEN
ONCE_REWRITE_TAC[GSYM o_DEF] THEN
ASM_SIMP_TAC[GSYM REAL_SUMMABLE_COMPLEX];
ALL_TAC] THEN
ASM_SIMP_TAC[REAL_INFSUM_COMPLEX] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [LIM_WITHIN]) THEN
REWRITE_TAC[LIM_WITHIN] THEN
MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN
ASM_CASES_TAC `&0 < e` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[REAL_MUL_LID; IN_ELIM_THM; IN_INTER; IN_IMAGE] THEN
DISCH_THEN(X_CHOOSE_THEN `d:real`
(CONJUNCTS_THEN2 ASSUME_TAC (LABEL_TAC "*"))) THEN
EXISTS_TAC `min d (&1)` THEN ASM_REWRITE_TAC[REAL_LT_MIN; REAL_LT_01] THEN
REWRITE_TAC[IMP_CONJ; IN; FORALL_REAL] THEN
REWRITE_TAC[CX_INJ; UNWIND_THM1; dist; GSYM CX_SUB; COMPLEX_NORM_CX] THEN
X_GEN_TAC `r:real` THEN DISCH_TAC THEN
ASM_SIMP_TAC[REAL_ARITH `r <= &1 ==> (&0 < abs(r - &1) <=> r < &1)`] THEN
REPEAT DISCH_TAC THEN SUBGOAL_THEN `abs(r) < &1` ASSUME_TAC THENL
[ASM_REAL_ARITH_TAC; ALL_TAC] THEN
REMOVE_THEN "*" (MP_TAC o SPEC `Cx r`) THEN
REWRITE_TAC[CX_INJ; UNWIND_THM1; dist; GSYM CX_SUB; COMPLEX_NORM_CX] THEN
ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
MATCH_MP_TAC(NORM_ARITH `b = a ==> norm(x - a) < e ==> norm(x - b) < e`) THEN
REWRITE_TAC[GSYM REAL] THEN
MATCH_MP_TAC(ISPEC `sequentially` REAL_LIM) THEN
EXISTS_TAC `\n. vsum(s INTER (0..n)) (Cx o a)` THEN
REWRITE_TAC[SEQUENTIALLY; TRIVIAL_LIMIT_SEQUENTIALLY; GSYM sums] THEN
SIMP_TAC[GSYM CX_POW; GSYM CX_MUL; REAL_VSUM; FINITE_INTER; FINITE_NUMSEG;
SUMS_INFSUM; REAL_CX; GE; o_DEF] THEN
CONJ_TAC THENL [ALL_TAC; MESON_TAC[LE_REFL]] THEN
ONCE_REWRITE_TAC[GSYM o_DEF] THEN
ASM_SIMP_TAC[GSYM REAL_SUMMABLE_COMPLEX]);;
(* ------------------------------------------------------------------------- *)
(* Continuity of a function into the reals. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix ("real_continuous",(12,"right"));;
let real_continuous = new_definition
`f real_continuous net <=> (f ---> f(netlimit net)) net`;;
let REAL_CONTINUOUS_TRIVIAL_LIMIT = prove
(`!f net. trivial_limit net ==> f real_continuous net`,
SIMP_TAC[real_continuous; REALLIM]);;
let REAL_CONTINUOUS_WITHIN = prove
(`!f x:real^N s.
f real_continuous (at x within s) <=>
(f ---> f(x)) (at x within s)`,
REPEAT GEN_TAC THEN REWRITE_TAC[real_continuous] THEN
ASM_CASES_TAC `trivial_limit(at(x:real^N) within s)` THENL
[ASM_REWRITE_TAC[REALLIM]; ASM_SIMP_TAC[NETLIMIT_WITHIN]]);;
let REAL_CONTINUOUS_AT = prove
(`!f x. f real_continuous (at x) <=> (f ---> f(x)) (at x)`,
ONCE_REWRITE_TAC[GSYM WITHIN_UNIV] THEN
REWRITE_TAC[REAL_CONTINUOUS_WITHIN; IN_UNIV]);;
let REAL_CONTINUOUS_WITHINREAL = prove
(`!f x s. f real_continuous (atreal x within s) <=>
(f ---> f(x)) (atreal x within s)`,
REPEAT GEN_TAC THEN REWRITE_TAC[real_continuous] THEN
ASM_CASES_TAC `trivial_limit(atreal x within s)` THENL
[ASM_REWRITE_TAC[REALLIM]; ASM_SIMP_TAC[NETLIMIT_WITHINREAL]]);;
let REAL_CONTINUOUS_ATREAL = prove
(`!f x. f real_continuous (atreal x) <=> (f ---> f(x)) (atreal x)`,
ONCE_REWRITE_TAC[GSYM WITHINREAL_UNIV] THEN
REWRITE_TAC[REAL_CONTINUOUS_WITHINREAL; IN_UNIV]);;
let CONTINUOUS_WITHINREAL = prove
(`!f x s. f continuous (atreal x within s) <=>
(f --> f(x)) (atreal x within s)`,
REPEAT GEN_TAC THEN REWRITE_TAC[continuous] THEN
ASM_CASES_TAC `trivial_limit(atreal x within s)` THENL
[ASM_REWRITE_TAC[LIM]; ASM_SIMP_TAC[NETLIMIT_WITHINREAL]]);;
let CONTINUOUS_ATREAL = prove
(`!f x. f continuous (atreal x) <=> (f --> f(x)) (atreal x)`,
ONCE_REWRITE_TAC[GSYM WITHINREAL_UNIV] THEN
REWRITE_TAC[CONTINUOUS_WITHINREAL; IN_UNIV]);;
let real_continuous_within = prove
(`f real_continuous (at x within s) <=>
!e. &0 < e
==> ?d. &0 < d /\
(!x'. x' IN s /\ dist(x',x) < d ==> abs(f x' - f x) < e)`,
REWRITE_TAC[REAL_CONTINUOUS_WITHIN; REALLIM_WITHIN] THEN
REWRITE_TAC[GSYM DIST_NZ] THEN
EQ_TAC THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN
ASM_CASES_TAC `&0 < e` THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN
MATCH_MP_TAC MONO_AND THEN REWRITE_TAC[] THEN MATCH_MP_TAC MONO_FORALL THEN
ASM_MESON_TAC[REAL_ARITH `abs(x - x) = &0`]);;
let real_continuous_at = prove
(`f real_continuous (at x) <=>
!e. &0 < e
==> ?d. &0 < d /\
(!x'. dist(x',x) < d ==> abs(f x' - f x) < e)`,
ONCE_REWRITE_TAC[GSYM WITHIN_UNIV] THEN
REWRITE_TAC[real_continuous_within; IN_UNIV]);;
let real_continuous_withinreal = prove
(`f real_continuous (atreal x within s) <=>
!e. &0 < e
==> ?d. &0 < d /\
(!x'. x' IN s /\ abs(x' - x) < d ==> abs(f x' - f x) < e)`,
REWRITE_TAC[REAL_CONTINUOUS_WITHINREAL; REALLIM_WITHINREAL] THEN
REWRITE_TAC[REAL_ARITH `&0 < abs(x - y) <=> ~(x = y)`] THEN
EQ_TAC THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN
ASM_CASES_TAC `&0 < e` THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN
MATCH_MP_TAC MONO_AND THEN REWRITE_TAC[] THEN MATCH_MP_TAC MONO_FORALL THEN
ASM_MESON_TAC[REAL_ARITH `abs(x - x) = &0`]);;
let real_continuous_atreal = prove
(`f real_continuous (atreal x) <=>
!e. &0 < e
==> ?d. &0 < d /\
(!x'. abs(x' - x) < d ==> abs(f x' - f x) < e)`,
ONCE_REWRITE_TAC[GSYM WITHINREAL_UNIV] THEN
REWRITE_TAC[real_continuous_withinreal; IN_UNIV]);;
let REAL_CONTINUOUS_AT_WITHIN = prove
(`!f s x. f real_continuous (at x)
==> f real_continuous (at x within s)`,
REWRITE_TAC[real_continuous_within; real_continuous_at] THEN
MESON_TAC[]);;
let REAL_CONTINUOUS_ATREAL_WITHINREAL = prove
(`!f s x. f real_continuous (atreal x)
==> f real_continuous (atreal x within s)`,
REWRITE_TAC[real_continuous_withinreal; real_continuous_atreal] THEN
MESON_TAC[]);;
let REAL_CONTINUOUS_WITHINREAL_SUBSET = prove
(`!f s t. f real_continuous (atreal x within s) /\ t SUBSET s
==> f real_continuous (atreal x within t)`,
REWRITE_TAC[REAL_CONTINUOUS_WITHINREAL; REALLIM_WITHINREAL_SUBSET]);;
let REAL_CONTINUOUS_WITHIN_SUBSET = prove
(`!f s t. f real_continuous (at x within s) /\ t SUBSET s
==> f real_continuous (at x within t)`,
REWRITE_TAC[REAL_CONTINUOUS_WITHIN; REALLIM_WITHIN_SUBSET]);;
let CONTINUOUS_WITHINREAL_SUBSET = prove
(`!f s t. f continuous (atreal x within s) /\ t SUBSET s
==> f continuous (atreal x within t)`,
REWRITE_TAC[CONTINUOUS_WITHINREAL; LIM_WITHINREAL_SUBSET]);;
let continuous_withinreal = prove
(`f continuous (atreal x within s) <=>
!e. &0 < e
==> ?d. &0 < d /\
(!x'. x' IN s /\ abs(x' - x) < d ==> dist(f x',f x) < e)`,
REWRITE_TAC[CONTINUOUS_WITHINREAL; LIM_WITHINREAL] THEN
REWRITE_TAC[REAL_ARITH `&0 < abs(x - y) <=> ~(x = y)`] THEN
AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `e:real` THEN
ASM_CASES_TAC `&0 < e` THEN ASM_REWRITE_TAC[] THEN
AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `d:real` THEN
ASM_CASES_TAC `&0 < d` THEN ASM_REWRITE_TAC[] THEN
AP_TERM_TAC THEN ABS_TAC THEN ASM_MESON_TAC[DIST_REFL]);;
let continuous_atreal = prove
(`f continuous (atreal x) <=>
!e. &0 < e
==> ?d. &0 < d /\
(!x'. abs(x' - x) < d ==> dist(f x',f x) < e)`,
ONCE_REWRITE_TAC[GSYM WITHINREAL_UNIV] THEN
REWRITE_TAC[continuous_withinreal; IN_UNIV]);;
let CONTINUOUS_ATREAL_WITHINREAL = prove
(`!f x s. f continuous (atreal x) ==> f continuous (atreal x within s)`,
SIMP_TAC[continuous_atreal; continuous_withinreal] THEN MESON_TAC[]);;
let CONTINUOUS_CX_ATREAL = prove
(`!x. Cx continuous (atreal x)`,
GEN_TAC THEN REWRITE_TAC[continuous_atreal; dist] THEN
REWRITE_TAC[COMPLEX_NORM_CX; GSYM CX_SUB] THEN MESON_TAC[]);;
let CONTINUOUS_CX_WITHINREAL = prove
(`!s x. Cx continuous (atreal x within s)`,
SIMP_TAC[CONTINUOUS_ATREAL_WITHINREAL; CONTINUOUS_CX_ATREAL]);;
let REAL_CONTINUOUS_TRANSFORM_WITHIN = prove
(`!f g s:real^N->bool x d.
&0 < d /\
x IN s /\
(!x'. x' IN s /\ dist(x',x) < d ==> f x' = g x') /\
f real_continuous at x within s
==> g real_continuous at x within s`,
REPEAT GEN_TAC THEN REWRITE_TAC[real_continuous_within] THEN
STRIP_TAC THEN X_GEN_TAC `k:real` THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `k:real`) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `min d e:real` THEN ASM_REWRITE_TAC[REAL_LT_MIN] THEN
ASM_MESON_TAC[DIST_REFL]);;
let REAL_CONTINUOUS_TRANSFORM_WITHINREAL = prove
(`!f g s x d.
&0 < d /\
x IN s /\
(!x'. x' IN s /\ abs(x' - x) < d ==> f x' = g x') /\
f real_continuous atreal x within s
==> g real_continuous atreal x within s`,
REPEAT GEN_TAC THEN REWRITE_TAC[real_continuous_withinreal] THEN
STRIP_TAC THEN X_GEN_TAC `k:real` THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `k:real`) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `min d e:real` THEN ASM_REWRITE_TAC[REAL_LT_MIN] THEN
ASM_MESON_TAC[REAL_ARITH `abs(x - x) = &0`]);;
let REAL_CONTINUOUS_TRANSFORM_AT = prove
(`!f g x:real^N d.
&0 < d /\
(!x'. dist(x',x) < d ==> f x' = g x') /\
f real_continuous at x
==> g real_continuous at x`,
MP_TAC REAL_CONTINUOUS_TRANSFORM_WITHIN THEN
REPLICATE_TAC 2 (MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
DISCH_THEN(MP_TAC o SPEC `(:real^N)`) THEN
REWRITE_TAC[IN_UNIV; WITHIN_UNIV]);;
let REAL_CONTINUOUS_TRANSFORM_ATREAL = prove
(`!f g x d.
&0 < d /\
(!x'. abs(x' - x) < d ==> f x' = g x') /\
f real_continuous (atreal x)
==> g real_continuous (atreal x)`,
MP_TAC REAL_CONTINUOUS_TRANSFORM_WITHINREAL THEN
REPLICATE_TAC 2 (MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
DISCH_THEN(MP_TAC o SPEC `(:real)`) THEN
REWRITE_TAC[IN_UNIV; WITHINREAL_UNIV]);;
(* ------------------------------------------------------------------------- *)
(* Arithmetic combining theorems. *)
(* ------------------------------------------------------------------------- *)
let REAL_CONTINUOUS_CONST = prove
(`!net c. (\x. c) real_continuous net`,
REWRITE_TAC[real_continuous; REALLIM_CONST]);;
let REAL_CONTINUOUS_LMUL = prove
(`!f c net. f real_continuous net ==> (\x. c * f(x)) real_continuous net`,
REWRITE_TAC[real_continuous; REALLIM_LMUL]);;
let REAL_CONTINUOUS_RMUL = prove
(`!f c net. f real_continuous net ==> (\x. f(x) * c) real_continuous net`,
REWRITE_TAC[real_continuous; REALLIM_RMUL]);;
let REAL_CONTINUOUS_NEG = prove
(`!f net. f real_continuous net ==> (\x. --(f x)) real_continuous net`,
REWRITE_TAC[real_continuous; REALLIM_NEG]);;
let REAL_CONTINUOUS_ADD = prove
(`!f g net. f real_continuous net /\ g real_continuous net
==> (\x. f(x) + g(x)) real_continuous net`,
REWRITE_TAC[real_continuous; REALLIM_ADD]);;
let REAL_CONTINUOUS_SUB = prove
(`!f g net. f real_continuous net /\ g real_continuous net
==> (\x. f(x) - g(x)) real_continuous net`,
REWRITE_TAC[real_continuous; REALLIM_SUB]);;
let REAL_CONTINUOUS_MUL = prove
(`!net f g.
f real_continuous net /\ g real_continuous net
==> (\x. f(x) * g(x)) real_continuous net`,
SIMP_TAC[real_continuous; REALLIM_MUL]);;
let REAL_CONTINUOUS_INV = prove
(`!net f.
f real_continuous net /\ ~(f(netlimit net) = &0)
==> (\x. inv(f x)) real_continuous net`,
SIMP_TAC[real_continuous; REALLIM_INV]);;
let REAL_CONTINUOUS_DIV = prove
(`!net f g.
f real_continuous net /\ g real_continuous net /\ ~(g(netlimit net) = &0)
==> (\x. f(x) / g(x)) real_continuous net`,
SIMP_TAC[real_continuous; REALLIM_DIV]);;
let REAL_CONTINUOUS_POW = prove
(`!net f n. f real_continuous net ==> (\x. f(x) pow n) real_continuous net`,
SIMP_TAC[real_continuous; REALLIM_POW]);;
let REAL_CONTINUOUS_ABS = prove
(`!net f. f real_continuous net ==> (\x. abs(f(x))) real_continuous net`,
REWRITE_TAC[real_continuous; REALLIM_ABS]);;
let REAL_CONTINUOUS_MAX = prove
(`!f g net. f real_continuous net /\ g real_continuous net
==> (\x. max (f x) (g x)) real_continuous net`,
REWRITE_TAC[real_continuous; REALLIM_MAX]);;
let REAL_CONTINUOUS_MIN = prove
(`!f g net. f real_continuous net /\ g real_continuous net
==> (\x. min (f x) (g x)) real_continuous net`,
REWRITE_TAC[real_continuous; REALLIM_MIN]);;
(* ------------------------------------------------------------------------- *)
(* Some of these without netlimit, but with many different cases. *)
(* ------------------------------------------------------------------------- *)
let REAL_CONTINUOUS_WITHIN_ID = prove
(`!x s. (\x. x) real_continuous (atreal x within s)`,
REWRITE_TAC[real_continuous_withinreal] THEN MESON_TAC[]);;
let REAL_CONTINUOUS_AT_ID = prove
(`!x. (\x. x) real_continuous (atreal x)`,
REWRITE_TAC[real_continuous_atreal] THEN MESON_TAC[]);;
let REAL_CONTINUOUS_INV_WITHIN = prove
(`!f s a. f real_continuous (at a within s) /\ ~(f a = &0)
==> (\x. inv(f x)) real_continuous (at a within s)`,
MESON_TAC[REAL_CONTINUOUS_INV; REAL_CONTINUOUS_TRIVIAL_LIMIT;
NETLIMIT_WITHIN]);;
let REAL_CONTINUOUS_INV_AT = prove
(`!f a. f real_continuous (at a) /\ ~(f a = &0)
==> (\x. inv(f x)) real_continuous (at a)`,
ONCE_REWRITE_TAC[GSYM WITHIN_UNIV] THEN
REWRITE_TAC[REAL_CONTINUOUS_INV_WITHIN]);;
let REAL_CONTINUOUS_INV_WITHINREAL = prove
(`!f s a. f real_continuous (atreal a within s) /\ ~(f a = &0)
==> (\x. inv(f x)) real_continuous (atreal a within s)`,
MESON_TAC[REAL_CONTINUOUS_INV; REAL_CONTINUOUS_TRIVIAL_LIMIT;
NETLIMIT_WITHINREAL]);;
let REAL_CONTINUOUS_INV_ATREAL = prove
(`!f a. f real_continuous (atreal a) /\ ~(f a = &0)
==> (\x. inv(f x)) real_continuous (atreal a)`,
ONCE_REWRITE_TAC[GSYM WITHINREAL_UNIV] THEN
REWRITE_TAC[REAL_CONTINUOUS_INV_WITHINREAL]);;
let REAL_CONTINUOUS_DIV_WITHIN = prove
(`!f s a. f real_continuous (at a within s) /\
g real_continuous (at a within s) /\ ~(g a = &0)
==> (\x. f x / g x) real_continuous (at a within s)`,
MESON_TAC[REAL_CONTINUOUS_DIV; REAL_CONTINUOUS_TRIVIAL_LIMIT;
NETLIMIT_WITHIN]);;
let REAL_CONTINUOUS_DIV_AT = prove
(`!f a. f real_continuous (at a) /\
g real_continuous (at a) /\ ~(g a = &0)
==> (\x. f x / g x) real_continuous (at a)`,
ONCE_REWRITE_TAC[GSYM WITHIN_UNIV] THEN
REWRITE_TAC[REAL_CONTINUOUS_DIV_WITHIN]);;
let REAL_CONTINUOUS_DIV_WITHINREAL = prove
(`!f s a. f real_continuous (atreal a within s) /\
g real_continuous (atreal a within s) /\ ~(g a = &0)
==> (\x. f x / g x) real_continuous (atreal a within s)`,
MESON_TAC[REAL_CONTINUOUS_DIV; REAL_CONTINUOUS_TRIVIAL_LIMIT;
NETLIMIT_WITHINREAL]);;
let REAL_CONTINUOUS_DIV_ATREAL = prove
(`!f a. f real_continuous (atreal a) /\
g real_continuous (atreal a) /\ ~(g a = &0)
==> (\x. f x / g x) real_continuous (atreal a)`,
ONCE_REWRITE_TAC[GSYM WITHINREAL_UNIV] THEN
REWRITE_TAC[REAL_CONTINUOUS_DIV_WITHINREAL]);;
(* ------------------------------------------------------------------------- *)
(* Composition of (real->real) o (real->real) functions. *)
(* ------------------------------------------------------------------------- *)
let REAL_CONTINUOUS_WITHINREAL_COMPOSE = prove
(`!f g x s. f real_continuous (atreal x within s) /\
g real_continuous (atreal (f x) within IMAGE f s)
==> (g o f) real_continuous (atreal x within s)`,
REPEAT GEN_TAC THEN
REWRITE_TAC[real_continuous_withinreal; o_THM; IN_IMAGE] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN
ASM_MESON_TAC[]);;
let REAL_CONTINUOUS_ATREAL_COMPOSE = prove
(`!f g x. f real_continuous (atreal x) /\ g real_continuous (atreal (f x))
==> (g o f) real_continuous (atreal x)`,
REPEAT GEN_TAC THEN
REWRITE_TAC[real_continuous_atreal; o_THM; IN_IMAGE] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN
ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Composition of (real->real) o (real^N->real) functions. *)
(* ------------------------------------------------------------------------- *)
let REAL_CONTINUOUS_WITHIN_COMPOSE = prove
(`!f g x s. f real_continuous (at x within s) /\
g real_continuous (atreal (f x) within IMAGE f s)
==> (g o f) real_continuous (at x within s)`,
REPEAT GEN_TAC THEN
REWRITE_TAC[real_continuous_withinreal; real_continuous_within;
o_THM; IN_IMAGE] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN
ASM_MESON_TAC[]);;
let REAL_CONTINUOUS_AT_COMPOSE = prove
(`!f g x. f real_continuous (at x) /\
g real_continuous (atreal (f x) within IMAGE f (:real^N))
==> (g o f) real_continuous (at x)`,
ONCE_REWRITE_TAC[GSYM WITHIN_UNIV] THEN
REWRITE_TAC[REAL_CONTINUOUS_WITHIN_COMPOSE]);;
(* ------------------------------------------------------------------------- *)
(* Composition of (real^N->real) o (real^M->real^N) functions. *)
(* ------------------------------------------------------------------------- *)
let REAL_CONTINUOUS_CONTINUOUS_WITHIN_COMPOSE = prove
(`!f g x s. f continuous (at x within s) /\
g real_continuous (at (f x) within IMAGE f s)
==> (g o f) real_continuous (at x within s)`,
REPEAT GEN_TAC THEN
REWRITE_TAC[real_continuous_within; continuous_within; o_THM; IN_IMAGE] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN
ASM_MESON_TAC[]);;
let REAL_CONTINUOUS_CONTINUOUS_AT_COMPOSE = prove
(`!f g x. f continuous (at x) /\
g real_continuous (at (f x) within IMAGE f (:real^N))
==> (g o f) real_continuous (at x)`,
REPEAT GEN_TAC THEN
ONCE_REWRITE_TAC[GSYM WITHIN_UNIV] THEN
REWRITE_TAC[WITHIN_WITHIN; INTER_UNIV] THEN
REWRITE_TAC[REAL_CONTINUOUS_CONTINUOUS_WITHIN_COMPOSE]);;
(* ------------------------------------------------------------------------- *)
(* Composition of (real^N->real) o (real->real^N) functions. *)
(* ------------------------------------------------------------------------- *)
let REAL_CONTINUOUS_CONTINUOUS_WITHINREAL_COMPOSE = prove
(`!f g x s. f continuous (atreal x within s) /\
g real_continuous (at (f x) within IMAGE f s)
==> (g o f) real_continuous (atreal x within s)`,
REPEAT GEN_TAC THEN
REWRITE_TAC[real_continuous_within; continuous_withinreal;
real_continuous_withinreal; o_THM; IN_IMAGE] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN
ASM_MESON_TAC[]);;
let REAL_CONTINUOUS_CONTINUOUS_ATREAL_COMPOSE = prove
(`!f g x. f continuous (atreal x) /\
g real_continuous (at (f x) within IMAGE f (:real))
==> (g o f) real_continuous (atreal x)`,
REPEAT GEN_TAC THEN
ONCE_REWRITE_TAC[GSYM WITHINREAL_UNIV] THEN
REWRITE_TAC[REAL_CONTINUOUS_CONTINUOUS_WITHINREAL_COMPOSE]);;
(* ------------------------------------------------------------------------- *)
(* Composition of (real->real^N) o (real->real) functions. *)
(* ------------------------------------------------------------------------- *)
let CONTINUOUS_REAL_CONTINUOUS_WITHINREAL_COMPOSE = prove
(`!f g x s. f real_continuous (atreal x within s) /\
g continuous (atreal (f x) within IMAGE f s)
==> (g o f) continuous (atreal x within s)`,
REPEAT GEN_TAC THEN
REWRITE_TAC[real_continuous_within; continuous_withinreal;
real_continuous_withinreal; o_THM; IN_IMAGE] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN
ASM_MESON_TAC[]);;
let CONTINUOUS_REAL_CONTINUOUS_ATREAL_COMPOSE = prove
(`!f g x. f real_continuous (atreal x) /\
g continuous (atreal (f x) within IMAGE f (:real))
==> (g o f) continuous (atreal x)`,
REPEAT GEN_TAC THEN
ONCE_REWRITE_TAC[GSYM WITHINREAL_UNIV] THEN
REWRITE_TAC[WITHIN_WITHIN; INTER_UNIV] THEN
REWRITE_TAC[CONTINUOUS_REAL_CONTINUOUS_WITHINREAL_COMPOSE]);;
(* ------------------------------------------------------------------------- *)
(* Composition of (real^M->real^N) o (real->real^M) functions. *)
(* ------------------------------------------------------------------------- *)
let CONTINUOUS_WITHINREAL_COMPOSE = prove
(`!f g x s. f continuous (atreal x within s) /\
g continuous (at (f x) within IMAGE f s)
==> (g o f) continuous (atreal x within s)`,
REPEAT GEN_TAC THEN
REWRITE_TAC[continuous_within; continuous_withinreal; o_THM; IN_IMAGE] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN
ASM_MESON_TAC[]);;
let CONTINUOUS_ATREAL_COMPOSE = prove
(`!f g x. f continuous (atreal x) /\
g continuous (at (f x) within IMAGE f (:real))
==> (g o f) continuous (atreal x)`,
REPEAT GEN_TAC THEN
ONCE_REWRITE_TAC[GSYM WITHINREAL_UNIV] THEN
REWRITE_TAC[WITHIN_WITHIN; INTER_UNIV] THEN
REWRITE_TAC[CONTINUOUS_WITHINREAL_COMPOSE]);;
(* ------------------------------------------------------------------------- *)
(* Composition of (real->real^N) o (real^M->real) functions. *)
(* ------------------------------------------------------------------------- *)
let CONTINUOUS_REAL_CONTINUOUS_WITHIN_COMPOSE = prove
(`!f g x s. f real_continuous (at x within s) /\
g continuous (atreal (f x) within IMAGE f s)
==> (g o f) continuous (at x within s)`,
REPEAT GEN_TAC THEN
REWRITE_TAC[continuous_within; real_continuous_within; continuous_withinreal;
o_THM; IN_IMAGE] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN
ASM_MESON_TAC[]);;
let CONTINUOUS_REAL_CONTINUOUS_AT_COMPOSE = prove
(`!f g x. f real_continuous (at x) /\
g continuous (atreal (f x) within IMAGE f (:real^M))
==> (g o f) continuous (at x)`,
REPEAT GEN_TAC THEN
ONCE_REWRITE_TAC[GSYM WITHIN_UNIV] THEN
REWRITE_TAC[WITHIN_WITHIN; INTER_UNIV] THEN
REWRITE_TAC[CONTINUOUS_REAL_CONTINUOUS_WITHIN_COMPOSE]);;
(* ------------------------------------------------------------------------- *)
(* Continuity of a real->real function on a set. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix ("real_continuous_on",(12,"right"));;
let real_continuous_on = new_definition
`f real_continuous_on s <=>
!x. x IN s ==> !e. &0 < e
==> ?d. &0 < d /\
!x'. x' IN s /\ abs(x' - x) < d
==> abs(f(x') - f(x)) < e`;;
let REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN = prove
(`!f s. f real_continuous_on s <=>
!x. x IN s ==> f real_continuous (atreal x within s)`,
REWRITE_TAC[real_continuous_on; real_continuous_withinreal]);;
let REAL_CONTINUOUS_ON_SUBSET = prove
(`!f s t. f real_continuous_on s /\ t SUBSET s ==> f real_continuous_on t`,
REWRITE_TAC[real_continuous_on; SUBSET] THEN MESON_TAC[]);;
let REAL_CONTINUOUS_ON_COMPOSE = prove
(`!f g s. f real_continuous_on s /\ g real_continuous_on (IMAGE f s)
==> (g o f) real_continuous_on s`,
REWRITE_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN] THEN
MESON_TAC[IN_IMAGE; REAL_CONTINUOUS_WITHINREAL_COMPOSE]);;
let REAL_CONTINUOUS_ON = prove
(`!f s. f real_continuous_on s <=>
(lift o f o drop) continuous_on (IMAGE lift s)`,
REWRITE_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN;
CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN;
REAL_CONTINUOUS_WITHINREAL; CONTINUOUS_WITHIN;
FORALL_IN_IMAGE; REALLIM_WITHINREAL_WITHIN; TENDSTO_REAL] THEN
REWRITE_TAC[o_THM; LIFT_DROP]);;
let REAL_CONTINUOUS_ON_CONST = prove
(`!s c. (\x. c) real_continuous_on s`,
SIMP_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN; REAL_CONTINUOUS_CONST]);;
let REAL_CONTINUOUS_ON_ID = prove
(`!s. (\x. x) real_continuous_on s`,
REWRITE_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN;
REAL_CONTINUOUS_WITHIN_ID]);;
let REAL_CONTINUOUS_ON_LMUL = prove
(`!f c s. f real_continuous_on s ==> (\x. c * f(x)) real_continuous_on s`,
SIMP_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN; REAL_CONTINUOUS_LMUL]);;
let REAL_CONTINUOUS_ON_RMUL = prove
(`!f c s. f real_continuous_on s ==> (\x. f(x) * c) real_continuous_on s`,
SIMP_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN; REAL_CONTINUOUS_RMUL]);;
let REAL_CONTINUOUS_ON_NEG = prove
(`!f s. f real_continuous_on s
==> (\x. --(f x)) real_continuous_on s`,
SIMP_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN; REAL_CONTINUOUS_NEG]);;
let REAL_CONTINUOUS_ON_ADD = prove
(`!f g s. f real_continuous_on s /\ g real_continuous_on s
==> (\x. f(x) + g(x)) real_continuous_on s`,
SIMP_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN; REAL_CONTINUOUS_ADD]);;
let REAL_CONTINUOUS_ON_SUB = prove
(`!f g s. f real_continuous_on s /\ g real_continuous_on s
==> (\x. f(x) - g(x)) real_continuous_on s`,
SIMP_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN; REAL_CONTINUOUS_SUB]);;
let REAL_CONTINUOUS_ON_MUL = prove
(`!f g s. f real_continuous_on s /\ g real_continuous_on s
==> (\x. f(x) * g(x)) real_continuous_on s`,
SIMP_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN; REAL_CONTINUOUS_MUL]);;
let REAL_CONTINUOUS_ON_POW = prove
(`!f n s. f real_continuous_on s
==> (\x. f(x) pow n) real_continuous_on s`,
SIMP_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN; REAL_CONTINUOUS_POW]);;
let REAL_CONTINUOUS_ON_INV = prove
(`!f s. f real_continuous_on s /\ (!x. x IN s ==> ~(f x = &0))
==> (\x. inv(f x)) real_continuous_on s`,
SIMP_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN;
REAL_CONTINUOUS_INV_WITHINREAL]);;
let REAL_CONTINUOUS_ON_DIV = prove
(`!f g s.
f real_continuous_on s /\
g real_continuous_on s /\
(!x. x IN s ==> ~(g x = &0))
==> (\x. f x / g x) real_continuous_on s`,
SIMP_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN;
REAL_CONTINUOUS_DIV_WITHINREAL]);;
let REAL_CONTINUOUS_ON_ABS = prove
(`!f s. f real_continuous_on s ==> (\x. abs(f x)) real_continuous_on s`,
REWRITE_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN] THEN
SIMP_TAC[REAL_CONTINUOUS_ABS]);;
let REAL_CONTINUOUS_ON_EQ = prove
(`!f g s. (!x. x IN s ==> f(x) = g(x)) /\ f real_continuous_on s
==> g real_continuous_on s`,
SIMP_TAC[real_continuous_on; IMP_CONJ]);;
let REAL_CONTINUOUS_ON_UNION = prove
(`!f s t.
real_closed s /\ real_closed t /\
f real_continuous_on s /\ f real_continuous_on t
==> f real_continuous_on (s UNION t)`,
REWRITE_TAC[REAL_CLOSED; REAL_CONTINUOUS_ON; IMAGE_UNION;
CONTINUOUS_ON_UNION]);;
let REAL_CONTINUOUS_ON_UNION_OPEN = prove
(`!f s t.
real_open s /\ real_open t /\
f real_continuous_on s /\ f real_continuous_on t
==> f real_continuous_on (s UNION t)`,
REWRITE_TAC[REAL_OPEN; REAL_CONTINUOUS_ON; IMAGE_UNION;
CONTINUOUS_ON_UNION_OPEN]);;
let REAL_CONTINUOUS_ON_CASES = prove
(`!P f g s t.
real_closed s /\ real_closed t /\
f real_continuous_on s /\ g real_continuous_on t /\
(!x. x IN s /\ ~P x \/ x IN t /\ P x ==> f x = g x)
==> (\x. if P x then f x else g x) real_continuous_on (s UNION t)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_CONTINUOUS_ON_UNION THEN
ASM_REWRITE_TAC[] THEN CONJ_TAC THEN MATCH_MP_TAC REAL_CONTINUOUS_ON_EQ THENL
[EXISTS_TAC `f:real->real`; EXISTS_TAC `g:real->real`] THEN
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]);;
let REAL_CONTINUOUS_ON_CASES_OPEN = prove
(`!P f g s t.
real_open s /\ real_open t /\
f real_continuous_on s /\ g real_continuous_on t /\
(!x. x IN s /\ ~P x \/ x IN t /\ P x ==> f x = g x)
==> (\x. if P x then f x else g x) real_continuous_on (s UNION t)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_CONTINUOUS_ON_UNION_OPEN THEN
ASM_REWRITE_TAC[] THEN CONJ_TAC THEN MATCH_MP_TAC REAL_CONTINUOUS_ON_EQ THENL
[EXISTS_TAC `f:real->real`; EXISTS_TAC `g:real->real`] THEN
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]);;
let REAL_CONTINUOUS_SUM = prove
(`!net f s.
FINITE s /\ (!a. a IN s ==> f a real_continuous net)
==> (\x. sum s (\a. f a x)) real_continuous net`,
GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[FORALL_IN_INSERT; NOT_IN_EMPTY; SUM_CLAUSES;
REAL_CONTINUOUS_CONST; REAL_CONTINUOUS_ADD; ETA_AX]);;
let REAL_CONTINUOUS_PRODUCT = prove
(`!net f s.
FINITE s /\ (!a. a IN s ==> f a real_continuous net)
==> (\x. product s (\a. f a x)) real_continuous net`,
GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[FORALL_IN_INSERT; NOT_IN_EMPTY; PRODUCT_CLAUSES;
REAL_CONTINUOUS_CONST; REAL_CONTINUOUS_MUL; ETA_AX]);;
let REAL_CONTINUOUS_ON_SUM = prove
(`!t f s.
FINITE s /\ (!a. a IN s ==> f a real_continuous_on t)
==> (\x. sum s (\a. f a x)) real_continuous_on t`,
REPEAT GEN_TAC THEN SIMP_TAC[REAL_CONTINUOUS_ON; o_DEF; LIFT_SUM] THEN
DISCH_THEN(MP_TAC o MATCH_MP CONTINUOUS_ON_VSUM) THEN
REWRITE_TAC[]);;
let REAL_CONTINUOUS_ON_PRODUCT = prove
(`!t f s.
FINITE s /\ (!a. a IN s ==> f a real_continuous_on t)
==> (\x. product s (\a. f a x)) real_continuous_on t`,
GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[FORALL_IN_INSERT; NOT_IN_EMPTY; PRODUCT_CLAUSES;
REAL_CONTINUOUS_ON_CONST; REAL_CONTINUOUS_ON_MUL; ETA_AX]);;
let REALLIM_CONTINUOUS_FUNCTION = prove
(`!f net g l.
f continuous (atreal l) /\ (g ---> l) net
==> ((\x. f(g x)) --> f l) net`,
REWRITE_TAC[tendsto_real; tendsto; continuous_atreal; eventually] THEN
MESON_TAC[]);;
let LIM_REAL_CONTINUOUS_FUNCTION = prove
(`!f net g l.
f real_continuous (at l) /\ (g --> l) net
==> ((\x. f(g x)) ---> f l) net`,
REWRITE_TAC[tendsto_real; tendsto; real_continuous_at; eventually] THEN
MESON_TAC[]);;
let REALLIM_REAL_CONTINUOUS_FUNCTION = prove
(`!f net g l.
f real_continuous (atreal l) /\ (g ---> l) net
==> ((\x. f(g x)) ---> f l) net`,
REWRITE_TAC[tendsto_real; real_continuous_atreal; eventually] THEN
MESON_TAC[]);;
let REAL_CONTINUOUS_ON_EQ_REAL_CONTINUOUS_AT = prove
(`!f s. real_open s
==> (f real_continuous_on s <=>
!x. x IN s ==> f real_continuous atreal x)`,
SIMP_TAC[REAL_CONTINUOUS_ATREAL; REAL_CONTINUOUS_WITHINREAL;
REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN; REALLIM_WITHIN_REAL_OPEN]);;
let REAL_CONTINUOUS_ATTAINS_SUP = prove
(`!f s. real_compact s /\ ~(s = {}) /\ f real_continuous_on s
==> ?x. x IN s /\ (!y. y IN s ==> f y <= f x)`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`(f:real->real) o drop`; `IMAGE lift s`]
CONTINUOUS_ATTAINS_SUP) THEN
ASM_REWRITE_TAC[GSYM REAL_CONTINUOUS_ON; GSYM real_compact] THEN
ASM_REWRITE_TAC[IMAGE_EQ_EMPTY; EXISTS_IN_IMAGE; FORALL_IN_IMAGE] THEN
REWRITE_TAC[o_THM; LIFT_DROP]);;
let REAL_CONTINUOUS_ATTAINS_INF = prove
(`!f s. real_compact s /\ ~(s = {}) /\ f real_continuous_on s
==> ?x. x IN s /\ (!y. y IN s ==> f x <= f y)`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`(f:real->real) o drop`; `IMAGE lift s`]
CONTINUOUS_ATTAINS_INF) THEN
ASM_REWRITE_TAC[GSYM REAL_CONTINUOUS_ON; GSYM real_compact] THEN
ASM_REWRITE_TAC[IMAGE_EQ_EMPTY; EXISTS_IN_IMAGE; FORALL_IN_IMAGE] THEN
REWRITE_TAC[o_THM; LIFT_DROP]);;
(* ------------------------------------------------------------------------- *)
(* Real version of uniform continuity. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix ("real_uniformly_continuous_on",(12,"right"));;
let real_uniformly_continuous_on = new_definition
`f real_uniformly_continuous_on s <=>
!e. &0 < e
==> ?d. &0 < d /\
!x x'. x IN s /\ x' IN s /\ abs(x' - x) < d
==> abs(f x' - f x) < e`;;
let REAL_UNIFORMLY_CONTINUOUS_ON = prove
(`!f s. f real_uniformly_continuous_on s <=>
(lift o f o drop) uniformly_continuous_on (IMAGE lift s)`,
REWRITE_TAC[real_uniformly_continuous_on; uniformly_continuous_on] THEN
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN
REWRITE_TAC[o_THM; DIST_LIFT; LIFT_DROP]);;
let REAL_UNIFORMLY_CONTINUOUS_IMP_REAL_CONTINUOUS = prove
(`!f s. f real_uniformly_continuous_on s ==> f real_continuous_on s`,
REWRITE_TAC[real_uniformly_continuous_on; real_continuous_on] THEN
MESON_TAC[]);;
let REAL_UNIFORMLY_CONTINUOUS_ON_SEQUENTIALLY = prove
(`!f s. f real_uniformly_continuous_on s <=>
!x y. (!n. x(n) IN s) /\ (!n. y(n) IN s) /\
((\n. x(n) - y(n)) ---> &0) sequentially
==> ((\n. f(x(n)) - f(y(n))) ---> &0) sequentially`,
REWRITE_TAC[REAL_UNIFORMLY_CONTINUOUS_ON] THEN
REWRITE_TAC[UNIFORMLY_CONTINUOUS_ON_SEQUENTIALLY; REAL_TENDSTO] THEN
REWRITE_TAC[o_DEF; LIFT_DROP; IN_IMAGE_LIFT_DROP; DROP_SUB; DROP_VEC] THEN
REWRITE_TAC[FORALL_LIFT_FUN; o_THM; LIFT_DROP]);;
let REAL_UNIFORMLY_CONTINUOUS_ON_SUBSET = prove
(`!f s t. f real_uniformly_continuous_on s /\ t SUBSET s
==> f real_uniformly_continuous_on t`,
REWRITE_TAC[real_uniformly_continuous_on; SUBSET] THEN MESON_TAC[]);;
let REAL_UNIFORMLY_CONTINUOUS_ON_COMPOSE = prove
(`!f g s. f real_uniformly_continuous_on s /\
g real_uniformly_continuous_on (IMAGE f s)
==> (g o f) real_uniformly_continuous_on s`,
REPEAT GEN_TAC THEN REWRITE_TAC[REAL_UNIFORMLY_CONTINUOUS_ON] THEN
SUBGOAL_THEN
`IMAGE lift (IMAGE f s) = IMAGE (lift o f o drop) (IMAGE lift s)`
SUBST1_TAC THENL
[ALL_TAC;
DISCH_THEN(MP_TAC o MATCH_MP UNIFORMLY_CONTINUOUS_ON_COMPOSE)] THEN
REWRITE_TAC[GSYM IMAGE_o; o_DEF; LIFT_DROP]);;
let REAL_UNIFORMLY_CONTINUOUS_ON_CONST = prove
(`!s c. (\x. c) real_uniformly_continuous_on s`,
REWRITE_TAC[REAL_UNIFORMLY_CONTINUOUS_ON_SEQUENTIALLY; o_DEF;
REAL_SUB_REFL; REALLIM_CONST]);;
let REAL_UNIFORMLY_CONTINUOUS_ON_LMUL = prove
(`!f c s. f real_uniformly_continuous_on s
==> (\x. c * f(x)) real_uniformly_continuous_on s`,
REWRITE_TAC[REAL_UNIFORMLY_CONTINUOUS_ON] THEN
REWRITE_TAC[o_DEF; LIFT_CMUL; UNIFORMLY_CONTINUOUS_ON_CMUL]);;
let REAL_UNIFORMLY_CONTINUOUS_ON_RMUL = prove
(`!f c s. f real_uniformly_continuous_on s
==> (\x. f(x) * c) real_uniformly_continuous_on s`,
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
REWRITE_TAC[REAL_UNIFORMLY_CONTINUOUS_ON_LMUL]);;
let REAL_UNIFORMLY_CONTINUOUS_ON_ID = prove
(`!s. (\x. x) real_uniformly_continuous_on s`,
REWRITE_TAC[real_uniformly_continuous_on] THEN MESON_TAC[]);;
let REAL_UNIFORMLY_CONTINUOUS_ON_NEG = prove
(`!f s. f real_uniformly_continuous_on s
==> (\x. --(f x)) real_uniformly_continuous_on s`,
ONCE_REWRITE_TAC[REAL_ARITH `--x = -- &1 * x`] THEN
REWRITE_TAC[REAL_UNIFORMLY_CONTINUOUS_ON_LMUL]);;
let REAL_UNIFORMLY_CONTINUOUS_ON_ADD = prove
(`!f g s. f real_uniformly_continuous_on s /\
g real_uniformly_continuous_on s
==> (\x. f(x) + g(x)) real_uniformly_continuous_on s`,
REWRITE_TAC[REAL_UNIFORMLY_CONTINUOUS_ON; o_DEF; LIFT_ADD] THEN
REWRITE_TAC[UNIFORMLY_CONTINUOUS_ON_ADD]);;
let REAL_UNIFORMLY_CONTINUOUS_ON_SUB = prove
(`!f g s. f real_uniformly_continuous_on s /\
g real_uniformly_continuous_on s
==> (\x. f(x) - g(x)) real_uniformly_continuous_on s`,
REWRITE_TAC[REAL_UNIFORMLY_CONTINUOUS_ON; o_DEF; LIFT_SUB] THEN
REWRITE_TAC[UNIFORMLY_CONTINUOUS_ON_SUB]);;
let REAL_UNIFORMLY_CONTINUOUS_ON_SUM = prove
(`!t f s.
FINITE s /\ (!a. a IN s ==> f a real_uniformly_continuous_on t)
==> (\x. sum s (\a. f a x)) real_uniformly_continuous_on t`,
REPEAT GEN_TAC THEN
SIMP_TAC[REAL_UNIFORMLY_CONTINUOUS_ON; o_DEF; LIFT_SUM] THEN
DISCH_THEN(MP_TAC o MATCH_MP UNIFORMLY_CONTINUOUS_ON_VSUM) THEN
REWRITE_TAC[]);;
let REAL_COMPACT_UNIFORMLY_CONTINUOUS = prove
(`!f s. f real_continuous_on s /\ real_compact s
==> f real_uniformly_continuous_on s`,
REWRITE_TAC[real_compact; REAL_CONTINUOUS_ON; REAL_UNIFORMLY_CONTINUOUS_ON;
COMPACT_UNIFORMLY_CONTINUOUS]);;
let REAL_COMPACT_CONTINUOUS_IMAGE = prove
(`!f s. f real_continuous_on s /\ real_compact s
==> real_compact (IMAGE f s)`,
REPEAT GEN_TAC THEN REWRITE_TAC[real_compact; REAL_CONTINUOUS_ON] THEN
DISCH_THEN(MP_TAC o MATCH_MP COMPACT_CONTINUOUS_IMAGE) THEN
REWRITE_TAC[GSYM IMAGE_o; o_DEF; LIFT_DROP]);;
let REAL_DINI = prove
(`!f g s.
real_compact s /\ (!n. (f n) real_continuous_on s) /\
g real_continuous_on s /\
(!x. x IN s ==> ((\n. (f n x)) ---> g x) sequentially) /\
(!n x. x IN s ==> f n x <= f (n + 1) x)
==> !e. &0 < e
==> eventually (\n. !x. x IN s ==> abs(f n x - g x) < e)
sequentially`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`\n:num. lift o f n o drop`; `lift o g o drop`;
`IMAGE lift s`] DINI) THEN
ASM_REWRITE_TAC[GSYM real_compact; GSYM REAL_CONTINUOUS_ON] THEN
ASM_REWRITE_TAC[FORALL_IN_IMAGE; o_DEF; LIFT_DROP; REAL_TENDSTO] THEN
ASM_SIMP_TAC[GSYM LIFT_SUB; NORM_LIFT]);;
(* ------------------------------------------------------------------------- *)
(* Continuity versus componentwise continuity. *)
(* ------------------------------------------------------------------------- *)
let CONTINUOUS_COMPONENTWISE = prove
(`!net f:A->real^N.
f continuous net <=>
!i. 1 <= i /\ i <= dimindex(:N)
==> (\x. (f x)$i) real_continuous net`,
REWRITE_TAC[real_continuous; continuous; LIM_COMPONENTWISE]);;
let REAL_CONTINUOUS_COMPLEX_COMPONENTS_AT = prove
(`!z. Re real_continuous (at z) /\ Im real_continuous (at z)`,
GEN_TAC THEN MP_TAC(ISPECL
[`at(z:complex)`; `\z:complex. z`] CONTINUOUS_COMPONENTWISE) THEN
REWRITE_TAC[CONTINUOUS_AT_ID; DIMINDEX_2; FORALL_2] THEN
REWRITE_TAC[GSYM RE_DEF; GSYM IM_DEF; ETA_AX]);;
let REAL_CONTINUOUS_COMPLEX_COMPONENTS_WITHIN = prove
(`!s z. Re real_continuous (at z within s) /\
Im real_continuous (at z within s)`,
MESON_TAC[REAL_CONTINUOUS_COMPLEX_COMPONENTS_AT;
REAL_CONTINUOUS_AT_WITHIN]);;
let REAL_CONTINUOUS_NORM_AT = prove
(`!z. norm real_continuous (at z)`,
REWRITE_TAC[real_continuous_at; dist] THEN
GEN_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN
EXISTS_TAC `e:real` THEN ASM_REWRITE_TAC[] THEN NORM_ARITH_TAC);;
let REAL_CONTINUOUS_NORM_WITHIN = prove
(`!s z. norm real_continuous (at z within s)`,
MESON_TAC[REAL_CONTINUOUS_NORM_AT; REAL_CONTINUOUS_AT_WITHIN]);;
let REAL_CONTINUOUS_DIST_AT = prove
(`!a z. (\x. dist(a,x)) real_continuous (at z)`,
REWRITE_TAC[real_continuous_at; dist] THEN
GEN_TAC THEN GEN_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN
EXISTS_TAC `e:real` THEN ASM_REWRITE_TAC[] THEN NORM_ARITH_TAC);;
let REAL_CONTINUOUS_DIST_WITHIN = prove
(`!a s z. (\x. dist(a,x)) real_continuous (at z within s)`,
MESON_TAC[REAL_CONTINUOUS_DIST_AT; REAL_CONTINUOUS_AT_WITHIN]);;
(* ------------------------------------------------------------------------- *)
(* Derivative of real->real function. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix ("has_real_derivative",(12,"right"));;
parse_as_infix ("real_differentiable",(12,"right"));;
parse_as_infix ("real_differentiable_on",(12,"right"));;
let has_real_derivative = new_definition
`(f has_real_derivative f') net <=>
((\x. inv(x - netlimit net) *
(f x - (f(netlimit net) + f' * (x - netlimit net))))
---> &0) net`;;
let real_differentiable = new_definition
`f real_differentiable net <=> ?f'. (f has_real_derivative f') net`;;
let real_derivative = new_definition
`real_derivative f x = @f'. (f has_real_derivative f') (atreal x)`;;
let higher_real_derivative = define
`higher_real_derivative 0 f = f /\
(!n. higher_real_derivative (SUC n) f =
real_derivative (higher_real_derivative n f))`;;
let real_differentiable_on = new_definition
`f real_differentiable_on s <=>
!x. x IN s ==> ?f'. (f has_real_derivative f') (atreal x within s)`;;
(* ------------------------------------------------------------------------- *)
(* Basic limit definitions in the useful cases. *)
(* ------------------------------------------------------------------------- *)
let HAS_REAL_DERIVATIVE_WITHINREAL = prove
(`(f has_real_derivative f') (atreal a within s) <=>
((\x. (f x - f a) / (x - a)) ---> f') (atreal a within s)`,
REWRITE_TAC[has_real_derivative] THEN
ASM_CASES_TAC `trivial_limit(atreal a within s)` THENL
[ASM_REWRITE_TAC[REALLIM]; ALL_TAC] THEN
ASM_SIMP_TAC[NETLIMIT_WITHINREAL] THEN
GEN_REWRITE_TAC RAND_CONV [REALLIM_NULL] THEN
REWRITE_TAC[REALLIM_WITHINREAL; REAL_SUB_RZERO] THEN
SIMP_TAC[REAL_FIELD
`&0 < abs(x - a) ==> (fy - fa) / (x - a) - f' =
inv(x - a) * (fy - (fa + f' * (x - a)))`]);;
let HAS_REAL_DERIVATIVE_ATREAL = prove
(`(f has_real_derivative f') (atreal a) <=>
((\x. (f x - f a) / (x - a)) ---> f') (atreal a)`,
ONCE_REWRITE_TAC[GSYM WITHINREAL_UNIV] THEN
REWRITE_TAC[HAS_REAL_DERIVATIVE_WITHINREAL]);;
(* ------------------------------------------------------------------------- *)
(* Relation to Frechet derivative. *)
(* ------------------------------------------------------------------------- *)
let HAS_REAL_FRECHET_DERIVATIVE_WITHIN = prove
(`(f has_real_derivative f') (atreal x within s) <=>
((lift o f o drop) has_derivative (\x. f' % x))
(at (lift x) within (IMAGE lift s))`,
REWRITE_TAC[has_derivative_within; HAS_REAL_DERIVATIVE_WITHINREAL] THEN
REWRITE_TAC[o_THM; LIFT_DROP; LIM_WITHIN; REALLIM_WITHINREAL] THEN
SIMP_TAC[LINEAR_COMPOSE_CMUL; LINEAR_ID; IMP_CONJ] THEN
REWRITE_TAC[FORALL_IN_IMAGE; DIST_LIFT; GSYM LIFT_SUB; LIFT_DROP;
NORM_ARITH `dist(x,vec 0) = norm x`; GSYM LIFT_CMUL; GSYM LIFT_ADD;
NORM_LIFT] THEN
SIMP_TAC[REAL_FIELD
`&0 < abs(y - x)
==> fy - (fx + f' * (y - x)) = (y - x) * ((fy - fx) / (y - x) - f')`] THEN
REWRITE_TAC[REAL_ABS_MUL; REAL_MUL_ASSOC; REAL_ABS_INV; REAL_ABS_ABS] THEN
SIMP_TAC[REAL_LT_IMP_NZ; REAL_MUL_LINV; REAL_MUL_LID]);;
let HAS_REAL_FRECHET_DERIVATIVE_AT = prove
(`(f has_real_derivative f') (atreal x) <=>
((lift o f o drop) has_derivative (\x. f' % x)) (at (lift x))`,
ONCE_REWRITE_TAC[GSYM WITHINREAL_UNIV; GSYM WITHIN_UNIV] THEN
REWRITE_TAC[HAS_REAL_FRECHET_DERIVATIVE_WITHIN] THEN
REWRITE_TAC[IMAGE_LIFT_UNIV]);;
let HAS_REAL_VECTOR_DERIVATIVE_WITHIN = prove
(`(f has_real_derivative f') (atreal x within s) <=>
((lift o f o drop) has_vector_derivative (lift f'))
(at (lift x) within (IMAGE lift s))`,
REWRITE_TAC[has_vector_derivative; HAS_REAL_FRECHET_DERIVATIVE_WITHIN] THEN
AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[FUN_EQ_THM; FORALL_LIFT; GSYM LIFT_CMUL] THEN
REWRITE_TAC[LIFT_DROP; LIFT_EQ; REAL_MUL_SYM]);;
let HAS_REAL_VECTOR_DERIVATIVE_AT = prove
(`(f has_real_derivative f') (atreal x) <=>
((lift o f o drop) has_vector_derivative (lift f')) (at (lift x))`,
REWRITE_TAC[has_vector_derivative; HAS_REAL_FRECHET_DERIVATIVE_AT] THEN
AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[FUN_EQ_THM; FORALL_LIFT; GSYM LIFT_CMUL] THEN
REWRITE_TAC[LIFT_DROP; LIFT_EQ; REAL_MUL_SYM]);;
let REAL_DIFFERENTIABLE_AT = prove
(`!f a. f real_differentiable (atreal x) <=>
(lift o f o drop) differentiable (at(lift x))`,
REWRITE_TAC[real_differentiable; HAS_REAL_FRECHET_DERIVATIVE_AT] THEN
REWRITE_TAC[differentiable; has_derivative; LINEAR_SCALING] THEN
REWRITE_TAC[LINEAR_1; LEFT_AND_EXISTS_THM] THEN
ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN REWRITE_TAC[UNWIND_THM2]);;
let REAL_DIFFERENTIABLE_WITHIN = prove
(`!f a s.
f real_differentiable (atreal x within s) <=>
(lift o f o drop) differentiable (at(lift x) within IMAGE lift s)`,
REWRITE_TAC[real_differentiable; HAS_REAL_FRECHET_DERIVATIVE_WITHIN] THEN
REWRITE_TAC[differentiable; has_derivative; LINEAR_SCALING] THEN
REWRITE_TAC[LINEAR_1; LEFT_AND_EXISTS_THM] THEN
ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN REWRITE_TAC[UNWIND_THM2]);;
(* ------------------------------------------------------------------------- *)
(* Relation to complex derivative. *)
(* ------------------------------------------------------------------------- *)
let HAS_REAL_COMPLEX_DERIVATIVE_WITHIN = prove
(`(f has_real_derivative f') (atreal a within s) <=>
((Cx o f o Re) has_complex_derivative (Cx f'))
(at (Cx a) within {z | real z /\ Re z IN s})`,
REWRITE_TAC[HAS_REAL_DERIVATIVE_WITHINREAL; HAS_COMPLEX_DERIVATIVE_WITHIN;
LIM_WITHIN; IN_ELIM_THM; IMP_CONJ; FORALL_REAL] THEN
REWRITE_TAC[RE_CX; dist; GSYM CX_SUB; COMPLEX_NORM_CX; o_THM; GSYM CX_DIV;
REALLIM_WITHINREAL] THEN
MESON_TAC[]);;
let HAS_REAL_COMPLEX_DERIVATIVE_AT = prove
(`(f has_real_derivative f') (atreal a) <=>
((Cx o f o Re) has_complex_derivative (Cx f')) (at (Cx a) within real)`,
ONCE_REWRITE_TAC[GSYM WITHINREAL_UNIV] THEN
REWRITE_TAC[HAS_REAL_COMPLEX_DERIVATIVE_WITHIN] THEN
AP_TERM_TAC THEN AP_TERM_TAC THEN SET_TAC[]);;
let REAL_DIFFERENTIABLE_ON_DIFFERENTIABLE = prove
(`!f s. f real_differentiable_on s <=>
!x. x IN s ==> f real_differentiable (atreal x within s)`,
REWRITE_TAC[real_differentiable_on; real_differentiable]);;
let REAL_DIFFERENTIABLE_ON_REAL_OPEN = prove
(`!f s. real_open s
==> (f real_differentiable_on s <=>
!x. x IN s ==> ?f'. (f has_real_derivative f') (atreal x))`,
REWRITE_TAC[real_differentiable_on; HAS_REAL_DERIVATIVE_WITHINREAL;
HAS_REAL_DERIVATIVE_ATREAL] THEN
SIMP_TAC[REALLIM_WITHIN_REAL_OPEN]);;
let REAL_DIFFERENTIABLE_ON_IMP_DIFFERENTIABLE_WITHIN = prove
(`!f s x. f real_differentiable_on s /\ x IN s
==> f real_differentiable (atreal x within s)`,
MESON_TAC[REAL_DIFFERENTIABLE_ON_DIFFERENTIABLE]);;
let REAL_DIFFERENTIABLE_ON_IMP_DIFFERENTIABLE_ATREAL = prove
(`!f s x. f real_differentiable_on s /\ real_open s /\ x IN s
==> f real_differentiable (atreal x)`,
MESON_TAC[REAL_DIFFERENTIABLE_ON_REAL_OPEN; real_differentiable]);;
let HAS_COMPLEX_REAL_DERIVATIVE_WITHIN_GEN = prove
(`!f g h s d.
&0 < d /\ x IN s /\
(h has_complex_derivative Cx(g))
(at (Cx x) within {z | real z /\ Re(z) IN s}) /\
(!y. y IN s /\ abs(y - x) < d ==> h(Cx y) = Cx(f y))
==> (f has_real_derivative g) (atreal x within s)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[HAS_REAL_COMPLEX_DERIVATIVE_WITHIN] THEN
MATCH_MP_TAC HAS_COMPLEX_DERIVATIVE_TRANSFORM_WITHIN THEN
MAP_EVERY EXISTS_TAC [`h:complex->complex`; `d:real`] THEN
ASM_REWRITE_TAC[IN_ELIM_THM; o_THM; REAL_CX; RE_CX; dist] THEN
X_GEN_TAC `w:complex` THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `Re w`) THEN
FIRST_X_ASSUM(SUBST_ALL_TAC o SYM o GEN_REWRITE_RULE I [REAL]) THEN
RULE_ASSUM_TAC(REWRITE_RULE[GSYM CX_SUB; COMPLEX_NORM_CX]) THEN
ASM_REWRITE_TAC[RE_CX]);;
let HAS_COMPLEX_REAL_DERIVATIVE_AT_GEN = prove
(`!f g h d.
&0 < d /\
(h has_complex_derivative Cx(g)) (at (Cx x) within real) /\
(!y. abs(y - x) < d ==> h(Cx y) = Cx(f y))
==> (f has_real_derivative g) (atreal x)`,
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM WITHINREAL_UNIV] THEN
MATCH_MP_TAC HAS_COMPLEX_REAL_DERIVATIVE_WITHIN_GEN THEN
MAP_EVERY EXISTS_TAC [`h:complex->complex`; `d:real`] THEN
ASM_REWRITE_TAC[IN_UNIV; ETA_AX; SET_RULE `{x | r x} = r`]);;
let HAS_COMPLEX_REAL_DERIVATIVE_WITHIN = prove
(`!f g h s.
x IN s /\
(h has_complex_derivative Cx(g))
(at (Cx x) within {z | real z /\ Re(z) IN s}) /\
(!y. y IN s ==> h(Cx y) = Cx(f y))
==> (f has_real_derivative g) (atreal x within s)`,
REPEAT STRIP_TAC THEN
MATCH_MP_TAC HAS_COMPLEX_REAL_DERIVATIVE_WITHIN_GEN THEN
MAP_EVERY EXISTS_TAC [`h:complex->complex`; `&1`] THEN
ASM_SIMP_TAC[REAL_LT_01]);;
let HAS_COMPLEX_REAL_DERIVATIVE_AT = prove
(`!f g h.
(h has_complex_derivative Cx(g)) (at (Cx x) within real) /\
(!y. h(Cx y) = Cx(f y))
==> (f has_real_derivative g) (atreal x)`,
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM WITHINREAL_UNIV] THEN
MATCH_MP_TAC HAS_COMPLEX_REAL_DERIVATIVE_WITHIN THEN
EXISTS_TAC `h:complex->complex` THEN
ASM_REWRITE_TAC[IN_UNIV; ETA_AX; SET_RULE `{x | r x} = r`]);;
let HAS_REAL_DERIVATIVE_FROM_COMPLEX_AT = prove
(`!f f' x.
(f has_complex_derivative f') (at (Cx x)) /\
(!z. real z ==> real(f z))
==> ((Re o f o Cx) has_real_derivative (Re f')) (atreal x)`,
REPEAT STRIP_TAC THEN
MATCH_MP_TAC HAS_COMPLEX_REAL_DERIVATIVE_AT THEN
EXISTS_TAC `f:complex->complex` THEN REWRITE_TAC[o_DEF] THEN
CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[REAL; REAL_CX; RE_CX]] THEN
FIRST_X_ASSUM(ASSUME_TAC o SPEC `real` o
MATCH_MP HAS_COMPLEX_DERIVATIVE_AT_WITHIN) THEN
SUBGOAL_THEN `real f'` (fun th -> ASM_MESON_TAC[REAL; th]) THEN
MATCH_MP_TAC(ISPEC `at (Cx x) within real` REAL_LIM) THEN
EXISTS_TAC `\y. ((f:complex->complex) y - f (Cx x)) / (y - Cx x)` THEN
ASM_REWRITE_TAC[GSYM HAS_COMPLEX_DERIVATIVE_WITHIN] THEN
REWRITE_TAC[TRIVIAL_LIMIT_WITHIN_REAL; REAL_CX] THEN
REWRITE_TAC[WITHIN; AT] THEN
REWRITE_TAC[SET_RULE `p /\ x IN real <=> real x /\ p`] THEN
SIMP_TAC[REAL_EXISTS; IMP_CONJ; LEFT_IMP_EXISTS_THM] THEN
ASM_SIMP_TAC[GSYM REAL_EXISTS; GSYM CX_SUB; GSYM CX_DIV; REAL_CX;
REAL_DIV; REAL_SUB] THEN
REPEAT(EXISTS_TAC `Cx(x + &1)`) THEN
REWRITE_TAC[REAL_LE_REFL; REAL_CX; DIST_CX] THEN REAL_ARITH_TAC);;
let REAL_DIFFERENTIABLE_FROM_COMPLEX_AT = prove
(`!f x. f complex_differentiable at (Cx x) /\
(!z. real z ==> real(f z))
==> (Re o f o Cx) real_differentiable (atreal x)`,
REWRITE_TAC[complex_differentiable; real_differentiable] THEN
MESON_TAC[HAS_REAL_DERIVATIVE_FROM_COMPLEX_AT]);;
(* ------------------------------------------------------------------------- *)
(* Caratheodory characterization. *)
(* ------------------------------------------------------------------------- *)
let HAS_REAL_DERIVATIVE_CARATHEODORY_ATREAL = prove
(`!f f' z.
(f has_real_derivative f') (atreal z) <=>
?g. (!w. f(w) - f(z) = g(w) * (w - z)) /\
g real_continuous atreal z /\ g(z) = f'`,
REPEAT GEN_TAC THEN
REWRITE_TAC[REAL_RING `w' - z':real = a <=> w' = z' + a`] THEN
SIMP_TAC[GSYM FUN_EQ_THM; HAS_REAL_DERIVATIVE_ATREAL;
REAL_CONTINUOUS_ATREAL] THEN
EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THENL
[EXISTS_TAC `\w. if w = z then f':real else (f(w) - f(z)) / (w - z)` THEN
ASM_SIMP_TAC[FUN_EQ_THM; COND_RAND; COND_RATOR; REAL_SUB_REFL] THEN
CONV_TAC REAL_FIELD;
FIRST_X_ASSUM SUBST_ALL_TAC THEN FIRST_X_ASSUM SUBST1_TAC THEN
ASM_SIMP_TAC[REAL_RING `(z + a) - (z + b * (w - w)):real = a`] THEN
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT]
REALLIM_TRANSFORM)) THEN
SIMP_TAC[REALLIM_CONST; REAL_FIELD
`~(w = z) ==> x - (x * (w - z)) / (w - z) = &0`]]);;
let HAS_REAL_DERIVATIVE_CARATHEODORY_WITHINREAL = prove
(`!f f' z s.
(f has_real_derivative f') (atreal z within s) <=>
?g. (!w. f(w) - f(z) = g(w) * (w - z)) /\
g real_continuous (atreal z within s) /\ g(z) = f'`,
REPEAT GEN_TAC THEN
REWRITE_TAC[REAL_RING `w' - z':real = a <=> w' = z' + a`] THEN
SIMP_TAC[GSYM FUN_EQ_THM; HAS_REAL_DERIVATIVE_WITHINREAL;
REAL_CONTINUOUS_WITHINREAL] THEN
EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THENL
[EXISTS_TAC `\w. if w = z then f':real else (f(w) - f(z)) / (w - z)` THEN
ASM_SIMP_TAC[FUN_EQ_THM; COND_RAND; COND_RATOR; REAL_SUB_REFL] THEN
CONV_TAC REAL_FIELD;
FIRST_X_ASSUM SUBST_ALL_TAC THEN FIRST_X_ASSUM SUBST1_TAC THEN
ASM_SIMP_TAC[REAL_RING `(z + a) - (z + b * (w - w)):real = a`] THEN
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT]
REALLIM_TRANSFORM)) THEN
SIMP_TAC[REALLIM_CONST; REAL_FIELD
`~(w = z) ==> x - (x * (w - z)) / (w - z) = &0`]]);;
let REAL_DIFFERENTIABLE_CARATHEODORY_ATREAL = prove
(`!f z. f real_differentiable atreal z <=>
?g. (!w. f(w) - f(z) = g(w) * (w - z)) /\ g real_continuous atreal z`,
SIMP_TAC[real_differentiable; HAS_REAL_DERIVATIVE_CARATHEODORY_ATREAL] THEN
MESON_TAC[]);;
let REAL_DIFFERENTIABLE_CARATHEODORY_WITHINREAL = prove
(`!f z s.
f real_differentiable (atreal z within s) <=>
?g. (!w. f(w) - f(z) = g(w) * (w - z)) /\
g real_continuous (atreal z within s)`,
SIMP_TAC[real_differentiable;
HAS_REAL_DERIVATIVE_CARATHEODORY_WITHINREAL] THEN
MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Property of being an interval (equivalent to convex or connected). *)
(* ------------------------------------------------------------------------- *)
let is_realinterval = new_definition
`is_realinterval s <=>
!a b c. a IN s /\ b IN s /\ a <= c /\ c <= b ==> c IN s`;;
let IS_REALINTERVAL_IS_INTERVAL = prove
(`!s. is_realinterval s <=> is_interval(IMAGE lift s)`,
REWRITE_TAC[IS_INTERVAL_1; is_realinterval] THEN
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN
REWRITE_TAC[LIFT_DROP; IN_IMAGE; EXISTS_DROP; UNWIND_THM1] THEN
REWRITE_TAC[GSYM FORALL_DROP]);;
let IS_REALINTERVAL_CONVEX = prove
(`!s. is_realinterval s <=> convex(IMAGE lift s)`,
REWRITE_TAC[IS_REALINTERVAL_IS_INTERVAL; IS_INTERVAL_CONVEX_1]);;
let IS_REALINTERVAL_CONNECTED = prove
(`!s. is_realinterval s <=> connected(IMAGE lift s)`,
REWRITE_TAC[IS_REALINTERVAL_IS_INTERVAL; IS_INTERVAL_CONNECTED_1]);;
let TRIVIAL_LIMIT_WITHIN_REALINTERVAL = prove
(`!s x. is_realinterval s /\ x IN s
==> (trivial_limit(atreal x within s) <=> s = {x})`,
REWRITE_TAC[TRIVIAL_LIMIT_WITHINREAL_WITHIN; IS_REALINTERVAL_CONVEX] THEN
REWRITE_TAC[FORALL_DROP; GSYM IN_IMAGE_LIFT_DROP; LIFT_DROP] THEN
SIMP_TAC[TRIVIAL_LIMIT_WITHIN_CONVEX] THEN REPEAT STRIP_TAC THEN
REWRITE_TAC[EXTENSION; IN_IMAGE_LIFT_DROP; IN_SING] THEN
MESON_TAC[LIFT_DROP]);;
let IS_REALINTERVAL_EMPTY = prove
(`is_realinterval {}`,
REWRITE_TAC[is_realinterval; NOT_IN_EMPTY]);;
let IS_REALINTERVAL_UNION = prove
(`!s t. is_realinterval s /\ is_realinterval t /\ ~(s INTER t = {})
==> is_realinterval(s UNION t)`,
REWRITE_TAC[is_realinterval; IN_UNION; IN_INTER;
NOT_IN_EMPTY; EXTENSION] THEN
MESON_TAC[REAL_LE_TRANS; REAL_LE_TOTAL]);;
let IS_REALINTERVAL_UNIV = prove
(`is_realinterval (:real)`,
REWRITE_TAC[is_realinterval; IN_UNIV]);;
let IS_REAL_INTERVAL_CASES = prove
(`!s. is_realinterval s <=>
s = {} \/
s = (:real) \/
(?a. s = {x | a < x}) \/
(?a. s = {x | a <= x}) \/
(?b. s = {x | x <= b}) \/
(?b. s = {x | x < b}) \/
(?a b. s = {x | a < x /\ x < b}) \/
(?a b. s = {x | a < x /\ x <= b}) \/
(?a b. s = {x | a <= x /\ x < b}) \/
(?a b. s = {x | a <= x /\ x <= b})`,
REWRITE_TAC[IS_REALINTERVAL_IS_INTERVAL; IS_INTERVAL_1_CASES] THEN
REWRITE_TAC[EXTENSION; IN_IMAGE_LIFT_DROP; IN_ELIM_THM] THEN
REWRITE_TAC[GSYM FORALL_DROP; IN_UNIV; NOT_IN_EMPTY]);;
let IS_REALINTERVAL_CLAUSES = prove
(`is_realinterval {} /\
is_realinterval (:real) /\
(!a. is_realinterval {x | a < x}) /\
(!a. is_realinterval {x | a <= x}) /\
(!b. is_realinterval {x | x < b}) /\
(!b. is_realinterval {x | x <= b}) /\
(!a b. is_realinterval {x | a < x /\ x < b}) /\
(!a b. is_realinterval {x | a < x /\ x <= b}) /\
(!a b. is_realinterval {x | a <= x /\ x < b}) /\
(!a b. is_realinterval {x | a <= x /\ x <= b})`,
REWRITE_TAC[is_realinterval; IN_ELIM_THM; IN_UNIV; NOT_IN_EMPTY] THEN
REAL_ARITH_TAC);;
let REAL_CONVEX = prove
(`!s. is_realinterval s <=>
!x y u v. x IN s /\ y IN s /\ &0 <= u /\ &0 <= v /\ u + v = &1
==> (u * x + v * y) IN s`,
REWRITE_TAC[IS_REALINTERVAL_CONVEX; convex] THEN
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN
REWRITE_TAC[IN_IMAGE_LIFT_DROP; DROP_ADD; DROP_CMUL; LIFT_DROP]);;
let REAL_CONVEX_ALT = prove
(`!s. is_realinterval s <=>
!x y u. x IN s /\ y IN s /\ &0 <= u /\ u <= &1
==> ((&1 - u) * x + u * y) IN s`,
REWRITE_TAC[IS_REALINTERVAL_CONVEX; CONVEX_ALT] THEN
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN
REWRITE_TAC[IN_IMAGE_LIFT_DROP; DROP_ADD; DROP_CMUL; LIFT_DROP]);;
let REAL_MIDPOINT_IN_CONVEX = prove
(`!s x y. is_realinterval s /\ x IN s /\ y IN s ==> ((x + y) / &2) IN s`,
REPEAT STRIP_TAC THEN
REWRITE_TAC[REAL_ARITH `(x + y) / &2 = inv(&2) * x + inv(&2) * y`] THEN
FIRST_X_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [REAL_CONVEX]) THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN ASM_REWRITE_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Some relations with the complex numbers can also be useful. *)
(* ------------------------------------------------------------------------- *)
let IS_REALINTERVAL_CONVEX_COMPLEX = prove
(`!s. is_realinterval s <=> convex {z | real z /\ Re z IN s}`,
GEN_TAC THEN
REWRITE_TAC[GSYM IMAGE_CX; IS_REALINTERVAL_CONVEX] THEN EQ_TAC THENL
[DISCH_THEN(MP_TAC o ISPEC `Cx o drop` o MATCH_MP
(REWRITE_RULE[IMP_CONJ] CONVEX_LINEAR_IMAGE)) THEN
REWRITE_TAC[GSYM IMAGE_o; GSYM o_ASSOC] THEN
ONCE_REWRITE_TAC[IMAGE_o] THEN REWRITE_TAC[IMAGE_LIFT_DROP] THEN
DISCH_THEN MATCH_MP_TAC THEN
REWRITE_TAC[linear; o_THM; CX_ADD; CX_MUL; DROP_ADD; DROP_CMUL;
COMPLEX_CMUL];
DISCH_THEN(MP_TAC o ISPEC `lift o Re` o MATCH_MP
(REWRITE_RULE[IMP_CONJ] CONVEX_LINEAR_IMAGE)) THEN
REWRITE_TAC[GSYM IMAGE_o; GSYM o_ASSOC] THEN
ONCE_REWRITE_TAC[IMAGE_o] THEN
REWRITE_TAC[o_DEF; RE_CX; SET_RULE `IMAGE (\x. x) s = s`] THEN
DISCH_THEN MATCH_MP_TAC THEN
REWRITE_TAC[linear; o_THM; RE_CMUL;
RE_ADD; RE_MUL_CX; LIFT_ADD; LIFT_CMUL]]);;
(* ------------------------------------------------------------------------- *)
(* The same tricks to define closed and open intervals. *)
(* ------------------------------------------------------------------------- *)
let open_real_interval = new_definition
`open_real_interval(a:real,b:real) = {x:real | a < x /\ x < b}`;;
let closed_real_interval = define
`closed_real_interval[a:real,b:real] = {x:real | a <= x /\ x <= b}`;;
make_overloadable "real_interval" `:A`;;
overload_interface("real_interval",`open_real_interval`);;
overload_interface("real_interval",`closed_real_interval`);;
let real_interval = prove
(`real_interval(a,b) = {x | a < x /\ x < b} /\
real_interval[a,b] = {x | a <= x /\ x <= b}`,
REWRITE_TAC[open_real_interval; closed_real_interval]);;
let IN_REAL_INTERVAL = prove
(`!a b x. (x IN real_interval[a,b] <=> a <= x /\ x <= b) /\
(x IN real_interval(a,b) <=> a < x /\ x < b)`,
REWRITE_TAC[real_interval; IN_ELIM_THM]);;
let REAL_INTERVAL_INTERVAL = prove
(`real_interval[a,b] = IMAGE drop (interval[lift a,lift b]) /\
real_interval(a,b) = IMAGE drop (interval(lift a,lift b))`,
REWRITE_TAC[EXTENSION; IN_IMAGE; IN_INTERVAL_1; IN_REAL_INTERVAL] THEN
REWRITE_TAC[EXISTS_LIFT; LIFT_DROP; UNWIND_THM1]);;
let INTERVAL_REAL_INTERVAL = prove
(`interval[a,b] = IMAGE lift (real_interval[drop a,drop b]) /\
interval(a,b) = IMAGE lift (real_interval(drop a,drop b))`,
REWRITE_TAC[EXTENSION; IN_IMAGE; IN_INTERVAL_1; IN_REAL_INTERVAL] THEN
REWRITE_TAC[EXISTS_DROP; LIFT_DROP; UNWIND_THM1]);;
let DROP_IN_REAL_INTERVAL = prove
(`(!a b x. drop x IN real_interval[a,b] <=> x IN interval[lift a,lift b]) /\
(!a b x. drop x IN real_interval(a,b) <=> x IN interval(lift a,lift b))`,
REWRITE_TAC[REAL_INTERVAL_INTERVAL; IN_IMAGE] THEN MESON_TAC[LIFT_DROP]);;
let LIFT_IN_INTERVAL = prove
(`(!a b x. lift x IN interval[a,b] <=> x IN real_interval[drop a,drop b]) /\
(!a b x. lift x IN interval(a,b) <=> x IN real_interval(drop a,drop b))`,
REWRITE_TAC[FORALL_DROP; DROP_IN_REAL_INTERVAL; LIFT_DROP]);;
let EMPTY_AS_REAL_INTERVAL = prove
(`{} = real_interval[&1,&0]`,
REWRITE_TAC[REAL_INTERVAL_INTERVAL; LIFT_NUM; GSYM EMPTY_AS_INTERVAL] THEN
REWRITE_TAC[IMAGE_CLAUSES]);;
let IMAGE_LIFT_REAL_INTERVAL = prove
(`IMAGE lift (real_interval[a,b]) = interval[lift a,lift b] /\
IMAGE lift (real_interval(a,b)) = interval(lift a,lift b)`,
REWRITE_TAC[REAL_INTERVAL_INTERVAL; GSYM IMAGE_o; o_DEF; LIFT_DROP] THEN
SET_TAC[]);;
let IMAGE_DROP_INTERVAL = prove
(`IMAGE drop (interval[a,b]) = real_interval[drop a,drop b] /\
IMAGE drop (interval(a,b)) = real_interval(drop a,drop b)`,
REWRITE_TAC[INTERVAL_REAL_INTERVAL; GSYM IMAGE_o; o_DEF; LIFT_DROP] THEN
SET_TAC[]);;
let SUBSET_REAL_INTERVAL = prove
(`!a b c d.
(real_interval[a,b] SUBSET real_interval[c,d] <=>
b < a \/ c <= a /\ a <= b /\ b <= d) /\
(real_interval[a,b] SUBSET real_interval(c,d) <=>
b < a \/ c < a /\ a <= b /\ b < d) /\
(real_interval(a,b) SUBSET real_interval[c,d] <=>
b <= a \/ c <= a /\ a < b /\ b <= d) /\
(real_interval(a,b) SUBSET real_interval(c,d) <=>
b <= a \/ c <= a /\ a < b /\ b <= d)`,
let lemma = prove
(`IMAGE drop s SUBSET IMAGE drop t <=> s SUBSET t`,
SET_TAC[LIFT_DROP]) in
REWRITE_TAC[REAL_INTERVAL_INTERVAL; lemma; SUBSET_INTERVAL_1] THEN
REWRITE_TAC[LIFT_DROP]);;
let REAL_INTERVAL_OPEN_SUBSET_CLOSED = prove
(`!a b. real_interval(a,b) SUBSET real_interval[a,b]`,
REWRITE_TAC[SUBSET; IN_REAL_INTERVAL] THEN REAL_ARITH_TAC);;
let REAL_INTERVAL_EQ_EMPTY = prove
(`(!a b. real_interval[a,b] = {} <=> b < a) /\
(!a b. real_interval(a,b) = {} <=> b <= a)`,
REWRITE_TAC[REAL_INTERVAL_INTERVAL; IMAGE_EQ_EMPTY] THEN
REWRITE_TAC[INTERVAL_EQ_EMPTY_1; LIFT_DROP]);;
let REAL_INTERVAL_NE_EMPTY = prove
(`(!a b. ~(real_interval[a,b] = {}) <=> a <= b) /\
(!a b. ~(real_interval(a,b) = {}) <=> a < b)`,
REWRITE_TAC[REAL_INTERVAL_EQ_EMPTY; REAL_NOT_LE; REAL_NOT_LT]);;
let REAL_OPEN_CLOSED_INTERVAL = prove
(`!a b. real_interval(a,b) = real_interval[a,b] DIFF {a,b}`,
SIMP_TAC[EXTENSION; IN_DIFF; IN_REAL_INTERVAL; IN_INSERT; NOT_IN_EMPTY] THEN
REAL_ARITH_TAC);;
let REAL_CLOSED_OPEN_INTERVAL = prove
(`!a b. a <= b ==> real_interval[a,b] = real_interval(a,b) UNION {a,b}`,
SIMP_TAC[EXTENSION; IN_UNION; IN_REAL_INTERVAL; IN_INSERT; NOT_IN_EMPTY] THEN
REAL_ARITH_TAC);;
let REAL_CLOSED_REAL_INTERVAL = prove
(`!a b. real_closed(real_interval[a,b])`,
REWRITE_TAC[REAL_CLOSED; IMAGE_LIFT_REAL_INTERVAL; CLOSED_INTERVAL]);;
let REAL_OPEN_REAL_INTERVAL = prove
(`!a b. real_open(real_interval(a,b))`,
REWRITE_TAC[REAL_OPEN; IMAGE_LIFT_REAL_INTERVAL; OPEN_INTERVAL]);;
let REAL_INTERVAL_SING = prove
(`!a. real_interval[a,a] = {a} /\ real_interval(a,a) = {}`,
REWRITE_TAC[EXTENSION; IN_SING; NOT_IN_EMPTY; IN_REAL_INTERVAL] THEN
REAL_ARITH_TAC);;
let REAL_COMPACT_INTERVAL = prove
(`!a b. real_compact(real_interval[a,b])`,
REWRITE_TAC[REAL_INTERVAL_INTERVAL; real_compact] THEN
REWRITE_TAC[GSYM IMAGE_o; o_DEF; LIFT_DROP; IMAGE_ID; COMPACT_INTERVAL]);;
let IS_REALINTERVAL_INTERVAL = prove
(`!a b. is_realinterval(real_interval(a,b)) /\
is_realinterval(real_interval[a,b])`,
REWRITE_TAC[is_realinterval; IN_REAL_INTERVAL] THEN REAL_ARITH_TAC);;
let REAL_BOUNDED_REAL_INTERVAL = prove
(`(!a b. real_bounded(real_interval[a,b])) /\
(!a b. real_bounded(real_interval(a,b)))`,
REWRITE_TAC[IMAGE_LIFT_REAL_INTERVAL; REAL_BOUNDED; BOUNDED_INTERVAL]);;
let ENDS_IN_REAL_INTERVAL = prove
(`(!a b. a IN real_interval[a,b] <=> ~(real_interval[a,b] = {})) /\
(!a b. b IN real_interval[a,b] <=> ~(real_interval[a,b] = {})) /\
(!a b. ~(a IN real_interval(a,b))) /\
(!a b. ~(b IN real_interval(a,b)))`,
REWRITE_TAC[IN_REAL_INTERVAL; REAL_INTERVAL_EQ_EMPTY] THEN REAL_ARITH_TAC);;
let IMAGE_AFFINITY_REAL_INTERVAL = prove
(`!a b m c.
IMAGE (\x. m * x + c) (real_interval[a,b]) =
(if real_interval[a,b] = {}
then {}
else if &0 <= m
then real_interval[m * a + c,m * b + c]
else real_interval[m * b + c,m * a + c])`,
REWRITE_TAC[REAL_INTERVAL_INTERVAL; GSYM IMAGE_o; o_DEF; IMAGE_EQ_EMPTY] THEN
REWRITE_TAC[FORALL_DROP; LIFT_DROP; GSYM DROP_CMUL; GSYM DROP_ADD] THEN
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM o_DEF] THEN
REWRITE_TAC[IMAGE_o; IMAGE_AFFINITY_INTERVAL] THEN
MESON_TAC[IMAGE_CLAUSES]);;
let IMAGE_STRETCH_REAL_INTERVAL = prove
(`!a b m.
IMAGE (\x. m * x) (real_interval[a,b]) =
(if real_interval[a,b] = {}
then {}
else if &0 <= m
then real_interval[m * a,m * b]
else real_interval[m * b,m * a])`,
ONCE_REWRITE_TAC[REAL_ARITH `m * x = m * x + &0`] THEN
REWRITE_TAC[IMAGE_AFFINITY_REAL_INTERVAL]);;
let REAL_INTERVAL_TRANSLATION = prove
(`(!c a b. real_interval[c + a,c + b] =
IMAGE (\x. c + x) (real_interval[a,b])) /\
(!c a b. real_interval(c + a,c + b) =
IMAGE (\x. c + x) (real_interval(a,b)))`,
REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN
MATCH_MP_TAC SURJECTIVE_IMAGE_EQ THEN
REWRITE_TAC[REAL_ARITH `c + x:real = y <=> x = y - c`; EXISTS_REFL] THEN
REWRITE_TAC[IN_REAL_INTERVAL] THEN REAL_ARITH_TAC);;
let IN_REAL_INTERVAL_REFLECT = prove
(`(!a b x. --x IN real_interval[--b,--a] <=> x IN real_interval[a,b]) /\
(!a b x. --x IN real_interval(--b,--a) <=> x IN real_interval(a,b))`,
REWRITE_TAC[IN_REAL_INTERVAL] THEN REAL_ARITH_TAC);;
let REFLECT_REAL_INTERVAL = prove
(`(!a b. IMAGE (--) (real_interval[a,b]) = real_interval[--b,--a]) /\
(!a b. IMAGE (--) (real_interval(a,b)) = real_interval(--b,--a))`,
REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_IMAGE; IN_REAL_INTERVAL] THEN
ONCE_REWRITE_TAC[REAL_ARITH `x:real = --y <=> --x = y`] THEN
REWRITE_TAC[UNWIND_THM1] THEN REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Real continuity and differentiability. *)
(* ------------------------------------------------------------------------- *)
let REAL_CONTINUOUS_CONTINUOUS = prove
(`f real_continuous net <=> (Cx o f) continuous net`,
REWRITE_TAC[real_continuous; continuous; REALLIM_COMPLEX; o_THM]);;
let REAL_CONTINUOUS_CONTINUOUS1 = prove
(`f real_continuous net <=> (lift o f) continuous net`,
REWRITE_TAC[real_continuous; continuous; TENDSTO_REAL; o_THM]);;
let REAL_CONTINUOUS_CONTINUOUS_ATREAL = prove
(`f real_continuous (atreal x) <=> (lift o f o drop) continuous (at(lift x))`,
REWRITE_TAC[REAL_CONTINUOUS_ATREAL; REALLIM_ATREAL_AT; CONTINUOUS_AT;
TENDSTO_REAL; o_THM; LIFT_DROP]);;
let REAL_CONTINUOUS_CONTINUOUS_WITHINREAL = prove
(`f real_continuous (atreal x within s) <=>
(lift o f o drop) continuous (at(lift x) within IMAGE lift s)`,
REWRITE_TAC[REAL_CONTINUOUS_WITHINREAL; REALLIM_WITHINREAL_WITHIN] THEN
REWRITE_TAC[TENDSTO_REAL; CONTINUOUS_WITHIN; o_THM; LIFT_DROP]);;
let REAL_COMPLEX_CONTINUOUS_WITHINREAL = prove
(`f real_continuous (atreal x within s) <=>
(Cx o f o Re) continuous (at (Cx x) within (real INTER IMAGE Cx s))`,
REWRITE_TAC[real_continuous; continuous; REALLIM_COMPLEX;
LIM_WITHINREAL_WITHINCOMPLEX; NETLIMIT_WITHINREAL; GSYM o_ASSOC] THEN
ASM_CASES_TAC `trivial_limit(at(Cx x) within (real INTER IMAGE Cx s))` THENL
[ASM_REWRITE_TAC[LIM];
ASM_SIMP_TAC[TRIVIAL_LIMIT_WITHINREAL_WITHINCOMPLEX;
NETLIMIT_WITHIN; NETLIMIT_WITHINREAL; RE_CX; o_THM]]);;
let REAL_COMPLEX_CONTINUOUS_ATREAL = prove
(`f real_continuous (atreal x) <=>
(Cx o f o Re) continuous (at (Cx x) within real)`,
REWRITE_TAC[real_continuous; continuous; REALLIM_COMPLEX;
LIM_ATREAL_ATCOMPLEX; NETLIMIT_ATREAL; GSYM o_ASSOC] THEN
ASM_CASES_TAC `trivial_limit(at(Cx x) within real)` THENL
[ASM_REWRITE_TAC[LIM];
ASM_SIMP_TAC[NETLIMIT_WITHIN; RE_CX; o_THM]]);;
let CONTINUOUS_CONTINUOUS_WITHINREAL = prove
(`!f x s. f continuous (atreal x within s) <=>
(f o drop) continuous (at (lift x) within IMAGE lift s)`,
REWRITE_TAC[REALLIM_WITHINREAL_WITHIN; CONTINUOUS_WITHIN;
CONTINUOUS_WITHINREAL; o_DEF; LIFT_DROP; LIM_WITHINREAL_WITHIN]);;
let CONTINUOUS_CONTINUOUS_ATREAL = prove
(`!f x. f continuous (atreal x) <=> (f o drop) continuous (at (lift x))`,
REWRITE_TAC[REALLIM_ATREAL_AT; CONTINUOUS_AT;
CONTINUOUS_ATREAL; o_DEF; LIFT_DROP; LIM_ATREAL_AT]);;
let REAL_CONTINUOUS_REAL_CONTINUOUS_WITHINREAL = prove
(`!f x s. f real_continuous (atreal x within s) <=>
(f o drop) real_continuous (at (lift x) within IMAGE lift s)`,
REWRITE_TAC[REALLIM_WITHINREAL_WITHIN; REAL_CONTINUOUS_WITHIN;
REAL_CONTINUOUS_WITHINREAL; o_DEF; LIFT_DROP;
LIM_WITHINREAL_WITHIN]);;
let REAL_CONTINUOUS_REAL_CONTINUOUS_ATREAL = prove
(`!f x. f real_continuous (atreal x) <=>
(f o drop) real_continuous (at (lift x))`,
REWRITE_TAC[REALLIM_ATREAL_AT; REAL_CONTINUOUS_AT;
REAL_CONTINUOUS_ATREAL; o_DEF; LIFT_DROP; LIM_ATREAL_AT]);;
let HAS_REAL_DERIVATIVE_IMP_CONTINUOUS_WITHINREAL = prove
(`!f f' x s. (f has_real_derivative f') (atreal x within s)
==> f real_continuous (atreal x within s)`,
REPEAT GEN_TAC THEN
REWRITE_TAC[HAS_REAL_COMPLEX_DERIVATIVE_WITHIN;
REAL_COMPLEX_CONTINUOUS_WITHINREAL] THEN
DISCH_THEN(MP_TAC o
MATCH_MP HAS_COMPLEX_DERIVATIVE_IMP_CONTINUOUS_WITHIN) THEN
MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INTER; IN_IMAGE] THEN
MESON_TAC[REAL; RE_CX; REAL_CX; IN]);;
let REAL_DIFFERENTIABLE_IMP_CONTINUOUS_WITHINREAL = prove
(`!f x s. f real_differentiable (atreal x within s)
==> f real_continuous (atreal x within s)`,
MESON_TAC[HAS_REAL_DERIVATIVE_IMP_CONTINUOUS_WITHINREAL;
real_differentiable]);;
let HAS_REAL_DERIVATIVE_IMP_CONTINUOUS_ATREAL = prove
(`!f f' x. (f has_real_derivative f') (atreal x)
==> f real_continuous (atreal x)`,
REWRITE_TAC[HAS_REAL_COMPLEX_DERIVATIVE_AT;
REAL_COMPLEX_CONTINUOUS_ATREAL;
HAS_COMPLEX_DERIVATIVE_IMP_CONTINUOUS_WITHIN]);;
let REAL_DIFFERENTIABLE_IMP_CONTINUOUS_ATREAL = prove
(`!f x. f real_differentiable atreal x ==> f real_continuous atreal x`,
MESON_TAC[HAS_REAL_DERIVATIVE_IMP_CONTINUOUS_ATREAL; real_differentiable]);;
let REAL_DIFFERENTIABLE_ON_IMP_REAL_CONTINUOUS_ON = prove
(`!f s. f real_differentiable_on s ==> f real_continuous_on s`,
REWRITE_TAC[real_differentiable_on;
REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN] THEN
MESON_TAC[REAL_DIFFERENTIABLE_IMP_CONTINUOUS_WITHINREAL;
real_differentiable]);;
let REAL_CONTINUOUS_AT_COMPONENT = prove
(`!i a. 1 <= i /\ i <= dimindex(:N)
==> (\x:real^N. x$i) real_continuous at a`,
REWRITE_TAC[REAL_CONTINUOUS_CONTINUOUS1; o_DEF;
CONTINUOUS_AT_LIFT_COMPONENT]);;
let REAL_CONTINUOUS_AT_TRANSLATION = prove
(`!a z f:real^N->real.
f real_continuous at (a + z) <=> (\x. f(a + x)) real_continuous at z`,
REWRITE_TAC[REAL_CONTINUOUS_CONTINUOUS1; o_DEF; CONTINUOUS_AT_TRANSLATION]);;
add_translation_invariants [REAL_CONTINUOUS_AT_TRANSLATION];;
let REAL_CONTINUOUS_AT_LINEAR_IMAGE = prove
(`!h:real^N->real^N z f:real^N->real.
linear h /\ (!x. norm(h x) = norm x)
==> (f real_continuous at (h z) <=> (\x. f(h x)) real_continuous at z)`,
REWRITE_TAC[REAL_CONTINUOUS_CONTINUOUS1; o_DEF;
CONTINUOUS_AT_LINEAR_IMAGE]);;
add_linear_invariants [REAL_CONTINUOUS_AT_LINEAR_IMAGE];;
let REAL_CONTINUOUS_AT_ARG = prove
(`!z. ~(real z /\ &0 <= Re z) ==> Arg real_continuous (at z)`,
REWRITE_TAC[REAL_CONTINUOUS_CONTINUOUS; CONTINUOUS_AT_ARG]);;
let REAL_CONTINUOUS_TRANSFORM_WITHIN_SET_IMP = prove
(`!f a s t. eventually (\x. x IN t ==> x IN s) (at a) /\
f real_continuous (at a within s)
==> f real_continuous (at a within t)`,
REWRITE_TAC[REAL_CONTINUOUS_CONTINUOUS1;
CONTINUOUS_TRANSFORM_WITHIN_SET_IMP]);;
let CONTINUOUS_TRANSFORM_WITHINREAL_SET_IMP = prove
(`!f a s t. eventually (\x. x IN t ==> x IN s) (atreal a) /\
f continuous (atreal a within s)
==> f continuous (atreal a within t)`,
REWRITE_TAC[CONTINUOUS_WITHINREAL; LIM_TRANSFORM_WITHINREAL_SET_IMP]);;
let REAL_CONTINUOUS_TRANSFORM_WITHINREAL_SET_IMP = prove
(`!f a s t. eventually (\x. x IN t ==> x IN s) (atreal a) /\
f real_continuous (atreal a within s)
==> f real_continuous (atreal a within t)`,
REWRITE_TAC[REAL_CONTINUOUS_WITHINREAL;
REALLIM_TRANSFORM_WITHINREAL_SET_IMP]);;
(* ------------------------------------------------------------------------- *)
(* More basics about real derivatives. *)
(* ------------------------------------------------------------------------- *)
let HAS_REAL_DERIVATIVE_WITHIN_SUBSET = prove
(`!f s t x. (f has_real_derivative f') (atreal x within s) /\ t SUBSET s
==> (f has_real_derivative f') (atreal x within t)`,
REPEAT GEN_TAC THEN REWRITE_TAC[HAS_REAL_COMPLEX_DERIVATIVE_WITHIN] THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT]
HAS_COMPLEX_DERIVATIVE_WITHIN_SUBSET) THEN ASM SET_TAC[]);;
let REAL_DIFFERENTIABLE_ON_SUBSET = prove
(`!f s t. f real_differentiable_on s /\ t SUBSET s
==> f real_differentiable_on t`,
REWRITE_TAC[real_differentiable_on] THEN
MESON_TAC[SUBSET; HAS_REAL_DERIVATIVE_WITHIN_SUBSET]);;
let REAL_DIFFERENTIABLE_WITHIN_SUBSET = prove
(`!f s t. f real_differentiable (atreal x within s) /\ t SUBSET s
==> f real_differentiable (atreal x within t)`,
REWRITE_TAC[real_differentiable] THEN
MESON_TAC[HAS_REAL_DERIVATIVE_WITHIN_SUBSET]);;
let HAS_REAL_DERIVATIVE_ATREAL_WITHIN = prove
(`!f f' x s. (f has_real_derivative f') (atreal x)
==> (f has_real_derivative f') (atreal x within s)`,
REPEAT GEN_TAC THEN
REWRITE_TAC[HAS_REAL_COMPLEX_DERIVATIVE_WITHIN;
HAS_REAL_COMPLEX_DERIVATIVE_AT] THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT]
HAS_COMPLEX_DERIVATIVE_WITHIN_SUBSET) THEN ASM SET_TAC[]);;
let HAS_REAL_DERIVATIVE_WITHIN_REAL_OPEN = prove
(`!f f' a s.
a IN s /\ real_open s
==> ((f has_real_derivative f') (atreal a within s) <=>
(f has_real_derivative f') (atreal a))`,
REPEAT GEN_TAC THEN
ASM_SIMP_TAC[HAS_REAL_DERIVATIVE_WITHINREAL; HAS_REAL_DERIVATIVE_ATREAL;
REALLIM_WITHIN_REAL_OPEN]);;
let REAL_DIFFERENTIABLE_ATREAL_WITHIN = prove
(`!f s z. f real_differentiable (atreal z)
==> f real_differentiable (atreal z within s)`,
REWRITE_TAC[real_differentiable] THEN
MESON_TAC[HAS_REAL_DERIVATIVE_ATREAL_WITHIN]);;
let HAS_REAL_DERIVATIVE_TRANSFORM_WITHIN = prove
(`!f f' g x s d.
&0 < d /\ x IN s /\
(!x'. x' IN s /\ abs(x' - x) < d ==> f x' = g x') /\
(f has_real_derivative f') (atreal x within s)
==> (g has_real_derivative f') (atreal x within s)`,
REPEAT GEN_TAC THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
REWRITE_TAC[HAS_REAL_COMPLEX_DERIVATIVE_WITHIN] THEN
MATCH_MP_TAC(ONCE_REWRITE_RULE
[TAUT `a /\ b /\ c /\ d ==> e <=> a /\ b /\ c ==> d ==> e`]
HAS_COMPLEX_DERIVATIVE_TRANSFORM_WITHIN) THEN
EXISTS_TAC `d:real` THEN ASM_REWRITE_TAC[IN_ELIM_THM; REAL_CX; RE_CX] THEN
REPEAT STRIP_TAC THEN REWRITE_TAC[o_THM] THEN AP_TERM_TAC THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (NORM_ARITH
`dist(a,b) < d ==> z <= norm(a - b) ==> z < d`)) THEN
W(MP_TAC o PART_MATCH (rand o rand) COMPLEX_NORM_GE_RE_IM o rand o snd) THEN
SIMP_TAC[RE_SUB; RE_CX]);;
let HAS_REAL_DERIVATIVE_TRANSFORM_ATREAL = prove
(`!f f' g x d.
&0 < d /\ (!x'. abs(x' - x) < d ==> f x' = g x') /\
(f has_real_derivative f') (atreal x)
==> (g has_real_derivative f') (atreal x)`,
ONCE_REWRITE_TAC[GSYM WITHINREAL_UNIV] THEN
MESON_TAC[HAS_REAL_DERIVATIVE_TRANSFORM_WITHIN; IN_UNIV]);;
let HAS_REAL_DERIVATIVE_ZERO_CONSTANT = prove
(`!f s.
is_realinterval s /\
(!x. x IN s ==> (f has_real_derivative (&0)) (atreal x within s))
==> ?c. !x. x IN s ==> f(x) = c`,
REWRITE_TAC[HAS_REAL_COMPLEX_DERIVATIVE_WITHIN] THEN
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`Cx o f o Re`; `{z | real z /\ Re z IN s}`]
HAS_COMPLEX_DERIVATIVE_ZERO_CONSTANT) THEN
ASM_REWRITE_TAC[IN_ELIM_THM; IMP_CONJ; FORALL_REAL; RE_CX; o_THM] THEN
ASM_REWRITE_TAC[GSYM IS_REALINTERVAL_CONVEX_COMPLEX] THEN MESON_TAC[RE_CX]);;
let HAS_REAL_DERIVATIVE_ZERO_UNIQUE = prove
(`!f s c a.
is_realinterval s /\ a IN s /\ f a = c /\
(!x. x IN s ==> (f has_real_derivative (&0)) (atreal x within s))
==> !x. x IN s ==> f(x) = c`,
MESON_TAC[HAS_REAL_DERIVATIVE_ZERO_CONSTANT]);;
let REAL_DIFF_CHAIN_WITHIN = prove
(`!f g f' g' x s.
(f has_real_derivative f') (atreal x within s) /\
(g has_real_derivative g') (atreal (f x) within (IMAGE f s))
==> ((g o f) has_real_derivative (g' * f'))(atreal x within s)`,
REWRITE_TAC[HAS_REAL_COMPLEX_DERIVATIVE_WITHIN] THEN REPEAT STRIP_TAC THEN
SUBGOAL_THEN `Cx o (g o f) o Re = (Cx o g o Re) o (Cx o f o Re)`
SUBST1_TAC THENL [REWRITE_TAC[FUN_EQ_THM; o_DEF; RE_CX]; ALL_TAC] THEN
REWRITE_TAC[CX_MUL] THEN MATCH_MP_TAC COMPLEX_DIFF_CHAIN_WITHIN THEN
ASM_REWRITE_TAC[o_THM; RE_CX] THEN
FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP
(REWRITE_RULE[IMP_CONJ] HAS_COMPLEX_DERIVATIVE_WITHIN_SUBSET)) THEN
REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN
REWRITE_TAC[IN_ELIM_THM; o_THM; REAL_CX; RE_CX] THEN SET_TAC[]);;
let REAL_DIFF_CHAIN_ATREAL = prove
(`!f g f' g' x.
(f has_real_derivative f') (atreal x) /\
(g has_real_derivative g') (atreal (f x))
==> ((g o f) has_real_derivative (g' * f')) (atreal x)`,
ONCE_REWRITE_TAC[GSYM WITHINREAL_UNIV] THEN
ASM_MESON_TAC[REAL_DIFF_CHAIN_WITHIN; SUBSET_UNIV;
HAS_REAL_DERIVATIVE_WITHIN_SUBSET]);;
let HAS_REAL_DERIVATIVE_CHAIN = prove
(`!P f g.
(!x. P x ==> (g has_real_derivative g'(x)) (atreal x))
==> (!x s. (f has_real_derivative f') (atreal x within s) /\ P(f x)
==> ((\x. g(f x)) has_real_derivative f' * g'(f x))
(atreal x within s)) /\
(!x. (f has_real_derivative f') (atreal x) /\ P(f x)
==> ((\x. g(f x)) has_real_derivative f' * g'(f x))
(atreal x))`,
REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM o_DEF] THEN
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
ASM_MESON_TAC[REAL_DIFF_CHAIN_WITHIN; REAL_DIFF_CHAIN_ATREAL;
HAS_REAL_DERIVATIVE_ATREAL_WITHIN]);;
let HAS_REAL_DERIVATIVE_CHAIN_UNIV = prove
(`!f g. (!x. (g has_real_derivative g'(x)) (atreal x))
==> (!x s. (f has_real_derivative f') (atreal x within s)
==> ((\x. g(f x)) has_real_derivative f' * g'(f x))
(atreal x within s)) /\
(!x. (f has_real_derivative f') (atreal x)
==> ((\x. g(f x)) has_real_derivative f' * g'(f x))
(atreal x))`,
MP_TAC(SPEC `\x:real. T` HAS_REAL_DERIVATIVE_CHAIN) THEN SIMP_TAC[]);;
let REAL_DERIVATIVE_UNIQUE_ATREAL = prove
(`!f z f' f''.
(f has_real_derivative f') (atreal z) /\
(f has_real_derivative f'') (atreal z)
==> f' = f''`,
REPEAT GEN_TAC THEN REWRITE_TAC[HAS_REAL_FRECHET_DERIVATIVE_AT] THEN
DISCH_THEN(MP_TAC o MATCH_MP FRECHET_DERIVATIVE_UNIQUE_AT) THEN
DISCH_THEN(MP_TAC o C AP_THM `vec 1:real^1`) THEN
REWRITE_TAC[VECTOR_MUL_RCANCEL; VEC_EQ; ARITH_EQ]);;
(* ------------------------------------------------------------------------- *)
(* Some handy theorems about the actual differentition function. *)
(* ------------------------------------------------------------------------- *)
let HAS_REAL_DERIVATIVE_DERIVATIVE = prove
(`!f f' x. (f has_real_derivative f') (atreal x)
==> real_derivative f x = f'`,
REWRITE_TAC[real_derivative] THEN
MESON_TAC[REAL_DERIVATIVE_UNIQUE_ATREAL]);;
let HAS_REAL_DERIVATIVE_DIFFERENTIABLE = prove
(`!f x. (f has_real_derivative (real_derivative f x)) (atreal x) <=>
f real_differentiable atreal x`,
REWRITE_TAC[real_differentiable; real_derivative] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Arithmetical combining theorems. *)
(* ------------------------------------------------------------------------- *)
let HAS_REAL_DERIVATIVE_LMUL_WITHIN = prove
(`!f f' c x s.
(f has_real_derivative f') (atreal x within s)
==> ((\x. c * f(x)) has_real_derivative (c * f')) (atreal x within s)`,
REWRITE_TAC[HAS_REAL_COMPLEX_DERIVATIVE_WITHIN] THEN
REWRITE_TAC[o_DEF; CX_MUL; HAS_COMPLEX_DERIVATIVE_LMUL_WITHIN]);;
let HAS_REAL_DERIVATIVE_LMUL_ATREAL = prove
(`!f f' c x.
(f has_real_derivative f') (atreal x)
==> ((\x. c * f(x)) has_real_derivative (c * f')) (atreal x)`,
ONCE_REWRITE_TAC[GSYM WITHINREAL_UNIV] THEN
REWRITE_TAC[HAS_REAL_DERIVATIVE_LMUL_WITHIN]);;
let HAS_REAL_DERIVATIVE_RMUL_WITHIN = prove
(`!f f' c x s.
(f has_real_derivative f') (atreal x within s)
==> ((\x. f(x) * c) has_real_derivative (f' * c)) (atreal x within s)`,
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
REWRITE_TAC[HAS_REAL_DERIVATIVE_LMUL_WITHIN]);;
let HAS_REAL_DERIVATIVE_RMUL_ATREAL = prove
(`!f f' c x.
(f has_real_derivative f') (atreal x)
==> ((\x. f(x) * c) has_real_derivative (f' * c)) (atreal x)`,
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
REWRITE_TAC[HAS_REAL_DERIVATIVE_LMUL_ATREAL]);;
let HAS_REAL_DERIVATIVE_CDIV_WITHIN = prove
(`!f f' c x s.
(f has_real_derivative f') (atreal x within s)
==> ((\x. f(x) / c) has_real_derivative (f' / c)) (atreal x within s)`,
SIMP_TAC[real_div; HAS_REAL_DERIVATIVE_RMUL_WITHIN]);;
let HAS_REAL_DERIVATIVE_CDIV_ATREAL = prove
(`!f f' c x.
(f has_real_derivative f') (atreal x)
==> ((\x. f(x) / c) has_real_derivative (f' / c)) (atreal x)`,
SIMP_TAC[real_div; HAS_REAL_DERIVATIVE_RMUL_ATREAL]);;
let HAS_REAL_DERIVATIVE_ID = prove
(`!net. ((\x. x) has_real_derivative &1) net`,
REWRITE_TAC[has_real_derivative; TENDSTO_REAL;
REAL_ARITH `x - (a + &1 * (x - a)) = &0`] THEN
REWRITE_TAC[REAL_MUL_RZERO; LIM_CONST; o_DEF]);;
let HAS_REAL_DERIVATIVE_CONST = prove
(`!c net. ((\x. c) has_real_derivative &0) net`,
REWRITE_TAC[has_real_derivative; REAL_MUL_LZERO; REAL_ADD_RID; REAL_SUB_REFL;
REAL_MUL_RZERO; REALLIM_CONST]);;
let HAS_REAL_DERIVATIVE_NEG = prove
(`!f f' net. (f has_real_derivative f') net
==> ((\x. --(f(x))) has_real_derivative (--f')) net`,
REPEAT GEN_TAC THEN REWRITE_TAC[has_real_derivative] THEN
DISCH_THEN(MP_TAC o MATCH_MP REALLIM_NEG) THEN
REWRITE_TAC[REAL_NEG_0; REAL_ARITH
`a * (--b - (--c + --d * e:real)) = --(a * (b - (c + d * e)))`]);;
let HAS_REAL_DERIVATIVE_ADD = prove
(`!f f' g g' net.
(f has_real_derivative f') net /\ (g has_real_derivative g') net
==> ((\x. f(x) + g(x)) has_real_derivative (f' + g')) net`,
REPEAT GEN_TAC THEN REWRITE_TAC[has_real_derivative] THEN
DISCH_THEN(MP_TAC o MATCH_MP REALLIM_ADD) THEN
REWRITE_TAC[GSYM REAL_ADD_LDISTRIB; REAL_ADD_RID] THEN
REWRITE_TAC[REAL_ARITH
`(fx - (fa + f' * (x - a))) + (gx - (ga + g' * (x - a))):real =
(fx + gx) - ((fa + ga) + (f' + g') * (x - a))`]);;
let HAS_REAL_DERIVATIVE_SUB = prove
(`!f f' g g' net.
(f has_real_derivative f') net /\ (g has_real_derivative g') net
==> ((\x. f(x) - g(x)) has_real_derivative (f' - g')) net`,
SIMP_TAC[real_sub; HAS_REAL_DERIVATIVE_ADD; HAS_REAL_DERIVATIVE_NEG]);;
let HAS_REAL_DERIVATIVE_MUL_WITHIN = prove
(`!f f' g g' x s.
(f has_real_derivative f') (atreal x within s) /\
(g has_real_derivative g') (atreal x within s)
==> ((\x. f(x) * g(x)) has_real_derivative
(f(x) * g' + f' * g(x))) (atreal x within s)`,
REPEAT GEN_TAC THEN REWRITE_TAC[HAS_REAL_COMPLEX_DERIVATIVE_WITHIN] THEN
DISCH_THEN(MP_TAC o MATCH_MP HAS_COMPLEX_DERIVATIVE_MUL_WITHIN) THEN
REWRITE_TAC[o_DEF; CX_MUL; CX_ADD; RE_CX]);;
let HAS_REAL_DERIVATIVE_MUL_ATREAL = prove
(`!f f' g g' x.
(f has_real_derivative f') (atreal x) /\
(g has_real_derivative g') (atreal x)
==> ((\x. f(x) * g(x)) has_real_derivative
(f(x) * g' + f' * g(x))) (atreal x)`,
ONCE_REWRITE_TAC[GSYM WITHINREAL_UNIV] THEN
REWRITE_TAC[HAS_REAL_DERIVATIVE_MUL_WITHIN]);;
let HAS_REAL_DERIVATIVE_POW_WITHIN = prove
(`!f f' x s n. (f has_real_derivative f') (atreal x within s)
==> ((\x. f(x) pow n) has_real_derivative
(&n * f(x) pow (n - 1) * f')) (atreal x within s)`,
REPEAT GEN_TAC THEN REWRITE_TAC[HAS_REAL_COMPLEX_DERIVATIVE_WITHIN] THEN
DISCH_THEN(MP_TAC o SPEC `n:num` o
MATCH_MP HAS_COMPLEX_DERIVATIVE_POW_WITHIN) THEN
REWRITE_TAC[o_DEF; CX_MUL; CX_POW; RE_CX]);;
let HAS_REAL_DERIVATIVE_POW_ATREAL = prove
(`!f f' x n. (f has_real_derivative f') (atreal x)
==> ((\x. f(x) pow n) has_real_derivative
(&n * f(x) pow (n - 1) * f')) (atreal x)`,
ONCE_REWRITE_TAC[GSYM WITHINREAL_UNIV] THEN
REWRITE_TAC[HAS_REAL_DERIVATIVE_POW_WITHIN]);;
let HAS_REAL_DERIVATIVE_INV_BASIC = prove
(`!x. ~(x = &0)
==> ((inv) has_real_derivative (--inv(x pow 2))) (atreal x)`,
REPEAT STRIP_TAC THEN
REWRITE_TAC[HAS_REAL_COMPLEX_DERIVATIVE_AT] THEN
MATCH_MP_TAC HAS_COMPLEX_DERIVATIVE_TRANSFORM_WITHIN THEN
EXISTS_TAC `inv:complex->complex` THEN
ASM_SIMP_TAC[HAS_COMPLEX_DERIVATIVE_INV_BASIC; CX_INJ; CX_NEG; CX_INV;
CX_POW; HAS_COMPLEX_DERIVATIVE_AT_WITHIN] THEN
SIMP_TAC[IN; FORALL_REAL; IMP_CONJ; o_DEF; REAL_CX; RE_CX; CX_INV] THEN
MESON_TAC[REAL_LT_01]);;
let HAS_REAL_DERIVATIVE_INV_WITHIN = prove
(`!f f' x s. (f has_real_derivative f') (atreal x within s) /\
~(f x = &0)
==> ((\x. inv(f(x))) has_real_derivative (--f' / f(x) pow 2))
(atreal x within s)`,
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM o_DEF] THEN
ASM_SIMP_TAC[REAL_FIELD
`~(g = &0) ==> --f / g pow 2 = --inv(g pow 2) * f`] THEN
MATCH_MP_TAC REAL_DIFF_CHAIN_WITHIN THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC HAS_REAL_DERIVATIVE_ATREAL_WITHIN THEN
ASM_SIMP_TAC[HAS_REAL_DERIVATIVE_INV_BASIC]);;
let HAS_REAL_DERIVATIVE_INV_ATREAL = prove
(`!f f' x. (f has_real_derivative f') (atreal x) /\
~(f x = &0)
==> ((\x. inv(f(x))) has_real_derivative (--f' / f(x) pow 2))
(atreal x)`,
ONCE_REWRITE_TAC[GSYM WITHINREAL_UNIV] THEN
REWRITE_TAC[HAS_REAL_DERIVATIVE_INV_WITHIN]);;
let HAS_REAL_DERIVATIVE_DIV_WITHIN = prove
(`!f f' g g' x s.
(f has_real_derivative f') (atreal x within s) /\
(g has_real_derivative g') (atreal x within s) /\
~(g(x) = &0)
==> ((\x. f(x) / g(x)) has_real_derivative
(f' * g(x) - f(x) * g') / g(x) pow 2) (atreal x within s)`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
DISCH_THEN(fun th -> ASSUME_TAC(CONJUNCT2 th) THEN MP_TAC th) THEN
DISCH_THEN(MP_TAC o MATCH_MP HAS_REAL_DERIVATIVE_INV_WITHIN) THEN
UNDISCH_TAC `(f has_real_derivative f') (atreal x within s)` THEN
REWRITE_TAC[IMP_IMP] THEN
DISCH_THEN(MP_TAC o MATCH_MP HAS_REAL_DERIVATIVE_MUL_WITHIN) THEN
REWRITE_TAC[GSYM real_div] THEN MATCH_MP_TAC EQ_IMP THEN
AP_THM_TAC THEN AP_TERM_TAC THEN
POP_ASSUM MP_TAC THEN CONV_TAC REAL_FIELD);;
let HAS_REAL_DERIVATIVE_DIV_ATREAL = prove
(`!f f' g g' x.
(f has_real_derivative f') (atreal x) /\
(g has_real_derivative g') (atreal x) /\
~(g(x) = &0)
==> ((\x. f(x) / g(x)) has_real_derivative
(f' * g(x) - f(x) * g') / g(x) pow 2) (atreal x)`,
ONCE_REWRITE_TAC[GSYM WITHINREAL_UNIV] THEN
REWRITE_TAC[HAS_REAL_DERIVATIVE_DIV_WITHIN]);;
let HAS_REAL_DERIVATIVE_SUM = prove
(`!f net s.
FINITE s /\ (!a. a IN s ==> (f a has_real_derivative f' a) net)
==> ((\x. sum s (\a. f a x)) has_real_derivative (sum s f'))
net`,
GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[FORALL_IN_INSERT; NOT_IN_EMPTY; SUM_CLAUSES] THEN
SIMP_TAC[HAS_REAL_DERIVATIVE_CONST; HAS_REAL_DERIVATIVE_ADD; ETA_AX]);;
(* ------------------------------------------------------------------------- *)
(* Same thing just for real differentiability. *)
(* ------------------------------------------------------------------------- *)
let REAL_DIFFERENTIABLE_CONST = prove
(`!c net. (\z. c) real_differentiable net`,
REWRITE_TAC[real_differentiable] THEN
MESON_TAC[HAS_REAL_DERIVATIVE_CONST]);;
let REAL_DIFFERENTIABLE_ID = prove
(`!net. (\z. z) real_differentiable net`,
REWRITE_TAC[real_differentiable] THEN
MESON_TAC[HAS_REAL_DERIVATIVE_ID]);;
let REAL_DIFFERENTIABLE_NEG = prove
(`!f net.
f real_differentiable net
==> (\z. --(f z)) real_differentiable net`,
REWRITE_TAC[real_differentiable] THEN
MESON_TAC[HAS_REAL_DERIVATIVE_NEG]);;
let REAL_DIFFERENTIABLE_ADD = prove
(`!f g net.
f real_differentiable net /\
g real_differentiable net
==> (\z. f z + g z) real_differentiable net`,
REWRITE_TAC[real_differentiable] THEN
MESON_TAC[HAS_REAL_DERIVATIVE_ADD]);;
let REAL_DIFFERENTIABLE_SUB = prove
(`!f g net.
f real_differentiable net /\
g real_differentiable net
==> (\z. f z - g z) real_differentiable net`,
REWRITE_TAC[real_differentiable] THEN
MESON_TAC[HAS_REAL_DERIVATIVE_SUB]);;
let REAL_DIFFERENTIABLE_INV_WITHIN = prove
(`!f z s.
f real_differentiable (atreal z within s) /\ ~(f z = &0)
==> (\z. inv(f z)) real_differentiable (atreal z within s)`,
REWRITE_TAC[real_differentiable] THEN
MESON_TAC[HAS_REAL_DERIVATIVE_INV_WITHIN]);;
let REAL_DIFFERENTIABLE_MUL_WITHIN = prove
(`!f g z s.
f real_differentiable (atreal z within s) /\
g real_differentiable (atreal z within s)
==> (\z. f z * g z) real_differentiable (atreal z within s)`,
REWRITE_TAC[real_differentiable] THEN
MESON_TAC[HAS_REAL_DERIVATIVE_MUL_WITHIN]);;
let REAL_DIFFERENTIABLE_DIV_WITHIN = prove
(`!f g z s.
f real_differentiable (atreal z within s) /\
g real_differentiable (atreal z within s) /\
~(g z = &0)
==> (\z. f z / g z) real_differentiable (atreal z within s)`,
REWRITE_TAC[real_differentiable] THEN
MESON_TAC[HAS_REAL_DERIVATIVE_DIV_WITHIN]);;
let REAL_DIFFERENTIABLE_POW_WITHIN = prove
(`!f n z s.
f real_differentiable (atreal z within s)
==> (\z. f z pow n) real_differentiable (atreal z within s)`,
REWRITE_TAC[real_differentiable] THEN
MESON_TAC[HAS_REAL_DERIVATIVE_POW_WITHIN]);;
let REAL_DIFFERENTIABLE_TRANSFORM_WITHIN = prove
(`!f g x s d.
&0 < d /\
x IN s /\
(!x'. x' IN s /\ abs(x' - x) < d ==> f x' = g x') /\
f real_differentiable (atreal x within s)
==> g real_differentiable (atreal x within s)`,
REWRITE_TAC[real_differentiable] THEN
MESON_TAC[HAS_REAL_DERIVATIVE_TRANSFORM_WITHIN]);;
let REAL_DIFFERENTIABLE_TRANSFORM = prove
(`!f g s. (!x. x IN s ==> f x = g x) /\ f real_differentiable_on s
==> g real_differentiable_on s`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
REWRITE_TAC[real_differentiable_on; GSYM real_differentiable] THEN
MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN
DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
MATCH_MP_TAC REAL_DIFFERENTIABLE_TRANSFORM_WITHIN THEN
MAP_EVERY EXISTS_TAC [`f:real->real`; `&1`] THEN
ASM_SIMP_TAC[REAL_LT_01]);;
let REAL_DIFFERENTIABLE_EQ = prove
(`!f g s. (!x. x IN s ==> f x = g x)
==> (f real_differentiable_on s <=> g real_differentiable_on s)`,
MESON_TAC[REAL_DIFFERENTIABLE_TRANSFORM]);;
let REAL_DIFFERENTIABLE_INV_ATREAL = prove
(`!f z.
f real_differentiable atreal z /\ ~(f z = &0)
==> (\z. inv(f z)) real_differentiable atreal z`,
REWRITE_TAC[real_differentiable] THEN
MESON_TAC[HAS_REAL_DERIVATIVE_INV_ATREAL]);;
let REAL_DIFFERENTIABLE_MUL_ATREAL = prove
(`!f g z.
f real_differentiable atreal z /\
g real_differentiable atreal z
==> (\z. f z * g z) real_differentiable atreal z`,
REWRITE_TAC[real_differentiable] THEN
MESON_TAC[HAS_REAL_DERIVATIVE_MUL_ATREAL]);;
let REAL_DIFFERENTIABLE_DIV_ATREAL = prove
(`!f g z.
f real_differentiable atreal z /\
g real_differentiable atreal z /\
~(g z = &0)
==> (\z. f z / g z) real_differentiable atreal z`,
REWRITE_TAC[real_differentiable] THEN
MESON_TAC[HAS_REAL_DERIVATIVE_DIV_ATREAL]);;
let REAL_DIFFERENTIABLE_POW_ATREAL = prove
(`!f n z.
f real_differentiable atreal z
==> (\z. f z pow n) real_differentiable atreal z`,
REWRITE_TAC[real_differentiable] THEN
MESON_TAC[HAS_REAL_DERIVATIVE_POW_ATREAL]);;
let REAL_DIFFERENTIABLE_TRANSFORM_ATREAL = prove
(`!f g x d.
&0 < d /\
(!x'. abs(x' - x) < d ==> f x' = g x') /\
f real_differentiable atreal x
==> g real_differentiable atreal x`,
REWRITE_TAC[real_differentiable] THEN
MESON_TAC[HAS_REAL_DERIVATIVE_TRANSFORM_ATREAL]);;
let REAL_DIFFERENTIABLE_COMPOSE_WITHIN = prove
(`!f g x s.
f real_differentiable (atreal x within s) /\
g real_differentiable (atreal (f x) within IMAGE f s)
==> (g o f) real_differentiable (atreal x within s)`,
REWRITE_TAC[real_differentiable] THEN
MESON_TAC[REAL_DIFF_CHAIN_WITHIN]);;
let REAL_DIFFERENTIABLE_COMPOSE_ATREAL = prove
(`!f g x.
f real_differentiable (atreal x) /\
g real_differentiable (atreal (f x))
==> (g o f) real_differentiable (atreal x)`,
REWRITE_TAC[real_differentiable] THEN
MESON_TAC[REAL_DIFF_CHAIN_ATREAL]);;
(* ------------------------------------------------------------------------- *)
(* Same again for being differentiable on a set. *)
(* ------------------------------------------------------------------------- *)
let REAL_DIFFERENTIABLE_ON_CONST = prove
(`!c s. (\z. c) real_differentiable_on s`,
REWRITE_TAC[REAL_DIFFERENTIABLE_ON_DIFFERENTIABLE;
REAL_DIFFERENTIABLE_CONST]);;
let REAL_DIFFERENTIABLE_ON_ID = prove
(`!s. (\z. z) real_differentiable_on s`,
REWRITE_TAC[REAL_DIFFERENTIABLE_ON_DIFFERENTIABLE; REAL_DIFFERENTIABLE_ID]);;
let REAL_DIFFERENTIABLE_ON_COMPOSE = prove
(`!f g s. f real_differentiable_on s /\ g real_differentiable_on (IMAGE f s)
==> (g o f) real_differentiable_on s`,
SIMP_TAC[real_differentiable_on; GSYM real_differentiable;
FORALL_IN_IMAGE] THEN
MESON_TAC[REAL_DIFFERENTIABLE_COMPOSE_WITHIN]);;
let REAL_DIFFERENTIABLE_ON_NEG = prove
(`!f s. f real_differentiable_on s ==> (\z. --(f z)) real_differentiable_on s`,
SIMP_TAC[REAL_DIFFERENTIABLE_ON_DIFFERENTIABLE; REAL_DIFFERENTIABLE_NEG]);;
let REAL_DIFFERENTIABLE_ON_ADD = prove
(`!f g s.
f real_differentiable_on s /\ g real_differentiable_on s
==> (\z. f z + g z) real_differentiable_on s`,
SIMP_TAC[REAL_DIFFERENTIABLE_ON_DIFFERENTIABLE; REAL_DIFFERENTIABLE_ADD]);;
let REAL_DIFFERENTIABLE_ON_SUB = prove
(`!f g s.
f real_differentiable_on s /\ g real_differentiable_on s
==> (\z. f z - g z) real_differentiable_on s`,
SIMP_TAC[REAL_DIFFERENTIABLE_ON_DIFFERENTIABLE; REAL_DIFFERENTIABLE_SUB]);;
let REAL_DIFFERENTIABLE_ON_MUL = prove
(`!f g s.
f real_differentiable_on s /\ g real_differentiable_on s
==> (\z. f z * g z) real_differentiable_on s`,
SIMP_TAC[REAL_DIFFERENTIABLE_ON_DIFFERENTIABLE;
REAL_DIFFERENTIABLE_MUL_WITHIN]);;
let REAL_DIFFERENTIABLE_ON_INV = prove
(`!f s. f real_differentiable_on s /\ (!z. z IN s ==> ~(f z = &0))
==> (\z. inv(f z)) real_differentiable_on s`,
SIMP_TAC[REAL_DIFFERENTIABLE_ON_DIFFERENTIABLE;
REAL_DIFFERENTIABLE_INV_WITHIN]);;
let REAL_DIFFERENTIABLE_ON_DIV = prove
(`!f g s.
f real_differentiable_on s /\ g real_differentiable_on s /\
(!z. z IN s ==> ~(g z = &0))
==> (\z. f z / g z) real_differentiable_on s`,
SIMP_TAC[REAL_DIFFERENTIABLE_ON_DIFFERENTIABLE;
REAL_DIFFERENTIABLE_DIV_WITHIN]);;
let REAL_DIFFERENTIABLE_ON_POW = prove
(`!f s n. f real_differentiable_on s
==> (\z. (f z) pow n) real_differentiable_on s`,
SIMP_TAC[REAL_DIFFERENTIABLE_ON_DIFFERENTIABLE;
REAL_DIFFERENTIABLE_POW_WITHIN]);;
let REAL_DIFFERENTIABLE_ON_SUM = prove
(`!f s k. FINITE k /\ (!a. a IN k ==> (f a) real_differentiable_on s)
==> (\x. sum k (\a. f a x)) real_differentiable_on s`,
GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[SUM_CLAUSES] THEN
SIMP_TAC[REAL_DIFFERENTIABLE_ON_CONST; IN_INSERT; NOT_IN_EMPTY] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_DIFFERENTIABLE_ON_ADD THEN
ASM_SIMP_TAC[ETA_AX]);;
(* ------------------------------------------------------------------------- *)
(* Derivative (and continuity) theorems for real transcendental functions. *)
(* ------------------------------------------------------------------------- *)
let HAS_REAL_DERIVATIVE_EXP = prove
(`!x. (exp has_real_derivative exp(x)) (atreal x)`,
GEN_TAC THEN MATCH_MP_TAC HAS_COMPLEX_REAL_DERIVATIVE_AT THEN
EXISTS_TAC `cexp` THEN
ASM_SIMP_TAC[HAS_COMPLEX_DERIVATIVE_AT_WITHIN;
HAS_COMPLEX_DERIVATIVE_CEXP; CX_EXP]);;
let REAL_DIFFERENTIABLE_AT_EXP = prove
(`!x. exp real_differentiable (atreal x)`,
REWRITE_TAC[real_differentiable] THEN
MESON_TAC[HAS_REAL_DERIVATIVE_EXP]);;
let REAL_DIFFERENTIABLE_WITHIN_EXP = prove
(`!s x. exp real_differentiable (atreal x within s)`,
MESON_TAC[REAL_DIFFERENTIABLE_ATREAL_WITHIN;
REAL_DIFFERENTIABLE_AT_EXP]);;
let REAL_CONTINUOUS_AT_EXP = prove
(`!x. exp real_continuous (atreal x)`,
MESON_TAC[HAS_REAL_DERIVATIVE_EXP;
HAS_REAL_DERIVATIVE_IMP_CONTINUOUS_ATREAL]);;
let REAL_CONTINUOUS_WITHIN_EXP = prove
(`!s x. exp real_continuous (atreal x within s)`,
MESON_TAC[REAL_CONTINUOUS_ATREAL_WITHINREAL;
REAL_CONTINUOUS_AT_EXP]);;
let REAL_CONTINUOUS_ON_EXP = prove
(`!s. exp real_continuous_on s`,
REWRITE_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN;
REAL_CONTINUOUS_WITHIN_EXP]);;
let HAS_REAL_DERIVATIVE_SIN = prove
(`!x. (sin has_real_derivative cos(x)) (atreal x)`,
GEN_TAC THEN MATCH_MP_TAC HAS_COMPLEX_REAL_DERIVATIVE_AT THEN
EXISTS_TAC `csin` THEN
ASM_SIMP_TAC[HAS_COMPLEX_DERIVATIVE_AT_WITHIN;
HAS_COMPLEX_DERIVATIVE_CSIN; CX_SIN; CX_COS]);;
let REAL_DIFFERENTIABLE_AT_SIN = prove
(`!x. sin real_differentiable (atreal x)`,
REWRITE_TAC[real_differentiable] THEN
MESON_TAC[HAS_REAL_DERIVATIVE_SIN]);;
let REAL_DIFFERENTIABLE_WITHIN_SIN = prove
(`!s x. sin real_differentiable (atreal x within s)`,
MESON_TAC[REAL_DIFFERENTIABLE_ATREAL_WITHIN;
REAL_DIFFERENTIABLE_AT_SIN]);;
let REAL_CONTINUOUS_AT_SIN = prove
(`!x. sin real_continuous (atreal x)`,
MESON_TAC[HAS_REAL_DERIVATIVE_SIN;
HAS_REAL_DERIVATIVE_IMP_CONTINUOUS_ATREAL]);;
let REAL_CONTINUOUS_WITHIN_SIN = prove
(`!s x. sin real_continuous (atreal x within s)`,
MESON_TAC[REAL_CONTINUOUS_ATREAL_WITHINREAL;
REAL_CONTINUOUS_AT_SIN]);;
let REAL_CONTINUOUS_ON_SIN = prove
(`!s. sin real_continuous_on s`,
REWRITE_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN;
REAL_CONTINUOUS_WITHIN_SIN]);;
let HAS_REAL_DERIVATIVE_COS = prove
(`!x. (cos has_real_derivative --sin(x)) (atreal x)`,
GEN_TAC THEN MATCH_MP_TAC HAS_COMPLEX_REAL_DERIVATIVE_AT THEN
EXISTS_TAC `ccos` THEN
ASM_SIMP_TAC[HAS_COMPLEX_DERIVATIVE_AT_WITHIN;
HAS_COMPLEX_DERIVATIVE_CCOS; CX_SIN; CX_COS; CX_NEG]);;
let REAL_DIFFERENTIABLE_AT_COS = prove
(`!x. cos real_differentiable (atreal x)`,
REWRITE_TAC[real_differentiable] THEN
MESON_TAC[HAS_REAL_DERIVATIVE_COS]);;
let REAL_DIFFERENTIABLE_WITHIN_COS = prove
(`!s x. cos real_differentiable (atreal x within s)`,
MESON_TAC[REAL_DIFFERENTIABLE_ATREAL_WITHIN;
REAL_DIFFERENTIABLE_AT_COS]);;
let REAL_CONTINUOUS_AT_COS = prove
(`!x. cos real_continuous (atreal x)`,
MESON_TAC[HAS_REAL_DERIVATIVE_COS;
HAS_REAL_DERIVATIVE_IMP_CONTINUOUS_ATREAL]);;
let REAL_CONTINUOUS_WITHIN_COS = prove
(`!s x. cos real_continuous (atreal x within s)`,
MESON_TAC[REAL_CONTINUOUS_ATREAL_WITHINREAL;
REAL_CONTINUOUS_AT_COS]);;
let REAL_CONTINUOUS_ON_COS = prove
(`!s. cos real_continuous_on s`,
REWRITE_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN;
REAL_CONTINUOUS_WITHIN_COS]);;
let HAS_REAL_DERIVATIVE_TAN = prove
(`!x. ~(cos x = &0)
==> (tan has_real_derivative inv(cos(x) pow 2)) (atreal x)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_COMPLEX_REAL_DERIVATIVE_AT THEN
EXISTS_TAC `ctan` THEN REWRITE_TAC[CX_INV; CX_POW; CX_COS] THEN
ASM_SIMP_TAC[HAS_COMPLEX_DERIVATIVE_AT_WITHIN;
HAS_COMPLEX_DERIVATIVE_CTAN; GSYM CX_COS; CX_INJ; CX_TAN]);;
let REAL_DIFFERENTIABLE_AT_TAN = prove
(`!x. ~(cos x = &0) ==> tan real_differentiable (atreal x)`,
REWRITE_TAC[real_differentiable] THEN
MESON_TAC[HAS_REAL_DERIVATIVE_TAN]);;
let REAL_DIFFERENTIABLE_WITHIN_TAN = prove
(`!s x. ~(cos x = &0) ==> tan real_differentiable (atreal x within s)`,
MESON_TAC[REAL_DIFFERENTIABLE_ATREAL_WITHIN;
REAL_DIFFERENTIABLE_AT_TAN]);;
let REAL_CONTINUOUS_AT_TAN = prove
(`!x. ~(cos x = &0) ==> tan real_continuous (atreal x)`,
MESON_TAC[HAS_REAL_DERIVATIVE_TAN;
HAS_REAL_DERIVATIVE_IMP_CONTINUOUS_ATREAL]);;
let REAL_CONTINUOUS_WITHIN_TAN = prove
(`!s x. ~(cos x = &0) ==> tan real_continuous (atreal x within s)`,
MESON_TAC[REAL_CONTINUOUS_ATREAL_WITHINREAL;
REAL_CONTINUOUS_AT_TAN]);;
let REAL_CONTINUOUS_ON_TAN = prove
(`!s. (!x. x IN s ==> ~(cos x = &0)) ==> tan real_continuous_on s`,
MESON_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN;
REAL_CONTINUOUS_WITHIN_TAN]);;
let HAS_REAL_DERIVATIVE_LOG = prove
(`!x. &0 < x ==> (log has_real_derivative inv(x)) (atreal x)`,
REPEAT STRIP_TAC THEN
MATCH_MP_TAC HAS_COMPLEX_REAL_DERIVATIVE_AT_GEN THEN
MAP_EVERY EXISTS_TAC [`clog`; `x:real`] THEN ASM_REWRITE_TAC[] THEN
REPEAT STRIP_TAC THENL
[REWRITE_TAC[CX_INV] THEN MATCH_MP_TAC HAS_COMPLEX_DERIVATIVE_AT_WITHIN THEN
MATCH_MP_TAC HAS_COMPLEX_DERIVATIVE_CLOG THEN ASM_REWRITE_TAC[RE_CX];
MATCH_MP_TAC(GSYM CX_LOG) THEN ASM_REAL_ARITH_TAC]);;
let REAL_DIFFERENTIABLE_AT_LOG = prove
(`!x. &0 < x ==> log real_differentiable (atreal x)`,
REWRITE_TAC[real_differentiable] THEN
MESON_TAC[HAS_REAL_DERIVATIVE_LOG]);;
let REAL_DIFFERENTIABLE_WITHIN_LOG = prove
(`!s x. &0 < x ==> log real_differentiable (atreal x within s)`,
MESON_TAC[REAL_DIFFERENTIABLE_ATREAL_WITHIN;
REAL_DIFFERENTIABLE_AT_LOG]);;
let REAL_CONTINUOUS_AT_LOG = prove
(`!x. &0 < x ==> log real_continuous (atreal x)`,
MESON_TAC[HAS_REAL_DERIVATIVE_LOG;
HAS_REAL_DERIVATIVE_IMP_CONTINUOUS_ATREAL]);;
let REAL_CONTINUOUS_WITHIN_LOG = prove
(`!s x. &0 < x ==> log real_continuous (atreal x within s)`,
MESON_TAC[REAL_CONTINUOUS_ATREAL_WITHINREAL;
REAL_CONTINUOUS_AT_LOG]);;
let REAL_CONTINUOUS_ON_LOG = prove
(`!s. (!x. x IN s ==> &0 < x) ==> log real_continuous_on s`,
MESON_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN;
REAL_CONTINUOUS_WITHIN_LOG]);;
let HAS_REAL_DERIVATIVE_SQRT = prove
(`!x. &0 < x ==> (sqrt has_real_derivative inv(&2 * sqrt x)) (atreal x)`,
REPEAT STRIP_TAC THEN
MATCH_MP_TAC HAS_COMPLEX_REAL_DERIVATIVE_AT_GEN THEN
MAP_EVERY EXISTS_TAC [`csqrt`; `x:real`] THEN ASM_REWRITE_TAC[] THEN
REPEAT STRIP_TAC THENL
[ASM_SIMP_TAC[CX_INV; CX_MUL; CX_SQRT; REAL_LT_IMP_LE] THEN
MATCH_MP_TAC HAS_COMPLEX_DERIVATIVE_AT_WITHIN THEN
MATCH_MP_TAC HAS_COMPLEX_DERIVATIVE_CSQRT THEN
ASM_SIMP_TAC[RE_CX];
MATCH_MP_TAC(GSYM CX_SQRT) THEN ASM_REAL_ARITH_TAC]);;
let REAL_DIFFERENTIABLE_AT_SQRT = prove
(`!x. &0 < x ==> sqrt real_differentiable (atreal x)`,
REWRITE_TAC[real_differentiable] THEN
MESON_TAC[HAS_REAL_DERIVATIVE_SQRT]);;
let REAL_DIFFERENTIABLE_WITHIN_SQRT = prove
(`!s x. &0 < x ==> sqrt real_differentiable (atreal x within s)`,
MESON_TAC[REAL_DIFFERENTIABLE_ATREAL_WITHIN;
REAL_DIFFERENTIABLE_AT_SQRT]);;
let REAL_CONTINUOUS_AT_SQRT = prove
(`!x. &0 < x ==> sqrt real_continuous (atreal x)`,
MESON_TAC[HAS_REAL_DERIVATIVE_SQRT;
HAS_REAL_DERIVATIVE_IMP_CONTINUOUS_ATREAL]);;
let REAL_CONTINUOUS_WITHIN_SQRT = prove
(`!s x. &0 < x ==> sqrt real_continuous (atreal x within s)`,
MESON_TAC[REAL_CONTINUOUS_ATREAL_WITHINREAL;
REAL_CONTINUOUS_AT_SQRT]);;
let REAL_CONTINUOUS_WITHIN_SQRT_COMPOSE = prove
(`!f s a:real^N.
f real_continuous (at a within s) /\
(&0 < f a \/ !x. x IN s ==> &0 <= f x)
==> (\x. sqrt(f x)) real_continuous (at a within s)`,
REWRITE_TAC[REAL_CONTINUOUS_CONTINUOUS1; o_DEF] THEN
REWRITE_TAC[CONTINUOUS_WITHIN_SQRT_COMPOSE]);;
let REAL_CONTINUOUS_AT_SQRT_COMPOSE = prove
(`!f a:real^N.
f real_continuous (at a) /\
(&0 < f a \/ !x. &0 <= f x)
==> (\x. sqrt(f x)) real_continuous (at a)`,
REWRITE_TAC[REAL_CONTINUOUS_CONTINUOUS1; o_DEF] THEN
REWRITE_TAC[CONTINUOUS_AT_SQRT_COMPOSE]);;
let CONTINUOUS_WITHINREAL_SQRT_COMPOSE = prove
(`!f s a. (\x. lift(f x)) continuous (atreal a within s) /\
(&0 < f a \/ !x. x IN s ==> &0 <= f x)
==> (\x. lift(sqrt(f x))) continuous (atreal a within s)`,
REWRITE_TAC[CONTINUOUS_CONTINUOUS_WITHINREAL] THEN
REWRITE_TAC[o_DEF] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN
MATCH_MP_TAC CONTINUOUS_WITHIN_SQRT_COMPOSE THEN
ASM_REWRITE_TAC[FORALL_IN_IMAGE; LIFT_DROP]);;
let CONTINUOUS_ATREAL_SQRT_COMPOSE = prove
(`!f a. (\x. lift(f x)) continuous (atreal a) /\ (&0 < f a \/ !x. &0 <= f x)
==> (\x. lift(sqrt(f x))) continuous (atreal a)`,
REPEAT GEN_TAC THEN
MP_TAC(ISPECL [`f:real->real`; `(:real)`; `a:real`]
CONTINUOUS_WITHINREAL_SQRT_COMPOSE) THEN
REWRITE_TAC[WITHINREAL_UNIV; IN_UNIV]);;
let REAL_CONTINUOUS_WITHINREAL_SQRT_COMPOSE = prove
(`!f s a. f real_continuous (atreal a within s) /\
(&0 < f a \/ !x. x IN s ==> &0 <= f x)
==> (\x. sqrt(f x)) real_continuous (atreal a within s)`,
REWRITE_TAC[REAL_CONTINUOUS_CONTINUOUS1; o_DEF] THEN
REWRITE_TAC[CONTINUOUS_WITHINREAL_SQRT_COMPOSE]);;
let REAL_CONTINUOUS_ATREAL_SQRT_COMPOSE = prove
(`!f a. f real_continuous (atreal a) /\
(&0 < f a \/ !x. &0 <= f x)
==> (\x. sqrt(f x)) real_continuous (atreal a)`,
REWRITE_TAC[REAL_CONTINUOUS_CONTINUOUS1; o_DEF] THEN
REWRITE_TAC[CONTINUOUS_ATREAL_SQRT_COMPOSE]);;
let HAS_REAL_DERIVATIVE_ATN = prove
(`!x. (atn has_real_derivative inv(&1 + x pow 2)) (atreal x)`,
GEN_TAC THEN MATCH_MP_TAC HAS_COMPLEX_REAL_DERIVATIVE_AT THEN
EXISTS_TAC `catn` THEN REWRITE_TAC[CX_INV; CX_ADD; CX_ATN; CX_POW] THEN
ASM_SIMP_TAC[HAS_COMPLEX_DERIVATIVE_AT_WITHIN; HAS_COMPLEX_DERIVATIVE_CATN;
IM_CX; REAL_ABS_NUM; REAL_LT_01]);;
let REAL_DIFFERENTIABLE_AT_ATN = prove
(`!x. atn real_differentiable (atreal x)`,
REWRITE_TAC[real_differentiable] THEN
MESON_TAC[HAS_REAL_DERIVATIVE_ATN]);;
let REAL_DIFFERENTIABLE_WITHIN_ATN = prove
(`!s x. atn real_differentiable (atreal x within s)`,
MESON_TAC[REAL_DIFFERENTIABLE_ATREAL_WITHIN;
REAL_DIFFERENTIABLE_AT_ATN]);;
let REAL_CONTINUOUS_AT_ATN = prove
(`!x. atn real_continuous (atreal x)`,
MESON_TAC[HAS_REAL_DERIVATIVE_ATN;
HAS_REAL_DERIVATIVE_IMP_CONTINUOUS_ATREAL]);;
let REAL_CONTINUOUS_WITHIN_ATN = prove
(`!s x. atn real_continuous (atreal x within s)`,
MESON_TAC[REAL_CONTINUOUS_ATREAL_WITHINREAL;
REAL_CONTINUOUS_AT_ATN]);;
let REAL_CONTINUOUS_ON_ATN = prove
(`!s. atn real_continuous_on s`,
REWRITE_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN;
REAL_CONTINUOUS_WITHIN_ATN]);;
let HAS_REAL_DERIVATIVE_ASN_COS = prove
(`!x. abs(x) < &1 ==> (asn has_real_derivative inv(cos(asn x))) (atreal x)`,
REPEAT STRIP_TAC THEN
MATCH_MP_TAC HAS_COMPLEX_REAL_DERIVATIVE_AT_GEN THEN
MAP_EVERY EXISTS_TAC [`casn`; `&1 - abs x`] THEN
ASM_REWRITE_TAC[REAL_SUB_LT] THEN REPEAT STRIP_TAC THENL
[ASM_SIMP_TAC[CX_INV; CX_COS; CX_ASN; REAL_LT_IMP_LE] THEN
MATCH_MP_TAC HAS_COMPLEX_DERIVATIVE_AT_WITHIN THEN
MATCH_MP_TAC HAS_COMPLEX_DERIVATIVE_CASN THEN ASM_REWRITE_TAC[RE_CX];
MATCH_MP_TAC(GSYM CX_ASN) THEN ASM_REAL_ARITH_TAC]);;
let HAS_REAL_DERIVATIVE_ASN = prove
(`!x. abs(x) < &1
==> (asn has_real_derivative inv(sqrt(&1 - x pow 2))) (atreal x)`,
REPEAT STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP HAS_REAL_DERIVATIVE_ASN_COS) THEN
MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN
AP_TERM_TAC THEN MATCH_MP_TAC COS_ASN THEN ASM_REAL_ARITH_TAC);;
let REAL_DIFFERENTIABLE_AT_ASN = prove
(`!x. abs(x) < &1 ==> asn real_differentiable (atreal x)`,
REWRITE_TAC[real_differentiable] THEN
MESON_TAC[HAS_REAL_DERIVATIVE_ASN]);;
let REAL_DIFFERENTIABLE_WITHIN_ASN = prove
(`!s x. abs(x) < &1 ==> asn real_differentiable (atreal x within s)`,
MESON_TAC[REAL_DIFFERENTIABLE_ATREAL_WITHIN;
REAL_DIFFERENTIABLE_AT_ASN]);;
let REAL_CONTINUOUS_AT_ASN = prove
(`!x. abs(x) < &1 ==> asn real_continuous (atreal x)`,
MESON_TAC[HAS_REAL_DERIVATIVE_ASN;
HAS_REAL_DERIVATIVE_IMP_CONTINUOUS_ATREAL]);;
let REAL_CONTINUOUS_WITHIN_ASN = prove
(`!s x. abs(x) < &1 ==> asn real_continuous (atreal x within s)`,
MESON_TAC[REAL_CONTINUOUS_ATREAL_WITHINREAL;
REAL_CONTINUOUS_AT_ASN]);;
let HAS_REAL_DERIVATIVE_ACS_SIN = prove
(`!x. abs(x) < &1 ==> (acs has_real_derivative --inv(sin(acs x))) (atreal x)`,
REPEAT STRIP_TAC THEN
MATCH_MP_TAC HAS_COMPLEX_REAL_DERIVATIVE_AT_GEN THEN
MAP_EVERY EXISTS_TAC [`cacs`; `&1 - abs x`] THEN
ASM_REWRITE_TAC[REAL_SUB_LT] THEN REPEAT STRIP_TAC THENL
[ASM_SIMP_TAC[CX_INV; CX_SIN; CX_ACS; CX_NEG; REAL_LT_IMP_LE] THEN
MATCH_MP_TAC HAS_COMPLEX_DERIVATIVE_AT_WITHIN THEN
MATCH_MP_TAC HAS_COMPLEX_DERIVATIVE_CACS THEN ASM_REWRITE_TAC[RE_CX];
MATCH_MP_TAC(GSYM CX_ACS) THEN ASM_REAL_ARITH_TAC]);;
let HAS_REAL_DERIVATIVE_ACS = prove
(`!x. abs(x) < &1
==> (acs has_real_derivative --inv(sqrt(&1 - x pow 2))) (atreal x)`,
REPEAT STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP HAS_REAL_DERIVATIVE_ACS_SIN) THEN
MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN
AP_TERM_TAC THEN AP_TERM_TAC THEN
MATCH_MP_TAC SIN_ACS THEN ASM_REAL_ARITH_TAC);;
let REAL_DIFFERENTIABLE_AT_ACS = prove
(`!x. abs(x) < &1 ==> acs real_differentiable (atreal x)`,
REWRITE_TAC[real_differentiable] THEN
MESON_TAC[HAS_REAL_DERIVATIVE_ACS]);;
let REAL_DIFFERENTIABLE_WITHIN_ACS = prove
(`!s x. abs(x) < &1 ==> acs real_differentiable (atreal x within s)`,
MESON_TAC[REAL_DIFFERENTIABLE_ATREAL_WITHIN;
REAL_DIFFERENTIABLE_AT_ACS]);;
let REAL_CONTINUOUS_AT_ACS = prove
(`!x. abs(x) < &1 ==> acs real_continuous (atreal x)`,
MESON_TAC[HAS_REAL_DERIVATIVE_ACS;
HAS_REAL_DERIVATIVE_IMP_CONTINUOUS_ATREAL]);;
let REAL_CONTINUOUS_WITHIN_ACS = prove
(`!s x. abs(x) < &1 ==> acs real_continuous (atreal x within s)`,
MESON_TAC[REAL_CONTINUOUS_ATREAL_WITHINREAL;
REAL_CONTINUOUS_AT_ACS]);;
(* ------------------------------------------------------------------------- *)
(* Hence differentiation of the norm. *)
(* ------------------------------------------------------------------------- *)
let DIFFERENTIABLE_NORM_AT = prove
(`!a:real^N. ~(a = vec 0) ==> (\x. lift(norm x)) differentiable (at a)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[vector_norm] THEN
SUBGOAL_THEN
`(\x:real^N. lift(sqrt(x dot x))) =
(lift o sqrt o drop) o (\x. lift(x dot x))`
SUBST1_TAC THENL [REWRITE_TAC[o_DEF; LIFT_DROP]; ALL_TAC] THEN
MATCH_MP_TAC DIFFERENTIABLE_CHAIN_AT THEN
REWRITE_TAC[DIFFERENTIABLE_SQNORM_AT; GSYM NORM_POW_2] THEN
MP_TAC(ISPEC `norm(a:real^N) pow 2` REAL_DIFFERENTIABLE_AT_SQRT) THEN
ASM_SIMP_TAC[REAL_POW_LT; NORM_POS_LT; REAL_DIFFERENTIABLE_AT]);;
let DIFFERENTIABLE_ON_NORM = prove
(`!s:real^N->bool. ~(vec 0 IN s) ==> (\x. lift(norm x)) differentiable_on s`,
REPEAT STRIP_TAC THEN
MATCH_MP_TAC DIFFERENTIABLE_AT_IMP_DIFFERENTIABLE_ON THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC DIFFERENTIABLE_NORM_AT THEN
ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Some somewhat sharper continuity theorems including endpoints. *)
(* ------------------------------------------------------------------------- *)
let REAL_CONTINUOUS_WITHIN_SQRT_STRONG = prove
(`!x. sqrt real_continuous (atreal x within {t | &0 <= t})`,
GEN_TAC THEN REWRITE_TAC[REAL_COMPLEX_CONTINUOUS_WITHINREAL] THEN
ASM_CASES_TAC `x IN {t | &0 <= t}` THENL
[MATCH_MP_TAC CONTINUOUS_TRANSFORM_WITHIN THEN
MAP_EVERY EXISTS_TAC [`csqrt`; `&1`] THEN
REWRITE_TAC[IMAGE_CX; IN_ELIM_THM; REAL_LT_01;
CONTINUOUS_WITHIN_CSQRT_POSREAL;
SET_RULE `real INTER {z | real z /\ P z} = {z | real z /\ P z}`] THEN
RULE_ASSUM_TAC(REWRITE_RULE[IN_ELIM_THM]) THEN
ASM_REWRITE_TAC[REAL_CX; RE_CX; IMP_CONJ; FORALL_REAL; o_THM] THEN
SIMP_TAC[CX_SQRT];
MATCH_MP_TAC CONTINUOUS_WITHIN_CLOSED_NONTRIVIAL THEN CONJ_TAC THENL
[SUBGOAL_THEN `real INTER IMAGE Cx {t | &0 <= t} =
real INTER {t | Re t >= &0}`
(fun th -> SIMP_TAC[th; CLOSED_INTER; CLOSED_REAL;
CLOSED_HALFSPACE_RE_GE]) THEN
REWRITE_TAC[EXTENSION; IMAGE_CX; IN_ELIM_THM; IN_CBALL; IN_INTER] THEN
REWRITE_TAC[real_ge; IN; CONJ_ACI];
MATCH_MP_TAC(SET_RULE
`(!x y. f x = f y ==> x = y) /\ ~(x IN s)
==> ~(f x IN t INTER IMAGE f s)`) THEN
ASM_REWRITE_TAC[CX_INJ]]]);;
let REAL_CONTINUOUS_ON_SQRT = prove
(`!s. (!x. x IN s ==> &0 <= x) ==> sqrt real_continuous_on s`,
REWRITE_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_CONTINUOUS_WITHINREAL_SUBSET THEN
EXISTS_TAC `{x | &0 <= x}` THEN
ASM_REWRITE_TAC[SUBSET; IN_ELIM_THM; REAL_CONTINUOUS_WITHIN_SQRT_STRONG]);;
let REAL_CONTINUOUS_WITHIN_ASN_STRONG = prove
(`!x. asn real_continuous (atreal x within {t | abs(t) <= &1})`,
GEN_TAC THEN REWRITE_TAC[REAL_COMPLEX_CONTINUOUS_WITHINREAL] THEN
ASM_CASES_TAC `x IN {t | abs(t) <= &1}` THENL
[MATCH_MP_TAC CONTINUOUS_TRANSFORM_WITHIN THEN
MAP_EVERY EXISTS_TAC [`casn`; `&1`] THEN
REWRITE_TAC[IMAGE_CX; IN_ELIM_THM; CONTINUOUS_WITHIN_CASN_REAL; REAL_LT_01;
SET_RULE `real INTER {z | real z /\ P z} = {z | real z /\ P z}`] THEN
RULE_ASSUM_TAC(REWRITE_RULE[IN_ELIM_THM]) THEN
ASM_REWRITE_TAC[REAL_CX; RE_CX; IMP_CONJ; FORALL_REAL; o_THM] THEN
SIMP_TAC[CX_ASN];
MATCH_MP_TAC CONTINUOUS_WITHIN_CLOSED_NONTRIVIAL THEN CONJ_TAC THENL
[SUBGOAL_THEN `real INTER IMAGE Cx {t | abs t <= &1} =
real INTER cball(Cx(&0),&1)`
(fun th -> SIMP_TAC[th; CLOSED_INTER; CLOSED_REAL; CLOSED_CBALL]) THEN
REWRITE_TAC[EXTENSION; IMAGE_CX; IN_ELIM_THM; IN_CBALL; IN_INTER] THEN
REWRITE_TAC[dist; COMPLEX_SUB_LZERO; NORM_NEG; IN] THEN
MESON_TAC[REAL_NORM];
MATCH_MP_TAC(SET_RULE
`(!x y. f x = f y ==> x = y) /\ ~(x IN s)
==> ~(f x IN t INTER IMAGE f s)`) THEN
ASM_REWRITE_TAC[CX_INJ]]]);;
let REAL_CONTINUOUS_ON_ASN = prove
(`!s. (!x. x IN s ==> abs(x) <= &1) ==> asn real_continuous_on s`,
REWRITE_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_CONTINUOUS_WITHINREAL_SUBSET THEN
EXISTS_TAC `{x | abs(x) <= &1}` THEN
ASM_REWRITE_TAC[SUBSET; IN_ELIM_THM; REAL_CONTINUOUS_WITHIN_ASN_STRONG]);;
let REAL_CONTINUOUS_WITHIN_ACS_STRONG = prove
(`!x. acs real_continuous (atreal x within {t | abs(t) <= &1})`,
GEN_TAC THEN REWRITE_TAC[REAL_COMPLEX_CONTINUOUS_WITHINREAL] THEN
ASM_CASES_TAC `x IN {t | abs(t) <= &1}` THENL
[MATCH_MP_TAC CONTINUOUS_TRANSFORM_WITHIN THEN
MAP_EVERY EXISTS_TAC [`cacs`; `&1`] THEN
REWRITE_TAC[IMAGE_CX; IN_ELIM_THM; CONTINUOUS_WITHIN_CACS_REAL; REAL_LT_01;
SET_RULE `real INTER {z | real z /\ P z} = {z | real z /\ P z}`] THEN
RULE_ASSUM_TAC(REWRITE_RULE[IN_ELIM_THM]) THEN
ASM_REWRITE_TAC[REAL_CX; RE_CX; IMP_CONJ; FORALL_REAL; o_THM] THEN
SIMP_TAC[CX_ACS];
MATCH_MP_TAC CONTINUOUS_WITHIN_CLOSED_NONTRIVIAL THEN CONJ_TAC THENL
[SUBGOAL_THEN `real INTER IMAGE Cx {t | abs t <= &1} =
real INTER cball(Cx(&0),&1)`
(fun th -> SIMP_TAC[th; CLOSED_INTER; CLOSED_REAL; CLOSED_CBALL]) THEN
REWRITE_TAC[EXTENSION; IMAGE_CX; IN_ELIM_THM; IN_CBALL; IN_INTER] THEN
REWRITE_TAC[dist; COMPLEX_SUB_LZERO; NORM_NEG; IN] THEN
MESON_TAC[REAL_NORM];
MATCH_MP_TAC(SET_RULE
`(!x y. f x = f y ==> x = y) /\ ~(x IN s)
==> ~(f x IN t INTER IMAGE f s)`) THEN
ASM_REWRITE_TAC[CX_INJ]]]);;
let REAL_CONTINUOUS_ON_ACS = prove
(`!s. (!x. x IN s ==> abs(x) <= &1) ==> acs real_continuous_on s`,
REWRITE_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_CONTINUOUS_WITHINREAL_SUBSET THEN
EXISTS_TAC `{x | abs(x) <= &1}` THEN
ASM_REWRITE_TAC[SUBSET; IN_ELIM_THM; REAL_CONTINUOUS_WITHIN_ACS_STRONG]);;
(* ------------------------------------------------------------------------- *)
(* Differentiation conversion. *)
(* ------------------------------------------------------------------------- *)
let real_differentiation_theorems = ref [];;
let add_real_differentiation_theorems =
let ETA_THM = prove
(`(f has_real_derivative f') net <=>
((\x. f x) has_real_derivative f') net`,
REWRITE_TAC[ETA_AX]) in
let ETA_TWEAK =
PURE_REWRITE_RULE [IMP_CONJ] o
GEN_REWRITE_RULE (LAND_CONV o ONCE_DEPTH_CONV) [ETA_THM] o
SPEC_ALL in
fun l -> real_differentiation_theorems :=
!real_differentiation_theorems @ map ETA_TWEAK l;;
add_real_differentiation_theorems
([HAS_REAL_DERIVATIVE_LMUL_WITHIN; HAS_REAL_DERIVATIVE_LMUL_ATREAL;
HAS_REAL_DERIVATIVE_RMUL_WITHIN; HAS_REAL_DERIVATIVE_RMUL_ATREAL;
HAS_REAL_DERIVATIVE_CDIV_WITHIN; HAS_REAL_DERIVATIVE_CDIV_ATREAL;
HAS_REAL_DERIVATIVE_ID;
HAS_REAL_DERIVATIVE_CONST;
HAS_REAL_DERIVATIVE_NEG;
HAS_REAL_DERIVATIVE_ADD;
HAS_REAL_DERIVATIVE_SUB;
HAS_REAL_DERIVATIVE_MUL_WITHIN; HAS_REAL_DERIVATIVE_MUL_ATREAL;
HAS_REAL_DERIVATIVE_DIV_WITHIN; HAS_REAL_DERIVATIVE_DIV_ATREAL;
HAS_REAL_DERIVATIVE_POW_WITHIN; HAS_REAL_DERIVATIVE_POW_ATREAL;
HAS_REAL_DERIVATIVE_INV_WITHIN; HAS_REAL_DERIVATIVE_INV_ATREAL] @
(CONJUNCTS(REWRITE_RULE[FORALL_AND_THM]
(MATCH_MP HAS_REAL_DERIVATIVE_CHAIN_UNIV
HAS_REAL_DERIVATIVE_EXP))) @
(CONJUNCTS(REWRITE_RULE[FORALL_AND_THM]
(MATCH_MP HAS_REAL_DERIVATIVE_CHAIN_UNIV
HAS_REAL_DERIVATIVE_SIN))) @
(CONJUNCTS(REWRITE_RULE[FORALL_AND_THM]
(MATCH_MP HAS_REAL_DERIVATIVE_CHAIN_UNIV
HAS_REAL_DERIVATIVE_COS))) @
(CONJUNCTS(REWRITE_RULE[FORALL_AND_THM]
(MATCH_MP HAS_REAL_DERIVATIVE_CHAIN
HAS_REAL_DERIVATIVE_TAN))) @
(CONJUNCTS(REWRITE_RULE[FORALL_AND_THM]
(MATCH_MP HAS_REAL_DERIVATIVE_CHAIN
HAS_REAL_DERIVATIVE_LOG))) @
(CONJUNCTS(REWRITE_RULE[FORALL_AND_THM]
(MATCH_MP HAS_REAL_DERIVATIVE_CHAIN
HAS_REAL_DERIVATIVE_SQRT))) @
(CONJUNCTS(REWRITE_RULE[FORALL_AND_THM]
(MATCH_MP HAS_REAL_DERIVATIVE_CHAIN_UNIV
HAS_REAL_DERIVATIVE_ATN))) @
(CONJUNCTS(REWRITE_RULE[FORALL_AND_THM]
(MATCH_MP HAS_REAL_DERIVATIVE_CHAIN
HAS_REAL_DERIVATIVE_ASN))) @
(CONJUNCTS(REWRITE_RULE[FORALL_AND_THM]
(MATCH_MP HAS_REAL_DERIVATIVE_CHAIN
HAS_REAL_DERIVATIVE_ACS))));;
let rec REAL_DIFF_CONV =
let partfn tm = let l,r = dest_comb tm in mk_pair(lhand l,r)
and is_deriv = can (term_match [] `(f has_real_derivative f') net`) in
let rec REAL_DIFF_CONV tm =
try tryfind (fun th -> PART_MATCH partfn th (partfn tm))
(!real_differentiation_theorems)
with Failure _ ->
let ith = tryfind (fun th ->
PART_MATCH (partfn o repeat (snd o dest_imp)) th (partfn tm))
(!real_differentiation_theorems) in
REAL_DIFF_ELIM ith
and REAL_DIFF_ELIM th =
let tm = concl th in
if not(is_imp tm) then th else
let t = lhand tm in
if not(is_deriv t) then UNDISCH th
else REAL_DIFF_ELIM (MATCH_MP th (REAL_DIFF_CONV t)) in
REAL_DIFF_CONV;;
(* ------------------------------------------------------------------------- *)
(* Hence a tactic. *)
(* ------------------------------------------------------------------------- *)
let REAL_DIFF_TAC =
let pth = MESON[]
`(f has_real_derivative f') net
==> f' = g'
==> (f has_real_derivative g') net` in
W(fun (asl,w) -> let th = MATCH_MP pth (REAL_DIFF_CONV w) in
MATCH_MP_TAC(repeat (GEN_REWRITE_RULE I [IMP_IMP]) (DISCH_ALL th)));;
let REAL_DIFFERENTIABLE_TAC =
let DISCH_FIRST th = DISCH (hd(hyp th)) th in
GEN_REWRITE_TAC I [real_differentiable] THEN
W(fun (asl,w) ->
let th = REAL_DIFF_CONV(snd(dest_exists w)) in
let f' = rand(rator(concl th)) in
EXISTS_TAC f' THEN
(if hyp th = [] then MATCH_ACCEPT_TAC th else
let th' = repeat (GEN_REWRITE_RULE I [IMP_IMP] o DISCH_FIRST)
(DISCH_FIRST th) in
MATCH_MP_TAC th'));;
(* ------------------------------------------------------------------------- *)
(* Analytic results for real power function. *)
(* ------------------------------------------------------------------------- *)
let REALLIM_RPOW_COMPOSE = prove
(`!net:A net f g l m.
(f ---> l) net /\ (g ---> m) net /\ &0 < l
==> ((\x. (f x) rpow (g x)) ---> l rpow m) net`,
REPEAT STRIP_TAC THEN
MATCH_MP_TAC REALLIM_TRANSFORM_EVENTUALLY THEN
EXISTS_TAC `\x:A. exp(g x * log(f x))` THEN CONJ_TAC THENL
[MATCH_MP_TAC EVENTUALLY_MONO THEN
EXISTS_TAC `\x:A. &0 < f x` THEN SIMP_TAC[rpow] THEN
UNDISCH_TAC `(f ---> l) (net:A net)` THEN
REWRITE_TAC[tendsto_real] THEN
DISCH_THEN(MP_TAC o SPEC `l:real`) THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN
REAL_ARITH_TAC;
ASM_REWRITE_TAC[rpow] THEN
MATCH_MP_TAC(SPEC `exp` REALLIM_REAL_CONTINUOUS_FUNCTION) THEN
REWRITE_TAC[REAL_CONTINUOUS_AT_EXP] THEN
MATCH_MP_TAC REALLIM_MUL THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC(SPEC `log` REALLIM_REAL_CONTINUOUS_FUNCTION) THEN
ASM_SIMP_TAC[REAL_CONTINUOUS_AT_LOG]]);;
let REAL_CONTINUOUS_RPOW_COMPOSE_WITHIN = prove
(`!f g s a:real^N.
f real_continuous (at a within s) /\
g real_continuous (at a within s) /\
&0 < f a
==> (\x. (f x) rpow (g x)) real_continuous (at a within s)`,
REWRITE_TAC[REAL_CONTINUOUS_WITHIN; REALLIM_RPOW_COMPOSE]);;
let HAS_REAL_DERIVATIVE_RPOW = prove
(`!x y.
&0 < x
==> ((\x. x rpow y) has_real_derivative y * x rpow (y - &1)) (atreal x)`,
REPEAT STRIP_TAC THEN
MATCH_MP_TAC HAS_REAL_DERIVATIVE_TRANSFORM_ATREAL THEN
EXISTS_TAC `\x. exp(y * log x)` THEN EXISTS_TAC `x:real` THEN
ASM_SIMP_TAC[rpow; REAL_ARITH
`&0 < x ==> (abs(y - x) < x <=> &0 < y /\ y < &2 * x)`] THEN
REAL_DIFF_TAC THEN
ASM_SIMP_TAC[REAL_SUB_RDISTRIB; REAL_EXP_SUB; REAL_MUL_LID; EXP_LOG] THEN
REAL_ARITH_TAC);;
add_real_differentiation_theorems
(CONJUNCTS(REWRITE_RULE[FORALL_AND_THM]
(GEN `y:real` (MATCH_MP HAS_REAL_DERIVATIVE_CHAIN
(SPEC `y:real`
(ONCE_REWRITE_RULE[SWAP_FORALL_THM] HAS_REAL_DERIVATIVE_RPOW))))));;
let HAS_REAL_DERIVATIVE_RPOW_RIGHT = prove
(`!a x. &0 < a
==> ((\x. a rpow x) has_real_derivative log(a) * a rpow x)
(atreal x)`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[rpow] THEN
REAL_DIFF_TAC THEN REAL_ARITH_TAC);;
add_real_differentiation_theorems
(CONJUNCTS(REWRITE_RULE[FORALL_AND_THM]
(MATCH_MP HAS_REAL_DERIVATIVE_CHAIN
(SPEC `a:real` HAS_REAL_DERIVATIVE_RPOW_RIGHT))));;
let REAL_DIFFERENTIABLE_AT_RPOW = prove
(`!x y. ~(x = &0) ==> (\x. x rpow y) real_differentiable atreal x`,
REPEAT GEN_TAC THEN
REWRITE_TAC[REAL_ARITH `~(x = &0) <=> &0 < x \/ &0 < --x`] THEN
STRIP_TAC THEN MATCH_MP_TAC REAL_DIFFERENTIABLE_TRANSFORM_ATREAL THEN
REWRITE_TAC[] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN
EXISTS_TAC `abs x` THENL
[EXISTS_TAC `\x. exp(y * log x)` THEN
ASM_SIMP_TAC[REAL_ARITH `&0 < x ==> &0 < abs x`] THEN CONJ_TAC THENL
[X_GEN_TAC `z:real` THEN DISCH_TAC THEN
SUBGOAL_THEN `&0 < z` (fun th -> REWRITE_TAC[rpow; th]) THEN
ASM_REAL_ARITH_TAC;
REAL_DIFFERENTIABLE_TAC THEN ASM_REAL_ARITH_TAC];
ASM_CASES_TAC `?m n. ODD m /\ ODD n /\ abs y = &m / &n` THENL
[EXISTS_TAC `\x. --(exp(y * log(--x)))`;
EXISTS_TAC `\x. exp(y * log(--x))`] THEN
(ASM_SIMP_TAC[REAL_ARITH `&0 < --x ==> &0 < abs x`] THEN CONJ_TAC THENL
[X_GEN_TAC `z:real` THEN DISCH_TAC THEN
SUBGOAL_THEN `~(&0 < z) /\ ~(z = &0)`
(fun th -> ASM_REWRITE_TAC[rpow; th]) THEN
ASM_REAL_ARITH_TAC;
REAL_DIFFERENTIABLE_TAC THEN ASM_REAL_ARITH_TAC])]);;
let REAL_DIFFERENTIABLE_AT_RPOW_RIGHT = prove
(`!a x. &0 < a ==> (\x. a rpow x) real_differentiable (atreal x)`,
REWRITE_TAC[real_differentiable] THEN
MESON_TAC[HAS_REAL_DERIVATIVE_RPOW_RIGHT]);;
let REAL_CONTINUOUS_AT_RPOW = prove
(`!x y. (x = &0 ==> &0 <= y)
==> (\x. x rpow y) real_continuous (atreal x)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `y = &0` THEN
ASM_REWRITE_TAC[RPOW_POW; real_pow; REAL_CONTINUOUS_CONST] THEN
ASM_CASES_TAC `x = &0` THENL
[ASM_REWRITE_TAC[real_continuous_atreal; RPOW_ZERO] THEN
REWRITE_TAC[REAL_SUB_RZERO; REAL_ABS_RPOW] THEN STRIP_TAC THEN
X_GEN_TAC `e:real` THEN DISCH_TAC THEN EXISTS_TAC `e rpow inv(y)` THEN
ASM_SIMP_TAC[RPOW_POS_LT] THEN X_GEN_TAC `z:real` THEN DISCH_TAC THEN
MATCH_MP_TAC REAL_LTE_TRANS THEN
EXISTS_TAC `e rpow inv y rpow y` THEN CONJ_TAC THENL
[MATCH_MP_TAC RPOW_LT2 THEN ASM_REAL_ARITH_TAC;
ASM_SIMP_TAC[RPOW_RPOW; REAL_LT_IMP_LE; REAL_MUL_LINV] THEN
REWRITE_TAC[RPOW_POW; REAL_POW_1; REAL_LE_REFL]];
ASM_SIMP_TAC[REAL_DIFFERENTIABLE_IMP_CONTINUOUS_ATREAL;
REAL_DIFFERENTIABLE_AT_RPOW]]);;
let REAL_CONTINUOUS_WITHIN_RPOW = prove
(`!s x y. (x = &0 ==> &0 <= y)
==> (\x. x rpow y) real_continuous (atreal x within s)`,
MESON_TAC[REAL_CONTINUOUS_ATREAL_WITHINREAL;
REAL_CONTINUOUS_AT_RPOW]);;
let REAL_CONTINUOUS_ON_RPOW = prove
(`!s y. (&0 IN s ==> &0 <= y) ==> (\x. x rpow y) real_continuous_on s`,
REWRITE_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_CONTINUOUS_WITHIN_RPOW THEN
ASM_MESON_TAC[]);;
let REAL_CONTINUOUS_AT_RPOW_RIGHT = prove
(`!a x. &0 < a ==> (\x. a rpow x) real_continuous (atreal x)`,
SIMP_TAC[REAL_DIFFERENTIABLE_IMP_CONTINUOUS_ATREAL;
REAL_DIFFERENTIABLE_AT_RPOW_RIGHT]);;
let REALLIM_RPOW = prove
(`!net f l n.
(f ---> l) net /\ (l = &0 ==> &0 <= n)
==> ((\x. f x rpow n) ---> l rpow n) net`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC
(REWRITE_RULE[] (ISPEC `\x. x rpow n` REALLIM_REAL_CONTINUOUS_FUNCTION)) THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_CONTINUOUS_AT_RPOW THEN
ASM_REWRITE_TAC[]);;
let REALLIM_NULL_POW_EQ = prove
(`!net f n.
~(n = 0)
==> (((\x. f x pow n) ---> &0) net <=> (f ---> &0) net)`,
REPEAT STRIP_TAC THEN EQ_TAC THEN ASM_SIMP_TAC[REALLIM_NULL_POW] THEN
DISCH_THEN(MP_TAC o ISPEC `(\x. x rpow (inv(&n))) o abs` o
MATCH_MP(REWRITE_RULE[IMP_CONJ_ALT] REALLIM_REAL_CONTINUOUS_FUNCTION)) THEN
REWRITE_TAC[o_THM] THEN
ASM_REWRITE_TAC[RPOW_ZERO; REAL_INV_EQ_0; REAL_OF_NUM_EQ; REAL_ABS_NUM] THEN
SIMP_TAC[GSYM RPOW_POW; RPOW_RPOW; REAL_ABS_POS; REAL_ABS_RPOW] THEN
ASM_SIMP_TAC[REAL_MUL_RINV; REAL_OF_NUM_EQ] THEN
REWRITE_TAC[REALLIM_NULL_ABS; RPOW_POW; REAL_POW_1] THEN
DISCH_THEN MATCH_MP_TAC THEN
ONCE_REWRITE_TAC[GSYM WITHINREAL_UNIV] THEN
MATCH_MP_TAC REAL_CONTINUOUS_WITHINREAL_COMPOSE THEN CONJ_TAC THENL
[GEN_REWRITE_TAC LAND_CONV [GSYM ETA_AX] THEN
MATCH_MP_TAC REAL_CONTINUOUS_ABS THEN
REWRITE_TAC[REAL_CONTINUOUS_WITHIN_ID];
MATCH_MP_TAC REAL_CONTINUOUS_WITHIN_RPOW THEN
REWRITE_TAC[REAL_LE_INV_EQ; REAL_POS]]);;
let LIM_NULL_COMPLEX_POW_EQ = prove
(`!net f n.
~(n = 0)
==> (((\x. f x pow n) --> Cx(&0)) net <=> (f --> Cx(&0)) net)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM COMPLEX_VEC_0] THEN
ONCE_REWRITE_TAC[LIM_NULL_NORM] THEN
REWRITE_TAC[COMPLEX_NORM_POW; REAL_TENDSTO; o_DEF; LIFT_DROP] THEN
ASM_SIMP_TAC[REALLIM_NULL_POW_EQ; DROP_VEC]);;
let LIM_NULL_RPOW = prove
(`!net p x:A->real.
((lift o x) --> vec 0) net /\ &0 < p
==> ((\i. lift(x(i) rpow p)) --> vec 0) net`,
REPEAT GEN_TAC THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
DISCH_THEN(MP_TAC o ISPEC `lift o (\x. x rpow p) o drop` o
MATCH_MP(REWRITE_RULE[IMP_CONJ_ALT] LIM_CONTINUOUS_FUNCTION)) THEN
ASM_SIMP_TAC[o_THM; DROP_VEC; RPOW_ZERO; REAL_LT_IMP_NZ; LIFT_NUM] THEN
REWRITE_TAC[LIFT_DROP] THEN DISCH_THEN MATCH_MP_TAC THEN
GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM LIFT_DROP] THEN
REWRITE_TAC[GSYM REAL_CONTINUOUS_CONTINUOUS_ATREAL] THEN
MATCH_MP_TAC REAL_CONTINUOUS_AT_RPOW THEN
REWRITE_TAC[REAL_LE_INV_EQ] THEN ASM_REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Analytic result for "frac". *)
(* ------------------------------------------------------------------------- *)
let HAS_REAL_DERIVATIVE_FRAC = prove
(`!x. ~(integer x) ==> (frac has_real_derivative (&1)) (atreal x)`,
REPEAT STRIP_TAC THEN
MATCH_MP_TAC HAS_REAL_DERIVATIVE_TRANSFORM_ATREAL THEN
EXISTS_TAC `\y. y - floor x` THEN
EXISTS_TAC `min (frac x) (floor x + &1 - x)` THEN
ASM_REWRITE_TAC[REAL_LT_MIN; REAL_FRAC_POS_LT] THEN
REWRITE_TAC[REAL_ARITH `&0 < x + &1 - y <=> y < x + &1`; FLOOR] THEN
CONJ_TAC THENL [ALL_TAC; REAL_DIFF_TAC THEN REAL_ARITH_TAC] THEN
X_GEN_TAC `y:real` THEN DISCH_TAC THEN CONV_TAC SYM_CONV THEN
REWRITE_TAC[GSYM FRAC_UNIQUE; REAL_ARITH `y - (y - x):real = x`] THEN
MP_TAC(SPEC `x:real` FLOOR_FRAC) THEN SIMP_TAC[] THEN ASM_REAL_ARITH_TAC);;
let REAL_DIFFERENTIABLE_FRAC = prove
(`!x. ~(integer x) ==> frac real_differentiable (atreal x)`,
REWRITE_TAC[real_differentiable] THEN
MESON_TAC[HAS_REAL_DERIVATIVE_FRAC]);;
add_real_differentiation_theorems
(CONJUNCTS(REWRITE_RULE[FORALL_AND_THM]
(MATCH_MP HAS_REAL_DERIVATIVE_CHAIN HAS_REAL_DERIVATIVE_FRAC)));;
(* ------------------------------------------------------------------------- *)
(* Polynomials are differentiable and continuous. *)
(* ------------------------------------------------------------------------- *)
let REAL_DIFFERENTIABLE_POLYNOMIAL_FUNCTION_ATREAL = prove
(`!p x. polynomial_function p ==> p real_differentiable atreal x`,
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN
MATCH_MP_TAC POLYNOMIAL_FUNCTION_INDUCT THEN
SIMP_TAC[REAL_DIFFERENTIABLE_CONST; REAL_DIFFERENTIABLE_ID;
REAL_DIFFERENTIABLE_ADD; REAL_DIFFERENTIABLE_MUL_ATREAL]);;
let REAL_DIFFERENTIABLE_POLYNOMIAL_FUNCTION_WITHIN = prove
(`!p s x. polynomial_function p ==> p real_differentiable atreal x within s`,
SIMP_TAC[REAL_DIFFERENTIABLE_POLYNOMIAL_FUNCTION_ATREAL;
REAL_DIFFERENTIABLE_ATREAL_WITHIN]);;
let REAL_DIFFERENTIABLE_ON_POLYNOMIAL_FUNCTION = prove
(`!p s. polynomial_function p ==> p real_differentiable_on s`,
SIMP_TAC[REAL_DIFFERENTIABLE_ON_DIFFERENTIABLE;
REAL_DIFFERENTIABLE_POLYNOMIAL_FUNCTION_WITHIN]);;
let REAL_CONTINUOUS_POLYNOMIAL_FUNCTION_ATREAL = prove
(`!p x. polynomial_function p ==> p real_continuous atreal x`,
SIMP_TAC[REAL_DIFFERENTIABLE_IMP_CONTINUOUS_ATREAL;
REAL_DIFFERENTIABLE_POLYNOMIAL_FUNCTION_ATREAL]);;
let REAL_CONTINUOUS_POLYNOMIAL_FUNCTION_WITHIN = prove
(`!p s x. polynomial_function p ==> p real_continuous atreal x within s`,
SIMP_TAC[REAL_DIFFERENTIABLE_IMP_CONTINUOUS_WITHINREAL;
REAL_DIFFERENTIABLE_POLYNOMIAL_FUNCTION_WITHIN]);;
let REAL_CONTINUOUS_ON_POLYNOMIAL_FUNCTION = prove
(`!p s. polynomial_function p ==> p real_continuous_on s`,
SIMP_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN;
REAL_CONTINUOUS_POLYNOMIAL_FUNCTION_WITHIN]);;
(* ------------------------------------------------------------------------- *)
(* Intermediate Value Theorem. *)
(* ------------------------------------------------------------------------- *)
let REAL_IVT_INCREASING = prove
(`!f a b y.
a <= b /\ f real_continuous_on real_interval[a,b] /\
f a <= y /\ y <= f b
==> ?x. x IN real_interval [a,b] /\ f x = y`,
REWRITE_TAC[REAL_CONTINUOUS_ON; IMAGE_LIFT_REAL_INTERVAL] THEN
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`lift o f o drop`; `lift a`; `lift b`; `y:real`; `1`]
IVT_INCREASING_COMPONENT_ON_1) THEN
ASM_REWRITE_TAC[GSYM drop; o_THM; LIFT_DROP; DIMINDEX_1; LE_REFL] THEN
REWRITE_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; EXISTS_IN_IMAGE; LIFT_DROP]);;
let REAL_IVT_DECREASING = prove
(`!f a b y.
a <= b /\ f real_continuous_on real_interval[a,b] /\
f b <= y /\ y <= f a
==> ?x. x IN real_interval [a,b] /\ f x = y`,
REWRITE_TAC[REAL_CONTINUOUS_ON; IMAGE_LIFT_REAL_INTERVAL] THEN
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`lift o f o drop`; `lift a`; `lift b`; `y:real`; `1`]
IVT_DECREASING_COMPONENT_ON_1) THEN
ASM_REWRITE_TAC[GSYM drop; o_THM; LIFT_DROP; DIMINDEX_1; LE_REFL] THEN
REWRITE_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; EXISTS_IN_IMAGE; LIFT_DROP]);;
let IS_REALINTERVAL_CONTINUOUS_IMAGE = prove
(`!s. f real_continuous_on s /\ is_realinterval s
==> is_realinterval(IMAGE f s)`,
GEN_TAC THEN REWRITE_TAC[REAL_CONTINUOUS_ON; IS_REALINTERVAL_CONNECTED] THEN
DISCH_THEN(MP_TAC o MATCH_MP CONNECTED_CONTINUOUS_IMAGE) THEN
REWRITE_TAC[IMAGE_o; REWRITE_RULE[IMAGE_o] IMAGE_LIFT_DROP]);;
(* ------------------------------------------------------------------------- *)
(* Zeroness (or sign at boundary) of derivative at local extremum. *)
(* ------------------------------------------------------------------------- *)
let REAL_DERIVATIVE_POS_LEFT_MINIMUM = prove
(`!f f' a b e.
a < b /\ &0 < e /\
(f has_real_derivative f') (atreal a within real_interval[a,b]) /\
(!x. x IN real_interval[a,b] /\ abs(x - a) < e ==> f a <= f x)
==> &0 <= f'`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`lift o f o drop`; `\x:real^1. f' % x`;
`lift a`; `interval[lift a,lift b]`; `e:real`]
DROP_DIFFERENTIAL_POS_AT_MINIMUM) THEN
ASM_REWRITE_TAC[ENDS_IN_INTERVAL; CONVEX_INTERVAL; IN_INTER; IMP_CONJ] THEN
ASM_REWRITE_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; IMAGE_EQ_EMPTY;
GSYM HAS_REAL_FRECHET_DERIVATIVE_WITHIN] THEN
ASM_SIMP_TAC[FORALL_IN_IMAGE; o_THM; LIFT_DROP; IN_BALL; DIST_LIFT;
REAL_INTERVAL_NE_EMPTY; REAL_LT_IMP_LE] THEN
ANTS_TAC THENL [ASM_MESON_TAC[REAL_ABS_SUB]; ALL_TAC] THEN
DISCH_THEN(MP_TAC o SPEC `b:real`) THEN
ASM_SIMP_TAC[ENDS_IN_REAL_INTERVAL; REAL_INTERVAL_NE_EMPTY;
REAL_LT_IMP_LE] THEN
ASM_SIMP_TAC[DROP_CMUL; DROP_SUB; LIFT_DROP; REAL_LE_MUL_EQ;
REAL_SUB_LT]);;
let REAL_DERIVATIVE_NEG_LEFT_MAXIMUM = prove
(`!f f' a b e.
a < b /\ &0 < e /\
(f has_real_derivative f') (atreal a within real_interval[a,b]) /\
(!x. x IN real_interval[a,b] /\ abs(x - a) < e ==> f x <= f a)
==> f' <= &0`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`lift o f o drop`; `\x:real^1. f' % x`;
`lift a`; `interval[lift a,lift b]`; `e:real`]
DROP_DIFFERENTIAL_NEG_AT_MAXIMUM) THEN
ASM_REWRITE_TAC[ENDS_IN_INTERVAL; CONVEX_INTERVAL; IN_INTER; IMP_CONJ] THEN
ASM_REWRITE_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; IMAGE_EQ_EMPTY;
GSYM HAS_REAL_FRECHET_DERIVATIVE_WITHIN] THEN
ASM_SIMP_TAC[FORALL_IN_IMAGE; o_THM; LIFT_DROP; IN_BALL; DIST_LIFT;
REAL_INTERVAL_NE_EMPTY; REAL_LT_IMP_LE] THEN
ANTS_TAC THENL [ASM_MESON_TAC[REAL_ABS_SUB]; ALL_TAC] THEN
DISCH_THEN(MP_TAC o SPEC `b:real`) THEN
ASM_SIMP_TAC[ENDS_IN_REAL_INTERVAL; REAL_INTERVAL_NE_EMPTY;
REAL_LT_IMP_LE] THEN
ASM_SIMP_TAC[DROP_CMUL; DROP_SUB; LIFT_DROP; REAL_LE_MUL_EQ;
REAL_SUB_LT; REAL_ARITH `f * ba <= &0 <=> &0 <= --f * ba`] THEN
REAL_ARITH_TAC);;
let REAL_DERIVATIVE_POS_RIGHT_MAXIMUM = prove
(`!f f' a b e.
a < b /\ &0 < e /\
(f has_real_derivative f') (atreal b within real_interval[a,b]) /\
(!x. x IN real_interval[a,b] /\ abs(x - b) < e ==> f x <= f b)
==> &0 <= f'`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`lift o f o drop`; `\x:real^1. f' % x`;
`lift b`; `interval[lift a,lift b]`; `e:real`]
DROP_DIFFERENTIAL_NEG_AT_MAXIMUM) THEN
ASM_REWRITE_TAC[ENDS_IN_INTERVAL; CONVEX_INTERVAL; IN_INTER; IMP_CONJ] THEN
ASM_REWRITE_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; IMAGE_EQ_EMPTY;
GSYM HAS_REAL_FRECHET_DERIVATIVE_WITHIN] THEN
ASM_SIMP_TAC[FORALL_IN_IMAGE; o_THM; LIFT_DROP; IN_BALL; DIST_LIFT;
REAL_INTERVAL_NE_EMPTY; REAL_LT_IMP_LE] THEN
ANTS_TAC THENL [ASM_MESON_TAC[REAL_ABS_SUB]; ALL_TAC] THEN
DISCH_THEN(MP_TAC o SPEC `a:real`) THEN
ASM_SIMP_TAC[ENDS_IN_REAL_INTERVAL; REAL_INTERVAL_NE_EMPTY;
REAL_LT_IMP_LE] THEN
ASM_SIMP_TAC[DROP_CMUL; DROP_SUB; LIFT_DROP; REAL_LE_MUL_EQ; REAL_SUB_LT;
REAL_ARITH `f * (a - b) <= &0 <=> &0 <= f * (b - a)`]);;
let REAL_DERIVATIVE_NEG_RIGHT_MINIMUM = prove
(`!f f' a b e.
a < b /\ &0 < e /\
(f has_real_derivative f') (atreal b within real_interval[a,b]) /\
(!x. x IN real_interval[a,b] /\ abs(x - b) < e ==> f b <= f x)
==> f' <= &0`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`lift o f o drop`; `\x:real^1. f' % x`;
`lift b`; `interval[lift a,lift b]`; `e:real`]
DROP_DIFFERENTIAL_POS_AT_MINIMUM) THEN
ASM_REWRITE_TAC[ENDS_IN_INTERVAL; CONVEX_INTERVAL; IN_INTER; IMP_CONJ] THEN
ASM_REWRITE_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; IMAGE_EQ_EMPTY;
GSYM HAS_REAL_FRECHET_DERIVATIVE_WITHIN] THEN
ASM_SIMP_TAC[FORALL_IN_IMAGE; o_THM; LIFT_DROP; IN_BALL; DIST_LIFT;
REAL_INTERVAL_NE_EMPTY; REAL_LT_IMP_LE] THEN
ANTS_TAC THENL [ASM_MESON_TAC[REAL_ABS_SUB]; ALL_TAC] THEN
DISCH_THEN(MP_TAC o SPEC `a:real`) THEN
ASM_SIMP_TAC[ENDS_IN_REAL_INTERVAL; REAL_INTERVAL_NE_EMPTY;
REAL_LT_IMP_LE] THEN
ASM_SIMP_TAC[DROP_CMUL; DROP_SUB; LIFT_DROP] THEN
ONCE_REWRITE_TAC[REAL_ARITH `&0 <= f * (a - b) <=> &0 <= --f * (b - a)`] THEN
ASM_SIMP_TAC[REAL_LE_MUL_EQ; REAL_SUB_LT] THEN REAL_ARITH_TAC);;
let REAL_DERIVATIVE_ZERO_MAXMIN = prove
(`!f f' x s.
x IN s /\ real_open s /\
(f has_real_derivative f') (atreal x) /\
((!y. y IN s ==> f y <= f x) \/ (!y. y IN s ==> f x <= f y))
==> f' = &0`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`lift o f o drop`; `\x:real^1. f' % x`;
`lift x`; `IMAGE lift s`]
DIFFERENTIAL_ZERO_MAXMIN) THEN
ASM_REWRITE_TAC[GSYM HAS_REAL_FRECHET_DERIVATIVE_AT; GSYM REAL_OPEN] THEN
ASM_SIMP_TAC[FUN_IN_IMAGE; FORALL_IN_IMAGE] THEN
ASM_REWRITE_TAC[o_DEF; LIFT_DROP] THEN
DISCH_THEN(MP_TAC o C AP_THM `vec 1:real^1`) THEN
REWRITE_TAC[GSYM DROP_EQ; DROP_CMUL; DROP_VEC; REAL_MUL_RID]);;
(* ------------------------------------------------------------------------- *)
(* Rolle and Mean Value Theorem. *)
(* ------------------------------------------------------------------------- *)
let REAL_ROLLE = prove
(`!f f' a b.
a < b /\ f a = f b /\
f real_continuous_on real_interval[a,b] /\
(!x. x IN real_interval(a,b)
==> (f has_real_derivative f'(x)) (atreal x))
==> ?x. x IN real_interval(a,b) /\ f'(x) = &0`,
REWRITE_TAC[REAL_INTERVAL_INTERVAL; FORALL_IN_IMAGE; EXISTS_IN_IMAGE] THEN
REWRITE_TAC[REAL_CONTINUOUS_ON; HAS_REAL_VECTOR_DERIVATIVE_AT] THEN
REWRITE_TAC[GSYM IMAGE_o; IMAGE_LIFT_DROP; has_vector_derivative] THEN
REWRITE_TAC[LIFT_DROP] THEN REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`lift o f o drop`; `\x:real^1 h:real^1. f'(drop x) % h`;
`lift a`; `lift b`] ROLLE) THEN
ASM_REWRITE_TAC[o_THM; LIFT_DROP] THEN ANTS_TAC THENL
[X_GEN_TAC `t:real^1` THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `t:real^1`) THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC EQ_IMP THEN
AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[FUN_EQ_THM; FORALL_LIFT; LIFT_DROP; GSYM LIFT_CMUL] THEN
REWRITE_TAC[REAL_MUL_AC];
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `t:real^1` THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM(MP_TAC o C AP_THM `lift(&1)`) THEN
REWRITE_TAC[GSYM LIFT_CMUL; GSYM LIFT_NUM; LIFT_EQ; REAL_MUL_RID]]);;
let REAL_MVT = prove
(`!f f' a b.
a < b /\
f real_continuous_on real_interval[a,b] /\
(!x. x IN real_interval(a,b)
==> (f has_real_derivative f'(x)) (atreal x))
==> ?x. x IN real_interval(a,b) /\ f(b) - f(a) = f'(x) * (b - a)`,
REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`\x:real. f(x) - (f b - f a) / (b - a) * x`;
`(\x. f'(x) - (f b - f a) / (b - a)):real->real`;
`a:real`; `b:real`]
REAL_ROLLE) THEN
ASM_SIMP_TAC[REAL_FIELD
`a < b ==> (fx - fba / (b - a) = &0 <=> fba = fx * (b - a))`] THEN
DISCH_THEN MATCH_MP_TAC THEN
ASM_SIMP_TAC[REAL_CONTINUOUS_ON_SUB; REAL_CONTINUOUS_ON_LMUL;
REAL_CONTINUOUS_ON_ID] THEN
CONJ_TAC THENL [UNDISCH_TAC `a < b` THEN CONV_TAC REAL_FIELD; ALL_TAC] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_REAL_DERIVATIVE_SUB THEN
ASM_SIMP_TAC[] THEN GEN_REWRITE_TAC LAND_CONV [GSYM REAL_MUL_RID] THEN
ASM_SIMP_TAC[HAS_REAL_DERIVATIVE_LMUL_ATREAL; HAS_REAL_DERIVATIVE_ID]);;
let REAL_MVT_SIMPLE = prove
(`!f f' a b.
a < b /\
(!x. x IN real_interval[a,b]
==> (f has_real_derivative f'(x))
(atreal x within real_interval[a,b]))
==> ?x. x IN real_interval(a,b) /\ f(b) - f(a) = f'(x) * (b - a)`,
MP_TAC REAL_MVT THEN
REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
CONJ_TAC THENL
[MATCH_MP_TAC REAL_DIFFERENTIABLE_ON_IMP_REAL_CONTINUOUS_ON THEN
ASM_MESON_TAC[real_differentiable_on; real_differentiable];
ASM_MESON_TAC[HAS_REAL_DERIVATIVE_WITHIN_REAL_OPEN; REAL_OPEN_REAL_INTERVAL;
REAL_INTERVAL_OPEN_SUBSET_CLOSED;
HAS_REAL_DERIVATIVE_WITHIN_SUBSET; SUBSET]]);;
let REAL_MVT_VERY_SIMPLE = prove
(`!f f' a b.
a <= b /\
(!x. x IN real_interval[a,b]
==> (f has_real_derivative f'(x))
(atreal x within real_interval[a,b]))
==> ?x. x IN real_interval[a,b] /\ f(b) - f(a) = f'(x) * (b - a)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `b:real = a` THENL
[ASM_REWRITE_TAC[REAL_SUB_REFL; REAL_MUL_RZERO] THEN
REWRITE_TAC[REAL_INTERVAL_SING; IN_SING; EXISTS_REFL];
ASM_REWRITE_TAC[REAL_LE_LT] THEN
DISCH_THEN(MP_TAC o MATCH_MP REAL_MVT_SIMPLE) THEN
MATCH_MP_TAC MONO_EXISTS THEN
SIMP_TAC[REWRITE_RULE[SUBSET] REAL_INTERVAL_OPEN_SUBSET_CLOSED]]);;
let REAL_ROLLE_SIMPLE = prove
(`!f f' a b.
a < b /\ f a = f b /\
(!x. x IN real_interval[a,b]
==> (f has_real_derivative f'(x))
(atreal x within real_interval[a,b]))
==> ?x. x IN real_interval(a,b) /\ f'(x) = &0`,
MP_TAC REAL_MVT_SIMPLE THEN
REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN MATCH_MP_TAC MONO_AND THEN
REWRITE_TAC[REAL_RING `a - a = b * (c - d) <=> b = &0 \/ c = d`] THEN
ASM_MESON_TAC[REAL_LT_REFL]);;
(* ------------------------------------------------------------------------- *)
(* Cauchy MVT and l'Hospital's rule. *)
(* ------------------------------------------------------------------------- *)
let REAL_MVT_CAUCHY = prove
(`!f g f' g' a b.
a < b /\
f real_continuous_on real_interval[a,b] /\
g real_continuous_on real_interval[a,b] /\
(!x. x IN real_interval(a,b)
==> (f has_real_derivative f' x) (atreal x) /\
(g has_real_derivative g' x) (atreal x))
==> ?x. x IN real_interval(a,b) /\
(f b - f a) * g'(x) = (g b - g a) * f'(x)`,
REPEAT STRIP_TAC THEN MP_TAC(SPECL
[`\x. (f:real->real)(x) * (g(b:real) - g(a)) - g(x) * (f(b) - f(a))`;
`\x. (f':real->real)(x) * (g(b:real) - g(a)) - g'(x) * (f(b) - f(a))`;
`a:real`; `b:real`] REAL_MVT) THEN
ASM_SIMP_TAC[REAL_CONTINUOUS_ON_SUB; REAL_CONTINUOUS_ON_RMUL;
HAS_REAL_DERIVATIVE_SUB; HAS_REAL_DERIVATIVE_RMUL_ATREAL] THEN
MATCH_MP_TAC MONO_EXISTS THEN SIMP_TAC[] THEN
UNDISCH_TAC `a < b` THEN CONV_TAC REAL_FIELD);;
let LHOSPITAL = prove
(`!f g f' g' c l d.
&0 < d /\
(!x. &0 < abs(x - c) /\ abs(x - c) < d
==> (f has_real_derivative f'(x)) (atreal x) /\
(g has_real_derivative g'(x)) (atreal x) /\
~(g'(x) = &0)) /\
(f ---> &0) (atreal c) /\ (g ---> &0) (atreal c) /\
((\x. f'(x) / g'(x)) ---> l) (atreal c)
==> ((\x. f(x) / g(x)) ---> l) (atreal c)`,
SUBGOAL_THEN
`!f g f' g' c l d.
&0 < d /\
(!x. &0 < abs(x - c) /\ abs(x - c) < d
==> (f has_real_derivative f'(x)) (atreal x) /\
(g has_real_derivative g'(x)) (atreal x) /\
~(g'(x) = &0)) /\
f(c) = &0 /\ g(c) = &0 /\
(f ---> &0) (atreal c) /\ (g ---> &0) (atreal c) /\
((\x. f'(x) / g'(x)) ---> l) (atreal c)
==> ((\x. f(x) / g(x)) ---> l) (atreal c)`
ASSUME_TAC THENL
[REWRITE_TAC[TAUT `a ==> b /\ c <=> (a ==> b) /\ (a ==> c)`] THEN
REWRITE_TAC[FORALL_AND_THM] THEN REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`(!x. abs(x - c) < d ==> f real_continuous atreal x) /\
(!x. abs(x - c) < d ==> g real_continuous atreal x)`
STRIP_ASSUME_TAC THENL
[REWRITE_TAC[AND_FORALL_THM] THEN X_GEN_TAC `x:real` THEN
DISJ_CASES_TAC(REAL_ARITH `x = c \/ &0 < abs(x - c)`) THENL
[ASM_REWRITE_TAC[REAL_CONTINUOUS_ATREAL]; ALL_TAC] THEN
REPEAT STRIP_TAC THEN
MATCH_MP_TAC REAL_DIFFERENTIABLE_IMP_CONTINUOUS_ATREAL THEN
REWRITE_TAC[real_differentiable] THEN ASM_MESON_TAC[];
ALL_TAC] THEN
SUBGOAL_THEN
`!x. &0 < abs(x - c) /\ abs(x - c) < d ==> ~(g x = &0)`
STRIP_ASSUME_TAC THENL
[REPEAT STRIP_TAC THEN
SUBGOAL_THEN `c < x \/ x < c` DISJ_CASES_TAC THENL
[ASM_REAL_ARITH_TAC;
MP_TAC(ISPECL [`g:real->real`; `g':real->real`; `c:real`; `x:real`]
REAL_ROLLE);
MP_TAC(ISPECL [`g:real->real`; `g':real->real`; `x:real`; `c:real`]
REAL_ROLLE)] THEN
ASM_REWRITE_TAC[NOT_IMP; NOT_EXISTS_THM] THEN
(REPEAT CONJ_TAC THENL
[REWRITE_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN] THEN
REWRITE_TAC[IN_REAL_INTERVAL] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC REAL_CONTINUOUS_ATREAL_WITHINREAL;
REWRITE_TAC[IN_REAL_INTERVAL] THEN REPEAT STRIP_TAC;
X_GEN_TAC `y:real` THEN REWRITE_TAC[IN_REAL_INTERVAL] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
REWRITE_TAC[]] THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REAL_ARITH_TAC);
ALL_TAC] THEN
UNDISCH_TAC `((\x. f' x / g' x) ---> l) (atreal c)` THEN
REWRITE_TAC[REALLIM_ATREAL] THEN MATCH_MP_TAC MONO_FORALL THEN
X_GEN_TAC `e:real` THEN ASM_CASES_TAC `&0 < e` THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `k:real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `min d k:real` THEN ASM_REWRITE_TAC[REAL_LT_MIN] THEN
X_GEN_TAC `x:real` THEN STRIP_TAC THEN
SUBGOAL_THEN
`?y. &0 < abs(y - c) /\ abs(y - c) < abs(x - c) /\
(f:real->real) x / g x = f' y / g' y`
STRIP_ASSUME_TAC THENL
[ALL_TAC; ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[REAL_LT_TRANS]] THEN
SUBGOAL_THEN `c < x \/ x < c` DISJ_CASES_TAC THENL
[ASM_REAL_ARITH_TAC;
MP_TAC(ISPECL
[`f:real->real`; `g:real->real`; `f':real->real`; `g':real->real`;
`c:real`; `x:real`] REAL_MVT_CAUCHY);
MP_TAC(ISPECL
[`f:real->real`; `g:real->real`; `f':real->real`; `g':real->real`;
`x:real`; `c:real`] REAL_MVT_CAUCHY)] THEN
(ASM_REWRITE_TAC[IN_REAL_INTERVAL] THEN ANTS_TAC THENL
[REWRITE_TAC[CONJ_ASSOC] THEN CONJ_TAC THENL
[CONJ_TAC THEN
REWRITE_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN] THEN
REWRITE_TAC[IN_REAL_INTERVAL] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC REAL_CONTINUOUS_ATREAL_WITHINREAL;
REPEAT STRIP_TAC] THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REAL_ARITH_TAC;
MATCH_MP_TAC MONO_EXISTS THEN REWRITE_TAC[REAL_SUB_RZERO] THEN
GEN_TAC THEN STRIP_TAC THEN
REPEAT(CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC]) THEN
MATCH_MP_TAC(REAL_FIELD
`f * g' = g * f' /\ ~(g = &0) /\ ~(g' = &0) ==> f / g = f' / g'`) THEN
CONJ_TAC THENL [ASM_REAL_ARITH_TAC; CONJ_TAC] THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REAL_ARITH_TAC]);
REPEAT GEN_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPECL
[`\x:real. if x = c then &0 else f(x)`;
`\x:real. if x = c then &0 else g(x)`;
`f':real->real`; `g':real->real`;
`c:real`; `l:real`; `d:real`]) THEN
REWRITE_TAC[] THEN MATCH_MP_TAC MONO_IMP THEN CONJ_TAC THEN
REPEAT(MATCH_MP_TAC MONO_AND THEN CONJ_TAC) THEN
TRY(SIMP_TAC[REALLIM_ATREAL;REAL_ARITH `&0 < abs(x - c) ==> ~(x = c)`] THEN
NO_TAC) THEN
DISCH_TAC THEN X_GEN_TAC `x:real` THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `x:real`) THEN ASM_REWRITE_TAC[] THEN
REPEAT(MATCH_MP_TAC MONO_AND THEN CONJ_TAC) THEN REWRITE_TAC[] THEN
MATCH_MP_TAC(REWRITE_RULE[TAUT `a /\ b /\ c ==> d <=> a /\ b ==> c ==> d`]
HAS_REAL_DERIVATIVE_TRANSFORM_ATREAL) THEN
EXISTS_TAC `abs(x - c)` THEN ASM_REAL_ARITH_TAC]);;
(* ------------------------------------------------------------------------- *)
(* Darboux's theorem (intermediate value property for derivatives). *)
(* ------------------------------------------------------------------------- *)
let REAL_DERIVATIVE_IVT_INCREASING = prove
(`!f f' a b.
a <= b /\
(!x. x IN real_interval[a,b]
==> (f has_real_derivative f'(x)) (atreal x within real_interval[a,b]))
==> !t. f'(a) <= t /\ t <= f'(b)
==> ?x. x IN real_interval[a,b] /\ f' x = t`,
REPEAT GEN_TAC THEN STRIP_TAC THEN GEN_TAC THEN
ASM_CASES_TAC `(f':real->real) a = t` THENL
[ASM_MESON_TAC[ENDS_IN_REAL_INTERVAL; REAL_INTERVAL_NE_EMPTY];
ALL_TAC] THEN
ASM_CASES_TAC `(f':real->real) b = t` THENL
[ASM_MESON_TAC[ENDS_IN_REAL_INTERVAL; REAL_INTERVAL_NE_EMPTY];
ALL_TAC] THEN
ASM_CASES_TAC `b:real = a` THEN ASM_REWRITE_TAC[REAL_LE_ANTISYM] THEN
SUBGOAL_THEN `a < b` ASSUME_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
ASM_REWRITE_TAC[REAL_LE_LT] THEN STRIP_TAC THEN
MP_TAC(ISPECL [`\x:real. f x - t * x`; `real_interval[a,b]`]
REAL_CONTINUOUS_ATTAINS_INF) THEN
ASM_REWRITE_TAC[REAL_INTERVAL_NE_EMPTY; REAL_COMPACT_INTERVAL] THEN
ANTS_TAC THENL
[MATCH_MP_TAC REAL_DIFFERENTIABLE_ON_IMP_REAL_CONTINUOUS_ON THEN
MATCH_MP_TAC REAL_DIFFERENTIABLE_ON_SUB THEN
SIMP_TAC[REAL_DIFFERENTIABLE_ON_MUL; REAL_DIFFERENTIABLE_ON_ID;
REAL_DIFFERENTIABLE_ON_CONST] THEN
ASM_MESON_TAC[real_differentiable_on];
ALL_TAC] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `x:real` THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
MP_TAC(SPECL
[`\x:real. f x - t * x`; `(f':real->real) x - t:real`;
`x:real`; `real_interval(a,b)`]
REAL_DERIVATIVE_ZERO_MAXMIN) THEN
ASM_REWRITE_TAC[REAL_SUB_0] THEN DISCH_THEN MATCH_MP_TAC THEN
REWRITE_TAC[REAL_OPEN_REAL_INTERVAL] THEN
ASM_SIMP_TAC[REAL_OPEN_CLOSED_INTERVAL; IN_DIFF] THEN
ASM_CASES_TAC `x:real = a` THENL
[FIRST_X_ASSUM SUBST_ALL_TAC THEN
MP_TAC(ISPECL[`\x:real. f x - t * x`; `(f':real->real) a - t:real`;
`a:real`; `b:real`; `&1`]
REAL_DERIVATIVE_POS_LEFT_MINIMUM) THEN
ASM_SIMP_TAC[REAL_LT_01; REAL_SUB_LE] THEN
MATCH_MP_TAC(TAUT `~q /\ p ==> (p ==> q) ==> r`) THEN
ASM_REWRITE_TAC[REAL_NOT_LE] THEN
MATCH_MP_TAC HAS_REAL_DERIVATIVE_SUB THEN
CONJ_TAC THENL [ALL_TAC; REAL_DIFF_TAC THEN REWRITE_TAC[REAL_MUL_RID]] THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[ENDS_IN_INTERVAL; INTERVAL_NE_EMPTY];
ALL_TAC] THEN
ASM_CASES_TAC `x:real = b` THENL
[FIRST_X_ASSUM SUBST_ALL_TAC THEN
MP_TAC(ISPECL[`\x:real. f x - t * x`; `(f':real->real) b - t:real`;
`a:real`; `b:real`; `&1`]
REAL_DERIVATIVE_NEG_RIGHT_MINIMUM) THEN
ASM_SIMP_TAC[REAL_LT_01; REAL_SUB_LE] THEN
MATCH_MP_TAC(TAUT `~q /\ p ==> (p ==> q) ==> r`) THEN
ASM_REWRITE_TAC[REAL_NOT_LE; REAL_SUB_LT] THEN
MATCH_MP_TAC HAS_REAL_DERIVATIVE_SUB THEN
CONJ_TAC THENL [ALL_TAC; REAL_DIFF_TAC THEN REWRITE_TAC[REAL_MUL_RID]] THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[ENDS_IN_INTERVAL; INTERVAL_NE_EMPTY];
ALL_TAC] THEN
ASM_REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
MATCH_MP_TAC HAS_REAL_DERIVATIVE_SUB THEN
CONJ_TAC THENL [ALL_TAC; REAL_DIFF_TAC THEN REWRITE_TAC[REAL_MUL_RID]] THEN
SUBGOAL_THEN
`(f has_real_derivative f' x) (atreal x within real_interval(a,b))`
MP_TAC THENL
[MATCH_MP_TAC HAS_REAL_DERIVATIVE_WITHIN_SUBSET THEN
EXISTS_TAC `real_interval[a,b]` THEN
ASM_SIMP_TAC[REAL_INTERVAL_OPEN_SUBSET_CLOSED];
MATCH_MP_TAC EQ_IMP THEN
MATCH_MP_TAC HAS_REAL_DERIVATIVE_WITHIN_REAL_OPEN THEN
REWRITE_TAC[REAL_OPEN_REAL_INTERVAL] THEN
ASM_REWRITE_TAC[REAL_OPEN_CLOSED_INTERVAL] THEN ASM SET_TAC[]]);;
let REAL_DERIVATIVE_IVT_DECREASING = prove
(`!f f' a b t.
a <= b /\
(!x. x IN real_interval[a,b]
==> (f has_real_derivative f'(x)) (atreal x within real_interval[a,b]))
==> !t. f'(b) <= t /\ t <= f'(a)
==> ?x. x IN real_interval[a,b] /\ f' x = t`,
REPEAT STRIP_TAC THEN MP_TAC(SPECL
[`\x. --((f:real->real) x)`; `\x. --((f':real->real) x)`;
`a:real`; `b:real`] REAL_DERIVATIVE_IVT_INCREASING) THEN
ASM_SIMP_TAC[HAS_REAL_DERIVATIVE_NEG] THEN
DISCH_THEN(MP_TAC o SPEC `--t:real`) THEN
ASM_REWRITE_TAC[REAL_LE_NEG2; REAL_EQ_NEG2]);;
(* ------------------------------------------------------------------------- *)
(* Continuity and differentiability of inverse functions. *)
(* ------------------------------------------------------------------------- *)
let HAS_REAL_DERIVATIVE_INVERSE_BASIC = prove
(`!f g f' t y.
(f has_real_derivative f') (atreal (g y)) /\
~(f' = &0) /\
g real_continuous atreal y /\
real_open t /\
y IN t /\
(!z. z IN t ==> f (g z) = z)
==> (g has_real_derivative inv(f')) (atreal y)`,
REWRITE_TAC[HAS_REAL_FRECHET_DERIVATIVE_AT; REAL_OPEN;
REAL_CONTINUOUS_CONTINUOUS_ATREAL] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_DERIVATIVE_INVERSE_BASIC THEN
MAP_EVERY EXISTS_TAC
[`lift o f o drop`; `\x:real^1. f' % x`; `IMAGE lift t`] THEN
ASM_REWRITE_TAC[o_THM; LIFT_DROP; LIFT_IN_IMAGE_LIFT] THEN
ASM_SIMP_TAC[FORALL_IN_IMAGE; LIFT_DROP; LINEAR_COMPOSE_CMUL; LINEAR_ID] THEN
REWRITE_TAC[FUN_EQ_THM; I_THM; o_THM; VECTOR_MUL_ASSOC] THEN
ASM_SIMP_TAC[REAL_MUL_LINV; VECTOR_MUL_LID]);;
let HAS_REAL_DERIVATIVE_INVERSE_STRONG = prove
(`!f g f' s x.
real_open s /\
x IN s /\
f real_continuous_on s /\
(!x. x IN s ==> g (f x) = x) /\
(f has_real_derivative f') (atreal x) /\
~(f' = &0)
==> (g has_real_derivative inv(f')) (atreal (f x))`,
REWRITE_TAC[HAS_REAL_FRECHET_DERIVATIVE_AT; REAL_OPEN;
REAL_CONTINUOUS_ON] THEN
REPEAT STRIP_TAC THEN
MP_TAC(ISPEC `lift o f o drop` HAS_DERIVATIVE_INVERSE_STRONG) THEN
REWRITE_TAC[FORALL_LIFT; o_THM; LIFT_DROP] THEN
DISCH_THEN MATCH_MP_TAC THEN
MAP_EVERY EXISTS_TAC [`\x:real^1. f' % x`; `IMAGE lift s`] THEN
ASM_REWRITE_TAC[o_THM; LIFT_DROP; LIFT_IN_IMAGE_LIFT] THEN
ASM_SIMP_TAC[FUN_EQ_THM; I_THM; o_THM; VECTOR_MUL_ASSOC] THEN
ASM_SIMP_TAC[REAL_MUL_RINV; VECTOR_MUL_LID]);;
let HAS_REAL_DERIVATIVE_INVERSE_STRONG_X = prove
(`!f g f' s y.
real_open s /\ (g y) IN s /\ f real_continuous_on s /\
(!x. x IN s ==> (g(f(x)) = x)) /\
(f has_real_derivative f') (atreal (g y)) /\ ~(f' = &0) /\
f(g y) = y
==> (g has_real_derivative inv(f')) (atreal y)`,
REWRITE_TAC[HAS_REAL_FRECHET_DERIVATIVE_AT; REAL_OPEN;
REAL_CONTINUOUS_ON] THEN
REPEAT STRIP_TAC THEN
MP_TAC(ISPEC `lift o f o drop` HAS_DERIVATIVE_INVERSE_STRONG_X) THEN
REWRITE_TAC[FORALL_LIFT; o_THM; LIFT_DROP] THEN
DISCH_THEN MATCH_MP_TAC THEN
MAP_EVERY EXISTS_TAC [`\x:real^1. f' % x`; `IMAGE lift s`] THEN
ASM_REWRITE_TAC[o_THM; LIFT_DROP; LIFT_IN_IMAGE_LIFT] THEN
ASM_SIMP_TAC[FUN_EQ_THM; I_THM; o_THM; VECTOR_MUL_ASSOC] THEN
ASM_SIMP_TAC[REAL_MUL_RINV; VECTOR_MUL_LID]);;
(* ------------------------------------------------------------------------- *)
(* Real differentiation of sequences and series. *)
(* ------------------------------------------------------------------------- *)
let HAS_REAL_DERIVATIVE_SEQUENCE = prove
(`!s f f' g'.
is_realinterval s /\
(!n x. x IN s
==> (f n has_real_derivative f' n x) (atreal x within s)) /\
(!e. &0 < e
==> ?N. !n x. n >= N /\ x IN s ==> abs(f' n x - g' x) <= e) /\
(?x l. x IN s /\ ((\n. f n x) ---> l) sequentially)
==> ?g. !x. x IN s
==> ((\n. f n x) ---> g x) sequentially /\
(g has_real_derivative g' x) (atreal x within s)`,
REWRITE_TAC[HAS_REAL_FRECHET_DERIVATIVE_WITHIN; IS_REALINTERVAL_CONVEX;
TENDSTO_REAL] THEN REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`IMAGE lift s`;
`\n:num. lift o f n o drop`;
`\n:num x:real^1 h:real^1. f' n (drop x) % h`;
`\x:real^1 h:real^1. g' (drop x) % h`]
HAS_DERIVATIVE_SEQUENCE) THEN
ASM_REWRITE_TAC[FORALL_IN_IMAGE; LIFT_DROP] THEN ANTS_TAC THENL
[REWRITE_TAC[IMP_CONJ; RIGHT_EXISTS_AND_THM; RIGHT_FORALL_IMP_THM;
EXISTS_IN_IMAGE; FORALL_IN_IMAGE] THEN
REWRITE_TAC[EXISTS_LIFT; o_THM; LIFT_DROP] THEN
RULE_ASSUM_TAC(REWRITE_RULE[o_DEF]) THEN
CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN
REWRITE_TAC[GSYM VECTOR_SUB_RDISTRIB; NORM_MUL] THEN
ASM_MESON_TAC[REAL_LE_RMUL; NORM_POS_LE];
REWRITE_TAC[o_DEF; LIFT_DROP] THEN
DISCH_THEN(X_CHOOSE_TAC `g:real^1->real^1`) THEN
EXISTS_TAC `drop o g o lift` THEN
RULE_ASSUM_TAC(REWRITE_RULE[ETA_AX]) THEN
ASM_REWRITE_TAC[o_DEF; LIFT_DROP; ETA_AX]]);;
let HAS_REAL_DERIVATIVE_SERIES = prove
(`!s f f' g' k.
is_realinterval s /\
(!n x. x IN s
==> (f n has_real_derivative f' n x) (atreal x within s)) /\
(!e. &0 < e
==> ?N. !n x. n >= N /\ x IN s
==> abs(sum (k INTER (0..n)) (\i. f' i x) - g' x)
<= e) /\
(?x l. x IN s /\ ((\n. f n x) real_sums l) k)
==> ?g. !x. x IN s
==> ((\n. f n x) real_sums g x) k /\
(g has_real_derivative g' x) (atreal x within s)`,
REPEAT GEN_TAC THEN REWRITE_TAC[real_sums] THEN
DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN
MATCH_MP_TAC HAS_REAL_DERIVATIVE_SEQUENCE THEN EXISTS_TAC
`\n:num x:real. sum(k INTER (0..n)) (\n. f' n x):real` THEN
ASM_SIMP_TAC[ETA_AX; FINITE_INTER_NUMSEG; HAS_REAL_DERIVATIVE_SUM]);;
let REAL_DIFFERENTIABLE_BOUND = prove
(`!f f' s B.
is_realinterval s /\
(!x. x IN s ==> (f has_real_derivative f'(x)) (atreal x within s) /\
abs(f' x) <= B)
==> !x y. x IN s /\ y IN s ==> abs(f x - f y) <= B * abs(x - y)`,
REWRITE_TAC[HAS_REAL_FRECHET_DERIVATIVE_WITHIN; IS_REALINTERVAL_CONVEX;
o_DEF] THEN REPEAT STRIP_TAC THEN
MP_TAC(ISPECL
[`lift o f o drop`; `\x h:real^1. f' (drop x) % h`;
`IMAGE lift s`; `B:real`]
DIFFERENTIABLE_BOUND) THEN
ASM_SIMP_TAC[o_DEF; FORALL_IN_IMAGE; LIFT_DROP] THEN ANTS_TAC THENL
[X_GEN_TAC `v:real` THEN DISCH_TAC THEN
MP_TAC(ISPEC `\h:real^1. f' (v:real) % h` ONORM) THEN
SIMP_TAC[LINEAR_COMPOSE_CMUL; LINEAR_ID] THEN
DISCH_THEN(MATCH_MP_TAC o CONJUNCT2) THEN
ASM_SIMP_TAC[NORM_MUL; REAL_LE_RMUL; NORM_POS_LE];
SIMP_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE; LIFT_DROP] THEN
ASM_SIMP_TAC[RIGHT_IMP_FORALL_THM; IMP_IMP; GSYM LIFT_SUB; NORM_LIFT]]);;
let REAL_TAYLOR_MVT_POS = prove
(`!f a x n.
a < x /\
(!i t. t IN real_interval[a,x] /\ i <= n
==> ((f i) has_real_derivative f (i + 1) t)
(atreal t within real_interval[a,x]))
==> ?t. t IN real_interval(a,x) /\
f 0 x =
sum (0..n) (\i. f i a * (x - a) pow i / &(FACT i)) +
f (n + 1) t * (x - a) pow (n + 1) / &(FACT(n + 1))`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`?B. sum (0..n) (\i. f i a * (x - a) pow i / &(FACT i)) +
B * (x - a) pow (n + 1) = f 0 x`
STRIP_ASSUME_TAC THENL
[MATCH_MP_TAC(MESON[]
`a + (y - a) / x * x:real = y ==> ?b. a + b * x = y`) THEN
MATCH_MP_TAC(REAL_FIELD `~(x = &0) ==> a + (y - a) / x * x = y`) THEN
ASM_REWRITE_TAC[REAL_POW_EQ_0; REAL_SUB_0] THEN ASM_REAL_ARITH_TAC;
ALL_TAC] THEN
MP_TAC(SPECL [`\t. sum(0..n) (\i. f i t * (x - t) pow i / &(FACT i)) +
B * (x - t) pow (n + 1)`;
`\t. (f (n + 1) t * (x - t) pow n / &(FACT n)) -
B * &(n + 1) * (x - t) pow n`;
`a:real`; `x:real`]
REAL_ROLLE_SIMPLE) THEN
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
[CONJ_TAC THENL
[SIMP_TAC[SUM_CLAUSES_LEFT; LE_0] THEN
REWRITE_TAC[GSYM ADD1; real_pow; REAL_SUB_REFL; REAL_POW_ZERO;
REAL_MUL_LZERO; REAL_MUL_RZERO; REAL_ADD_RID] THEN
CONV_TAC NUM_REDUCE_CONV THEN
REWRITE_TAC[NOT_SUC; REAL_MUL_RZERO; REAL_DIV_1; REAL_MUL_RID] THEN
REWRITE_TAC[REAL_ARITH `x = (x + y) + &0 <=> y = &0`] THEN
MATCH_MP_TAC SUM_EQ_0_NUMSEG THEN
SIMP_TAC[ARITH; ARITH_RULE `1 <= i ==> ~(i = 0)`] THEN
REWRITE_TAC[real_div; REAL_MUL_LZERO; REAL_MUL_RZERO];
ALL_TAC] THEN
X_GEN_TAC `t:real` THEN DISCH_TAC THEN REWRITE_TAC[real_sub] THEN
MATCH_MP_TAC HAS_REAL_DERIVATIVE_ADD THEN CONJ_TAC THENL
[ALL_TAC;
REAL_DIFF_TAC THEN REWRITE_TAC[ADD_SUB] THEN CONV_TAC REAL_RING] THEN
REWRITE_TAC[GSYM real_sub] THEN
MATCH_MP_TAC(MESON[]
`!g'. f' = g' /\ (f has_real_derivative g') net
==> (f has_real_derivative f') net`) THEN
EXISTS_TAC
`sum (0..n) (\i. f i t * --(&i * (x - t) pow (i - 1)) / &(FACT i) +
f (i + 1) t * (x - t) pow i / &(FACT i))` THEN
REWRITE_TAC[] THEN CONJ_TAC THENL
[ALL_TAC;
MATCH_MP_TAC HAS_REAL_DERIVATIVE_SUM THEN
REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN
X_GEN_TAC `m:num` THEN STRIP_TAC THEN
MATCH_MP_TAC HAS_REAL_DERIVATIVE_MUL_WITHIN THEN
ASM_SIMP_TAC[ETA_AX] THEN REAL_DIFF_TAC THEN REAL_ARITH_TAC] THEN
SIMP_TAC[SUM_CLAUSES_LEFT; LE_0; ARITH; FACT; REAL_DIV_1;
real_pow; REAL_MUL_LZERO; REAL_NEG_0; REAL_MUL_RZERO;
REAL_MUL_RID; REAL_ADD_LID] THEN
ASM_CASES_TAC `n = 0` THENL
[ASM_REWRITE_TAC[SUM_CLAUSES_NUMSEG; ARITH; FACT] THEN REAL_ARITH_TAC;
ALL_TAC] THEN
ASM_SIMP_TAC[SPECL [`f:num->real`; `1`] SUM_OFFSET_0; LE_1] THEN
REWRITE_TAC[ADD_SUB] THEN
REWRITE_TAC[GSYM ADD1; FACT; GSYM REAL_OF_NUM_MUL; GSYM REAL_OF_NUM_ADD;
GSYM REAL_OF_NUM_SUC] THEN
REWRITE_TAC[real_div; REAL_INV_MUL] THEN
REWRITE_TAC[REAL_ARITH `--(n * x) * (inv n * inv y):real =
--(n / n) * x / y`] THEN
REWRITE_TAC[REAL_FIELD `--((&n + &1) / (&n + &1)) * x = --x`] THEN
REWRITE_TAC[GSYM REAL_INV_MUL; REAL_OF_NUM_MUL; REAL_OF_NUM_SUC] THEN
REWRITE_TAC[GSYM(CONJUNCT2 FACT)] THEN
REWRITE_TAC[REAL_ARITH `a * --b + c:real = c - a * b`] THEN
REWRITE_TAC[ADD1; GSYM real_div; SUM_DIFFS_ALT; LE_0] THEN
ASM_SIMP_TAC[ARITH_RULE `~(n = 0) ==> n - 1 + 1 = n`; FACT] THEN
REWRITE_TAC[ADD_CLAUSES] THEN REAL_ARITH_TAC;
ALL_TAC] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `t:real` THEN STRIP_TAC THEN
ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC LAND_CONV [GSYM th]) THEN
REWRITE_TAC[REAL_EQ_ADD_LCANCEL] THEN
REWRITE_TAC[REAL_ARITH `a * b / c:real = a / c * b`] THEN
AP_THM_TAC THEN AP_TERM_TAC THEN
FIRST_X_ASSUM(MP_TAC o MATCH_MP (REAL_ARITH
`a * x / f - B * k * x = &0 ==> (B * k - a / f) * x = &0`)) THEN
REWRITE_TAC[REAL_ENTIRE; REAL_POW_EQ_0; REAL_SUB_0] THEN
ASM_CASES_TAC `x:real = t` THENL
[ASM_MESON_TAC[IN_REAL_INTERVAL; REAL_LT_REFL]; ALL_TAC] THEN
ASM_REWRITE_TAC[GSYM ADD1; FACT] THEN
REWRITE_TAC[GSYM REAL_OF_NUM_MUL; GSYM REAL_OF_NUM_ADD; ADD1] THEN
SUBGOAL_THEN `~(&(FACT n) = &0)` MP_TAC THENL
[REWRITE_TAC[REAL_OF_NUM_EQ; FACT_NZ]; CONV_TAC REAL_FIELD]);;
let REAL_TAYLOR_MVT_NEG = prove
(`!f a x n.
x < a /\
(!i t. t IN real_interval[x,a] /\ i <= n
==> ((f i) has_real_derivative f (i + 1) t)
(atreal t within real_interval[x,a]))
==> ?t. t IN real_interval(x,a) /\
f 0 x =
sum (0..n) (\i. f i a * (x - a) pow i / &(FACT i)) +
f (n + 1) t * (x - a) pow (n + 1) / &(FACT(n + 1))`,
REWRITE_TAC[IN_REAL_INTERVAL] THEN REPEAT STRIP_TAC THEN
ONCE_REWRITE_TAC[MESON[REAL_NEG_NEG] `(?x:real. P x) <=> (?x. P(--x))`] THEN
MP_TAC(SPECL [`\n x. (-- &1) pow n * (f:num->real->real) n (--x)`;
`--a:real`; ` --x:real`; `n:num`]
REAL_TAYLOR_MVT_POS) THEN
REWRITE_TAC[REAL_NEG_NEG] THEN
ONCE_REWRITE_TAC[REAL_ARITH `(x * y) * z / w:real = y * (x * z) / w`] THEN
REWRITE_TAC[GSYM REAL_POW_MUL] THEN
REWRITE_TAC[REAL_ARITH `-- &1 * (--x - --a) = x - a`] THEN
REWRITE_TAC[IN_REAL_INTERVAL; real_pow; REAL_MUL_LID] THEN
REWRITE_TAC[REAL_ARITH `--a < t /\ t < --x <=> x < --t /\ --t < a`] THEN
DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[REAL_LT_NEG2] THEN
MAP_EVERY X_GEN_TAC [`m:num`; `t:real`] THEN STRIP_TAC THEN
REWRITE_TAC[REAL_POW_ADD; GSYM REAL_MUL_ASSOC] THEN
MATCH_MP_TAC HAS_REAL_DERIVATIVE_LMUL_WITHIN THEN
ONCE_REWRITE_TAC[REAL_ARITH `y pow 1 * x:real = x * y`] THEN
ONCE_REWRITE_TAC[GSYM o_DEF] THEN
MATCH_MP_TAC REAL_DIFF_CHAIN_WITHIN THEN CONJ_TAC THENL
[GEN_REWRITE_TAC (RATOR_CONV o LAND_CONV) [GSYM ETA_AX] THEN
REAL_DIFF_TAC THEN REFL_TAC;
ALL_TAC] THEN
SUBGOAL_THEN `IMAGE (--) (real_interval[--a,--x]) = real_interval[x,a]`
SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_IMAGE; IN_REAL_INTERVAL] THEN
REWRITE_TAC[REAL_ARITH `x:real = --y <=> --x = y`; UNWIND_THM1] THEN
REAL_ARITH_TAC;
FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC]);;
let REAL_TAYLOR = prove
(`!f n s B.
is_realinterval s /\
(!i x. x IN s /\ i <= n
==> ((f i) has_real_derivative f (i + 1) x) (atreal x within s)) /\
(!x. x IN s ==> abs(f (n + 1) x) <= B)
==> !w z. w IN s /\ z IN s
==> abs(f 0 z -
sum (0..n) (\i. f i w * (z - w) pow i / &(FACT i)))
<= B * abs(z - w) pow (n + 1) / &(FACT(n + 1))`,
REPEAT STRIP_TAC THEN
REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC
(REAL_ARITH `w = z \/ w < z \/ z < w`)
THENL
[ASM_SIMP_TAC[SUM_CLAUSES_LEFT; LE_0; REAL_SUB_REFL; REAL_POW_ZERO;
REAL_ABS_0; ARITH; ADD_EQ_0; real_div] THEN
REWRITE_TAC[REAL_MUL_LZERO; FACT; REAL_INV_1; REAL_MUL_RZERO] THEN
MATCH_MP_TAC(REAL_ARITH `y = &0 ==> abs(x - (x * &1 * &1 + y)) <= &0`) THEN
MATCH_MP_TAC SUM_EQ_0_NUMSEG THEN
SIMP_TAC[ARITH; LE_1; REAL_MUL_RZERO; REAL_MUL_LZERO];
MP_TAC(ISPECL [`f:num->real->real`; `w:real`; `z:real`; `n:num`]
REAL_TAYLOR_MVT_POS) THEN
ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `real_interval[w,z] SUBSET s` ASSUME_TAC THENL
[SIMP_TAC[SUBSET; IN_REAL_INTERVAL] THEN ASM_MESON_TAC[is_realinterval];
ALL_TAC];
MP_TAC(ISPECL [`f:num->real->real`; `w:real`; `z:real`; `n:num`]
REAL_TAYLOR_MVT_NEG) THEN
ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `real_interval[z,w] SUBSET s` ASSUME_TAC THENL
[SIMP_TAC[SUBSET; IN_REAL_INTERVAL] THEN ASM_MESON_TAC[is_realinterval];
ALL_TAC]] THEN
(ANTS_TAC THENL
[MAP_EVERY X_GEN_TAC [`m:num`; `t:real`] THEN STRIP_TAC THEN
MATCH_MP_TAC HAS_REAL_DERIVATIVE_WITHIN_SUBSET THEN
EXISTS_TAC `s:real->bool` THEN ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_MESON_TAC[SUBSET];
ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `t:real`
(CONJUNCTS_THEN2 ASSUME_TAC SUBST1_TAC)) THEN
REWRITE_TAC[REAL_ADD_SUB; REAL_ABS_MUL; REAL_ABS_DIV] THEN
REWRITE_TAC[REAL_ABS_POW; REAL_ABS_NUM] THEN
MATCH_MP_TAC REAL_LE_RMUL THEN
SIMP_TAC[REAL_LE_DIV; REAL_POS; REAL_POW_LE; REAL_ABS_POS] THEN
ASM_MESON_TAC[REAL_INTERVAL_OPEN_SUBSET_CLOSED; SUBSET]));;
(* ------------------------------------------------------------------------- *)
(* Comparing sums and "integrals" via real antiderivatives. *)
(* ------------------------------------------------------------------------- *)
let REAL_SUM_INTEGRAL_UBOUND_INCREASING = prove
(`!f g m n.
m <= n /\
(!x. x IN real_interval[&m,&n + &1]
==> (g has_real_derivative f(x))
(atreal x within real_interval[&m,&n + &1])) /\
(!x y. &m <= x /\ x <= y /\ y <= &n + &1 ==> f x <= f y)
==> sum(m..n) (\k. f(&k)) <= g(&n + &1) - g(&m)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `sum(m..n) (\k. g(&(k + 1)) - g(&k))` THEN CONJ_TAC THENL
[ALL_TAC; ASM_SIMP_TAC[SUM_DIFFS_ALT; REAL_OF_NUM_ADD; REAL_LE_REFL]] THEN
MATCH_MP_TAC SUM_LE_NUMSEG THEN X_GEN_TAC `k:num` THEN STRIP_TAC THEN
MP_TAC(ISPECL [`g:real->real`; `f:real->real`; `&k`; `&(k + 1)`]
REAL_MVT_SIMPLE) THEN
ASM_REWRITE_TAC[REAL_OF_NUM_LT; ARITH_RULE `k < k + 1`] THEN
ASM_REWRITE_TAC[GSYM REAL_OF_NUM_ADD; REAL_ADD_SUB] THEN ANTS_TAC THENL
[REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_REAL_DERIVATIVE_WITHIN_SUBSET THEN
EXISTS_TAC `real_interval[&m,&n + &1]` THEN CONJ_TAC THENL
[FIRST_X_ASSUM MATCH_MP_TAC THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_REAL_INTERVAL]);
REWRITE_TAC[SUBSET] THEN GEN_TAC] THEN
REWRITE_TAC[IN_REAL_INTERVAL] THEN
RULE_ASSUM_TAC(REWRITE_RULE[GSYM REAL_OF_NUM_LE]) THEN ASM_REAL_ARITH_TAC;
DISCH_THEN(X_CHOOSE_THEN `t:real`
(CONJUNCTS_THEN2 ASSUME_TAC SUBST1_TAC)) THEN
REWRITE_TAC[REAL_MUL_RID] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_REAL_INTERVAL]) THEN
RULE_ASSUM_TAC(REWRITE_RULE[GSYM REAL_OF_NUM_LE]) THEN
ASM_REAL_ARITH_TAC]);;
let REAL_SUM_INTEGRAL_UBOUND_DECREASING = prove
(`!f g m n.
m <= n /\
(!x. x IN real_interval[&m - &1,&n]
==> (g has_real_derivative f(x))
(atreal x within real_interval[&m - &1,&n])) /\
(!x y. &m - &1 <= x /\ x <= y /\ y <= &n ==> f y <= f x)
==> sum(m..n) (\k. f(&k)) <= g(&n) - g(&m - &1)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `sum(m..n) (\k. g(&(k + 1) - &1) - g(&k - &1))` THEN
CONJ_TAC THENL
[ALL_TAC;
ASM_REWRITE_TAC[SUM_DIFFS_ALT] THEN
ASM_REWRITE_TAC[GSYM REAL_OF_NUM_ADD; REAL_ARITH `(x + &1) - &1 = x`] THEN
REWRITE_TAC[REAL_LE_REFL]] THEN
MATCH_MP_TAC SUM_LE_NUMSEG THEN X_GEN_TAC `k:num` THEN STRIP_TAC THEN
MP_TAC(ISPECL [`g:real->real`; `f:real->real`; `&k - &1`; `&k`]
REAL_MVT_SIMPLE) THEN
ASM_REWRITE_TAC[REAL_ARITH `k - &1 < k`] THEN ANTS_TAC THENL
[REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_REAL_DERIVATIVE_WITHIN_SUBSET THEN
EXISTS_TAC `real_interval[&m - &1,&n]` THEN CONJ_TAC THENL
[FIRST_X_ASSUM MATCH_MP_TAC THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_REAL_INTERVAL]);
REWRITE_TAC[SUBSET] THEN GEN_TAC] THEN
REWRITE_TAC[IN_REAL_INTERVAL] THEN
RULE_ASSUM_TAC(REWRITE_RULE[GSYM REAL_OF_NUM_LE]) THEN ASM_REAL_ARITH_TAC;
REWRITE_TAC[GSYM REAL_OF_NUM_ADD; REAL_ARITH `(a + &1) - &1 = a`] THEN
DISCH_THEN(X_CHOOSE_THEN `t:real`
(CONJUNCTS_THEN2 ASSUME_TAC SUBST1_TAC)) THEN
REWRITE_TAC[REAL_ARITH `a * (x - (x - &1)) = a`] THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_REAL_INTERVAL]) THEN
RULE_ASSUM_TAC(REWRITE_RULE[GSYM REAL_OF_NUM_LE]) THEN
ASM_REAL_ARITH_TAC]);;
let REAL_SUM_INTEGRAL_LBOUND_INCREASING = prove
(`!f g m n.
m <= n /\
(!x. x IN real_interval[&m - &1,&n]
==> (g has_real_derivative f(x))
(atreal x within real_interval[&m - &1,&n])) /\
(!x y. &m - &1 <= x /\ x <= y /\ y <= &n ==> f x <= f y)
==> g(&n) - g(&m - &1) <= sum(m..n) (\k. f(&k))`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`\z. --((f:real->real) z)`;
`\z. --((g:real->real) z)`;
`m:num`; `n:num`] REAL_SUM_INTEGRAL_UBOUND_DECREASING) THEN
REWRITE_TAC[RE_NEG; RE_SUB; SUM_NEG; REAL_LE_NEG2;
REAL_ARITH `--x - --y:real = --(x - y)`] THEN
ASM_SIMP_TAC[HAS_REAL_DERIVATIVE_NEG]);;
let REAL_SUM_INTEGRAL_LBOUND_DECREASING = prove
(`!f g m n.
m <= n /\
(!x. x IN real_interval[&m,&n + &1]
==> (g has_real_derivative f(x))
(atreal x within real_interval[&m,&n + &1])) /\
(!x y. &m <= x /\ x <= y /\ y <= &n + &1 ==> f y <= f x)
==> g(&n + &1) - g(&m) <= sum(m..n) (\k. f(&k))`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`\z. --((f:real->real) z)`;
`\z. --((g:real->real) z)`;
`m:num`; `n:num`] REAL_SUM_INTEGRAL_UBOUND_INCREASING) THEN
REWRITE_TAC[RE_NEG; RE_SUB; SUM_NEG; REAL_LE_NEG2;
REAL_ARITH `--x - --y:real = --(x - y)`] THEN
ASM_SIMP_TAC[HAS_REAL_DERIVATIVE_NEG]);;
let REAL_SUM_INTEGRAL_BOUNDS_INCREASING = prove
(`!f g m n.
m <= n /\
(!x. x IN real_interval[&m - &1,&n + &1]
==> (g has_real_derivative f x)
(atreal x within real_interval[&m - &1,&n + &1])) /\
(!x y. &m - &1 <= x /\ x <= y /\ y <= &n + &1 ==> f x <= f y)
==> g(&n) - g(&m - &1) <= sum(m..n) (\k. f(&k)) /\
sum (m..n) (\k. f(&k)) <= g(&n + &1) - g(&m)`,
REPEAT STRIP_TAC THENL
[MATCH_MP_TAC REAL_SUM_INTEGRAL_LBOUND_INCREASING;
MATCH_MP_TAC REAL_SUM_INTEGRAL_UBOUND_INCREASING] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
TRY(MATCH_MP_TAC HAS_REAL_DERIVATIVE_WITHIN_SUBSET THEN
EXISTS_TAC `real_interval[&m - &1,&n + &1]` THEN CONJ_TAC) THEN
TRY(FIRST_X_ASSUM MATCH_MP_TAC) THEN
TRY(FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_REAL_INTERVAL])) THEN
REWRITE_TAC[SUBSET; IN_REAL_INTERVAL] THEN
RULE_ASSUM_TAC(REWRITE_RULE[GSYM REAL_OF_NUM_LE]) THEN ASM_REAL_ARITH_TAC);;
let REAL_SUM_INTEGRAL_BOUNDS_DECREASING = prove
(`!f g m n.
m <= n /\
(!x. x IN real_interval[&m - &1,&n + &1]
==> (g has_real_derivative f(x))
(atreal x within real_interval[&m - &1,&n + &1])) /\
(!x y. &m - &1 <= x /\ x <= y /\ y <= &n + &1 ==> f y <= f x)
==> g(&n + &1) - g(&m) <= sum(m..n) (\k. f(&k)) /\
sum(m..n) (\k. f(&k)) <= g(&n) - g(&m - &1)`,
REPEAT STRIP_TAC THENL
[MATCH_MP_TAC REAL_SUM_INTEGRAL_LBOUND_DECREASING;
MATCH_MP_TAC REAL_SUM_INTEGRAL_UBOUND_DECREASING] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
TRY(MATCH_MP_TAC HAS_REAL_DERIVATIVE_WITHIN_SUBSET THEN
EXISTS_TAC `real_interval[&m - &1,&n + &1]` THEN CONJ_TAC) THEN
TRY(FIRST_X_ASSUM MATCH_MP_TAC) THEN
TRY(FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_REAL_INTERVAL])) THEN
REWRITE_TAC[SUBSET; IN_REAL_INTERVAL] THEN
RULE_ASSUM_TAC(REWRITE_RULE[GSYM REAL_OF_NUM_LE]) THEN ASM_REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Relating different kinds of real limits. *)
(* ------------------------------------------------------------------------- *)
let REALLIM_POSINFINITY_SEQUENTIALLY = prove
(`!f l. (f ---> l) at_posinfinity ==> ((\n. f(&n)) ---> l) sequentially`,
REPEAT GEN_TAC THEN REWRITE_TAC[TENDSTO_REAL] THEN
DISCH_THEN(MP_TAC o MATCH_MP LIM_POSINFINITY_SEQUENTIALLY) THEN
REWRITE_TAC[o_DEF]);;
let LIM_ZERO_POSINFINITY = prove
(`!f l. ((\x. f(&1 / x)) --> l) (atreal (&0)) ==> (f --> l) at_posinfinity`,
REPEAT GEN_TAC THEN REWRITE_TAC[LIM_ATREAL; LIM_AT_POSINFINITY] THEN
DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[dist; REAL_SUB_RZERO; real_ge] THEN
DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `&2 / d` THEN X_GEN_TAC `z:real` THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `inv(z):real`) THEN
REWRITE_TAC[real_div; REAL_MUL_LINV; REAL_INV_INV] THEN
REWRITE_TAC[REAL_MUL_LID] THEN DISCH_THEN MATCH_MP_TAC THEN
ASM_REWRITE_TAC[REAL_ABS_INV; REAL_LT_INV_EQ] THEN CONJ_TAC THENL
[FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
`a <= z ==> &0 < a ==> &0 < abs z`));
GEN_REWRITE_TAC RAND_CONV [GSYM REAL_INV_INV] THEN
MATCH_MP_TAC REAL_LT_INV2 THEN ASM_REWRITE_TAC[REAL_LT_INV_EQ] THEN
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
`&2 / d <= z ==> &0 < &2 / d ==> inv d < abs z`))] THEN
ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH]);;
let LIM_ZERO_NEGINFINITY = prove
(`!f l. ((\x. f(&1 / x)) --> l) (atreal (&0)) ==> (f --> l) at_neginfinity`,
REPEAT GEN_TAC THEN REWRITE_TAC[LIM_ATREAL; LIM_AT_NEGINFINITY] THEN
DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[dist; REAL_SUB_RZERO; real_ge] THEN
DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `--(&2 / d)` THEN X_GEN_TAC `z:real` THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `inv(z):real`) THEN
REWRITE_TAC[real_div; REAL_MUL_LINV; REAL_INV_INV] THEN
REWRITE_TAC[REAL_MUL_LID] THEN DISCH_THEN MATCH_MP_TAC THEN
ASM_REWRITE_TAC[REAL_ABS_INV; REAL_LT_INV_EQ] THEN CONJ_TAC THENL
[FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
`z <= --a ==> &0 < a ==> &0 < abs z`));
GEN_REWRITE_TAC RAND_CONV [GSYM REAL_INV_INV] THEN
MATCH_MP_TAC REAL_LT_INV2 THEN ASM_REWRITE_TAC[REAL_LT_INV_EQ] THEN
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
`z <= --(&2 / d) ==> &0 < &2 / d ==> inv d < abs z`))] THEN
ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH]);;
let REALLIM_ZERO_POSINFINITY = prove
(`!f l. ((\x. f(&1 / x)) ---> l) (atreal (&0)) ==> (f ---> l) at_posinfinity`,
REPEAT GEN_TAC THEN REWRITE_TAC[TENDSTO_REAL] THEN
REWRITE_TAC[o_DEF; LIM_ZERO_POSINFINITY]);;
let REALLIM_ZERO_NEGINFINITY = prove
(`!f l. ((\x. f(&1 / x)) ---> l) (atreal (&0)) ==> (f ---> l) at_neginfinity`,
REPEAT GEN_TAC THEN REWRITE_TAC[TENDSTO_REAL] THEN
REWRITE_TAC[o_DEF; LIM_ZERO_NEGINFINITY]);;
(* ------------------------------------------------------------------------- *)
(* Real segments (bidirectional intervals). *)
(* ------------------------------------------------------------------------- *)
let closed_real_segment = define
`closed_real_segment[a,b] = {(&1 - u) * a + u * b | &0 <= u /\ u <= &1}`;;
let open_real_segment = new_definition
`open_real_segment(a,b) = closed_real_segment[a,b] DIFF {a,b}`;;
make_overloadable "real_segment" `:A`;;
overload_interface("real_segment",`open_real_segment`);;
overload_interface("real_segment",`closed_real_segment`);;
let real_segment = prove
(`real_segment[a,b] = {(&1 - u) * a + u * b | &0 <= u /\ u <= &1} /\
real_segment(a,b) = real_segment[a,b] DIFF {a,b}`,
REWRITE_TAC[open_real_segment; closed_real_segment]);;
let REAL_SEGMENT_SEGMENT = prove
(`(!a b. real_segment[a,b] = IMAGE drop (segment[lift a,lift b])) /\
(!a b. real_segment(a,b) = IMAGE drop (segment(lift a,lift b)))`,
REWRITE_TAC[segment; real_segment] THEN
SIMP_TAC[IMAGE_DIFF_INJ; DROP_EQ; IMAGE_CLAUSES; LIFT_DROP] THEN
ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN
REWRITE_TAC[GSYM IMAGE_o; o_DEF; DROP_ADD; DROP_CMUL; LIFT_DROP]);;
let SEGMENT_REAL_SEGMENT = prove
(`(!a b. segment[a,b] = IMAGE lift (real_segment[drop a,drop b])) /\
(!a b. segment(a,b) = IMAGE lift (real_segment(drop a,drop b)))`,
REWRITE_TAC[REAL_SEGMENT_SEGMENT; GSYM IMAGE_o] THEN
REWRITE_TAC[o_DEF; IMAGE_ID; LIFT_DROP]);;
let IMAGE_LIFT_REAL_SEGMENT = prove
(`(!a b. IMAGE lift (real_segment[a,b]) = segment[lift a,lift b]) /\
(!a b. IMAGE lift (real_segment(a,b)) = segment(lift a,lift b))`,
REWRITE_TAC[SEGMENT_REAL_SEGMENT; LIFT_DROP]);;
let REAL_SEGMENT_INTERVAL = prove
(`(!a b. real_segment[a,b] =
if a <= b then real_interval[a,b] else real_interval[b,a]) /\
(!a b. real_segment(a,b) =
if a <= b then real_interval(a,b) else real_interval(b,a))`,
REWRITE_TAC[REAL_SEGMENT_SEGMENT; SEGMENT_1; LIFT_DROP] THEN
REWRITE_TAC[REAL_INTERVAL_INTERVAL] THEN
CONJ_TAC THEN REPEAT GEN_TAC THEN COND_CASES_TAC THEN REWRITE_TAC[]);;
let REAL_CONTINUOUS_INJECTIVE_IFF_MONOTONIC = prove
(`!f s.
f real_continuous_on s /\ is_realinterval s
==> ((!x y. x IN s /\ y IN s /\ f x = f y ==> x = y) <=>
(!x y. x IN s /\ y IN s /\ x < y ==> f x < f y) \/
(!x y. x IN s /\ y IN s /\ x < y ==> f y < f x))`,
REPEAT GEN_TAC THEN
REWRITE_TAC[REAL_CONTINUOUS_ON; IS_REALINTERVAL_IS_INTERVAL] THEN
DISCH_THEN(MP_TAC o MATCH_MP CONTINUOUS_INJECTIVE_IFF_MONOTONIC) THEN
REWRITE_TAC[FORALL_LIFT; LIFT_IN_IMAGE_LIFT; o_THM; LIFT_DROP; LIFT_EQ]);;
let ENDS_IN_REAL_SEGMENT = prove
(`!a b. a IN real_segment[a,b] /\ b IN real_segment[a,b]`,
REPEAT GEN_TAC THEN REWRITE_TAC[REAL_SEGMENT_INTERVAL] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[IN_REAL_INTERVAL] THEN
ASM_REAL_ARITH_TAC);;
let IS_REAL_INTERVAL_CONTAINS_SEGMENT = prove
(`!s. is_realinterval s <=>
!a b. a IN s /\ b IN s ==> real_segment[a,b] SUBSET s`,
REWRITE_TAC[CONVEX_CONTAINS_SEGMENT; IS_REALINTERVAL_CONVEX] THEN
REWRITE_TAC[REAL_SEGMENT_SEGMENT; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_IMAGE_LIFT_DROP]);;
let IS_REALINTERVAL_CONTAINS_SEGMENT_EQ = prove
(`!s. is_realinterval s <=>
!a b. real_segment [a,b] SUBSET s <=> a IN s /\ b IN s`,
MESON_TAC[IS_REAL_INTERVAL_CONTAINS_SEGMENT;
SUBSET; ENDS_IN_REAL_SEGMENT]);;
let IS_REALINTERVAL_CONTAINS_SEGMENT_IMP = prove
(`!s a b. is_realinterval s
==> (real_segment [a,b] SUBSET s <=> a IN s /\ b IN s)`,
MESON_TAC[IS_REALINTERVAL_CONTAINS_SEGMENT_EQ]);;
let IS_REALINTERVAL_SEGMENT = prove
(`(!a b. is_realinterval(real_segment[a,b])) /\
(!a b. is_realinterval(real_segment(a,b)))`,
REWRITE_TAC[REAL_SEGMENT_INTERVAL] THEN
MESON_TAC[IS_REALINTERVAL_INTERVAL]);;
let IN_REAL_SEGMENT = prove
(`(!a b x. x IN real_segment[a,b] <=> a <= x /\ x <= b \/ b <= x /\ x <= a) /\
(!a b x. x IN real_segment(a,b) <=> a < x /\ x < b \/ b < x /\ x < a)`,
REWRITE_TAC[REAL_SEGMENT_INTERVAL] THEN
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[IN_REAL_INTERVAL] THEN ASM_REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* A nice lemma from "Concrete Mathematics" (for example f = sqrt). *)
(* ------------------------------------------------------------------------- *)
let FLOOR_CONTINUOUS_MONOTONE_FLOOR = prove
(`!f s. is_realinterval s /\
f real_continuous_on s /\
(!x y. x IN s /\ y IN s /\ x <= y ==> f x <= f y) /\
(!x. x IN s /\ integer(f x) ==> integer x)
==> !x. floor x IN s /\ x IN s ==> floor(f(floor x)) = floor(f x)`,
REWRITE_TAC[is_realinterval; GSYM REAL_LE_ANTISYM] THEN
REPEAT STRIP_TAC THENL [ASM_MESON_TAC[FLOOR_MONO; FLOOR]; ALL_TAC] THEN
SIMP_TAC[REAL_LE_FLOOR; FLOOR] THEN
REWRITE_TAC[GSYM REAL_NOT_LT] THEN DISCH_TAC THEN
MP_TAC(ISPECL
[`f:real->real`; `floor x`; `x:real`; `floor(f(x:real))`]
REAL_IVT_INCREASING) THEN
ASM_SIMP_TAC[FLOOR; IN_REAL_INTERVAL; REAL_LT_IMP_LE; NOT_IMP] THEN
CONJ_TAC THENL
[FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ]
REAL_CONTINUOUS_ON_SUBSET)) THEN
REWRITE_TAC[SUBSET; IN_REAL_INTERVAL] THEN ASM_MESON_TAC[];
DISCH_THEN(X_CHOOSE_THEN `y:real` STRIP_ASSUME_TAC) THEN
SUBGOAL_THEN `integer y` ASSUME_TAC THENL
[ASM_MESON_TAC[FLOOR]; ALL_TAC] THEN
SUBGOAL_THEN `floor x = y` (fun th -> ASM_MESON_TAC[th; REAL_LT_REFL]) THEN
ASM_REWRITE_TAC[GSYM FLOOR_UNIQUE; GSYM REAL_LT_SUB_RADD] THEN
ASM_MESON_TAC[REAL_FLOOR_LE]]);;
(* ------------------------------------------------------------------------- *)
(* Convex real->real functions. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix ("real_convex_on",(12,"right"));;
let real_convex_on = new_definition
`(f:real->real) real_convex_on s <=>
!x y u v. x IN s /\ y IN s /\ &0 <= u /\ &0 <= v /\ (u + v = &1)
==> f(u * x + v * y) <= u * f(x) + v * f(y)`;;
let REAL_CONVEX_ON_EMPTY = prove
(`!f. f real_convex_on {}`,
REWRITE_TAC[real_convex_on; NOT_IN_EMPTY]);;
let REAL_CONVEX_ON = prove
(`!f s. f real_convex_on s <=> (f o drop) convex_on (IMAGE lift s)`,
REWRITE_TAC[real_convex_on; convex_on] THEN
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN
REWRITE_TAC[o_THM; LIFT_DROP; DROP_ADD; DROP_CMUL]);;
let REAL_CONVEX_ON_EQ = prove
(`!f g s.
is_realinterval s /\ (!x. x IN s ==> f x = g x) /\ f real_convex_on s
==> g real_convex_on s`,
REWRITE_TAC[IS_REALINTERVAL_CONVEX; REAL_CONVEX_ON] THEN
REPEAT GEN_TAC THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
MATCH_MP_TAC(ONCE_REWRITE_RULE[IMP_CONJ]
(REWRITE_RULE[CONJ_ASSOC] CONVEX_ON_EQ)) THEN
ASM_REWRITE_TAC[FORALL_IN_IMAGE; o_THM; LIFT_DROP]);;
let REAL_CONVEX_ON_SING = prove
(`!f a. f real_convex_on {a}`,
REWRITE_TAC[REAL_CONVEX_ON; IMAGE_CLAUSES; CONVEX_ON_SING]);;
let REAL_CONVEX_ON_SUBSET = prove
(`!f s t. f real_convex_on t /\ s SUBSET t ==> f real_convex_on s`,
REWRITE_TAC[REAL_CONVEX_ON] THEN
MESON_TAC[CONVEX_ON_SUBSET; IMAGE_SUBSET]);;
let REAL_CONVEX_ADD = prove
(`!s f g. f real_convex_on s /\ g real_convex_on s
==> (\x. f(x) + g(x)) real_convex_on s`,
REWRITE_TAC[REAL_CONVEX_ON; o_DEF; CONVEX_ADD]);;
let REAL_CONVEX_LMUL = prove
(`!s c f. &0 <= c /\ f real_convex_on s ==> (\x. c * f(x)) real_convex_on s`,
REPEAT GEN_TAC THEN REWRITE_TAC[REAL_CONVEX_ON; o_DEF] THEN
DISCH_THEN(MP_TAC o MATCH_MP CONVEX_CMUL) THEN REWRITE_TAC[]);;
let REAL_CONVEX_RMUL = prove
(`!s c f. &0 <= c /\ f real_convex_on s ==> (\x. f(x) * c) real_convex_on s`,
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[REAL_CONVEX_LMUL]);;
let REAL_CONVEX_CONVEX_COMPOSE = prove
(`!f g s:real^N->bool t.
f convex_on s /\ g real_convex_on t /\
convex s /\ is_realinterval t /\ IMAGE f s SUBSET t /\
(!x y. x IN t /\ y IN t /\ x <= y ==> g x <= g y)
==> (g o f) convex_on s`,
REWRITE_TAC[convex_on; convex; IS_REALINTERVAL_CONVEX;
real_convex_on; SUBSET] THEN
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE; o_DEF] THEN
REWRITE_TAC[IN_IMAGE_LIFT_DROP; DROP_ADD; DROP_CMUL; LIFT_DROP] THEN
REWRITE_TAC[RIGHT_IMP_FORALL_THM; IMP_IMP; GSYM CONJ_ASSOC] THEN
ASM_MESON_TAC[REAL_LE_TRANS]);;
let REAL_CONVEX_COMPOSE = prove
(`!f g. f real_convex_on s /\ g real_convex_on t /\
is_realinterval s /\ is_realinterval t /\ IMAGE f s SUBSET t /\
(!x y. x IN t /\ y IN t /\ x <= y ==> g x <= g y)
==> (g o f) real_convex_on s`,
REPEAT STRIP_TAC THEN REWRITE_TAC[REAL_CONVEX_ON; GSYM o_ASSOC] THEN
MATCH_MP_TAC REAL_CONVEX_CONVEX_COMPOSE THEN EXISTS_TAC `t:real->bool` THEN
ASM_REWRITE_TAC[GSYM REAL_CONVEX_ON; GSYM IMAGE_o; o_DEF; LIFT_DROP;
ETA_AX; GSYM IS_REALINTERVAL_CONVEX]);;
let REAL_CONVEX_LOWER = prove
(`!f s x y. f real_convex_on s /\
x IN s /\ y IN s /\ &0 <= u /\ &0 <= v /\ u + v = &1
==> f(u * x + v * y) <= max (f(x)) (f(y))`,
REWRITE_TAC[REAL_CONVEX_ON] THEN
REWRITE_TAC[FORALL_DROP; GSYM IN_IMAGE_LIFT_DROP] THEN
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP CONVEX_LOWER) THEN
REWRITE_TAC[o_THM; DROP_ADD; DROP_CMUL]);;
let REAL_CONVEX_LOCAL_GLOBAL_MINIMUM = prove
(`!f s t x.
f real_convex_on s /\ x IN t /\ real_open t /\ t SUBSET s /\
(!y. y IN t ==> f(x) <= f(y))
==> !y. y IN s ==> f(x) <= f(y)`,
REWRITE_TAC[REAL_CONVEX_ON; REAL_OPEN] THEN
REWRITE_TAC[FORALL_DROP; GSYM IN_IMAGE_LIFT_DROP] THEN
REWRITE_TAC[FORALL_IN_IMAGE; LIFT_DROP] THEN
REPEAT GEN_TAC THEN STRIP_TAC THEN
MP_TAC(ISPECL [`(f:real->real) o drop`; `IMAGE lift s`;
`IMAGE lift t`; `x:real^1`] CONVEX_LOCAL_GLOBAL_MINIMUM) THEN
ASM_SIMP_TAC[FORALL_IN_IMAGE; LIFT_DROP; o_THM; IMAGE_SUBSET]);;
let REAL_CONVEX_DISTANCE = prove
(`!s a. (\x. abs(a - x)) real_convex_on s`,
REWRITE_TAC[REAL_CONVEX_ON; o_DEF; FORALL_DROP; GSYM DROP_SUB] THEN
REWRITE_TAC[drop; GSYM NORM_REAL; GSYM dist; CONVEX_DISTANCE]);;
let REAL_CONVEX_ON_JENSEN = prove
(`!f s. is_realinterval s
==> (f real_convex_on s <=>
!k u x.
(!i:num. 1 <= i /\ i <= k ==> &0 <= u(i) /\ x(i) IN s) /\
(sum (1..k) u = &1)
==> f(sum (1..k) (\i. u(i) * x(i)))
<= sum (1..k) (\i. u(i) * f(x(i))))`,
REWRITE_TAC[IS_REALINTERVAL_CONVEX; REAL_CONVEX_ON] THEN
SIMP_TAC[CONVEX_ON_JENSEN] THEN REPEAT STRIP_TAC THEN
SIMP_TAC[o_DEF; DROP_VSUM; FINITE_NUMSEG] THEN
AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN
X_GEN_TAC `k:num` THEN REWRITE_TAC[] THEN
AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN
X_GEN_TAC `u:num->real` THEN REWRITE_TAC[] THEN EQ_TAC THEN DISCH_TAC THENL
[X_GEN_TAC `x:num->real` THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `lift o (x:num->real)`) THEN
ASM_REWRITE_TAC[o_DEF; LIFT_DROP; IN_IMAGE_LIFT_DROP] THEN
REWRITE_TAC[DROP_CMUL; LIFT_DROP];
X_GEN_TAC `x:num->real^1` THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `drop o (x:num->real^1)`) THEN
ASM_REWRITE_TAC[o_DEF; LIFT_DROP; IN_IMAGE_LIFT_DROP] THEN
ASM_REWRITE_TAC[DROP_CMUL; LIFT_DROP; GSYM IN_IMAGE_LIFT_DROP]]);;
let REAL_CONVEX_ON_IMP_JENSEN = prove
(`!f s k:A->bool u x.
f real_convex_on s /\ is_realinterval s /\ FINITE k /\
(!i. i IN k ==> &0 <= u i /\ x i IN s) /\ sum k u = &1
==> f(sum k (\i. u i * x i)) <= sum k (\i. u i * f(x i))`,
REWRITE_TAC[REAL_CONVEX_ON; IS_REALINTERVAL_IS_INTERVAL] THEN
REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o
SPECL [`k:A->bool`; `u:A->real`; `\i:A. lift(x i)`] o
MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ] CONVEX_ON_IMP_JENSEN)) THEN
ASM_REWRITE_TAC[LIFT_IN_IMAGE_LIFT; o_DEF; LIFT_DROP; DROP_VSUM; DROP_CMUL;
GSYM IS_INTERVAL_CONVEX_1]);;
let REAL_CONVEX_ON_CONTINUOUS = prove
(`!f s. real_open s /\ f real_convex_on s ==> f real_continuous_on s`,
REWRITE_TAC[REAL_CONVEX_ON; REAL_OPEN; REAL_CONTINUOUS_ON] THEN
REWRITE_TAC[CONVEX_ON_CONTINUOUS]);;
let REAL_CONVEX_ON_LEFT_SECANT_MUL = prove
(`!f s. f real_convex_on s <=>
!a b x. a IN s /\ b IN s /\ x IN real_segment[a,b]
==> (f x - f a) * abs(b - a) <= (f b - f a) * abs(x - a)`,
REWRITE_TAC[REAL_CONVEX_ON; CONVEX_ON_LEFT_SECANT_MUL] THEN
REWRITE_TAC[REAL_SEGMENT_SEGMENT] THEN
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN
REWRITE_TAC[o_DEF; LIFT_DROP] THEN
REWRITE_TAC[NORM_REAL; GSYM drop; DROP_SUB; LIFT_DROP]);;
let REAL_CONVEX_ON_RIGHT_SECANT_MUL = prove
(`!f s. f real_convex_on s <=>
!a b x. a IN s /\ b IN s /\ x IN real_segment[a,b]
==> (f b - f a) * abs(b - x) <= (f b - f x) * abs(b - a)`,
REWRITE_TAC[REAL_CONVEX_ON; CONVEX_ON_RIGHT_SECANT_MUL] THEN
REWRITE_TAC[REAL_SEGMENT_SEGMENT] THEN
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN
REWRITE_TAC[o_DEF; LIFT_DROP] THEN
REWRITE_TAC[NORM_REAL; GSYM drop; DROP_SUB; LIFT_DROP]);;
let REAL_CONVEX_ON_LEFT_SECANT = prove
(`!f s.
f real_convex_on s <=>
!a b x. a IN s /\ b IN s /\ x IN real_segment(a,b)
==> (f x - f a) / abs(x - a) <= (f b - f a) / abs(b - a)`,
REWRITE_TAC[REAL_CONVEX_ON; CONVEX_ON_LEFT_SECANT] THEN
REWRITE_TAC[REAL_SEGMENT_SEGMENT] THEN
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN
REWRITE_TAC[o_DEF; LIFT_DROP] THEN
REWRITE_TAC[NORM_REAL; GSYM drop; DROP_SUB; LIFT_DROP]);;
let REAL_CONVEX_ON_RIGHT_SECANT = prove
(`!f s.
f real_convex_on s <=>
!a b x. a IN s /\ b IN s /\ x IN real_segment(a,b)
==> (f b - f a) / abs(b - a) <= (f b - f x) / abs(b - x)`,
REWRITE_TAC[REAL_CONVEX_ON; CONVEX_ON_RIGHT_SECANT] THEN
REWRITE_TAC[REAL_SEGMENT_SEGMENT] THEN
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN
REWRITE_TAC[o_DEF; LIFT_DROP] THEN
REWRITE_TAC[NORM_REAL; GSYM drop; DROP_SUB; LIFT_DROP]);;
let REAL_CONVEX_ON_DERIVATIVE_SECANT_IMP = prove
(`!f f' s x y.
f real_convex_on s /\ real_segment[x,y] SUBSET s /\
(f has_real_derivative f') (atreal x within s)
==> f' * (y - x) <= f y - f x`,
REWRITE_TAC[HAS_REAL_FRECHET_DERIVATIVE_WITHIN;
REAL_CONVEX_ON; REAL_SEGMENT_SEGMENT] THEN
REWRITE_TAC[SUBSET; IN_IMAGE_LIFT_DROP] THEN
REPEAT GEN_TAC THEN REWRITE_TAC[FORALL_DROP] THEN
REWRITE_TAC[LIFT_DROP] THEN
REWRITE_TAC[GSYM IN_IMAGE_LIFT_DROP; GSYM SUBSET] THEN
ONCE_REWRITE_TAC[GSYM(REWRITE_CONV[LIFT_DROP]
`\x. lift(drop(f % x))`)] THEN
REWRITE_TAC[GSYM o_DEF] THEN
DISCH_THEN(MP_TAC o MATCH_MP CONVEX_ON_DERIVATIVE_SECANT_IMP) THEN
REWRITE_TAC[o_THM; DROP_CMUL; DROP_SUB; LIFT_DROP]);;
let REAL_CONVEX_ON_SECANT_DERIVATIVE_IMP = prove
(`!f f' s x y.
f real_convex_on s /\ real_segment[x,y] SUBSET s /\
(f has_real_derivative f') (atreal y within s)
==> f y - f x <= f' * (y - x)`,
REWRITE_TAC[HAS_REAL_FRECHET_DERIVATIVE_WITHIN;
REAL_CONVEX_ON; REAL_SEGMENT_SEGMENT] THEN
REWRITE_TAC[SUBSET; IN_IMAGE_LIFT_DROP] THEN
REPEAT GEN_TAC THEN REWRITE_TAC[FORALL_DROP] THEN
REWRITE_TAC[LIFT_DROP] THEN
REWRITE_TAC[GSYM IN_IMAGE_LIFT_DROP; GSYM SUBSET] THEN
ONCE_REWRITE_TAC[GSYM(REWRITE_CONV[LIFT_DROP]
`\x. lift(drop(f % x))`)] THEN
REWRITE_TAC[GSYM o_DEF] THEN
DISCH_THEN(MP_TAC o MATCH_MP CONVEX_ON_SECANT_DERIVATIVE_IMP) THEN
REWRITE_TAC[o_THM; DROP_CMUL; DROP_SUB; LIFT_DROP]);;
let REAL_CONVEX_ON_DERIVATIVES_IMP = prove
(`!f f'x f'y s x y.
f real_convex_on s /\ real_segment[x,y] SUBSET s /\
(f has_real_derivative f'x) (atreal x within s) /\
(f has_real_derivative f'y) (atreal y within s)
==> f'x * (y - x) <= f'y * (y - x)`,
REWRITE_TAC[HAS_REAL_FRECHET_DERIVATIVE_WITHIN;
REAL_CONVEX_ON; REAL_SEGMENT_SEGMENT] THEN
REWRITE_TAC[SUBSET; IN_IMAGE_LIFT_DROP] THEN
REPEAT GEN_TAC THEN REWRITE_TAC[FORALL_DROP] THEN
REWRITE_TAC[LIFT_DROP] THEN
REWRITE_TAC[GSYM IN_IMAGE_LIFT_DROP; GSYM SUBSET] THEN
ONCE_REWRITE_TAC[GSYM(REWRITE_CONV[LIFT_DROP]
`\x. lift(drop(f % x))`)] THEN
REWRITE_TAC[GSYM o_DEF] THEN
DISCH_THEN(MP_TAC o MATCH_MP CONVEX_ON_DERIVATIVES_IMP) THEN
REWRITE_TAC[o_THM; DROP_CMUL; DROP_SUB; LIFT_DROP]);;
let REAL_CONVEX_ON_DERIVATIVE_INCREASING_IMP = prove
(`!f f'x f'y s x y.
f real_convex_on s /\ real_interval[x,y] SUBSET s /\
(f has_real_derivative f'x) (atreal x within s) /\
(f has_real_derivative f'y) (atreal y within s) /\
x < y
==> f'x <= f'y`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`f:real->real`; `f'x:real`; `f'y:real`; `s:real->bool`;
`x:real`; `y:real`] REAL_CONVEX_ON_DERIVATIVES_IMP) THEN
ASM_REWRITE_TAC[REAL_SEGMENT_INTERVAL] THEN
ASM_SIMP_TAC[REAL_LT_IMP_LE; REAL_LE_RMUL_EQ; REAL_SUB_LT]);;
let REAL_CONVEX_ON_DERIVATIVE_SECANT = prove
(`!f f' s.
is_realinterval s /\
(!x. x IN s ==> (f has_real_derivative f'(x)) (atreal x within s))
==> (f real_convex_on s <=>
!x y. x IN s /\ y IN s ==> f'(x) * (y - x) <= f y - f x)`,
REWRITE_TAC[HAS_REAL_FRECHET_DERIVATIVE_WITHIN;
REAL_CONVEX_ON; IS_REALINTERVAL_CONVEX] THEN
REPEAT GEN_TAC THEN
REWRITE_TAC[FORALL_DROP; GSYM IN_IMAGE_LIFT_DROP; LIFT_DROP] THEN
ONCE_REWRITE_TAC[GSYM(REWRITE_CONV[LIFT_DROP; o_DEF]
`lift o (\x. drop(f % x))`)] THEN
DISCH_THEN(SUBST1_TAC o MATCH_MP CONVEX_ON_DERIVATIVE_SECANT) THEN
REWRITE_TAC[DROP_CMUL; DROP_SUB; o_THM]);;
let REAL_CONVEX_ON_SECANT_DERIVATIVE = prove
(`!f f' s.
is_realinterval s /\
(!x. x IN s ==> (f has_real_derivative f'(x)) (atreal x within s))
==> (f real_convex_on s <=>
!x y. x IN s /\ y IN s ==> f y - f x <= f'(y) * (y - x))`,
REWRITE_TAC[HAS_REAL_FRECHET_DERIVATIVE_WITHIN;
REAL_CONVEX_ON; IS_REALINTERVAL_CONVEX] THEN
REPEAT GEN_TAC THEN
REWRITE_TAC[FORALL_DROP; GSYM IN_IMAGE_LIFT_DROP; LIFT_DROP] THEN
ONCE_REWRITE_TAC[GSYM(REWRITE_CONV[LIFT_DROP; o_DEF]
`lift o (\x. drop(f % x))`)] THEN
DISCH_THEN(SUBST1_TAC o MATCH_MP CONVEX_ON_SECANT_DERIVATIVE) THEN
REWRITE_TAC[DROP_CMUL; DROP_SUB; o_THM]);;
let REAL_CONVEX_ON_DERIVATIVES = prove
(`!f f' s.
is_realinterval s /\
(!x. x IN s ==> (f has_real_derivative f'(x)) (atreal x within s))
==> (f real_convex_on s <=>
!x y. x IN s /\ y IN s ==> f'(x) * (y - x) <= f'(y) * (y - x))`,
REWRITE_TAC[HAS_REAL_FRECHET_DERIVATIVE_WITHIN;
REAL_CONVEX_ON; IS_REALINTERVAL_CONVEX] THEN
REPEAT GEN_TAC THEN
REWRITE_TAC[FORALL_DROP; GSYM IN_IMAGE_LIFT_DROP; LIFT_DROP] THEN
ONCE_REWRITE_TAC[GSYM(REWRITE_CONV[LIFT_DROP; o_DEF]
`lift o (\x. drop(f % x))`)] THEN
DISCH_THEN(SUBST1_TAC o MATCH_MP CONVEX_ON_DERIVATIVES) THEN
REWRITE_TAC[DROP_CMUL; DROP_SUB; o_THM]);;
let REAL_CONVEX_ON_DERIVATIVE_INCREASING = prove
(`!f f' s.
is_realinterval s /\
(!x. x IN s ==> (f has_real_derivative f'(x)) (atreal x within s))
==> (f real_convex_on s <=>
!x y. x IN s /\ y IN s /\ x <= y ==> f'(x) <= f'(y))`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
FIRST_ASSUM(SUBST1_TAC o MATCH_MP REAL_CONVEX_ON_DERIVATIVES) THEN
EQ_TAC THEN DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`x:real`; `y:real`] THEN
STRIP_TAC THENL
[FIRST_X_ASSUM(MP_TAC o SPECL [`x:real`; `y:real`]) THEN
ASM_CASES_TAC `x:real = y` THEN ASM_REWRITE_TAC[REAL_LE_REFL] THEN
ASM_SIMP_TAC[REAL_LE_RMUL_EQ; REAL_SUB_LT; REAL_LT_LE];
DISJ_CASES_TAC(REAL_ARITH `x <= y \/ y <= x`) THENL
[FIRST_X_ASSUM(MP_TAC o SPECL [`x:real`; `y:real`]);
FIRST_X_ASSUM(MP_TAC o SPECL [`y:real`; `x:real`])] THEN
ASM_CASES_TAC `x:real = y` THEN ASM_REWRITE_TAC[REAL_LE_REFL] THEN
ASM_SIMP_TAC[REAL_LE_RMUL_EQ; REAL_SUB_LT; REAL_LT_LE] THEN
ONCE_REWRITE_TAC[REAL_ARITH
`a * (y - x) <= b * (y - x) <=> b * (x - y) <= a * (x - y)`] THEN
ASM_SIMP_TAC[REAL_LE_RMUL_EQ; REAL_SUB_LT; REAL_LT_LE]]);;
let HAS_REAL_DERIVATIVE_INCREASING_IMP = prove
(`!f f' s a b.
is_realinterval s /\
(!x. x IN s ==> (f has_real_derivative f'(x)) (atreal x within s)) /\
(!x. x IN s ==> &0 <= f'(x)) /\
a IN s /\ b IN s /\ a <= b
==> f(a) <= f(b)`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `real_interval[a,b] SUBSET s` ASSUME_TAC THENL
[REWRITE_TAC[SUBSET; IN_REAL_INTERVAL] THEN REPEAT STRIP_TAC THEN
FIRST_X_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [is_realinterval]) THEN
MAP_EVERY EXISTS_TAC [`a:real`; `b:real`] THEN ASM_REWRITE_TAC[];
ALL_TAC] THEN
MP_TAC(ISPECL [`f:real->real`; `f':real->real`; `a:real`; `b:real`]
REAL_MVT_VERY_SIMPLE) THEN
ANTS_TAC THENL
[ASM_REWRITE_TAC[] THEN X_GEN_TAC `z:real` THEN DISCH_TAC THEN
MATCH_MP_TAC HAS_REAL_DERIVATIVE_WITHIN_SUBSET THEN
EXISTS_TAC `s:real->bool` THEN ASM SET_TAC[];
DISCH_THEN(X_CHOOSE_THEN `z:real` MP_TAC) THEN STRIP_TAC THEN
GEN_REWRITE_TAC I [GSYM REAL_SUB_LE] THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_MUL THEN
CONJ_TAC THENL [ASM SET_TAC[]; ASM_REAL_ARITH_TAC]]);;
let HAS_REAL_DERIVATIVE_INCREASING = prove
(`!f f' s. is_realinterval s /\ ~(?a. s = {a}) /\
(!x. x IN s ==> (f has_real_derivative f'(x)) (atreal x within s))
==> ((!x. x IN s ==> &0 <= f'(x)) <=>
(!x y. x IN s /\ y IN s /\ x <= y ==> f(x) <= f(y)))`,
REWRITE_TAC[NOT_EXISTS_THM] THEN REPEAT STRIP_TAC THEN EQ_TAC THENL
[ASM_MESON_TAC[HAS_REAL_DERIVATIVE_INCREASING_IMP]; ALL_TAC] THEN
DISCH_TAC THEN X_GEN_TAC `x:real` THEN DISCH_TAC THEN
MATCH_MP_TAC(ISPEC `atreal x within s` REALLIM_LBOUND) THEN
EXISTS_TAC `\y:real. (f y - f x) / (y - x)` THEN
ASM_SIMP_TAC[GSYM HAS_REAL_DERIVATIVE_WITHINREAL] THEN
ASM_SIMP_TAC[TRIVIAL_LIMIT_WITHIN_REALINTERVAL] THEN
REWRITE_TAC[EVENTUALLY_WITHINREAL] THEN
EXISTS_TAC `&1` THEN REWRITE_TAC[REAL_LT_01] THEN
X_GEN_TAC `y:real` THEN
REWRITE_TAC[REAL_ARITH `&0 < abs(y - x) <=> ~(y = x)`] THEN STRIP_TAC THEN
FIRST_ASSUM(DISJ_CASES_TAC o MATCH_MP (REAL_ARITH
`~(y:real = x) ==> x < y \/ y < x`))
THENL
[ALL_TAC;
ONCE_REWRITE_TAC[GSYM REAL_NEG_SUB] THEN
REWRITE_TAC[real_div; REAL_INV_NEG; REAL_MUL_LNEG; REAL_MUL_RNEG] THEN
REWRITE_TAC[REAL_NEG_NEG; GSYM real_div]] THEN
MATCH_MP_TAC REAL_LE_DIV THEN
ASM_SIMP_TAC[REAL_SUB_LE; REAL_LT_IMP_LE]);;
let HAS_REAL_DERIVATIVE_STRICTLY_INCREASING_IMP = prove
(`!f f' a b.
(!x. x IN real_interval[a,b]
==> (f has_real_derivative f'(x))
(atreal x within real_interval[a,b])) /\
(!x. x IN real_interval(a,b) ==> &0 < f'(x)) /\
a < b
==> f(a) < f(b)`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`f:real->real`; `f':real->real`; `a:real`; `b:real`]
REAL_MVT) THEN
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
[ALL_TAC; ASM_MESON_TAC[REAL_SUB_LT; REAL_LT_MUL]] THEN
CONJ_TAC THENL
[ASM_MESON_TAC[REAL_DIFFERENTIABLE_ON_IMP_REAL_CONTINUOUS_ON;
real_differentiable_on];
ASM_MESON_TAC[HAS_REAL_DERIVATIVE_WITHIN_SUBSET; SUBSET;
REAL_INTERVAL_OPEN_SUBSET_CLOSED; REAL_OPEN_REAL_INTERVAL;
HAS_REAL_DERIVATIVE_WITHIN_REAL_OPEN]]);;
let REAL_CONVEX_ON_SECOND_DERIVATIVE = prove
(`!f f' f'' s.
is_realinterval s /\ ~(?a. s = {a}) /\
(!x. x IN s ==> (f has_real_derivative f'(x)) (atreal x within s)) /\
(!x. x IN s ==> (f' has_real_derivative f''(x)) (atreal x within s))
==> (f real_convex_on s <=> !x. x IN s ==> &0 <= f''(x))`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC
`!x y. x IN s /\ y IN s /\ x <= y ==> (f':real->real)(x) <= f'(y)` THEN
CONJ_TAC THENL
[MATCH_MP_TAC REAL_CONVEX_ON_DERIVATIVE_INCREASING;
CONV_TAC SYM_CONV THEN MATCH_MP_TAC HAS_REAL_DERIVATIVE_INCREASING] THEN
ASM_REWRITE_TAC[]);;
let REAL_CONVEX_ON_ASYM = prove
(`!s f. f real_convex_on s <=>
!x y u v.
x IN s /\ y IN s /\ x < y /\ &0 <= u /\ &0 <= v /\ u + v = &1
==> f (u * x + v * y) <= u * f x + v * f y`,
REPEAT GEN_TAC THEN REWRITE_TAC[real_convex_on] THEN
EQ_TAC THEN STRIP_TAC THEN ASM_SIMP_TAC[] THEN
MATCH_MP_TAC REAL_WLOG_LT THEN
SIMP_TAC[GSYM REAL_ADD_RDISTRIB; REAL_MUL_LID; REAL_LE_REFL] THEN
ASM_MESON_TAC[REAL_ADD_SYM]);;
let REAL_CONVEX_ON_EXP = prove
(`!s. exp real_convex_on s`,
GEN_TAC THEN MATCH_MP_TAC REAL_CONVEX_ON_SUBSET THEN
EXISTS_TAC `(:real)` THEN REWRITE_TAC[SUBSET_UNIV] THEN
MP_TAC(ISPECL [`exp`; `exp`; `exp`; `(:real)`]
REAL_CONVEX_ON_SECOND_DERIVATIVE) THEN
SIMP_TAC[HAS_REAL_DERIVATIVE_EXP; REAL_EXP_POS_LE;
HAS_REAL_DERIVATIVE_ATREAL_WITHIN; IS_REALINTERVAL_UNIV] THEN
DISCH_THEN MATCH_MP_TAC THEN
MATCH_MP_TAC(SET_RULE
`&0 IN s /\ &1 IN s /\ ~(&1 = &0) ==> ~(?a. s = {a})`) THEN
REWRITE_TAC[IN_UNIV] THEN REAL_ARITH_TAC);;
let REAL_CONVEX_ON_RPOW = prove
(`!s t. s SUBSET {x | &0 <= x} /\ &1 <= t
==> (\x. x rpow t) real_convex_on s`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_CONVEX_ON_SUBSET THEN
EXISTS_TAC `{x | &0 <= x}` THEN ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `(\x. x rpow t) real_convex_on {x | &0 < x}` MP_TAC THENL
[MP_TAC(ISPECL
[`\x. x rpow t`; `\x. t * x rpow (t - &1)`;
`\x. t * (t - &1) * x rpow (t - &2)`; `{x | &0 < x}`]
REAL_CONVEX_ON_SECOND_DERIVATIVE) THEN
ASM_REWRITE_TAC[IN_ELIM_THM] THEN ANTS_TAC THENL
[REPEAT CONJ_TAC THENL
[REWRITE_TAC[is_realinterval; IN_ELIM_THM] THEN REAL_ARITH_TAC;
MATCH_MP_TAC(SET_RULE
`&1 IN s /\ &2 IN s /\ ~(&1 = &2) ==> ~(?a. s = {a})`) THEN
REWRITE_TAC[IN_ELIM_THM] THEN REAL_ARITH_TAC;
REPEAT STRIP_TAC THEN REAL_DIFF_TAC THEN ASM_REAL_ARITH_TAC;
REPEAT STRIP_TAC THEN REAL_DIFF_TAC THEN
ASM_REWRITE_TAC[REAL_ARITH `t - &1 - &1 = t - &2`] THEN
ASM_REAL_ARITH_TAC];
DISCH_THEN SUBST1_TAC THEN REPEAT STRIP_TAC THEN
REPEAT(MATCH_MP_TAC REAL_LE_MUL THEN CONJ_TAC THENL
[ASM_REAL_ARITH_TAC; ALL_TAC]) THEN
MATCH_MP_TAC RPOW_POS_LE THEN ASM_SIMP_TAC[REAL_LT_IMP_LE]];
REWRITE_TAC[REAL_CONVEX_ON_ASYM] THEN
MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `x:real` THEN
REWRITE_TAC[IN_ELIM_THM] THEN ASM_CASES_TAC `x = &0` THENL
[DISCH_THEN(K ALL_TAC) THEN ASM_REWRITE_TAC[REAL_MUL_RZERO] THEN
REPEAT STRIP_TAC THEN
ASM_SIMP_TAC[RPOW_ZERO; REAL_ARITH `&1 <= t ==> ~(t = &0)`] THEN
REWRITE_TAC[REAL_MUL_RZERO; REAL_ADD_LID] THEN
ASM_CASES_TAC `v = &0` THEN
ASM_SIMP_TAC[RPOW_ZERO; REAL_ARITH `&1 <= t ==> ~(t = &0)`;
REAL_MUL_LZERO; REAL_LE_REFL] THEN
ASM_SIMP_TAC[RPOW_MUL; REAL_LT_LE] THEN
MATCH_MP_TAC REAL_LE_RMUL THEN
ASM_SIMP_TAC[RPOW_POS_LE; REAL_LT_IMP_LE] THEN
MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `exp(&1 * log v)` THEN
CONJ_TAC THENL
[ASM_SIMP_TAC[rpow; REAL_LT_LE; REAL_EXP_MONO_LE] THEN
ONCE_REWRITE_TAC[REAL_ARITH
`a * l <= b * l <=> --l * b <= --l * a`] THEN
MATCH_MP_TAC REAL_LE_LMUL THEN ASM_REWRITE_TAC[] THEN
ASM_SIMP_TAC[GSYM LOG_INV; REAL_LT_LE] THEN MATCH_MP_TAC LOG_POS THEN
MATCH_MP_TAC REAL_INV_1_LE THEN ASM_REAL_ARITH_TAC;
ASM_SIMP_TAC[REAL_MUL_LID; EXP_LOG; REAL_LT_LE; REAL_LE_REFL]];
ASM_MESON_TAC[REAL_LT_LE; REAL_LET_TRANS]]]);;
let REAL_CONVEX_ON_LOG = prove
(`!s. s SUBSET {x | &0 < x} ==> (\x. --log x) real_convex_on s`,
GEN_TAC THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] REAL_CONVEX_ON_SUBSET) THEN
MP_TAC(ISPECL [`\x. --log x`; `\x:real. --inv(x)`; `\x:real. inv(x pow 2)`;
`{x | &0 < x}`]
REAL_CONVEX_ON_SECOND_DERIVATIVE) THEN
REWRITE_TAC[IN_ELIM_THM; REAL_LE_INV_EQ; REAL_LE_POW_2] THEN
DISCH_THEN MATCH_MP_TAC THEN REPEAT CONJ_TAC THENL
[REWRITE_TAC[is_realinterval; IN_ELIM_THM] THEN REAL_ARITH_TAC;
REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_SING] THEN
MESON_TAC[REAL_ARITH `&0 < a ==> &0 < a + &1 /\ ~(a + &1 = a)`];
REPEAT STRIP_TAC THEN REAL_DIFF_TAC THEN ASM_REAL_ARITH_TAC;
REPEAT STRIP_TAC THEN REAL_DIFF_TAC THEN ASM_REAL_ARITH_TAC]);;
let REAL_CONTINUOUS_MIDPOINT_CONVEX = prove
(`!f s. f real_continuous_on s /\ is_realinterval s /\
(!x y. x IN s /\ y IN s ==> f ((x + y) / &2) <= (f x + f y) / &2)
==> f real_convex_on s`,
REPEAT STRIP_TAC THEN REWRITE_TAC[REAL_CONVEX_ON] THEN
MATCH_MP_TAC CONTINUOUS_MIDPOINT_CONVEX THEN
ASM_REWRITE_TAC[GSYM REAL_CONTINUOUS_ON; GSYM IS_REALINTERVAL_CONVEX] THEN
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN
REWRITE_TAC[midpoint; LIFT_DROP; o_THM; DROP_CMUL; DROP_ADD] THEN
ASM_SIMP_TAC[REAL_ARITH `inv(&2) * x = x / &2`]);;
(* ------------------------------------------------------------------------- *)
(* Some convexity-derived inequalities including AGM and Young's inequality. *)
(* ------------------------------------------------------------------------- *)
let AGM_GEN = prove
(`!a x k:A->bool.
FINITE k /\ sum k a = &1 /\ (!i. i IN k ==> &0 <= a i /\ &0 <= x i)
==> product k (\i. x i rpow a i) <= sum k (\i. a i * x i)`,
let version1 = prove
(`!a x k:A->bool.
FINITE k /\ sum k a = &1 /\ (!i. i IN k ==> &0 < a i /\ &0 < x i)
==> product k (\i. x i rpow a i) <= sum k (\i. a i * x i)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `k:A->bool = {}` THEN
ASM_REWRITE_TAC[SUM_CLAUSES; REAL_OF_NUM_EQ; ARITH_EQ] THEN STRIP_TAC THEN
MATCH_MP_TAC LOG_MONO_LE_REV THEN
ASM_SIMP_TAC[PRODUCT_POS_LT; RPOW_POS_LT; LOG_PRODUCT; LOG_RPOW;
SUM_POS_LT_ALL; REAL_LT_MUL] THEN
MP_TAC(ISPECL [`\x. --log x`; `{x | &0 < x}`; `k:A->bool`; `a:A->real`;
`x:A->real`] REAL_CONVEX_ON_IMP_JENSEN) THEN
ASM_SIMP_TAC[IN_ELIM_THM; REAL_CONVEX_ON_LOG; SUBSET_REFL; REAL_LT_IMP_LE;
is_realinterval] THEN
REWRITE_TAC[REAL_MUL_RNEG; SUM_NEG; REAL_LE_NEG2] THEN
DISCH_THEN MATCH_MP_TAC THEN REAL_ARITH_TAC) in
let version2 = prove
(`!a x k:A->bool.
FINITE k /\ sum k a = &1 /\ (!i. i IN k ==> &0 < a i /\ &0 <= x i)
==> product k (\i. x i rpow a i) <= sum k (\i. a i * x i)`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `?i:A. i IN k /\ x i = &0` THENL
[MATCH_MP_TAC(REAL_ARITH `&0 <= y /\ x = &0 ==> x <= y`) THEN
CONJ_TAC THENL
[MATCH_MP_TAC SUM_POS_LE THEN ASM_SIMP_TAC[REAL_LE_MUL; REAL_LT_IMP_LE];
ASM_SIMP_TAC[PRODUCT_EQ_0; RPOW_EQ_0] THEN
ASM_MESON_TAC[REAL_LT_IMP_NZ]];
MATCH_MP_TAC version1 THEN ASM_MESON_TAC[REAL_LT_LE]]) in
REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`product {i:A | i IN k /\ ~(a i = &0)} (\i. x i rpow a i)
<= sum {i:A | i IN k /\ ~(a i = &0)} (\i. a i * x i)`
MP_TAC THENL
[MATCH_MP_TAC version2 THEN
ASM_SIMP_TAC[FINITE_RESTRICT; REAL_LT_LE; IN_ELIM_THM] THEN
FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN
GEN_REWRITE_TAC RAND_CONV [GSYM SUM_SUPPORT] THEN
REWRITE_TAC[support; NEUTRAL_REAL_ADD];
MATCH_MP_TAC EQ_IMP THEN CONV_TAC SYM_CONV THEN BINOP_TAC THENL
[MATCH_MP_TAC PRODUCT_SUPERSET;
MATCH_MP_TAC SUM_SUPERSET] THEN
SIMP_TAC[IN_ELIM_THM; SUBSET_RESTRICT; IMP_CONJ; RPOW_0] THEN
REWRITE_TAC[REAL_MUL_LZERO]]);;
let AGM_RPOW = prove
(`!k:A->bool x n.
k HAS_SIZE n /\ ~(n = 0) /\ (!i. i IN k ==> &0 <= x(i))
==> product k (\i. x(i) rpow (&1 / &n)) <= sum k (\i. x(i) / &n)`,
REWRITE_TAC[HAS_SIZE] THEN REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`\i:A. &1 / &n`; `x:A->real`; `k:A->bool`]
AGM_GEN) THEN
ASM_SIMP_TAC[SUM_CONST; REAL_LE_DIV; REAL_OF_NUM_LT; LE_1; ARITH;
REAL_DIV_LMUL; REAL_OF_NUM_EQ; REAL_POS] THEN
REWRITE_TAC[real_div; REAL_MUL_LID; REAL_MUL_AC]);;
let AGM_ROOT = prove
(`!k:A->bool x n.
k HAS_SIZE n /\ ~(n = 0) /\ (!i. i IN k ==> &0 <= x(i))
==> root n (product k x) <= sum k x / &n`,
REWRITE_TAC[HAS_SIZE] THEN REPEAT STRIP_TAC THEN
ASM_SIMP_TAC[ROOT_PRODUCT; real_div; GSYM SUM_RMUL] THEN
ASM_SIMP_TAC[REAL_ROOT_RPOW; GSYM real_div] THEN
REWRITE_TAC[REAL_ARITH `inv(x) = &1 / x`] THEN
MATCH_MP_TAC AGM_RPOW THEN ASM_REWRITE_TAC[HAS_SIZE]);;
let AGM_SQRT = prove
(`!x y. &0 <= x /\ &0 <= y ==> sqrt(x * y) <= (x + y) / &2`,
REPEAT STRIP_TAC THEN MP_TAC
(ISPECL [`{0,1}`; `\n. if n = 0 then (x:real) else y`; `2`] AGM_ROOT) THEN
SIMP_TAC[SUM_CLAUSES; PRODUCT_CLAUSES; FINITE_RULES] THEN
REWRITE_TAC[ARITH_EQ; IN_INSERT; NOT_IN_EMPTY;
HAS_SIZE_CONV`s HAS_SIZE 2 `] THEN
ASM_SIMP_TAC[ROOT_2; REAL_MUL_RID; REAL_ADD_RID;
REAL_ARITH `x / &2 + y / &2 = (x + y) / &2`] THEN
ASM_MESON_TAC[ARITH_RULE `~(1 = 0)`]);;
let AGM = prove
(`!k:A->bool x n.
k HAS_SIZE n /\ ~(n = 0) /\ (!i. i IN k ==> &0 <= x(i))
==> product k x <= (sum k x / &n) pow n`,
REWRITE_TAC[HAS_SIZE] THEN REPEAT STRIP_TAC THEN
TRANS_TAC REAL_LE_TRANS `root n (product (k:A->bool) x) pow n` THEN
CONJ_TAC THENL
[ASM_SIMP_TAC[REAL_POW_ROOT; PRODUCT_POS_LE; REAL_LE_REFL];
MATCH_MP_TAC REAL_POW_LE2 THEN
ASM_SIMP_TAC[AGM_ROOT; HAS_SIZE; ROOT_LE_0; PRODUCT_POS_LE]]);;
let AGM_2 = prove
(`!x y u v.
&0 <= x /\ &0 <= y /\ &0 <= u /\ &0 <= v /\ u + v = &1
==> x rpow u * y rpow v <= u * x + v * y`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`\i. if i = 0 then u:real else v`;
`\i. if i = 0 then x:real else y`; `0..SUC 0`]
AGM_GEN) THEN
REWRITE_TAC[SUM_CLAUSES_NUMSEG; PRODUCT_CLAUSES_NUMSEG; ARITH] THEN
REWRITE_TAC[FINITE_NUMSEG] THEN ASM_MESON_TAC[]);;
let YOUNG_INEQUALITY = prove
(`!a b p q. &0 <= a /\ &0 <= b /\ &0 < p /\ &0 < q /\ inv(p) + inv(q) = &1
==> a * b <= a rpow p / p + b rpow q / q`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`a rpow p`; `b rpow q`; `inv p:real`; `inv q:real`]
AGM_2) THEN
ASM_SIMP_TAC[RPOW_RPOW; RPOW_POS_LE; REAL_LE_INV_EQ; REAL_LT_IMP_LE;
REAL_MUL_RINV; RPOW_POW; REAL_POW_1; REAL_LT_IMP_NZ] THEN
REAL_ARITH_TAC);;
let HOELDER = prove
(`!k:A->bool a x y.
FINITE k /\ sum k a = &1 /\
(!i. i IN k ==> &0 <= a i /\ &0 <= x i /\ &0 <= y i)
==> product k (\i. x i rpow a i) + product k (\i. y i rpow a i)
<= product k (\i. (x i + y i) rpow a i)`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `&0 <= product (k:A->bool) (\i. (x i + y i) rpow a i)`
MP_TAC THENL
[MATCH_MP_TAC PRODUCT_POS_LE THEN ASM_SIMP_TAC[REAL_LE_ADD; RPOW_POS_LE];
ALL_TAC] THEN
REWRITE_TAC[REAL_ARITH `&0 <= x <=> x = &0 \/ &0 < x`] THEN
ASM_SIMP_TAC[PRODUCT_EQ_0; RPOW_EQ_0; TAUT `p /\ q <=> ~(p ==> ~q)`;
REAL_ARITH `&0 <= x /\ &0 <= y ==> (x + y = &0 <=> x = &0 /\ y = &0)`] THEN
REWRITE_TAC[NOT_IMP] THEN STRIP_TAC THENL
[MATCH_MP_TAC(REAL_ARITH
`x = &0 /\ y = &0 /\ z = &0 ==> x + y <= z`) THEN
ASM_SIMP_TAC[PRODUCT_EQ_0; RPOW_EQ_0] THEN ASM_MESON_TAC[REAL_ADD_LID];
GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_LID]] THEN
ASM_SIMP_TAC[GSYM REAL_LE_LDIV_EQ; GSYM PRODUCT_DIV; GSYM RPOW_DIV;
REAL_ARITH `(x + y) / z:real = x / z + y / z`] THEN
ASM_SIMP_TAC[GSYM RPOW_PRODUCT] THEN
TRANS_TAC REAL_LE_TRANS
`sum k (\i:A. a i * (x i / (x i + y i))) +
sum k (\i. a i * (y i / (x i + y i)))` THEN
CONJ_TAC THENL
[MATCH_MP_TAC REAL_LE_ADD2 THEN CONJ_TAC THEN MATCH_MP_TAC AGM_GEN THEN
ASM_SIMP_TAC[REAL_LE_ADD; REAL_LE_DIV];
ASM_SIMP_TAC[GSYM SUM_ADD]] THEN
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
`s = &1 ==> p = s ==> p <= &1`)) THEN
MATCH_MP_TAC SUM_EQ THEN ASM_REWRITE_TAC[] THEN
X_GEN_TAC `i:A` THEN DISCH_TAC THEN
ASM_CASES_TAC `(a:A->real) i = &0` THEN
ASM_REWRITE_TAC[REAL_MUL_LZERO; REAL_ADD_LID] THEN
FIRST_X_ASSUM(MP_TAC o MATCH_MP REAL_LT_IMP_NZ) THEN
ASM_SIMP_TAC[PRODUCT_EQ_0; RPOW_EQ_0; NOT_EXISTS_THM] THEN
DISCH_THEN(MP_TAC o SPEC `i:A`) THEN ASM_REWRITE_TAC[] THEN
CONV_TAC REAL_FIELD);;
(* ------------------------------------------------------------------------- *)
(* Some other inequalities where it's handy just to use calculus. *)
(* ------------------------------------------------------------------------- *)
let RPOW_MINUS1_QUOTIENT_LT = prove
(`!a x y. &0 < a /\ ~(a = &1) /\ &0 < x /\ x < y
==> (a rpow x - &1) / x < (a rpow y - &1) / y`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`\x. (a rpow x - &1) / x`;
`\x. log a * a rpow x / x - (a rpow x - &1) / x pow 2`;
`x:real`; `y:real`]
HAS_REAL_DERIVATIVE_STRICTLY_INCREASING_IMP) THEN
ASM_REWRITE_TAC[IN_REAL_INTERVAL] THEN DISCH_THEN MATCH_MP_TAC THEN
CONJ_TAC THENL
[ASM_SIMP_TAC[rpow] THEN REPEAT STRIP_TAC THEN REAL_DIFF_TAC THEN
REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC REAL_FIELD;
ALL_TAC] THEN
X_GEN_TAC `z:real` THEN DISCH_TAC THEN
SUBGOAL_THEN `&0 < z` ASSUME_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
MATCH_MP_TAC REAL_LT_LCANCEL_IMP THEN
EXISTS_TAC `(z:real) pow 2` THEN
ASM_SIMP_TAC[REAL_POW_LT; REAL_MUL_RZERO; REAL_FIELD
`&0 < x ==> x pow 2 * (a * b / x - c / x pow 2) = a * b * x - c`] THEN
REWRITE_TAC[REAL_ARITH `l * a * z - (a - &1) = a * (l * z - &1) + &1`] THEN
MP_TAC(ISPECL [`\x. a rpow x * (log a * x - &1) + &1`;
`\x. log(a) pow 2 * x * a rpow x`;
`&0`; `z:real`]
HAS_REAL_DERIVATIVE_STRICTLY_INCREASING_IMP) THEN
ASM_REWRITE_TAC[RPOW_0] THEN
ANTS_TAC THENL [ALL_TAC; REAL_ARITH_TAC] THEN CONJ_TAC THENL
[REPEAT STRIP_TAC THEN REAL_DIFF_TAC THEN
REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC REAL_FIELD;
REWRITE_TAC[IN_REAL_INTERVAL] THEN REPEAT STRIP_TAC THEN
REPEAT(MATCH_MP_TAC REAL_LT_MUL THEN CONJ_TAC) THEN
ASM_SIMP_TAC[RPOW_POS_LT; REAL_LT_POW_2] THEN
ASM_SIMP_TAC[GSYM LOG_1; LOG_INJ; REAL_LT_01]]);;
let RPOW_MINUS1_QUOTIENT_LE = prove
(`!a x y. &0 < a /\ &0 < x /\ x <= y
==> (a rpow x - &1) / x <= (a rpow y - &1) / y`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `x:real = y` THEN
ASM_REWRITE_TAC[REAL_LE_REFL] THEN
ASM_CASES_TAC `a = &1` THEN
ASM_REWRITE_TAC[real_div; RPOW_ONE; REAL_SUB_REFL; REAL_MUL_LZERO;
REAL_LE_REFL] THEN
ASM_SIMP_TAC[REAL_LE_LT; GSYM real_div; RPOW_MINUS1_QUOTIENT_LT]);;
let REAL_EXP_LIMIT_RPOW_LT = prove
(`!x r s. &0 < r /\ r < s /\ ~(x = &0) /\ x < r
==> (&1 - x / r) rpow r < (&1 - x / s) rpow s`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `&0 < s` STRIP_ASSUME_TAC THENL
[ASM_REAL_ARITH_TAC; ALL_TAC] THEN
SUBGOAL_THEN `&0 < &1 - x / s` ASSUME_TAC THENL
[ASM_SIMP_TAC[REAL_SUB_LT; REAL_LT_LDIV_EQ] THEN ASM_REAL_ARITH_TAC;
ALL_TAC] THEN
MP_TAC(ISPECL
[`(&1 - x / s) rpow (inv r)`; `r:real`; `s:real`]
RPOW_MINUS1_QUOTIENT_LT) THEN
ASM_SIMP_TAC[RPOW_RPOW; REAL_MUL_LINV; REAL_LT_IMP_NZ; REAL_LT_IMP_LE;
RPOW_POW; REAL_POW_1; RPOW_POS_LT] THEN
ANTS_TAC THENL
[ASM_SIMP_TAC[rpow; GSYM REAL_EXP_0; REAL_EXP_INJ] THEN
ASM_SIMP_TAC[REAL_ENTIRE; REAL_INV_EQ_0; REAL_LT_IMP_NZ] THEN
REWRITE_TAC[REAL_EXP_0] THEN
ASM_SIMP_TAC[GSYM LOG_1; LOG_INJ; REAL_LT_01] THEN
REWRITE_TAC[REAL_ARITH `a - x = a <=> x = &0`; REAL_DIV_EQ_0] THEN
ASM_REAL_ARITH_TAC;
REWRITE_TAC[REAL_ARITH `(&1 - x / s - &1) / r = --(x / r) / s`] THEN
ASM_SIMP_TAC[REAL_LT_DIV2_EQ; REAL_ARITH
`--x < a - &1 <=> &1 - x < a`] THEN
DISCH_THEN(MP_TAC o SPEC `r:real` o MATCH_MP(MESON[RPOW_LT2]
`x < y ==> !z. &0 <= x /\ &0 < z ==> x rpow z < y rpow z`)) THEN
ASM_SIMP_TAC[RPOW_RPOW; REAL_LT_IMP_LE; REAL_FIELD
`&0 < r ==> (inv r * s) * r = s`] THEN
DISCH_THEN MATCH_MP_TAC THEN
ASM_SIMP_TAC[REAL_SUB_LE; REAL_LE_LDIV_EQ] THEN ASM_REAL_ARITH_TAC]);;
let REAL_EXP_LIMIT_RPOW_LE = prove
(`!x r s. &0 <= r /\ r <= s /\ x <= r
==> (&1 - x / r) rpow r <= (&1 - x / s) rpow s`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `x = &0` THENL
[ASM_REWRITE_TAC[real_div; REAL_MUL_LZERO; REAL_SUB_RZERO; RPOW_ONE];
ALL_TAC] THEN
ASM_CASES_TAC `r:real = s` THEN ASM_REWRITE_TAC[REAL_LE_REFL] THEN
ASM_CASES_TAC `r:real = x` THENL
[ASM_SIMP_TAC[REAL_DIV_REFL; REAL_SUB_REFL; RPOW_ZERO] THEN
STRIP_TAC THEN MATCH_MP_TAC RPOW_POS_LE THEN
REWRITE_TAC[REAL_SUB_LE] THEN
SUBGOAL_THEN `&0 < s` (fun th -> SIMP_TAC[th; REAL_LE_LDIV_EQ]) THEN
ASM_REAL_ARITH_TAC;
ALL_TAC] THEN
ASM_CASES_TAC `r = &0` THEN
ASM_SIMP_TAC[REAL_LE_LT; REAL_EXP_LIMIT_RPOW_LT] THEN
STRIP_TAC THEN REWRITE_TAC[GSYM REAL_LE_LT; RPOW_POW; real_pow] THEN
ASM_SIMP_TAC[rpow; REAL_SUB_LT; REAL_LT_LDIV_EQ] THEN COND_CASES_TAC THENL
[ALL_TAC; MATCH_MP_TAC(TAUT `F ==> p`) THEN ASM_REAL_ARITH_TAC] THEN
GEN_REWRITE_TAC LAND_CONV [GSYM REAL_EXP_0] THEN
REWRITE_TAC[REAL_EXP_MONO_LE] THEN MATCH_MP_TAC REAL_LE_MUL THEN
ASM_SIMP_TAC[REAL_LT_IMP_LE] THEN MATCH_MP_TAC LOG_POS THEN
REWRITE_TAC[REAL_ARITH `&1 <= &1 - x / y <=> &0 <= --x / y`] THEN
MATCH_MP_TAC REAL_LE_DIV THEN ASM_REAL_ARITH_TAC);;
let REAL_LE_X_SINH = prove
(`!x. &0 <= x ==> x <= (exp x - inv(exp x)) / &2`,
SUBGOAL_THEN
`!a b. a <= b
==> exp a - inv(exp a) - &2 * a <= exp b - inv(exp b) - &2 * b`
(MP_TAC o SPEC `&0`)
THENL
[MP_TAC(ISPECL
[`\x. exp x - exp(--x) - &2 * x`; `\x. exp x + exp(--x) - &2`; `(:real)`]
HAS_REAL_DERIVATIVE_INCREASING) THEN
REWRITE_TAC[IN_ELIM_THM; IS_REALINTERVAL_UNIV; IN_UNIV] THEN ANTS_TAC THENL
[CONJ_TAC THENL [SET_TAC[REAL_ARITH `~(&1 = &0)`]; ALL_TAC] THEN
GEN_TAC THEN REAL_DIFF_TAC THEN REAL_ARITH_TAC;
SIMP_TAC[REAL_EXP_NEG] THEN DISCH_THEN(fun th -> SIMP_TAC[GSYM th]) THEN
X_GEN_TAC `x:real` THEN
SIMP_TAC[REAL_EXP_NZ; REAL_FIELD
`~(e = &0) ==> e + inv e - &2 = (e - &1) pow 2 / e`] THEN
SIMP_TAC[REAL_EXP_POS_LE; REAL_LE_DIV; REAL_LE_POW_2]];
MATCH_MP_TAC MONO_FORALL THEN REWRITE_TAC[REAL_EXP_0] THEN
REAL_ARITH_TAC]);;
let REAL_LE_ABS_SINH = prove
(`!x. abs x <= abs((exp x - inv(exp x)) / &2)`,
GEN_TAC THEN ASM_CASES_TAC `&0 <= x` THENL
[MATCH_MP_TAC(REAL_ARITH `&0 <= x /\ x <= y ==> abs x <= abs y`) THEN
ASM_SIMP_TAC[REAL_LE_X_SINH];
MATCH_MP_TAC(REAL_ARITH `~(&0 <= x) /\ --x <= --y ==> abs x <= abs y`) THEN
ASM_REWRITE_TAC[REAL_ARITH `--((a - b) / &2) = (b - a) / &2`] THEN
MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `(exp(--x) - inv(exp(--x))) / &2` THEN
ASM_SIMP_TAC[REAL_LE_X_SINH; REAL_ARITH `~(&0 <= x) ==> &0 <= --x`] THEN
REWRITE_TAC[REAL_EXP_NEG; REAL_INV_INV] THEN REAL_ARITH_TAC]);;
(* ------------------------------------------------------------------------- *)
(* Log-convex functions. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("log_convex_on",(12,"right"));;
let log_convex_on = new_definition
`f log_convex_on (s:real^N->bool) <=>
(!x y u v. x IN s /\ y IN s /\ &0 <= u /\ &0 <= v /\ u + v = &1
==> &0 <= f(u % x + v % y) /\
f(u % x + v % y) <= f(x) rpow u * f(y) rpow v)`;;
let LOG_CONVEX_ON_EMPTY = prove
(`!f:real^N->real. f log_convex_on {}`,
REWRITE_TAC[log_convex_on; NOT_IN_EMPTY]);;
let LOG_CONVEX_ON_SUBSET = prove
(`!f s t. f log_convex_on t /\ s SUBSET t ==> f log_convex_on s`,
REWRITE_TAC[log_convex_on] THEN SET_TAC[]);;
let LOG_CONVEX_ON_EQ = prove
(`!f g s:real^N->bool.
convex s /\ (!x. x IN s ==> f x = g x) /\ f log_convex_on s
==> g log_convex_on s`,
REWRITE_TAC[IMP_CONJ] THEN SIMP_TAC[convex; log_convex_on]);;
let LOG_CONVEX_IMP_POS = prove
(`!f s x:real^N.
f log_convex_on s /\ x IN s ==> &0 <= f x`,
REWRITE_TAC[log_convex_on] THEN REPEAT STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`x:real^N`; `x:real^N`; `&0`; `&1`]) THEN
REWRITE_TAC[VECTOR_MUL_LZERO; VECTOR_MUL_LID; VECTOR_ADD_LID] THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN ASM_MESON_TAC[]);;
let LOG_CONVEX_ON_CONVEX = prove
(`!f s:real^N->bool.
convex s
==> (f log_convex_on s <=>
(!x. x IN s ==> &0 <= f x) /\
!x y u v. x IN s /\ y IN s /\ &0 <= u /\ &0 <= v /\ u + v = &1
==> f(u % x + v % y) <= f(x) rpow u * f(y) rpow v)`,
REWRITE_TAC[convex] THEN REPEAT(STRIP_TAC ORELSE EQ_TAC) THENL
[ASM_MESON_TAC[LOG_CONVEX_IMP_POS];
ASM_MESON_TAC[log_convex_on];
ASM_SIMP_TAC[log_convex_on] THEN ASM_MESON_TAC[]]);;
let LOG_CONVEX_ON = prove
(`!f s:real^N->bool.
convex s /\ (!x. x IN s ==> &0 < f x)
==> (f log_convex_on s <=> (log o f) convex_on s)`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[LOG_CONVEX_ON_CONVEX; REAL_LT_IMP_LE] THEN
RULE_ASSUM_TAC(REWRITE_RULE[convex]) THEN REWRITE_TAC[convex_on; o_DEF] THEN
GEN_REWRITE_TAC (RAND_CONV o funpow 4 BINDER_CONV o RAND_CONV)
[GSYM REAL_EXP_MONO_LE] THEN
ASM_SIMP_TAC[EXP_LOG; rpow; REAL_EXP_ADD]);;
let LOG_CONVEX_IMP_CONVEX = prove
(`!f s:real^N->bool. f log_convex_on s ==> f convex_on s`,
REPEAT STRIP_TAC THEN
FIRST_ASSUM(ASSUME_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ]
LOG_CONVEX_IMP_POS)) THEN
RULE_ASSUM_TAC(REWRITE_RULE[log_convex_on]) THEN REWRITE_TAC[convex_on] THEN
MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`; `u:real`; `v:real`] THEN
STRIP_TAC THEN FIRST_X_ASSUM
(MP_TAC o SPECL [`x:real^N`; `y:real^N`; `u:real`; `v:real`]) THEN
ASM_SIMP_TAC[] THEN DISCH_THEN(MP_TAC o CONJUNCT2) THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] REAL_LE_TRANS) THEN
MATCH_MP_TAC AGM_2 THEN ASM_SIMP_TAC[]);;
let LOG_CONVEX_ADD = prove
(`!f g s:real^N->bool.
f log_convex_on s /\ g log_convex_on s
==> (\x. f x + g x) log_convex_on s`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
FIRST_ASSUM(CONJUNCTS_THEN(ASSUME_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ]
LOG_CONVEX_IMP_POS))) THEN
REWRITE_TAC[log_convex_on] THEN
FIRST_X_ASSUM(CONJUNCTS_THEN (ASSUME_TAC o REWRITE_RULE[log_convex_on])) THEN
REWRITE_TAC[log_convex_on] THEN
MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`; `u:real`; `v:real`] THEN
STRIP_TAC THEN ASM_SIMP_TAC[REAL_LE_ADD] THEN
MP_TAC(ISPEC `0..SUC 0` HOELDER) THEN
SIMP_TAC[PRODUCT_CLAUSES_NUMSEG;
FINITE_NUMSEG; SUM_CLAUSES_NUMSEG; ARITH] THEN
DISCH_THEN(MP_TAC o SPECL
[`\i. if i = 0 then u:real else v`;
`\i. if i = 0 then (f:real^N->real) x else f y`;
`\i. if i = 0 then (g:real^N->real) x else g y`]) THEN
REWRITE_TAC[ARITH] THEN ANTS_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] REAL_LE_TRANS) THEN
MATCH_MP_TAC REAL_LE_ADD2 THEN ASM_MESON_TAC[]);;
let LOG_CONVEX_MUL = prove
(`!f g s:real^N->bool.
f log_convex_on s /\ g log_convex_on s
==> (\x. f x * g x) log_convex_on s`,
REWRITE_TAC[log_convex_on] THEN REPEAT STRIP_TAC THEN
ASM_SIMP_TAC[REAL_LE_MUL; RPOW_MUL] THEN
ONCE_REWRITE_TAC[REAL_ARITH
`(a * b) * (c * d):real = (a * c) * (b * d)`] THEN
ASM_SIMP_TAC[REAL_LE_MUL2]);;
let MIDPOINT_LOG_CONVEX = prove
(`!f s:real^N->bool.
(lift o f) continuous_on s /\ convex s /\
(!x. x IN s ==> &0 < f x) /\
(!x y. x IN s /\ y IN s ==> f(midpoint(x,y)) pow 2 <= f(x) * f(y))
==> f log_convex_on s`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[LOG_CONVEX_ON] THEN
MATCH_MP_TAC CONTINUOUS_MIDPOINT_CONVEX THEN ASM_REWRITE_TAC[] THEN
CONJ_TAC THENL
[SUBGOAL_THEN `lift o log o (f:real^N->real) =
(lift o log o drop) o (lift o f)`
SUBST1_TAC THENL [REWRITE_TAC[o_DEF; LIFT_DROP]; ALL_TAC] THEN
MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN
ASM_REWRITE_TAC[GSYM REAL_CONTINUOUS_ON; IMAGE_o] THEN
MATCH_MP_TAC REAL_CONTINUOUS_ON_LOG THEN
ASM_REWRITE_TAC[FORALL_IN_IMAGE];
MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`] THEN STRIP_TAC THEN
REWRITE_TAC[o_DEF; REAL_ARITH `x <= y / &2 <=> &2 * x <= y`] THEN
ONCE_REWRITE_TAC[GSYM REAL_EXP_MONO_LE] THEN
ASM_SIMP_TAC[REAL_EXP_N; EXP_LOG; REAL_EXP_ADD; MIDPOINT_IN_CONVEX]]);;
let LOG_CONVEX_CONST = prove
(`!s a. &0 <= a ==> (\x. a) log_convex_on s`,
SIMP_TAC[log_convex_on; GSYM RPOW_ADD] THEN
IMP_REWRITE_TAC[GSYM RPOW_ADD_ALT] THEN
REWRITE_TAC[RPOW_POW; REAL_POW_1; REAL_LE_REFL] THEN REAL_ARITH_TAC);;
let LOG_CONVEX_ON_SING = prove
(`!f a:real^N. f log_convex_on {a} <=> &0 <= f a`,
REPEAT GEN_TAC THEN EQ_TAC THENL
[MESON_TAC[LOG_CONVEX_IMP_POS; IN_SING]; DISCH_TAC] THEN
MATCH_MP_TAC LOG_CONVEX_ON_EQ THEN
EXISTS_TAC `\x:real^N. (f:real^N->real) a` THEN
ASM_SIMP_TAC[IN_SING; CONVEX_SING; LOG_CONVEX_CONST]);;
let LOG_CONVEX_PRODUCT = prove
(`!f s k. FINITE k /\ (!i. i IN k ==> (\x. f x i) log_convex_on s)
==> (\x. product k (f x)) log_convex_on s`,
GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[PRODUCT_CLAUSES; LOG_CONVEX_CONST; REAL_POS] THEN
SIMP_TAC[FORALL_IN_INSERT; LOG_CONVEX_MUL]);;
(* ------------------------------------------------------------------------- *)
(* Real log-convex functions. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("real_log_convex_on",(12,"right"));;
let real_log_convex_on = new_definition
`(f:real->real) real_log_convex_on s <=>
(!x y u v. x IN s /\ y IN s /\ &0 <= u /\ &0 <= v /\ u + v = &1
==> &0 <= f(u * x + v * y) /\
f(u * x + v * y) <= f(x) rpow u * f(y) rpow v)`;;
let REAL_LOG_CONVEX_ON_EMPTY = prove
(`!f. f real_log_convex_on {}`,
REWRITE_TAC[real_log_convex_on; NOT_IN_EMPTY]);;
let REAL_LOG_CONVEX_ON_SUBSET = prove
(`!f s t. f real_log_convex_on t /\ s SUBSET t ==> f real_log_convex_on s`,
REWRITE_TAC[real_log_convex_on] THEN SET_TAC[]);;
let REAL_LOG_CONVEX_LOG_CONVEX = prove
(`!f s. f real_log_convex_on s <=> (f o drop) log_convex_on (IMAGE lift s)`,
REWRITE_TAC[real_log_convex_on; log_convex_on] THEN
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN
REWRITE_TAC[o_DEF; DROP_ADD; DROP_CMUL; LIFT_DROP]);;
let REAL_LOG_CONVEX_ON_EQ = prove
(`!f g s.
is_realinterval s /\ (!x. x IN s ==> f x = g x) /\
f real_log_convex_on s
==> g real_log_convex_on s`,
REWRITE_TAC[IS_REALINTERVAL_CONVEX; REAL_LOG_CONVEX_LOG_CONVEX] THEN
REPEAT GEN_TAC THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
MATCH_MP_TAC(ONCE_REWRITE_RULE[IMP_CONJ]
(REWRITE_RULE[CONJ_ASSOC] LOG_CONVEX_ON_EQ)) THEN
ASM_REWRITE_TAC[FORALL_IN_IMAGE; o_THM; LIFT_DROP]);;
let REAL_LOG_CONVEX_ON_SING = prove
(`!f a. f real_log_convex_on {a} <=> &0 <= f a`,
REWRITE_TAC[REAL_LOG_CONVEX_LOG_CONVEX; LOG_CONVEX_ON_SING] THEN
REWRITE_TAC[IMAGE_CLAUSES; LOG_CONVEX_ON_SING; o_THM; LIFT_DROP]);;
let REAL_LOG_CONVEX_IMP_POS = prove
(`!f s x.
f real_log_convex_on s /\ x IN s ==> &0 <= f x`,
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; REAL_LOG_CONVEX_LOG_CONVEX] THEN
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP
(REWRITE_RULE[IMP_CONJ] LOG_CONVEX_IMP_POS)) THEN
REWRITE_TAC[o_DEF; FORALL_IN_IMAGE; LIFT_DROP]);;
let REAL_LOG_CONVEX_ON_CONVEX = prove
(`!f s.
is_realinterval s
==> (f real_log_convex_on s <=>
(!x. x IN s ==> &0 <= f x) /\
!x y u v. x IN s /\ y IN s /\ &0 <= u /\ &0 <= v /\ u + v = &1
==> f(u * x + v * y) <= f(x) rpow u * f(y) rpow v)`,
REWRITE_TAC[REAL_CONVEX] THEN REPEAT(STRIP_TAC ORELSE EQ_TAC) THENL
[ASM_MESON_TAC[REAL_LOG_CONVEX_IMP_POS];
ASM_MESON_TAC[real_log_convex_on];
ASM_SIMP_TAC[real_log_convex_on] THEN ASM_MESON_TAC[]]);;
let REAL_LOG_CONVEX_ON = prove
(`!f s:real->bool.
is_realinterval s /\ (!x. x IN s ==> &0 < f x)
==> (f real_log_convex_on s <=> (log o f) real_convex_on s)`,
REPEAT STRIP_TAC THEN
ASM_SIMP_TAC[REAL_LOG_CONVEX_ON_CONVEX; REAL_LT_IMP_LE] THEN
RULE_ASSUM_TAC(REWRITE_RULE[REAL_CONVEX]) THEN
REWRITE_TAC[real_convex_on; o_DEF] THEN
GEN_REWRITE_TAC (RAND_CONV o funpow 4 BINDER_CONV o RAND_CONV)
[GSYM REAL_EXP_MONO_LE] THEN
ASM_SIMP_TAC[EXP_LOG; rpow; REAL_EXP_ADD]);;
let REAL_LOG_CONVEX_IMP_CONVEX = prove
(`!f s:real->bool. f real_log_convex_on s ==> f real_convex_on s`,
REPEAT STRIP_TAC THEN
FIRST_ASSUM(ASSUME_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ]
REAL_LOG_CONVEX_IMP_POS)) THEN
RULE_ASSUM_TAC(REWRITE_RULE[real_log_convex_on]) THEN
REWRITE_TAC[real_convex_on] THEN
MAP_EVERY X_GEN_TAC [`x:real`; `y:real`; `u:real`; `v:real`] THEN
STRIP_TAC THEN FIRST_X_ASSUM
(MP_TAC o SPECL [`x:real`; `y:real`; `u:real`; `v:real`]) THEN
ASM_SIMP_TAC[] THEN DISCH_THEN(MP_TAC o CONJUNCT2) THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] REAL_LE_TRANS) THEN
MATCH_MP_TAC AGM_2 THEN ASM_SIMP_TAC[]);;
let REAL_LOG_CONVEX_ADD = prove
(`!f g s:real->bool.
f real_log_convex_on s /\ g real_log_convex_on s
==> (\x. f x + g x) real_log_convex_on s`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
FIRST_ASSUM(CONJUNCTS_THEN(ASSUME_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ]
REAL_LOG_CONVEX_IMP_POS))) THEN
REWRITE_TAC[real_log_convex_on] THEN
FIRST_X_ASSUM(CONJUNCTS_THEN
(ASSUME_TAC o REWRITE_RULE[real_log_convex_on])) THEN
REWRITE_TAC[real_log_convex_on] THEN
MAP_EVERY X_GEN_TAC [`x:real`; `y:real`; `u:real`; `v:real`] THEN
STRIP_TAC THEN ASM_SIMP_TAC[REAL_LE_ADD] THEN
MP_TAC(ISPEC `0..SUC 0` HOELDER) THEN
SIMP_TAC[PRODUCT_CLAUSES_NUMSEG;
FINITE_NUMSEG; SUM_CLAUSES_NUMSEG; ARITH] THEN
DISCH_THEN(MP_TAC o SPECL
[`\i. if i = 0 then u:real else v`;
`\i. if i = 0 then (f:real->real) x else f y`;
`\i. if i = 0 then (g:real->real) x else g y`]) THEN
REWRITE_TAC[ARITH] THEN ANTS_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] REAL_LE_TRANS) THEN
MATCH_MP_TAC REAL_LE_ADD2 THEN ASM_MESON_TAC[]);;
let REAL_LOG_CONVEX_MUL = prove
(`!f g s:real->bool.
f real_log_convex_on s /\ g real_log_convex_on s
==> (\x. f x * g x) real_log_convex_on s`,
REWRITE_TAC[real_log_convex_on] THEN REPEAT STRIP_TAC THEN
ASM_SIMP_TAC[REAL_LE_MUL; RPOW_MUL] THEN
ONCE_REWRITE_TAC[REAL_ARITH
`(a * b) * (c * d):real = (a * c) * (b * d)`] THEN
ASM_SIMP_TAC[REAL_LE_MUL2]);;
let MIDPOINT_REAL_LOG_CONVEX = prove
(`!f s:real->bool.
f real_continuous_on s /\ is_realinterval s /\
(!x. x IN s ==> &0 < f x) /\
(!x y. x IN s /\ y IN s ==> f((x + y) / &2) pow 2 <= f(x) * f(y))
==> f real_log_convex_on s`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[REAL_LOG_CONVEX_ON] THEN
MATCH_MP_TAC REAL_CONTINUOUS_MIDPOINT_CONVEX THEN ASM_REWRITE_TAC[] THEN
CONJ_TAC THENL
[MATCH_MP_TAC REAL_CONTINUOUS_ON_COMPOSE THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC REAL_CONTINUOUS_ON_LOG THEN
ASM_REWRITE_TAC[FORALL_IN_IMAGE];
MAP_EVERY X_GEN_TAC [`x:real`; `y:real`] THEN STRIP_TAC THEN
REWRITE_TAC[o_DEF; REAL_ARITH `x <= y / &2 <=> &2 * x <= y`] THEN
ONCE_REWRITE_TAC[GSYM REAL_EXP_MONO_LE] THEN
ASM_SIMP_TAC[REAL_EXP_N; EXP_LOG; REAL_EXP_ADD; REAL_MIDPOINT_IN_CONVEX]]);;
let REAL_LOG_CONVEX_CONST = prove
(`!s a. &0 <= a ==> (\x. a) real_log_convex_on s`,
SIMP_TAC[real_log_convex_on; GSYM RPOW_ADD] THEN
IMP_REWRITE_TAC[GSYM RPOW_ADD_ALT] THEN
REWRITE_TAC[RPOW_POW; REAL_POW_1; REAL_LE_REFL] THEN REAL_ARITH_TAC);;
let REAL_LOG_CONVEX_PRODUCT = prove
(`!f s k. FINITE k /\ (!i. i IN k ==> (\x. f x i) real_log_convex_on s)
==> (\x. product k (f x)) real_log_convex_on s`,
GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[PRODUCT_CLAUSES; REAL_LOG_CONVEX_CONST; REAL_POS] THEN
SIMP_TAC[FORALL_IN_INSERT; REAL_LOG_CONVEX_MUL]);;
let REAL_LOG_CONVEX_RPOW_RIGHT = prove
(`!s a. &0 < a ==> (\x. a rpow x) real_log_convex_on s`,
SIMP_TAC[real_log_convex_on; RPOW_POS_LE; REAL_LT_IMP_LE] THEN
SIMP_TAC[DROP_ADD; DROP_CMUL; RPOW_ADD; RPOW_RPOW; REAL_LT_IMP_LE] THEN
REWRITE_TAC[REAL_MUL_AC; REAL_LE_REFL]);;
let REAL_LOG_CONVEX_LIM = prove
(`!net:A net f g s.
~(trivial_limit net) /\
(!x y u v. x IN s /\ y IN s /\ &0 <= u /\ &0 <= v /\ u + v = &1
==> ((\i. f i (u * x + v * y)) ---> g(u * x + v * y)) net) /\
eventually (\i. (f i) real_log_convex_on s) net
==> g real_log_convex_on s`,
REWRITE_TAC[real_log_convex_on] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN
REPEAT GEN_TAC THEN STRIP_TAC THEN
GEN_REWRITE_TAC RAND_CONV [GSYM REAL_SUB_LE] THEN
CONJ_TAC THEN MATCH_MP_TAC(ISPEC `net:A net` REALLIM_LBOUND) THENL
[EXISTS_TAC `\i. (f:A->real->real) i (u * x + v * y)`;
EXISTS_TAC `\i. (f:A->real->real) i x rpow u * f i y rpow v -
f i (u * x + v * y)`] THEN
ASM_SIMP_TAC[] THEN TRY CONJ_TAC THEN
TRY(FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT]
EVENTUALLY_MONO))) THEN
ASM_SIMP_TAC[REAL_SUB_LE] THEN
MATCH_MP_TAC REALLIM_SUB THEN ASM_SIMP_TAC[] THEN
MATCH_MP_TAC REALLIM_MUL THEN CONJ_TAC THEN
MATCH_MP_TAC(REWRITE_RULE[] (ISPEC `\x. x rpow y`
REALLIM_REAL_CONTINUOUS_FUNCTION)) THEN
ASM_SIMP_TAC[REAL_CONTINUOUS_AT_RPOW] THENL
[FIRST_X_ASSUM(MP_TAC o SPECL [`x:real`; `x:real`; `&1`; `&0`]);
FIRST_X_ASSUM(MP_TAC o SPECL [`y:real`; `y:real`; `&1`; `&0`])] THEN
ASM_REWRITE_TAC[REAL_POS; REAL_ADD_RID; REAL_MUL_LZERO] THEN
REWRITE_TAC[REAL_MUL_LID]);;
(* ------------------------------------------------------------------------- *)
(* Integrals of real->real functions; measures of real sets. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("has_real_integral",(12,"right"));;
parse_as_infix("real_integrable_on",(12,"right"));;
parse_as_infix("absolutely_real_integrable_on",(12,"right"));;
parse_as_infix("has_real_measure",(12,"right"));;
let has_real_integral = new_definition
`(f has_real_integral y) s <=>
((lift o f o drop) has_integral (lift y)) (IMAGE lift s)`;;
let real_integrable_on = new_definition
`f real_integrable_on i <=> ?y. (f has_real_integral y) i`;;
let real_integral = new_definition
`real_integral i f = @y. (f has_real_integral y) i`;;
let real_negligible = new_definition
`real_negligible s <=> negligible (IMAGE lift s)`;;
let absolutely_real_integrable_on = new_definition
`f absolutely_real_integrable_on s <=>
f real_integrable_on s /\ (\x. abs(f x)) real_integrable_on s`;;
let has_real_measure = new_definition
`s has_real_measure m <=> ((\x. &1) has_real_integral m) s`;;
let real_measurable = new_definition
`real_measurable s <=> ?m. s has_real_measure m`;;
let real_measure = new_definition
`real_measure s = @m. s has_real_measure m`;;
let HAS_REAL_INTEGRAL = prove
(`(f has_real_integral y) (real_interval[a,b]) <=>
((lift o f o drop) has_integral (lift y)) (interval[lift a,lift b])`,
REWRITE_TAC[has_real_integral; IMAGE_LIFT_REAL_INTERVAL]);;
let REAL_INTEGRABLE_INTEGRAL = prove
(`!f i. f real_integrable_on i
==> (f has_real_integral (real_integral i f)) i`,
REPEAT GEN_TAC THEN REWRITE_TAC[real_integrable_on; real_integral] THEN
CONV_TAC(RAND_CONV SELECT_CONV) THEN REWRITE_TAC[]);;
let HAS_REAL_INTEGRAL_INTEGRABLE = prove
(`!f i s. (f has_real_integral i) s ==> f real_integrable_on s`,
REWRITE_TAC[real_integrable_on] THEN MESON_TAC[]);;
let HAS_REAL_INTEGRAL_INTEGRAL = prove
(`!f s. f real_integrable_on s <=>
(f has_real_integral (real_integral s f)) s`,
MESON_TAC[REAL_INTEGRABLE_INTEGRAL; HAS_REAL_INTEGRAL_INTEGRABLE]);;
let HAS_REAL_INTEGRAL_UNIQUE = prove
(`!f i k1 k2.
(f has_real_integral k1) i /\ (f has_real_integral k2) i ==> k1 = k2`,
REPEAT GEN_TAC THEN REWRITE_TAC[has_real_integral] THEN
DISCH_THEN(MP_TAC o MATCH_MP HAS_INTEGRAL_UNIQUE) THEN
REWRITE_TAC[LIFT_EQ]);;
let REAL_INTEGRAL_UNIQUE = prove
(`!f y k.
(f has_real_integral y) k ==> real_integral k f = y`,
REPEAT STRIP_TAC THEN REWRITE_TAC[real_integral] THEN
MATCH_MP_TAC SELECT_UNIQUE THEN ASM_MESON_TAC[HAS_REAL_INTEGRAL_UNIQUE]);;
let HAS_REAL_INTEGRAL_INTEGRABLE_INTEGRAL = prove
(`!f i s.
(f has_real_integral i) s <=>
f real_integrable_on s /\ real_integral s f = i`,
MESON_TAC[REAL_INTEGRABLE_INTEGRAL; REAL_INTEGRAL_UNIQUE;
real_integrable_on]);;
let REAL_INTEGRAL_EQ_HAS_INTEGRAL = prove
(`!s f y. f real_integrable_on s
==> (real_integral s f = y <=> (f has_real_integral y) s)`,
MESON_TAC[REAL_INTEGRABLE_INTEGRAL; REAL_INTEGRAL_UNIQUE]);;
let REAL_INTEGRABLE_ON = prove
(`f real_integrable_on s <=>
(lift o f o drop) integrable_on (IMAGE lift s)`,
REWRITE_TAC[real_integrable_on; has_real_integral; EXISTS_DROP;
integrable_on; LIFT_DROP]);;
let ABSOLUTELY_REAL_INTEGRABLE_ON = prove
(`f absolutely_real_integrable_on s <=>
(lift o f o drop) absolutely_integrable_on (IMAGE lift s)`,
REWRITE_TAC[absolutely_real_integrable_on; REAL_INTEGRABLE_ON;
absolutely_integrable_on] THEN
REWRITE_TAC[o_DEF; LIFT_DROP; NORM_LIFT]);;
let REAL_INTEGRAL = prove
(`f real_integrable_on s
==> real_integral s f = drop(integral (IMAGE lift s) (lift o f o drop))`,
REWRITE_TAC[REAL_INTEGRABLE_ON] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC REAL_INTEGRAL_UNIQUE THEN
REWRITE_TAC[has_real_integral; LIFT_DROP] THEN
ASM_REWRITE_TAC[GSYM HAS_INTEGRAL_INTEGRAL]);;
let HAS_REAL_INTEGRAL_ALT = prove
(`!f s i.
(f has_real_integral i) s <=>
(!a b. (\x. if x IN s then f x else &0) real_integrable_on
real_interval [a,b]) /\
(!e. &0 < e
==> (?B. &0 < B /\
(!a b.
real_interval(--B,B) SUBSET real_interval[a,b]
==> abs
(real_integral (real_interval[a,b])
(\x. if x IN s then f x else &0) -
i) < e)))`,
REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [has_real_integral] THEN
GEN_REWRITE_TAC LAND_CONV [HAS_INTEGRAL_ALT] THEN
REWRITE_TAC[REAL_INTEGRABLE_ON; o_DEF; IMAGE_LIFT_REAL_INTERVAL] THEN
REWRITE_TAC[GSYM FORALL_LIFT; COND_RAND; LIFT_NUM; IN_IMAGE_LIFT_DROP] THEN
MATCH_MP_TAC(TAUT `(p ==> (q <=> q')) ==> (p /\ q <=> p /\ q')`) THEN
DISCH_TAC THEN REWRITE_TAC[BALL_1] THEN
AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN
X_GEN_TAC `e:real` THEN ASM_CASES_TAC `&0 < e` THEN ASM_REWRITE_TAC[] THEN
AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN
X_GEN_TAC `B:real` THEN ASM_CASES_TAC `&0 < B` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[FORALL_LIFT; VECTOR_ADD_LID; VECTOR_SUB_LZERO] THEN
REWRITE_TAC[GSYM LIFT_NEG; GSYM IMAGE_LIFT_REAL_INTERVAL] THEN
REWRITE_TAC[SUBSET_LIFT_IMAGE; NORM_REAL; GSYM drop] THEN
AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN
X_GEN_TAC `a:real` THEN REWRITE_TAC[] THEN
AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN
X_GEN_TAC `b:real` THEN
ASM_CASES_TAC `real_interval(--B,B) SUBSET real_interval[a,b]` THEN
ASM_REWRITE_TAC[DROP_SUB; LIFT_DROP] THEN
AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN
AP_THM_TAC THEN AP_TERM_TAC THEN IMP_REWRITE_TAC[REAL_INTEGRAL] THEN
REWRITE_TAC[REAL_INTEGRABLE_ON; o_DEF; LIFT_DROP; COND_RAND] THEN
ASM_REWRITE_TAC[LIFT_NUM; IMAGE_LIFT_REAL_INTERVAL]);;
let HAS_REAL_INTEGRAL_IS_0 = prove
(`!f s. (!x. x IN s ==> f(x) = &0) ==> (f has_real_integral &0) s`,
REPEAT STRIP_TAC THEN REWRITE_TAC[has_real_integral; LIFT_NUM] THEN
MATCH_MP_TAC HAS_INTEGRAL_IS_0 THEN
ASM_REWRITE_TAC[LIFT_EQ; FORALL_IN_IMAGE; o_THM; LIFT_DROP; GSYM LIFT_NUM]);;
let HAS_REAL_INTEGRAL_0 = prove
(`!s. ((\x. &0) has_real_integral &0) s`,
SIMP_TAC[HAS_REAL_INTEGRAL_IS_0]);;
let HAS_REAL_INTEGRAL_0_EQ = prove
(`!i s. ((\x. &0) has_real_integral i) s <=> i = &0`,
MESON_TAC[HAS_REAL_INTEGRAL_UNIQUE; HAS_REAL_INTEGRAL_0]);;
let HAS_REAL_INTEGRAL_LINEAR = prove
(`!f:real->real y s h:real->real.
(f has_real_integral y) s /\ linear(lift o h o drop)
==> ((h o f) has_real_integral h(y)) s`,
REPEAT GEN_TAC THEN REWRITE_TAC[has_real_integral] THEN
DISCH_THEN(MP_TAC o MATCH_MP HAS_INTEGRAL_LINEAR) THEN
REWRITE_TAC[o_DEF; LIFT_DROP]);;
let HAS_REAL_INTEGRAL_LMUL = prove
(`!(f:real->real) k s c.
(f has_real_integral k) s
==> ((\x. c * f(x)) has_real_integral (c * k)) s`,
REPEAT GEN_TAC THEN REWRITE_TAC[has_real_integral] THEN
DISCH_THEN(MP_TAC o SPEC `c:real` o MATCH_MP HAS_INTEGRAL_CMUL) THEN
REWRITE_TAC[GSYM LIFT_CMUL; o_DEF]);;
let HAS_REAL_INTEGRAL_RMUL = prove
(`!(f:real->real) k s c.
(f has_real_integral k) s
==> ((\x. f(x) * c) has_real_integral (k * c)) s`,
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
REWRITE_TAC[HAS_REAL_INTEGRAL_LMUL]);;
let HAS_REAL_INTEGRAL_NEG = prove
(`!f k s. (f has_real_integral k) s
==> ((\x. --(f x)) has_real_integral (--k)) s`,
REPEAT GEN_TAC THEN REWRITE_TAC[has_real_integral] THEN
DISCH_THEN(MP_TAC o MATCH_MP HAS_INTEGRAL_NEG) THEN
REWRITE_TAC[o_DEF; LIFT_NEG]);;
let HAS_REAL_INTEGRAL_ADD = prove
(`!f:real->real g k l s.
(f has_real_integral k) s /\ (g has_real_integral l) s
==> ((\x. f(x) + g(x)) has_real_integral (k + l)) s`,
REPEAT GEN_TAC THEN REWRITE_TAC[has_real_integral] THEN
DISCH_THEN(MP_TAC o MATCH_MP HAS_INTEGRAL_ADD) THEN
REWRITE_TAC[o_DEF; LIFT_ADD]);;
let HAS_REAL_INTEGRAL_SUB = prove
(`!f:real->real g k l s.
(f has_real_integral k) s /\ (g has_real_integral l) s
==> ((\x. f(x) - g(x)) has_real_integral (k - l)) s`,
REPEAT GEN_TAC THEN REWRITE_TAC[has_real_integral] THEN
DISCH_THEN(MP_TAC o MATCH_MP HAS_INTEGRAL_SUB) THEN
REWRITE_TAC[o_DEF; LIFT_SUB]);;
let REAL_INTEGRAL_0 = prove
(`!s. real_integral s (\x. &0) = &0`,
MESON_TAC[REAL_INTEGRAL_UNIQUE; HAS_REAL_INTEGRAL_0]);;
let REAL_INTEGRAL_ADD = prove
(`!f:real->real g s.
f real_integrable_on s /\ g real_integrable_on s
==> real_integral s (\x. f x + g x) =
real_integral s f + real_integral s g`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_INTEGRAL_UNIQUE THEN
MATCH_MP_TAC HAS_REAL_INTEGRAL_ADD THEN
ASM_SIMP_TAC[REAL_INTEGRABLE_INTEGRAL]);;
let REAL_INTEGRAL_LMUL = prove
(`!f:real->real c s.
f real_integrable_on s
==> real_integral s (\x. c * f(x)) = c * real_integral s f`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_INTEGRAL_UNIQUE THEN
MATCH_MP_TAC HAS_REAL_INTEGRAL_LMUL THEN
ASM_SIMP_TAC[REAL_INTEGRABLE_INTEGRAL]);;
let REAL_INTEGRAL_RMUL = prove
(`!f:real->real c s.
f real_integrable_on s
==> real_integral s (\x. f(x) * c) = real_integral s f * c`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_INTEGRAL_UNIQUE THEN
MATCH_MP_TAC HAS_REAL_INTEGRAL_RMUL THEN
ASM_SIMP_TAC[REAL_INTEGRABLE_INTEGRAL]);;
let REAL_INTEGRAL_NEG = prove
(`!f:real->real s.
f real_integrable_on s
==> real_integral s (\x. --f(x)) = --real_integral s f`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_INTEGRAL_UNIQUE THEN
MATCH_MP_TAC HAS_REAL_INTEGRAL_NEG THEN
ASM_SIMP_TAC[REAL_INTEGRABLE_INTEGRAL]);;
let REAL_INTEGRAL_SUB = prove
(`!f:real->real g s.
f real_integrable_on s /\ g real_integrable_on s
==> real_integral s (\x. f x - g x) =
real_integral s f - real_integral s g`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_INTEGRAL_UNIQUE THEN
MATCH_MP_TAC HAS_REAL_INTEGRAL_SUB THEN
ASM_SIMP_TAC[REAL_INTEGRABLE_INTEGRAL]);;
let REAL_INTEGRABLE_0 = prove
(`!s. (\x. &0) real_integrable_on s`,
REWRITE_TAC[real_integrable_on] THEN MESON_TAC[HAS_REAL_INTEGRAL_0]);;
let REAL_INTEGRABLE_ADD = prove
(`!f:real->real g s.
f real_integrable_on s /\ g real_integrable_on s
==> (\x. f x + g x) real_integrable_on s`,
REWRITE_TAC[real_integrable_on] THEN MESON_TAC[HAS_REAL_INTEGRAL_ADD]);;
let REAL_INTEGRABLE_LMUL = prove
(`!f:real->real c s.
f real_integrable_on s
==> (\x. c * f(x)) real_integrable_on s`,
REWRITE_TAC[real_integrable_on] THEN MESON_TAC[HAS_REAL_INTEGRAL_LMUL]);;
let REAL_INTEGRABLE_RMUL = prove
(`!f:real->real c s.
f real_integrable_on s
==> (\x. f(x) * c) real_integrable_on s`,
REWRITE_TAC[real_integrable_on] THEN MESON_TAC[HAS_REAL_INTEGRAL_RMUL]);;
let REAL_INTEGRABLE_LMUL_EQ = prove
(`!f s c.
(\x. c * f x) real_integrable_on s <=>
c = &0 \/ f real_integrable_on s`,
REPEAT(STRIP_TAC ORELSE EQ_TAC) THEN
ASM_SIMP_TAC[REAL_INTEGRABLE_LMUL; REAL_MUL_LZERO] THEN
REWRITE_TAC[REAL_INTEGRABLE_0] THEN
ASM_CASES_TAC `c = &0` THEN ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM(MP_TAC o SPEC `inv c:real` o
MATCH_MP REAL_INTEGRABLE_LMUL) THEN
ASM_SIMP_TAC[REAL_MUL_ASSOC; REAL_MUL_LID; REAL_MUL_LINV; ETA_AX]);;
let REAL_INTEGRABLE_RMUL_EQ = prove
(`!f s c.
(\x. f x * c) real_integrable_on s <=>
c = &0 \/ f real_integrable_on s`,
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
REWRITE_TAC[REAL_INTEGRABLE_LMUL_EQ]);;
let REAL_INTEGRABLE_NEG = prove
(`!f:real->real s.
f real_integrable_on s ==> (\x. --f(x)) real_integrable_on s`,
REWRITE_TAC[real_integrable_on] THEN MESON_TAC[HAS_REAL_INTEGRAL_NEG]);;
let REAL_INTEGRABLE_SUB = prove
(`!f:real->real g s.
f real_integrable_on s /\ g real_integrable_on s
==> (\x. f x - g x) real_integrable_on s`,
REWRITE_TAC[real_integrable_on] THEN MESON_TAC[HAS_REAL_INTEGRAL_SUB]);;
let REAL_INTEGRABLE_LINEAR = prove
(`!f h s. f real_integrable_on s /\
linear(lift o h o drop) ==> (h o f) real_integrable_on s`,
REWRITE_TAC[real_integrable_on] THEN MESON_TAC[HAS_REAL_INTEGRAL_LINEAR]);;
let REAL_INTEGRAL_LINEAR = prove
(`!f:real->real s h:real->real.
f real_integrable_on s /\ linear(lift o h o drop)
==> real_integral s (h o f) = h(real_integral s f)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_REAL_INTEGRAL_UNIQUE THEN
MAP_EVERY EXISTS_TAC
[`(h:real->real) o (f:real->real)`; `s:real->bool`] THEN
CONJ_TAC THENL [ALL_TAC; MATCH_MP_TAC HAS_REAL_INTEGRAL_LINEAR] THEN
ASM_SIMP_TAC[GSYM HAS_REAL_INTEGRAL_INTEGRAL; REAL_INTEGRABLE_LINEAR]);;
let HAS_REAL_INTEGRAL_SUM = prove
(`!f:A->real->real s t.
FINITE t /\
(!a. a IN t ==> ((f a) has_real_integral (i a)) s)
==> ((\x. sum t (\a. f a x)) has_real_integral (sum t i)) s`,
GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[SUM_CLAUSES; HAS_REAL_INTEGRAL_0; IN_INSERT] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_REAL_INTEGRAL_ADD THEN
ASM_REWRITE_TAC[ETA_AX] THEN CONJ_TAC THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[]);;
let REAL_INTEGRAL_SUM = prove
(`!f:A->real->real s t.
FINITE t /\
(!a. a IN t ==> (f a) real_integrable_on s)
==> real_integral s (\x. sum t (\a. f a x)) =
sum t (\a. real_integral s (f a))`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_INTEGRAL_UNIQUE THEN
MATCH_MP_TAC HAS_REAL_INTEGRAL_SUM THEN
ASM_SIMP_TAC[REAL_INTEGRABLE_INTEGRAL]);;
let REAL_INTEGRABLE_SUM = prove
(`!f:A->real->real s t.
FINITE t /\
(!a. a IN t ==> (f a) real_integrable_on s)
==> (\x. sum t (\a. f a x)) real_integrable_on s`,
REWRITE_TAC[real_integrable_on] THEN MESON_TAC[HAS_REAL_INTEGRAL_SUM]);;
let HAS_REAL_INTEGRAL_EQ = prove
(`!f:real->real g k s.
(!x. x IN s ==> (f(x) = g(x))) /\
(f has_real_integral k) s
==> (g has_real_integral k) s`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_0] THEN
DISCH_THEN(CONJUNCTS_THEN2
(MP_TAC o MATCH_MP HAS_REAL_INTEGRAL_IS_0) MP_TAC) THEN
REWRITE_TAC[IMP_IMP] THEN DISCH_THEN
(MP_TAC o MATCH_MP HAS_REAL_INTEGRAL_SUB) THEN
SIMP_TAC[REAL_ARITH `x - (x - y:real) = y`; ETA_AX; REAL_SUB_RZERO]);;
let REAL_INTEGRABLE_EQ = prove
(`!f:real->real g s.
(!x. x IN s ==> (f(x) = g(x))) /\
f real_integrable_on s
==> g real_integrable_on s`,
REWRITE_TAC[real_integrable_on] THEN MESON_TAC[HAS_REAL_INTEGRAL_EQ]);;
let HAS_REAL_INTEGRAL_EQ_EQ = prove
(`!f:real->real g k s.
(!x. x IN s ==> (f(x) = g(x)))
==> ((f has_real_integral k) s <=> (g has_real_integral k) s)`,
MESON_TAC[HAS_REAL_INTEGRAL_EQ]);;
let HAS_REAL_INTEGRAL_NULL = prove
(`!f:real->real a b.
b <= a ==> (f has_real_integral &0) (real_interval[a,b])`,
REPEAT STRIP_TAC THEN
REWRITE_TAC[has_real_integral; REAL_INTERVAL_INTERVAL] THEN
REWRITE_TAC[GSYM IMAGE_o; o_DEF; LIFT_DROP; LIFT_NUM] THEN
REWRITE_TAC[SET_RULE `IMAGE (\x. x) s = s`] THEN
MATCH_MP_TAC HAS_INTEGRAL_NULL THEN
ASM_REWRITE_TAC[CONTENT_EQ_0_1; LIFT_DROP]);;
let HAS_REAL_INTEGRAL_NULL_EQ = prove
(`!f a b i. b <= a
==> ((f has_real_integral i) (real_interval[a,b]) <=> i = &0)`,
ASM_MESON_TAC[REAL_INTEGRAL_UNIQUE; HAS_REAL_INTEGRAL_NULL]);;
let REAL_INTEGRAL_NULL = prove
(`!f a b. b <= a
==> real_integral(real_interval[a,b]) f = &0`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_INTEGRAL_UNIQUE THEN
ASM_MESON_TAC[HAS_REAL_INTEGRAL_NULL]);;
let REAL_INTEGRABLE_ON_NULL = prove
(`!f a b. b <= a
==> f real_integrable_on real_interval[a,b]`,
REWRITE_TAC[real_integrable_on] THEN MESON_TAC[HAS_REAL_INTEGRAL_NULL]);;
let HAS_REAL_INTEGRAL_EMPTY = prove
(`!f. (f has_real_integral &0) {}`,
GEN_TAC THEN REWRITE_TAC[EMPTY_AS_REAL_INTERVAL] THEN
MATCH_MP_TAC HAS_REAL_INTEGRAL_NULL THEN REWRITE_TAC[REAL_POS]);;
let HAS_REAL_INTEGRAL_EMPTY_EQ = prove
(`!f i. (f has_real_integral i) {} <=> i = &0`,
MESON_TAC[HAS_REAL_INTEGRAL_UNIQUE; HAS_REAL_INTEGRAL_EMPTY]);;
let REAL_INTEGRABLE_ON_EMPTY = prove
(`!f. f real_integrable_on {}`,
REWRITE_TAC[real_integrable_on] THEN MESON_TAC[HAS_REAL_INTEGRAL_EMPTY]);;
let REAL_INTEGRAL_EMPTY = prove
(`!f. real_integral {} f = &0`,
MESON_TAC[EMPTY_AS_REAL_INTERVAL; REAL_INTEGRAL_UNIQUE;
HAS_REAL_INTEGRAL_EMPTY]);;
let HAS_REAL_INTEGRAL_REFL = prove
(`!f a. (f has_real_integral &0) (real_interval[a,a])`,
REPEAT GEN_TAC THEN MATCH_MP_TAC HAS_REAL_INTEGRAL_NULL THEN
REWRITE_TAC[REAL_LE_REFL]);;
let REAL_INTEGRABLE_ON_REFL = prove
(`!f a. f real_integrable_on real_interval[a,a]`,
REWRITE_TAC[real_integrable_on] THEN MESON_TAC[HAS_REAL_INTEGRAL_REFL]);;
let REAL_INTEGRAL_REFL = prove
(`!f a. real_integral (real_interval[a,a]) f = &0`,
MESON_TAC[REAL_INTEGRAL_UNIQUE; HAS_REAL_INTEGRAL_REFL]);;
let HAS_REAL_INTEGRAL_CONST = prove
(`!a b c.
a <= b
==> ((\x. c) has_real_integral (c * (b - a))) (real_interval[a,b])`,
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
REWRITE_TAC[has_real_integral; IMAGE_LIFT_REAL_INTERVAL] THEN
MP_TAC(ISPECL [`lift a`; `lift b`; `lift c`] HAS_INTEGRAL_CONST) THEN
ASM_SIMP_TAC[o_DEF; CONTENT_1; LIFT_DROP; LIFT_CMUL]);;
let REAL_INTEGRABLE_CONST = prove
(`!a b c. (\x. c) real_integrable_on real_interval[a,b]`,
REWRITE_TAC[REAL_INTEGRABLE_ON; IMAGE_LIFT_REAL_INTERVAL;
o_DEF; INTEGRABLE_CONST]);;
let REAL_INTEGRAL_CONST = prove
(`!a b c.
a <= b
==> real_integral (real_interval [a,b]) (\x. c) = c * (b - a)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_INTEGRAL_UNIQUE THEN
ASM_SIMP_TAC[HAS_REAL_INTEGRAL_CONST]);;
let HAS_REAL_INTEGRAL_BOUND = prove
(`!f:real->real a b i B.
&0 <= B /\ a <= b /\
(f has_real_integral i) (real_interval[a,b]) /\
(!x. x IN real_interval[a,b] ==> abs(f x) <= B)
==> abs i <= B * (b - a)`,
REWRITE_TAC[HAS_REAL_INTEGRAL; REAL_INTERVAL_INTERVAL; GSYM NORM_LIFT] THEN
REWRITE_TAC[FORALL_IN_IMAGE; LIFT_DROP] THEN REPEAT STRIP_TAC THEN
GEN_REWRITE_TAC (RAND_CONV o RAND_CONV o BINOP_CONV) [GSYM LIFT_DROP] THEN
ASM_SIMP_TAC[GSYM CONTENT_1; LIFT_DROP] THEN
MATCH_MP_TAC HAS_INTEGRAL_BOUND THEN
EXISTS_TAC `lift o f o drop` THEN ASM_REWRITE_TAC[o_THM]);;
let HAS_REAL_INTEGRAL_LE = prove
(`!f g s i j.
(f has_real_integral i) s /\ (g has_real_integral j) s /\
(!x. x IN s ==> f x <= g x)
==> i <= j`,
REWRITE_TAC[has_real_integral] THEN REPEAT STRIP_TAC THEN
GEN_REWRITE_TAC BINOP_CONV [GSYM LIFT_DROP] THEN
REWRITE_TAC[drop] THEN MATCH_MP_TAC
(ISPECL [`lift o f o drop`; `lift o g o drop`; `IMAGE lift s`]
HAS_INTEGRAL_COMPONENT_LE) THEN
ASM_REWRITE_TAC[FORALL_IN_IMAGE; DIMINDEX_1; LE_REFL; o_THM; LIFT_DROP;
GSYM drop]);;
let REAL_INTEGRAL_LE = prove
(`!f:real->real g:real->real s.
f real_integrable_on s /\ g real_integrable_on s /\
(!x. x IN s ==> f x <= g x)
==> real_integral s f <= real_integral s g`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_REAL_INTEGRAL_LE THEN
ASM_MESON_TAC[REAL_INTEGRABLE_INTEGRAL]);;
let HAS_REAL_INTEGRAL_POS = prove
(`!f:real->real s i.
(f has_real_integral i) s /\
(!x. x IN s ==> &0 <= f x)
==> &0 <= i`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`(\x. &0):real->real`; `f:real->real`;
`s:real->bool`; `&0:real`;
`i:real`] HAS_REAL_INTEGRAL_LE) THEN
ASM_SIMP_TAC[HAS_REAL_INTEGRAL_0]);;
let REAL_INTEGRAL_POS = prove
(`!f:real->real s.
f real_integrable_on s /\
(!x. x IN s ==> &0 <= f x)
==> &0 <= real_integral s f`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_REAL_INTEGRAL_POS THEN
ASM_MESON_TAC[REAL_INTEGRABLE_INTEGRAL]);;
let HAS_REAL_INTEGRAL_ISNEG = prove
(`!f:real->real s i.
(f has_real_integral i) s /\
(!x. x IN s ==> f x <= &0)
==> i <= &0`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`f:real->real`; `(\x. &0):real->real`;
`s:real->bool`; `i:real`; `&0:real`;
] HAS_REAL_INTEGRAL_LE) THEN
ASM_SIMP_TAC[HAS_REAL_INTEGRAL_0]);;
let HAS_REAL_INTEGRAL_LBOUND = prove
(`!f:real->real a b i.
a <= b /\
(f has_real_integral i) (real_interval[a,b]) /\
(!x. x IN real_interval[a,b] ==> B <= f(x))
==> B * (b - a) <= i`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`(\x. B):real->real`; `f:real->real`;
`real_interval[a,b]`;
`B * (b - a):real`;
`i:real`]
HAS_REAL_INTEGRAL_LE) THEN
ASM_SIMP_TAC[HAS_REAL_INTEGRAL_CONST]);;
let HAS_REAL_INTEGRAL_UBOUND = prove
(`!f:real->real a b i.
a <= b /\
(f has_real_integral i) (real_interval[a,b]) /\
(!x. x IN real_interval[a,b] ==> f(x) <= B)
==> i <= B * (b - a)`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`f:real->real`; `(\x. B):real->real`;
`real_interval[a,b]`; `i:real`;
`B * (b - a):real`]
HAS_REAL_INTEGRAL_LE) THEN
ASM_SIMP_TAC[HAS_REAL_INTEGRAL_CONST]);;
let REAL_INTEGRAL_LBOUND = prove
(`!f:real->real a b.
a <= b /\
f real_integrable_on real_interval[a,b] /\
(!x. x IN real_interval[a,b] ==> B <= f(x))
==> B * (b - a) <= real_integral(real_interval[a,b]) f`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_REAL_INTEGRAL_LBOUND THEN
EXISTS_TAC `f:real->real` THEN
ASM_REWRITE_TAC[GSYM HAS_REAL_INTEGRAL_INTEGRAL]);;
let REAL_INTEGRAL_UBOUND = prove
(`!f:real->real a b.
a <= b /\
f real_integrable_on real_interval[a,b] /\
(!x. x IN real_interval[a,b] ==> f(x) <= B)
==> real_integral(real_interval[a,b]) f <= B * (b - a)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_REAL_INTEGRAL_UBOUND THEN
EXISTS_TAC `f:real->real` THEN
ASM_REWRITE_TAC[GSYM HAS_REAL_INTEGRAL_INTEGRAL]);;
let REAL_INTEGRABLE_UNIFORM_LIMIT = prove
(`!f a b. (!e. &0 < e
==> ?g. (!x. x IN real_interval[a,b] ==> abs(f x - g x) <= e) /\
g real_integrable_on real_interval[a,b] )
==> f real_integrable_on real_interval[a,b]`,
REWRITE_TAC[real_integrable_on; HAS_REAL_INTEGRAL; GSYM EXISTS_LIFT] THEN
REWRITE_TAC[GSYM integrable_on] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC INTEGRABLE_UNIFORM_LIMIT THEN
X_GEN_TAC `e:real` THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `g:real->real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `lift o g o drop` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; FORALL_IN_IMAGE] THEN
ASM_SIMP_TAC[o_THM; LIFT_DROP; GSYM LIFT_SUB; NORM_LIFT]);;
let HAS_REAL_INTEGRAL_NEGLIGIBLE = prove
(`!f s t.
real_negligible s /\ (!x. x IN (t DIFF s) ==> f x = &0)
==> (f has_real_integral (&0)) t`,
REWRITE_TAC[has_real_integral; real_negligible; LIFT_NUM] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_INTEGRAL_NEGLIGIBLE THEN
EXISTS_TAC `IMAGE lift s` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[o_THM; IN_DIFF; IMP_CONJ; FORALL_IN_IMAGE] THEN
REWRITE_TAC[LIFT_IN_IMAGE_LIFT; LIFT_DROP] THEN ASM SET_TAC[LIFT_NUM]);;
let HAS_REAL_INTEGRAL_SPIKE = prove
(`!f g s t y.
real_negligible s /\ (!x. x IN (t DIFF s) ==> g x = f x) /\
(f has_real_integral y) t
==> (g has_real_integral y) t`,
REWRITE_TAC[has_real_integral; real_negligible] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_INTEGRAL_SPIKE THEN
MAP_EVERY EXISTS_TAC [`lift o f o drop`; `IMAGE lift s`] THEN
ASM_REWRITE_TAC[] THEN
REWRITE_TAC[o_THM; IN_DIFF; IMP_CONJ; FORALL_IN_IMAGE] THEN
REWRITE_TAC[LIFT_IN_IMAGE_LIFT; LIFT_DROP] THEN ASM SET_TAC[LIFT_NUM]);;
let HAS_REAL_INTEGRAL_SPIKE_EQ = prove
(`!f g s t y.
real_negligible s /\ (!x. x IN (t DIFF s) ==> g x = f x)
==> ((f has_real_integral y) t <=> (g has_real_integral y) t)`,
REPEAT STRIP_TAC THEN EQ_TAC THEN DISCH_TAC THEN
MATCH_MP_TAC HAS_REAL_INTEGRAL_SPIKE THENL
[EXISTS_TAC `f:real->real`; EXISTS_TAC `g:real->real`] THEN
EXISTS_TAC `s:real->bool` THEN ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[REAL_ABS_SUB]);;
let REAL_INTEGRABLE_SPIKE = prove
(`!f g s t.
real_negligible s /\ (!x. x IN (t DIFF s) ==> g x = f x)
==> f real_integrable_on t ==> g real_integrable_on t`,
REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[real_integrable_on] THEN
MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN
MP_TAC(SPEC_ALL HAS_REAL_INTEGRAL_SPIKE) THEN ASM_REWRITE_TAC[]);;
let REAL_INTEGRABLE_SPIKE_EQ = prove
(`!f g s t.
real_negligible s /\ (!x. x IN t DIFF s ==> g x = f x)
==> (f real_integrable_on t <=> g real_integrable_on t)`,
MESON_TAC[REAL_INTEGRABLE_SPIKE]);;
let REAL_INTEGRAL_SPIKE = prove
(`!f:real->real g s t.
real_negligible s /\ (!x. x IN (t DIFF s) ==> g x = f x)
==> real_integral t f = real_integral t g`,
REPEAT STRIP_TAC THEN REWRITE_TAC[real_integral] THEN
AP_TERM_TAC THEN ABS_TAC THEN MATCH_MP_TAC HAS_REAL_INTEGRAL_SPIKE_EQ THEN
ASM_MESON_TAC[]);;
let REAL_NEGLIGIBLE_SUBSET = prove
(`!s:real->bool t:real->bool.
real_negligible s /\ t SUBSET s ==> real_negligible t`,
REWRITE_TAC[real_negligible] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC NEGLIGIBLE_SUBSET THEN
EXISTS_TAC `IMAGE lift s` THEN ASM_SIMP_TAC[IMAGE_SUBSET]);;
let REAL_NEGLIGIBLE_DIFF = prove
(`!s t:real->bool. real_negligible s ==> real_negligible(s DIFF t)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_NEGLIGIBLE_SUBSET THEN
EXISTS_TAC `s:real->bool` THEN ASM_REWRITE_TAC[SUBSET_DIFF]);;
let REAL_NEGLIGIBLE_INTER = prove
(`!s t. real_negligible s \/ real_negligible t ==> real_negligible(s INTER t)`,
MESON_TAC[REAL_NEGLIGIBLE_SUBSET; INTER_SUBSET]);;
let REAL_NEGLIGIBLE_UNION = prove
(`!s t:real->bool.
real_negligible s /\ real_negligible t ==> real_negligible (s UNION t)`,
SIMP_TAC[NEGLIGIBLE_UNION; IMAGE_UNION; real_negligible]);;
let REAL_NEGLIGIBLE_UNION_EQ = prove
(`!s t:real->bool.
real_negligible (s UNION t) <=> real_negligible s /\ real_negligible t`,
MESON_TAC[REAL_NEGLIGIBLE_UNION; SUBSET_UNION; REAL_NEGLIGIBLE_SUBSET]);;
let REAL_NEGLIGIBLE_SING = prove
(`!a:real. real_negligible {a}`,
REWRITE_TAC[real_negligible; NEGLIGIBLE_SING; IMAGE_CLAUSES]);;
let REAL_NEGLIGIBLE_INSERT = prove
(`!a:real s. real_negligible(a INSERT s) <=> real_negligible s`,
REWRITE_TAC[real_negligible; NEGLIGIBLE_INSERT; IMAGE_CLAUSES]);;
let REAL_NEGLIGIBLE_EMPTY = prove
(`real_negligible {}`,
REWRITE_TAC[real_negligible; NEGLIGIBLE_EMPTY; IMAGE_CLAUSES]);;
let REAL_NEGLIGIBLE_FINITE = prove
(`!s. FINITE s ==> real_negligible s`,
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[REAL_NEGLIGIBLE_EMPTY; REAL_NEGLIGIBLE_INSERT]);;
let REAL_NEGLIGIBLE_UNIONS = prove
(`!s. FINITE s /\ (!t. t IN s ==> real_negligible t)
==> real_negligible(UNIONS s)`,
REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
REWRITE_TAC[UNIONS_0; UNIONS_INSERT; REAL_NEGLIGIBLE_EMPTY; IN_INSERT] THEN
SIMP_TAC[REAL_NEGLIGIBLE_UNION]);;
let HAS_REAL_INTEGRAL_SPIKE_FINITE = prove
(`!f:real->real g s t y.
FINITE s /\ (!x. x IN (t DIFF s) ==> g x = f x) /\
(f has_real_integral y) t
==> (g has_real_integral y) t`,
MESON_TAC[HAS_REAL_INTEGRAL_SPIKE; REAL_NEGLIGIBLE_FINITE]);;
let HAS_REAL_INTEGRAL_SPIKE_FINITE_EQ = prove
(`!f:real->real g s y.
FINITE s /\ (!x. x IN (t DIFF s) ==> g x = f x)
==> ((f has_real_integral y) t <=> (g has_real_integral y) t)`,
MESON_TAC[HAS_REAL_INTEGRAL_SPIKE_FINITE]);;
let REAL_INTEGRABLE_SPIKE_FINITE = prove
(`!f:real->real g s.
FINITE s /\ (!x. x IN (t DIFF s) ==> g x = f x)
==> f real_integrable_on t
==> g real_integrable_on t`,
REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[real_integrable_on] THEN
MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN
MP_TAC(SPEC_ALL HAS_REAL_INTEGRAL_SPIKE_FINITE) THEN ASM_REWRITE_TAC[]);;
let REAL_NEGLIGIBLE_FRONTIER_INTERVAL = prove
(`!a b:real. real_negligible(real_interval[a,b] DIFF real_interval(a,b))`,
REPEAT GEN_TAC THEN REWRITE_TAC[real_interval; DIFF; IN_ELIM_THM] THEN
MATCH_MP_TAC REAL_NEGLIGIBLE_SUBSET THEN EXISTS_TAC `{(a:real),b}` THEN
ASM_SIMP_TAC[REAL_NEGLIGIBLE_FINITE; FINITE_RULES] THEN
REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_INSERT; NOT_IN_EMPTY] THEN
REAL_ARITH_TAC);;
let HAS_REAL_INTEGRAL_SPIKE_INTERIOR = prove
(`!f:real->real g a b y.
(!x. x IN real_interval(a,b) ==> g x = f x) /\
(f has_real_integral y) (real_interval[a,b])
==> (g has_real_integral y) (real_interval[a,b])`,
REPEAT GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN DISCH_TAC THEN
MATCH_MP_TAC(REWRITE_RULE[TAUT `a /\ b /\ c ==> d <=> a /\ b ==> c ==> d`]
HAS_REAL_INTEGRAL_SPIKE) THEN
EXISTS_TAC `real_interval[a:real,b] DIFF real_interval(a,b)` THEN
REWRITE_TAC[REAL_NEGLIGIBLE_FRONTIER_INTERVAL] THEN ASM SET_TAC[]);;
let HAS_REAL_INTEGRAL_SPIKE_INTERIOR_EQ = prove
(`!f:real->real g a b y.
(!x. x IN real_interval(a,b) ==> g x = f x)
==> ((f has_real_integral y) (real_interval[a,b]) <=>
(g has_real_integral y) (real_interval[a,b]))`,
MESON_TAC[HAS_REAL_INTEGRAL_SPIKE_INTERIOR]);;
let REAL_INTEGRABLE_SPIKE_INTERIOR = prove
(`!f:real->real g a b.
(!x. x IN real_interval(a,b) ==> g x = f x)
==> f real_integrable_on (real_interval[a,b])
==> g real_integrable_on (real_interval[a,b])`,
REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[real_integrable_on] THEN
MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN
MP_TAC(SPEC_ALL HAS_REAL_INTEGRAL_SPIKE_INTERIOR) THEN ASM_REWRITE_TAC[]);;
let REAL_INTEGRAL_EQ = prove
(`!f g s.
(!x. x IN s ==> f x = g x) ==> real_integral s f = real_integral s g`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_INTEGRAL_SPIKE THEN
EXISTS_TAC `{}:real->bool` THEN
ASM_SIMP_TAC[REAL_NEGLIGIBLE_EMPTY; IN_DIFF]);;
let REAL_INTEGRAL_EQ_0 = prove
(`!f s. (!x. x IN s ==> f x = &0) ==> real_integral s f = &0`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC `real_integral s (\x. &0)` THEN
CONJ_TAC THENL
[MATCH_MP_TAC REAL_INTEGRAL_EQ THEN ASM_REWRITE_TAC[];
REWRITE_TAC[REAL_INTEGRAL_0]]);;
let REAL_INTEGRABLE_CONTINUOUS = prove
(`!f a b.
f real_continuous_on real_interval[a,b]
==> f real_integrable_on real_interval[a,b]`,
REWRITE_TAC[REAL_CONTINUOUS_ON; real_integrable_on; has_real_integral;
GSYM integrable_on; GSYM EXISTS_LIFT] THEN
REWRITE_TAC[IMAGE_LIFT_REAL_INTERVAL; INTEGRABLE_CONTINUOUS]);;
let REAL_FUNDAMENTAL_THEOREM_OF_CALCULUS = prove
(`!f f' a b.
a <= b /\
(!x. x IN real_interval[a,b]
==> (f has_real_derivative f'(x))
(atreal x within real_interval[a,b]))
==> (f' has_real_integral (f(b) - f(a))) (real_interval[a,b])`,
REWRITE_TAC[has_real_integral; HAS_REAL_VECTOR_DERIVATIVE_WITHIN] THEN
REPEAT GEN_TAC THEN REWRITE_TAC[IMAGE_LIFT_REAL_INTERVAL; LIFT_SUB] THEN
REWRITE_TAC[REAL_INTERVAL_INTERVAL; FORALL_IN_IMAGE; LIFT_DROP] THEN
GEN_REWRITE_TAC (LAND_CONV o LAND_CONV o BINOP_CONV) [GSYM LIFT_DROP] THEN
DISCH_THEN(MP_TAC o MATCH_MP FUNDAMENTAL_THEOREM_OF_CALCULUS) THEN
REWRITE_TAC[o_DEF; LIFT_DROP]);;
let REAL_INTEGRABLE_SUBINTERVAL = prove
(`!f:real->real a b c d.
f real_integrable_on real_interval[a,b] /\
real_interval[c,d] SUBSET real_interval[a,b]
==> f real_integrable_on real_interval[c,d]`,
REWRITE_TAC[real_integrable_on; HAS_REAL_INTEGRAL] THEN
REWRITE_TAC[EXISTS_DROP; GSYM integrable_on; LIFT_DROP] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC INTEGRABLE_SUBINTERVAL THEN
MAP_EVERY EXISTS_TAC [`lift a`; `lift b`] THEN
ASM_REWRITE_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL] THEN
ASM_SIMP_TAC[IMAGE_SUBSET]);;
let HAS_REAL_INTEGRAL_COMBINE = prove
(`!f i j a b c.
a <= c /\ c <= b /\
(f has_real_integral i) (real_interval[a,c]) /\
(f has_real_integral j) (real_interval[c,b])
==> (f has_real_integral (i + j)) (real_interval[a,b])`,
REPEAT GEN_TAC THEN REWRITE_TAC[HAS_REAL_INTEGRAL; LIFT_ADD] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_INTEGRAL_COMBINE THEN
EXISTS_TAC `lift c` THEN ASM_REWRITE_TAC[LIFT_DROP]);;
let REAL_INTEGRAL_COMBINE = prove
(`!f a b c.
a <= c /\ c <= b /\ f real_integrable_on (real_interval[a,b])
==> real_integral(real_interval[a,c]) f +
real_integral(real_interval[c,b]) f =
real_integral(real_interval[a,b]) f`,
REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN
MATCH_MP_TAC REAL_INTEGRAL_UNIQUE THEN
MATCH_MP_TAC HAS_REAL_INTEGRAL_COMBINE THEN
EXISTS_TAC `c:real` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THEN
MATCH_MP_TAC REAL_INTEGRABLE_INTEGRAL THEN
MATCH_MP_TAC REAL_INTEGRABLE_SUBINTERVAL THEN
MAP_EVERY EXISTS_TAC [`a:real`; `b:real`] THEN
ASM_REWRITE_TAC[SUBSET_REAL_INTERVAL; REAL_LE_REFL]);;
let REAL_INTEGRABLE_COMBINE = prove
(`!f a b c.
a <= c /\ c <= b /\
f real_integrable_on real_interval[a,c] /\
f real_integrable_on real_interval[c,b]
==> f real_integrable_on real_interval[a,b]`,
REWRITE_TAC[real_integrable_on] THEN MESON_TAC[HAS_REAL_INTEGRAL_COMBINE]);;
let REAL_INTEGRABLE_ON_LITTLE_SUBINTERVALS = prove
(`!f:real->real a b.
(!x. x IN real_interval[a,b]
==> ?d. &0 < d /\
!u v. x IN real_interval[u,v] /\
(!y. y IN real_interval[u,v]
==> abs(y - x) < d /\ y IN real_interval[a,b])
==> f real_integrable_on real_interval[u,v])
==> f real_integrable_on real_interval[a,b]`,
REPEAT GEN_TAC THEN
REWRITE_TAC[real_integrable_on; HAS_REAL_INTEGRAL; EXISTS_DROP;
GSYM integrable_on; LIFT_DROP] THEN
DISCH_TAC THEN MATCH_MP_TAC INTEGRABLE_ON_LITTLE_SUBINTERVALS THEN
REWRITE_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; FORALL_IN_IMAGE] THEN
X_GEN_TAC `x:real` THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `x:real`) THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[GSYM EXISTS_DROP; FORALL_LIFT] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:real` THEN
REWRITE_TAC[IMAGE_LIFT_REAL_INTERVAL] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
CONJ_TAC THENL
[ASM_MESON_TAC[IMAGE_LIFT_REAL_INTERVAL; LIFT_IN_IMAGE_LIFT];
REWRITE_TAC[REAL_INTERVAL_INTERVAL; FORALL_IN_IMAGE] THEN
X_GEN_TAC `y:real^1` THEN DISCH_TAC THEN
REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `y:real^1` o REWRITE_RULE[SUBSET])) THEN
ASM_SIMP_TAC[IN_BALL; FUN_IN_IMAGE; dist; NORM_REAL] THEN
REWRITE_TAC[GSYM drop; DROP_SUB; LIFT_DROP] THEN SIMP_TAC[REAL_ABS_SUB]]);;
let REAL_INTEGRAL_HAS_REAL_DERIVATIVE_POINTWISE = prove
(`!f a b x.
f real_integrable_on real_interval[a,b] /\ x IN real_interval[a,b] /\
f real_continuous (atreal x within real_interval[a,b])
==> ((\u. real_integral(real_interval[a,u]) f)
has_real_derivative f(x))
(atreal x within real_interval[a,b])`,
REPEAT GEN_TAC THEN
DISCH_THEN(fun th -> ASSUME_TAC th THEN MP_TAC th) THEN
REWRITE_TAC[REAL_CONTINUOUS_CONTINUOUS1; IMAGE_LIFT_REAL_INTERVAL;
REAL_INTEGRABLE_ON; CONTINUOUS_CONTINUOUS_WITHINREAL;
HAS_REAL_VECTOR_DERIVATIVE_WITHIN] THEN
REWRITE_TAC[REAL_INTERVAL_INTERVAL; IN_IMAGE_LIFT_DROP; GSYM o_ASSOC] THEN
DISCH_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP INTEGRAL_HAS_VECTOR_DERIVATIVE_POINTWISE) THEN
REWRITE_TAC[o_DEF; LIFT_DROP] THEN
MATCH_MP_TAC(REWRITE_RULE[TAUT
`a /\ b /\ c /\ d ==> e <=> a /\ b /\ c ==> d ==> e`]
HAS_VECTOR_DERIVATIVE_TRANSFORM_WITHIN) THEN
EXISTS_TAC `&1` THEN ASM_REWRITE_TAC[REAL_LT_01] THEN
X_GEN_TAC `y:real^1` THEN STRIP_TAC THEN
ONCE_REWRITE_TAC[GSYM DROP_EQ] THEN
REWRITE_TAC[LIFT_DROP] THEN CONV_TAC SYM_CONV THEN
REWRITE_TAC[INTERVAL_REAL_INTERVAL; GSYM IMAGE_o; LIFT_DROP; o_DEF] THEN
REWRITE_TAC[GSYM o_DEF; SET_RULE `IMAGE (\x. x) s = s`] THEN
MATCH_MP_TAC REAL_INTEGRAL THEN
MATCH_MP_TAC REAL_INTEGRABLE_SUBINTERVAL THEN
MAP_EVERY EXISTS_TAC [`a:real`; `b:real`] THEN ASM_REWRITE_TAC[] THEN
ASM_REWRITE_TAC[SUBSET_REAL_INTERVAL] THEN
REPEAT(FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_INTERVAL_1])) THEN
REWRITE_TAC[LIFT_DROP] THEN REAL_ARITH_TAC);;
let REAL_INTEGRAL_HAS_REAL_DERIVATIVE = prove
(`!f:real->real a b.
f real_continuous_on real_interval[a,b]
==> !x. x IN real_interval[a,b]
==> ((\u. real_integral(real_interval[a,u]) f)
has_real_derivative f(x))
(atreal x within real_interval[a,b])`,
REPEAT STRIP_TAC THEN
MATCH_MP_TAC REAL_INTEGRAL_HAS_REAL_DERIVATIVE_POINTWISE THEN
ASM_MESON_TAC[REAL_INTEGRABLE_CONTINUOUS;
REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN]);;
let REAL_ANTIDERIVATIVE_CONTINUOUS = prove
(`!f a b.
(f real_continuous_on real_interval[a,b])
==> ?g. !x. x IN real_interval[a,b]
==> (g has_real_derivative f(x))
(atreal x within real_interval[a,b])`,
MESON_TAC[REAL_INTEGRAL_HAS_REAL_DERIVATIVE]);;
let REAL_ANTIDERIVATIVE_INTEGRAL_CONTINUOUS = prove
(`!f a b.
(f real_continuous_on real_interval[a,b])
==> ?g. !u v. u IN real_interval[a,b] /\
v IN real_interval[a,b] /\ u <= v
==> (f has_real_integral (g(v) - g(u)))
(real_interval[u,v])`,
REPEAT STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP REAL_ANTIDERIVATIVE_CONTINUOUS) THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `g:real->real` THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_FUNDAMENTAL_THEOREM_OF_CALCULUS THEN
ASM_REWRITE_TAC[] THEN X_GEN_TAC `x:real` THEN
STRIP_TAC THEN MATCH_MP_TAC HAS_REAL_DERIVATIVE_WITHIN_SUBSET THEN
EXISTS_TAC `real_interval[a:real,b]` THEN CONJ_TAC THENL
[FIRST_X_ASSUM MATCH_MP_TAC; ALL_TAC] THEN
REPEAT(POP_ASSUM MP_TAC) THEN
REWRITE_TAC[SUBSET_REAL_INTERVAL; IN_REAL_INTERVAL] THEN REAL_ARITH_TAC);;
let HAS_REAL_INTEGRAL_AFFINITY = prove
(`!f:real->real i a b m c.
(f has_real_integral i) (real_interval[a,b]) /\ ~(m = &0)
==> ((\x. f(m * x + c)) has_real_integral (inv(abs(m)) * i))
(IMAGE (\x. inv m * (x - c)) (real_interval[a,b]))`,
REPEAT GEN_TAC THEN REWRITE_TAC[HAS_REAL_INTEGRAL] THEN
DISCH_THEN(MP_TAC o SPEC `lift c` o MATCH_MP HAS_INTEGRAL_AFFINITY) THEN
REWRITE_TAC[DIMINDEX_1; REAL_POW_1; has_real_integral] THEN
REWRITE_TAC[o_DEF; DROP_ADD; DROP_CMUL; LIFT_DROP; LIFT_CMUL] THEN
MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN
REWRITE_TAC[INTERVAL_REAL_INTERVAL; GSYM IMAGE_o; LIFT_DROP] THEN
AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[FUN_EQ_THM; o_DEF; LIFT_CMUL; LIFT_SUB] THEN VECTOR_ARITH_TAC);;
let REAL_INTEGRABLE_AFFINITY = prove
(`!f a b m c.
f real_integrable_on real_interval[a,b] /\ ~(m = &0)
==> (\x. f(m * x + c)) real_integrable_on
(IMAGE (\x. inv m * (x - c)) (real_interval[a,b]))`,
REWRITE_TAC[real_integrable_on] THEN MESON_TAC[HAS_REAL_INTEGRAL_AFFINITY]);;
let HAS_REAL_INTEGRAL_STRETCH = prove
(`!f:real->real i a b m.
(f has_real_integral i) (real_interval[a,b]) /\ ~(m = &0)
==> ((\x. f(m * x)) has_real_integral (inv(abs(m)) * i))
(IMAGE (\x. inv m * x) (real_interval[a,b]))`,
MP_TAC HAS_REAL_INTEGRAL_AFFINITY THEN
REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
DISCH_THEN(MP_TAC o SPEC `&0`) THEN
REWRITE_TAC[REAL_ADD_RID; REAL_SUB_RZERO]);;
let REAL_INTEGRABLE_STRETCH = prove
(`!f a b m.
f real_integrable_on real_interval[a,b] /\ ~(m = &0)
==> (\x. f(m * x)) real_integrable_on
(IMAGE (\x. inv m * x) (real_interval[a,b]))`,
REWRITE_TAC[real_integrable_on] THEN MESON_TAC[HAS_REAL_INTEGRAL_STRETCH]);;
let HAS_REAL_INTEGRAL_REFLECT_LEMMA = prove
(`!f:real->real i a b.
(f has_real_integral i) (real_interval[a,b])
==> ((\x. f(--x)) has_real_integral i) (real_interval[--b,--a])`,
REPEAT GEN_TAC THEN REWRITE_TAC[HAS_REAL_INTEGRAL] THEN
DISCH_THEN(MP_TAC o MATCH_MP HAS_INTEGRAL_REFLECT_LEMMA) THEN
REWRITE_TAC[LIFT_NEG; o_DEF; DROP_NEG]);;
let HAS_REAL_INTEGRAL_REFLECT = prove
(`!f:real->real i a b.
((\x. f(--x)) has_real_integral i) (real_interval[--b,--a]) <=>
(f has_real_integral i) (real_interval[a,b])`,
REPEAT GEN_TAC THEN EQ_TAC THEN
DISCH_THEN(MP_TAC o MATCH_MP HAS_REAL_INTEGRAL_REFLECT_LEMMA) THEN
REWRITE_TAC[REAL_NEG_NEG; ETA_AX]);;
let REAL_INTEGRABLE_REFLECT = prove
(`!f:real->real a b.
(\x. f(--x)) real_integrable_on (real_interval[--b,--a]) <=>
f real_integrable_on (real_interval[a,b])`,
REWRITE_TAC[real_integrable_on; HAS_REAL_INTEGRAL_REFLECT]);;
let REAL_INTEGRAL_REFLECT = prove
(`!f:real->real a b.
real_integral (real_interval[--b,--a]) (\x. f(--x)) =
real_integral (real_interval[a,b]) f`,
REWRITE_TAC[real_integral; HAS_REAL_INTEGRAL_REFLECT]);;
let HAS_REAL_INTEGRAL_REFLECT_GEN = prove
(`!f i s. ((\x. f(--x)) has_real_integral i) s <=>
(f has_real_integral i) (IMAGE (--) s)`,
REWRITE_TAC[has_real_integral; o_DEF; GSYM DROP_NEG;
HAS_INTEGRAL_REFLECT_GEN; GSYM IMAGE_o; GSYM LIFT_NEG]);;
let REAL_INTEGRABLE_REFLECT_GEN = prove
(`!f s. (\x. f(--x)) real_integrable_on s <=>
f real_integrable_on (IMAGE (--) s)`,
REWRITE_TAC[real_integrable_on; HAS_REAL_INTEGRAL_REFLECT_GEN]);;
let REAL_INTEGRAL_REFLECT_GEN = prove
(`!f s. real_integral s (\x. f(--x)) = real_integral (IMAGE (--) s) f`,
REWRITE_TAC[real_integral; HAS_REAL_INTEGRAL_REFLECT_GEN]);;
let REAL_FUNDAMENTAL_THEOREM_OF_CALCULUS_INTERIOR = prove
(`!f:real->real f' a b.
a <= b /\ f real_continuous_on real_interval[a,b] /\
(!x. x IN real_interval(a,b)
==> (f has_real_derivative f'(x)) (atreal x))
==> (f' has_real_integral (f(b) - f(a))) (real_interval[a,b])`,
REWRITE_TAC[has_real_integral; HAS_REAL_VECTOR_DERIVATIVE_AT] THEN
REPEAT GEN_TAC THEN REWRITE_TAC[IMAGE_LIFT_REAL_INTERVAL; LIFT_SUB] THEN
REWRITE_TAC[REAL_INTERVAL_INTERVAL; FORALL_IN_IMAGE; LIFT_DROP] THEN
GEN_REWRITE_TAC (LAND_CONV o LAND_CONV o BINOP_CONV) [GSYM LIFT_DROP] THEN
REWRITE_TAC[REAL_CONTINUOUS_ON; GSYM IMAGE_o; IMAGE_LIFT_DROP] THEN
DISCH_THEN(MP_TAC o MATCH_MP FUNDAMENTAL_THEOREM_OF_CALCULUS_INTERIOR) THEN
REWRITE_TAC[o_DEF; LIFT_DROP]);;
let REAL_FUNDAMENTAL_THEOREM_OF_CALCULUS_INTERIOR_STRONG = prove
(`!f f' s a b.
COUNTABLE s /\
a <= b /\ f real_continuous_on real_interval[a,b] /\
(!x. x IN real_interval(a,b) DIFF s
==> (f has_real_derivative f'(x)) (atreal x))
==> (f' has_real_integral (f(b) - f(a))) (real_interval[a,b])`,
REWRITE_TAC[has_real_integral; HAS_REAL_VECTOR_DERIVATIVE_AT] THEN
REPEAT GEN_TAC THEN REWRITE_TAC[IMAGE_LIFT_REAL_INTERVAL; LIFT_SUB] THEN
REWRITE_TAC[REAL_INTERVAL_INTERVAL; FORALL_IN_IMAGE; IMP_CONJ; IN_DIFF] THEN
SUBGOAL_THEN `!x. drop x IN s <=> x IN IMAGE lift s`
(fun th -> REWRITE_TAC[th]) THENL [SET_TAC[LIFT_DROP]; ALL_TAC] THEN
SUBGOAL_THEN `COUNTABLE s <=> COUNTABLE(IMAGE lift s)` SUBST1_TAC THENL
[EQ_TAC THEN SIMP_TAC[COUNTABLE_IMAGE] THEN
DISCH_THEN(MP_TAC o ISPEC `drop` o MATCH_MP COUNTABLE_IMAGE) THEN
REWRITE_TAC[GSYM IMAGE_o; IMAGE_LIFT_DROP];
ALL_TAC] THEN
REWRITE_TAC[IMP_IMP; GSYM IN_DIFF; GSYM CONJ_ASSOC] THEN
REWRITE_TAC[REAL_CONTINUOUS_ON; GSYM IMAGE_o; IMAGE_LIFT_DROP] THEN
REWRITE_TAC[LIFT_DROP] THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o LAND_CONV o BINOP_CONV)
[GSYM LIFT_DROP] THEN
DISCH_THEN(MP_TAC o
MATCH_MP FUNDAMENTAL_THEOREM_OF_CALCULUS_INTERIOR_STRONG) THEN
REWRITE_TAC[o_DEF; LIFT_DROP]);;
let REAL_FUNDAMENTAL_THEOREM_OF_CALCULUS_STRONG = prove
(`!f f' s a b.
COUNTABLE s /\
a <= b /\ f real_continuous_on real_interval[a,b] /\
(!x. x IN real_interval[a,b] DIFF s
==> (f has_real_derivative f'(x)) (atreal x))
==> (f' has_real_integral (f(b) - f(a))) (real_interval[a,b])`,
REPEAT STRIP_TAC THEN
MATCH_MP_TAC REAL_FUNDAMENTAL_THEOREM_OF_CALCULUS_INTERIOR_STRONG THEN
EXISTS_TAC `s:real->bool` THEN ASM_REWRITE_TAC[] THEN GEN_TAC THEN
DISCH_THEN(fun th -> FIRST_X_ASSUM MATCH_MP_TAC THEN MP_TAC th) THEN
SIMP_TAC[IN_REAL_INTERVAL; IN_DIFF] THEN REAL_ARITH_TAC);;
let REAL_INDEFINITE_INTEGRAL_CONTINUOUS_RIGHT = prove
(`!f:real->real a b.
f real_integrable_on real_interval[a,b]
==> (\x. real_integral (real_interval[a,x]) f)
real_continuous_on real_interval[a,b]`,
REPEAT STRIP_TAC THEN REWRITE_TAC[REAL_CONTINUOUS_ON] THEN
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [REAL_INTEGRABLE_ON]) THEN
REWRITE_TAC[IMAGE_LIFT_REAL_INTERVAL] THEN
DISCH_THEN(MP_TAC o MATCH_MP INDEFINITE_INTEGRAL_CONTINUOUS_RIGHT) THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] CONTINUOUS_ON_EQ) THEN
GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[o_DEF] THEN
GEN_REWRITE_TAC I [GSYM DROP_EQ] THEN
REWRITE_TAC[INTERVAL_REAL_INTERVAL; LIFT_DROP; GSYM o_DEF] THEN
CONV_TAC SYM_CONV THEN MATCH_MP_TAC REAL_INTEGRAL THEN
MATCH_MP_TAC REAL_INTEGRABLE_SUBINTERVAL THEN
MAP_EVERY EXISTS_TAC [`a:real`; `b:real`] THEN
ASM_REWRITE_TAC[SUBSET_REAL_INTERVAL] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_INTERVAL_1]) THEN
REWRITE_TAC[LIFT_DROP] THEN REAL_ARITH_TAC);;
let REAL_INDEFINITE_INTEGRAL_CONTINUOUS_LEFT = prove
(`!f:real->real a b.
f real_integrable_on real_interval[a,b]
==> (\x. real_integral (real_interval[x,b]) f)
real_continuous_on real_interval[a,b]`,
REPEAT STRIP_TAC THEN REWRITE_TAC[REAL_CONTINUOUS_ON] THEN
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [REAL_INTEGRABLE_ON]) THEN
REWRITE_TAC[IMAGE_LIFT_REAL_INTERVAL] THEN
DISCH_THEN(MP_TAC o MATCH_MP INDEFINITE_INTEGRAL_CONTINUOUS_LEFT) THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] CONTINUOUS_ON_EQ) THEN
GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[o_DEF] THEN
GEN_REWRITE_TAC I [GSYM DROP_EQ] THEN
REWRITE_TAC[INTERVAL_REAL_INTERVAL; LIFT_DROP; GSYM o_DEF] THEN
CONV_TAC SYM_CONV THEN MATCH_MP_TAC REAL_INTEGRAL THEN
MATCH_MP_TAC REAL_INTEGRABLE_SUBINTERVAL THEN
MAP_EVERY EXISTS_TAC [`a:real`; `b:real`] THEN
ASM_REWRITE_TAC[SUBSET_REAL_INTERVAL] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_INTERVAL_1]) THEN
REWRITE_TAC[LIFT_DROP] THEN REAL_ARITH_TAC);;
let HAS_REAL_DERIVATIVE_ZERO_UNIQUE_STRONG_INTERVAL = prove
(`!f:real->real a b k y.
COUNTABLE k /\ f real_continuous_on real_interval[a,b] /\ f a = y /\
(!x. x IN (real_interval[a,b] DIFF k)
==> (f has_real_derivative &0)
(atreal x within real_interval[a,b]))
==> !x. x IN real_interval[a,b] ==> f x = y`,
REWRITE_TAC[has_real_integral; HAS_REAL_VECTOR_DERIVATIVE_WITHIN] THEN
REPEAT GEN_TAC THEN REWRITE_TAC[IMAGE_LIFT_REAL_INTERVAL; LIFT_SUB] THEN
REWRITE_TAC[REAL_INTERVAL_INTERVAL; FORALL_IN_IMAGE; IMP_CONJ; IN_DIFF] THEN
REWRITE_TAC[REAL_CONTINUOUS_ON; IMP_IMP; GSYM IMAGE_o; IMAGE_LIFT_DROP] THEN
REWRITE_TAC[GSYM IMP_CONJ; LIFT_DROP; has_vector_derivative] THEN
REWRITE_TAC[LIFT_NUM; VECTOR_MUL_RZERO] THEN STRIP_TAC THEN
MP_TAC(ISPECL
[`lift o f o drop`; `lift a`; `lift b`; `IMAGE lift k`; `lift y`]
HAS_DERIVATIVE_ZERO_UNIQUE_STRONG_INTERVAL) THEN
ASM_SIMP_TAC[COUNTABLE_IMAGE; o_THM; LIFT_DROP; LIFT_EQ; IN_DIFF] THEN
DISCH_THEN MATCH_MP_TAC THEN REPEAT STRIP_TAC THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN ASM SET_TAC[LIFT_DROP]);;
let HAS_REAL_DERIVATIVE_ZERO_UNIQUE_STRONG_CONVEX = prove
(`!f:real->real s k c y.
is_realinterval s /\ COUNTABLE k /\ f real_continuous_on s /\
c IN s /\ f c = y /\
(!x. x IN (s DIFF k) ==> (f has_real_derivative &0) (atreal x within s))
==> !x. x IN s ==> f x = y`,
REWRITE_TAC[has_real_integral; HAS_REAL_VECTOR_DERIVATIVE_WITHIN] THEN
REWRITE_TAC[IS_REALINTERVAL_CONVEX; REAL_CONTINUOUS_ON] THEN
REPEAT GEN_TAC THEN REWRITE_TAC[IMAGE_LIFT_REAL_INTERVAL; LIFT_SUB] THEN
REWRITE_TAC[REAL_INTERVAL_INTERVAL; FORALL_IN_IMAGE; IMP_CONJ; IN_DIFF] THEN
REWRITE_TAC[REAL_CONTINUOUS_ON; IMP_IMP; GSYM IMAGE_o; IMAGE_LIFT_DROP] THEN
REWRITE_TAC[GSYM IMP_CONJ; LIFT_DROP; has_vector_derivative] THEN
REWRITE_TAC[LIFT_NUM; VECTOR_MUL_RZERO] THEN STRIP_TAC THEN
MP_TAC(ISPECL
[`lift o f o drop`; `IMAGE lift s`; `IMAGE lift k`; `lift c`; `lift y`]
HAS_DERIVATIVE_ZERO_UNIQUE_STRONG_CONVEX) THEN
ASM_SIMP_TAC[COUNTABLE_IMAGE; o_THM; LIFT_DROP; LIFT_EQ; IN_DIFF] THEN
ASM_REWRITE_TAC[LIFT_IN_IMAGE_LIFT; FORALL_IN_IMAGE; LIFT_DROP] THEN
ASM_SIMP_TAC[IMP_CONJ; FORALL_IN_IMAGE; LIFT_IN_IMAGE_LIFT]);;
let HAS_REAL_DERIVATIVE_INDEFINITE_INTEGRAL = prove
(`!f a b.
f real_integrable_on real_interval[a,b]
==> ?k. real_negligible k /\
!x. x IN real_interval[a,b] DIFF k
==> ((\x. real_integral(real_interval[a,x]) f)
has_real_derivative
f(x)) (atreal x within real_interval[a,b])`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`lift o f o drop`; `lift a`; `lift b`]
HAS_VECTOR_DERIVATIVE_INDEFINITE_INTEGRAL) THEN
ASM_REWRITE_TAC[GSYM REAL_INTEGRABLE_ON; GSYM IMAGE_LIFT_REAL_INTERVAL] THEN
REWRITE_TAC[IN_DIFF; FORALL_IN_IMAGE; IMP_CONJ] THEN
DISCH_THEN(X_CHOOSE_THEN `k:real^1->bool` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `IMAGE drop k` THEN
ASM_REWRITE_TAC[real_negligible; HAS_REAL_VECTOR_DERIVATIVE_WITHIN] THEN
ASM_REWRITE_TAC[GSYM IMAGE_o; IMAGE_LIFT_DROP] THEN
REWRITE_TAC[IN_IMAGE; GSYM LIFT_EQ; LIFT_DROP; UNWIND_THM1] THEN
X_GEN_TAC `x:real` THEN REPEAT DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `x:real`) THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[o_THM; LIFT_DROP] THEN MATCH_MP_TAC(REWRITE_RULE
[TAUT `a /\ b /\ c /\ d ==> e <=> a /\ b /\ c ==> d ==> e`]
HAS_VECTOR_DERIVATIVE_TRANSFORM_WITHIN) THEN
EXISTS_TAC `&1` THEN ASM_SIMP_TAC[FUN_IN_IMAGE; REAL_LT_01] THEN
REWRITE_TAC[IMP_CONJ; FORALL_IN_IMAGE] THEN
X_GEN_TAC `y:real` THEN REPEAT DISCH_TAC THEN
REWRITE_TAC[GSYM DROP_EQ; LIFT_DROP; o_THM] THEN
REWRITE_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL] THEN CONV_TAC SYM_CONV THEN
MATCH_MP_TAC REAL_INTEGRAL THEN
MATCH_MP_TAC REAL_INTEGRABLE_SUBINTERVAL THEN
MAP_EVERY EXISTS_TAC [`a:real`; `b:real`] THEN
ASM_REWRITE_TAC[SUBSET_REAL_INTERVAL] THEN
RULE_ASSUM_TAC(REWRITE_RULE[IN_REAL_INTERVAL]) THEN
ASM_REAL_ARITH_TAC);;
let HAS_REAL_INTEGRAL_RESTRICT = prove
(`!f:real->real s t.
s SUBSET t
==> (((\x. if x IN s then f x else &0) has_real_integral i) t <=>
(f has_real_integral i) s)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[has_real_integral; o_DEF] THEN
MP_TAC(ISPECL [`lift o f o drop`; `IMAGE lift s`; `IMAGE lift t`; `lift i`]
HAS_INTEGRAL_RESTRICT) THEN
ASM_SIMP_TAC[IMAGE_SUBSET; IN_IMAGE_LIFT_DROP; o_DEF] THEN
DISCH_THEN(SUBST1_TAC o SYM) THEN
ONCE_REWRITE_TAC[COND_RAND] THEN REWRITE_TAC[LIFT_NUM]);;
let HAS_REAL_INTEGRAL_RESTRICT_UNIV = prove
(`!f:real->real s i.
((\x. if x IN s then f x else &0) has_real_integral i) (:real) <=>
(f has_real_integral i) s`,
SIMP_TAC[HAS_REAL_INTEGRAL_RESTRICT; SUBSET_UNIV]);;
let HAS_REAL_INTEGRAL_SPIKE_SET_EQ = prove
(`!f s t y.
real_negligible(s DIFF t UNION t DIFF s)
==> ((f has_real_integral y) s <=> (f has_real_integral y) t)`,
REPEAT STRIP_TAC THEN
ONCE_REWRITE_TAC[GSYM HAS_REAL_INTEGRAL_RESTRICT_UNIV] THEN
MATCH_MP_TAC HAS_REAL_INTEGRAL_SPIKE_EQ THEN
EXISTS_TAC `s DIFF t UNION t DIFF s:real->bool` THEN
ASM_REWRITE_TAC[] THEN SET_TAC[]);;
let HAS_REAL_INTEGRAL_SPIKE_SET = prove
(`!f s t y.
real_negligible(s DIFF t UNION t DIFF s) /\
(f has_real_integral y) s
==> (f has_real_integral y) t`,
MESON_TAC[HAS_REAL_INTEGRAL_SPIKE_SET_EQ]);;
let REAL_INTEGRABLE_SPIKE_SET = prove
(`!f s t.
real_negligible(s DIFF t UNION t DIFF s)
==> f real_integrable_on s ==> f real_integrable_on t`,
REWRITE_TAC[real_integrable_on] THEN
MESON_TAC[HAS_REAL_INTEGRAL_SPIKE_SET_EQ]);;
let REAL_INTEGRABLE_SPIKE_SET_EQ = prove
(`!f s t.
real_negligible(s DIFF t UNION t DIFF s)
==> (f real_integrable_on s <=> f real_integrable_on t)`,
MESON_TAC[REAL_INTEGRABLE_SPIKE_SET; UNION_COMM]);;
let REAL_INTEGRAL_SPIKE_SET = prove
(`!f s t.
real_negligible(s DIFF t UNION t DIFF s)
==> real_integral s f = real_integral t f`,
REPEAT STRIP_TAC THEN REWRITE_TAC[real_integral] THEN
AP_TERM_TAC THEN ABS_TAC THEN MATCH_MP_TAC HAS_REAL_INTEGRAL_SPIKE_SET_EQ THEN
ASM_MESON_TAC[]);;
let HAS_REAL_INTEGRAL_OPEN_INTERVAL = prove
(`!f a b y. (f has_real_integral y) (real_interval(a,b)) <=>
(f has_real_integral y) (real_interval[a,b])`,
REWRITE_TAC[has_real_integral; IMAGE_LIFT_REAL_INTERVAL] THEN
REWRITE_TAC[HAS_INTEGRAL_OPEN_INTERVAL]);;
let REAL_INTEGRABLE_ON_OPEN_INTERVAL = prove
(`!f a b. f real_integrable_on real_interval(a,b) <=>
f real_integrable_on real_interval[a,b]`,
REWRITE_TAC[real_integrable_on; HAS_REAL_INTEGRAL_OPEN_INTERVAL]);;
let REAL_INTEGRAL_OPEN_INTERVAL = prove
(`!f a b. real_integral(real_interval(a,b)) f =
real_integral(real_interval[a,b]) f`,
REWRITE_TAC[real_integral; HAS_REAL_INTEGRAL_OPEN_INTERVAL]);;
let HAS_REAL_INTEGRAL_ON_SUPERSET = prove
(`!f s t.
(!x. ~(x IN s) ==> f x = &0) /\ s SUBSET t /\ (f has_real_integral i) s
==> (f has_real_integral i) t`,
REPEAT GEN_TAC THEN REWRITE_TAC[SUBSET] THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
ONCE_REWRITE_TAC[GSYM HAS_REAL_INTEGRAL_RESTRICT_UNIV] THEN
MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_THM_TAC THEN
AP_TERM_TAC THEN ABS_TAC THEN ASM_MESON_TAC[]);;
let REAL_INTEGRABLE_ON_SUPERSET = prove
(`!f s t.
(!x. ~(x IN s) ==> f x = &0) /\ s SUBSET t /\ f real_integrable_on s
==> f real_integrable_on t`,
REWRITE_TAC[real_integrable_on] THEN
MESON_TAC[HAS_REAL_INTEGRAL_ON_SUPERSET]);;
let REAL_INTEGRABLE_RESTRICT_UNIV = prove
(`!f s. (\x. if x IN s then f x else &0) real_integrable_on (:real) <=>
f real_integrable_on s`,
REWRITE_TAC[real_integrable_on; HAS_REAL_INTEGRAL_RESTRICT_UNIV]);;
let REAL_INTEGRAL_RESTRICT_UNIV = prove
(`!f s.
real_integral (:real) (\x. if x IN s then f x else &0) =
real_integral s f`,
REWRITE_TAC[real_integral; HAS_REAL_INTEGRAL_RESTRICT_UNIV]);;
let REAL_INTEGRAL_RESTRICT = prove
(`!f s t.
s SUBSET t
==> real_integral t (\x. if x IN s then f x else &0) =
real_integral s f`,
SIMP_TAC[real_integral; HAS_REAL_INTEGRAL_RESTRICT]);;
let HAS_REAL_INTEGRAL_RESTRICT_INTER = prove
(`!f s t.
((\x. if x IN s then f x else &0) has_real_integral i) t <=>
(f has_real_integral i) (s INTER t)`,
REPEAT GEN_TAC THEN
ONCE_REWRITE_TAC[GSYM HAS_REAL_INTEGRAL_RESTRICT_UNIV] THEN
REWRITE_TAC[IN_INTER] THEN AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[FUN_EQ_THM] THEN MESON_TAC[]);;
let REAL_INTEGRAL_RESTRICT_INTER = prove
(`!f s t.
real_integral t (\x. if x IN s then f x else &0) =
real_integral (s INTER t) f`,
REWRITE_TAC[real_integral; HAS_REAL_INTEGRAL_RESTRICT_INTER]);;
let REAL_INTEGRABLE_RESTRICT_INTER = prove
(`!f s t.
(\x. if x IN s then f x else &0) real_integrable_on t <=>
f real_integrable_on (s INTER t)`,
REWRITE_TAC[real_integrable_on; HAS_REAL_INTEGRAL_RESTRICT_INTER]);;
let REAL_NEGLIGIBLE_ON_INTERVALS = prove
(`!s. real_negligible s <=>
!a b:real. real_negligible(s INTER real_interval[a,b])`,
GEN_TAC THEN REWRITE_TAC[real_negligible] THEN
GEN_REWRITE_TAC LAND_CONV [NEGLIGIBLE_ON_INTERVALS] THEN
REWRITE_TAC[FORALL_LIFT; GSYM IMAGE_LIFT_REAL_INTERVAL] THEN
REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN AP_TERM_TAC THEN SET_TAC[LIFT_DROP]);;
let HAS_REAL_INTEGRAL_SUBSET_LE = prove
(`!f:real->real s t i j.
s SUBSET t /\ (f has_real_integral i) s /\ (f has_real_integral j) t /\
(!x. x IN t ==> &0 <= f x)
==> i <= j`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_REAL_INTEGRAL_LE THEN
MAP_EVERY EXISTS_TAC
[`\x:real. if x IN s then f(x) else &0`;
`\x:real. if x IN t then f(x) else &0`; `(:real)`] THEN
ASM_REWRITE_TAC[HAS_REAL_INTEGRAL_RESTRICT_UNIV; IN_UNIV] THEN
X_GEN_TAC `x:real` THEN
REPEAT(COND_CASES_TAC THEN ASM_SIMP_TAC[REAL_LE_REFL]) THEN
ASM SET_TAC[]);;
let REAL_INTEGRAL_SUBSET_LE = prove
(`!f:real->real s t.
s SUBSET t /\ f real_integrable_on s /\ f real_integrable_on t /\
(!x. x IN t ==> &0 <= f(x))
==> real_integral s f <= real_integral t f`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_REAL_INTEGRAL_SUBSET_LE THEN
ASM_MESON_TAC[REAL_INTEGRABLE_INTEGRAL]);;
let REAL_INTEGRABLE_ON_SUBINTERVAL = prove
(`!f:real->real s a b.
f real_integrable_on s /\ real_interval[a,b] SUBSET s
==> f real_integrable_on real_interval[a,b]`,
REWRITE_TAC[REAL_INTEGRABLE_ON; IMAGE_LIFT_REAL_INTERVAL] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC INTEGRABLE_ON_SUBINTERVAL THEN
EXISTS_TAC `IMAGE lift s` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL] THEN
ASM_SIMP_TAC[IMAGE_SUBSET]);;
let REAL_INTEGRABLE_ON_SUBINTERVAL_GEN = prove
(`!f s t. f real_integrable_on s /\ t SUBSET s /\ is_realinterval t
==> f real_integrable_on t`,
REWRITE_TAC[REAL_INTEGRABLE_ON; IS_REALINTERVAL_IS_INTERVAL] THEN
ONCE_REWRITE_TAC[GSYM SUBSET_LIFT_IMAGE] THEN
REWRITE_TAC[INTEGRABLE_ON_SUBINTERVAL_GEN]);;
let REAL_INTEGRABLE_STRADDLE = prove
(`!f s.
(!e. &0 < e
==> ?g h i j. (g has_real_integral i) s /\
(h has_real_integral j) s /\
abs(i - j) < e /\
!x. x IN s ==> g x <= f x /\ f x <= h x)
==> f real_integrable_on s`,
REWRITE_TAC[REAL_INTEGRABLE_ON; has_real_integral] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC INTEGRABLE_STRADDLE THEN
X_GEN_TAC `e:real` THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[EXISTS_DROP; FORALL_IN_IMAGE] THEN
SIMP_TAC[LEFT_IMP_EXISTS_THM; GSYM DROP_SUB; LIFT_DROP; GSYM ABS_DROP] THEN
MAP_EVERY X_GEN_TAC
[`g:real->real`; `h:real->real`; `i:real^1`; `j:real^1`] THEN
STRIP_TAC THEN MAP_EVERY EXISTS_TAC
[`lift o g o drop`; `lift o h o drop`; `i:real^1`; `j:real^1`] THEN
ASM_REWRITE_TAC[o_THM; LIFT_DROP]);;
let HAS_REAL_INTEGRAL_STRADDLE_NULL = prove
(`!f g s. (!x. x IN s ==> &0 <= f x /\ f x <= g x) /\
(g has_real_integral &0) s
==> (f has_real_integral &0) s`,
REPEAT STRIP_TAC THEN REWRITE_TAC[HAS_REAL_INTEGRAL_INTEGRABLE_INTEGRAL] THEN
MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL
[MATCH_MP_TAC REAL_INTEGRABLE_STRADDLE THEN
GEN_TAC THEN DISCH_TAC THEN
MAP_EVERY EXISTS_TAC
[`(\x. &0):real->real`; `g:real->real`;
`&0:real`; `&0:real`] THEN
ASM_REWRITE_TAC[HAS_REAL_INTEGRAL_0; REAL_SUB_REFL; REAL_ABS_NUM];
DISCH_TAC THEN REWRITE_TAC[GSYM REAL_LE_ANTISYM] THEN CONJ_TAC THENL
[MATCH_MP_TAC(ISPECL [`f:real->real`; `g:real->real`]
HAS_REAL_INTEGRAL_LE);
MATCH_MP_TAC(ISPECL [`(\x. &0):real->real`; `f:real->real`]
HAS_REAL_INTEGRAL_LE)] THEN
EXISTS_TAC `s:real->bool` THEN
ASM_SIMP_TAC[GSYM HAS_REAL_INTEGRAL_INTEGRAL; HAS_REAL_INTEGRAL_0]]);;
let HAS_REAL_INTEGRAL_UNION = prove
(`!f i j s t.
(f has_real_integral i) s /\ (f has_real_integral j) t /\
real_negligible(s INTER t)
==> (f has_real_integral (i + j)) (s UNION t)`,
REPEAT GEN_TAC THEN
REWRITE_TAC[has_real_integral; real_negligible; LIFT_ADD; IMAGE_UNION] THEN
DISCH_TAC THEN MATCH_MP_TAC HAS_INTEGRAL_UNION THEN POP_ASSUM MP_TAC THEN
REPEAT(MATCH_MP_TAC MONO_AND THEN CONJ_TAC) THEN REWRITE_TAC[] THEN
MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN SET_TAC[LIFT_DROP]);;
let HAS_REAL_INTEGRAL_UNIONS = prove
(`!f:real->real i t.
FINITE t /\
(!s. s IN t ==> (f has_real_integral (i s)) s) /\
(!s s'. s IN t /\ s' IN t /\ ~(s = s') ==> real_negligible(s INTER s'))
==> (f has_real_integral (sum t i)) (UNIONS t)`,
REPEAT GEN_TAC THEN
REWRITE_TAC[has_real_integral; real_negligible; LIFT_ADD; IMAGE_UNIONS] THEN
SIMP_TAC[LIFT_SUM] THEN DISCH_TAC THEN
MP_TAC(ISPECL [`lift o f o drop`; `\s. lift(i(IMAGE drop s))`;
`IMAGE (IMAGE lift) t`]
HAS_INTEGRAL_UNIONS) THEN
ASM_SIMP_TAC[FINITE_IMAGE; FORALL_IN_IMAGE; IMP_CONJ; RIGHT_FORALL_IMP_THM;
IMAGE_LIFT_DROP; GSYM IMAGE_o] THEN
ASM_SIMP_TAC[LIFT_EQ; SET_RULE
`(!x y. f x = f y <=> x = y)
==> (IMAGE f s = IMAGE f t <=> s = t) /\
(IMAGE f s INTER IMAGE f t = IMAGE f (s INTER t))`] THEN
MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN
W(MP_TAC o PART_MATCH (lhs o rand) VSUM_IMAGE o lhand o snd) THEN
ANTS_TAC THENL [ASM SET_TAC[LIFT_DROP]; ALL_TAC] THEN
DISCH_THEN SUBST1_TAC THEN
REWRITE_TAC[o_DEF; GSYM IMAGE_o; IMAGE_LIFT_DROP]);;
let REAL_MONOTONE_CONVERGENCE_INCREASING = prove
(`!f:num->real->real g s.
(!k. (f k) real_integrable_on s) /\
(!k x. x IN s ==> f k x <= f (SUC k) x) /\
(!x. x IN s ==> ((\k. f k x) ---> g x) sequentially) /\
real_bounded {real_integral s (f k) | k IN (:num)}
==> g real_integrable_on s /\
((\k. real_integral s (f k)) ---> real_integral s g) sequentially`,
REPEAT GEN_TAC THEN REWRITE_TAC[REAL_INTEGRABLE_ON; TENDSTO_REAL] THEN
REWRITE_TAC[o_DEF] THEN STRIP_TAC THEN
MP_TAC(ISPECL [`\n x. lift(f (n:num) (drop x))`;
`lift o g o drop`; `IMAGE lift s`]
MONOTONE_CONVERGENCE_INCREASING) THEN
ASM_REWRITE_TAC[FORALL_IN_IMAGE; LIFT_DROP; o_DEF] THEN
SUBGOAL_THEN
`!k:num. real_integral s (f k) =
drop(integral (IMAGE lift s) (lift o f k o drop))`
(fun th -> RULE_ASSUM_TAC(REWRITE_RULE[th]) THEN REWRITE_TAC[th])
THENL
[GEN_TAC THEN MATCH_MP_TAC REAL_INTEGRAL THEN
ASM_REWRITE_TAC[REAL_INTEGRABLE_ON; o_DEF];
ALL_TAC] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [real_bounded]) THEN
REWRITE_TAC[FORALL_IN_GSPEC; IN_UNIV; GSYM ABS_DROP] THEN
DISCH_THEN(X_CHOOSE_TAC `B:real`) THEN ANTS_TAC THENL
[REWRITE_TAC[bounded] THEN EXISTS_TAC `B:real` THEN
RULE_ASSUM_TAC(REWRITE_RULE[o_DEF]) THEN
ASM_REWRITE_TAC[FORALL_IN_GSPEC; IN_UNIV];
ALL_TAC] THEN
REWRITE_TAC[o_DEF; LIFT_DROP] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN
ONCE_REWRITE_TAC[GSYM DROP_EQ] THEN REWRITE_TAC[LIFT_DROP] THEN
CONV_TAC SYM_CONV THEN REWRITE_TAC[GSYM o_DEF] THEN
MATCH_MP_TAC REAL_INTEGRAL THEN ASM_REWRITE_TAC[REAL_INTEGRABLE_ON; o_DEF]);;
let REAL_MONOTONE_CONVERGENCE_DECREASING = prove
(`!f:num->real->real g s.
(!k. (f k) real_integrable_on s) /\
(!k x. x IN s ==> f (SUC k) x <= f k x) /\
(!x. x IN s ==> ((\k. f k x) ---> g x) sequentially) /\
real_bounded {real_integral s (f k) | k IN (:num)}
==> g real_integrable_on s /\
((\k. real_integral s (f k)) ---> real_integral s g) sequentially`,
REPEAT GEN_TAC THEN REWRITE_TAC[REAL_INTEGRABLE_ON; TENDSTO_REAL] THEN
REWRITE_TAC[o_DEF] THEN STRIP_TAC THEN
MP_TAC(ISPECL [`\n x. lift(f (n:num) (drop x))`;
`lift o g o drop`; `IMAGE lift s`]
MONOTONE_CONVERGENCE_DECREASING) THEN
ASM_REWRITE_TAC[FORALL_IN_IMAGE; LIFT_DROP; o_DEF] THEN
SUBGOAL_THEN
`!k:num. real_integral s (f k) =
drop(integral (IMAGE lift s) (lift o f k o drop))`
(fun th -> RULE_ASSUM_TAC(REWRITE_RULE[th]) THEN REWRITE_TAC[th])
THENL
[GEN_TAC THEN MATCH_MP_TAC REAL_INTEGRAL THEN
ASM_REWRITE_TAC[REAL_INTEGRABLE_ON; o_DEF];
ALL_TAC] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [real_bounded]) THEN
REWRITE_TAC[FORALL_IN_GSPEC; IN_UNIV; GSYM ABS_DROP] THEN
DISCH_THEN(X_CHOOSE_TAC `B:real`) THEN ANTS_TAC THENL
[REWRITE_TAC[bounded] THEN EXISTS_TAC `B:real` THEN
RULE_ASSUM_TAC(REWRITE_RULE[o_DEF]) THEN
ASM_REWRITE_TAC[FORALL_IN_GSPEC; IN_UNIV];
ALL_TAC] THEN
REWRITE_TAC[o_DEF; LIFT_DROP] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN
ONCE_REWRITE_TAC[GSYM DROP_EQ] THEN REWRITE_TAC[LIFT_DROP] THEN
CONV_TAC SYM_CONV THEN REWRITE_TAC[GSYM o_DEF] THEN
MATCH_MP_TAC REAL_INTEGRAL THEN ASM_REWRITE_TAC[REAL_INTEGRABLE_ON; o_DEF]);;
let REAL_BEPPO_LEVI_INCREASING = prove
(`!f s. (!k. (f k) real_integrable_on s) /\
(!k x. x IN s ==> f k x <= f (SUC k) x) /\
real_bounded {real_integral s (f k) | k IN (:num)}
==> ?g k. real_negligible k /\
!x. x IN (s DIFF k) ==> ((\k. f k x) ---> g x) sequentially`,
REPEAT GEN_TAC THEN REWRITE_TAC[REAL_INTEGRABLE_ON; TENDSTO_REAL] THEN
REWRITE_TAC[o_DEF] THEN STRIP_TAC THEN
MP_TAC(ISPECL [`\n x. lift(f (n:num) (drop x))`;
`IMAGE lift s`]
BEPPO_LEVI_INCREASING) THEN
ASM_REWRITE_TAC[FORALL_IN_IMAGE; LIFT_DROP; o_DEF] THEN
SUBGOAL_THEN
`!k:num. real_integral s (f k) =
drop(integral (IMAGE lift s) (lift o f k o drop))`
(fun th -> RULE_ASSUM_TAC(REWRITE_RULE[th]) THEN REWRITE_TAC[th])
THENL
[GEN_TAC THEN MATCH_MP_TAC REAL_INTEGRAL THEN
ASM_REWRITE_TAC[REAL_INTEGRABLE_ON; o_DEF];
ALL_TAC] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [real_bounded]) THEN
REWRITE_TAC[FORALL_IN_GSPEC; IN_UNIV; GSYM ABS_DROP] THEN
DISCH_THEN(X_CHOOSE_TAC `B:real`) THEN ANTS_TAC THENL
[REWRITE_TAC[bounded] THEN EXISTS_TAC `B:real` THEN
RULE_ASSUM_TAC(REWRITE_RULE[o_DEF]) THEN
ASM_REWRITE_TAC[FORALL_IN_GSPEC; IN_UNIV];
ALL_TAC] THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM; IN_DIFF; IMP_CONJ; FORALL_IN_IMAGE] THEN
MAP_EVERY X_GEN_TAC [`g:real^1->real^1`; `k:real^1->bool`] THEN
REWRITE_TAC[IMP_IMP; LIFT_DROP] THEN STRIP_TAC THEN
MAP_EVERY EXISTS_TAC [`drop o g o lift`; `IMAGE drop k`] THEN
ASM_REWRITE_TAC[real_negligible; GSYM IMAGE_o; IMAGE_LIFT_DROP] THEN
ASM_REWRITE_TAC[IN_IMAGE_LIFT_DROP; o_THM; LIFT_DROP]);;
let REAL_BEPPO_LEVI_DECREASING = prove
(`!f s. (!k. (f k) real_integrable_on s) /\
(!k x. x IN s ==> f (SUC k) x <= f k x) /\
real_bounded {real_integral s (f k) | k IN (:num)}
==> ?g k. real_negligible k /\
!x. x IN (s DIFF k) ==> ((\k. f k x) ---> g x) sequentially`,
REPEAT GEN_TAC THEN REWRITE_TAC[REAL_INTEGRABLE_ON; TENDSTO_REAL] THEN
REWRITE_TAC[o_DEF] THEN STRIP_TAC THEN
MP_TAC(ISPECL [`\n x. lift(f (n:num) (drop x))`;
`IMAGE lift s`]
BEPPO_LEVI_DECREASING) THEN
ASM_REWRITE_TAC[FORALL_IN_IMAGE; LIFT_DROP; o_DEF] THEN
SUBGOAL_THEN
`!k:num. real_integral s (f k) =
drop(integral (IMAGE lift s) (lift o f k o drop))`
(fun th -> RULE_ASSUM_TAC(REWRITE_RULE[th]) THEN REWRITE_TAC[th])
THENL
[GEN_TAC THEN MATCH_MP_TAC REAL_INTEGRAL THEN
ASM_REWRITE_TAC[REAL_INTEGRABLE_ON; o_DEF];
ALL_TAC] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [real_bounded]) THEN
REWRITE_TAC[FORALL_IN_GSPEC; IN_UNIV; GSYM ABS_DROP] THEN
DISCH_THEN(X_CHOOSE_TAC `B:real`) THEN ANTS_TAC THENL
[REWRITE_TAC[bounded] THEN EXISTS_TAC `B:real` THEN
RULE_ASSUM_TAC(REWRITE_RULE[o_DEF]) THEN
ASM_REWRITE_TAC[FORALL_IN_GSPEC; IN_UNIV];
ALL_TAC] THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM; IN_DIFF; IMP_CONJ; FORALL_IN_IMAGE] THEN
MAP_EVERY X_GEN_TAC [`g:real^1->real^1`; `k:real^1->bool`] THEN
REWRITE_TAC[IMP_IMP; LIFT_DROP] THEN STRIP_TAC THEN
MAP_EVERY EXISTS_TAC [`drop o g o lift`; `IMAGE drop k`] THEN
ASM_REWRITE_TAC[real_negligible; GSYM IMAGE_o; IMAGE_LIFT_DROP] THEN
ASM_REWRITE_TAC[IN_IMAGE_LIFT_DROP; o_THM; LIFT_DROP]);;
let REAL_BEPPO_LEVI_MONOTONE_CONVERGENCE_INCREASING = prove
(`!f s.
(!k. (f k) real_integrable_on s) /\
(!k x. x IN s ==> f k x <= f (SUC k) x) /\
real_bounded {real_integral s (f k) | k IN (:num)}
==> ?g k. real_negligible k /\
(!x. x IN (s DIFF k) ==> ((\k. f k x) ---> g x) sequentially) /\
g real_integrable_on s /\
((\k. real_integral s (f k)) ---> real_integral s g)
sequentially`,
REPEAT GEN_TAC THEN REWRITE_TAC[REAL_INTEGRABLE_ON; TENDSTO_REAL] THEN
REWRITE_TAC[o_DEF] THEN STRIP_TAC THEN
MP_TAC(ISPECL [`\n x. lift(f (n:num) (drop x))`;
`IMAGE lift s`]
BEPPO_LEVI_MONOTONE_CONVERGENCE_INCREASING) THEN
ASM_REWRITE_TAC[FORALL_IN_IMAGE; LIFT_DROP; o_DEF] THEN
SUBGOAL_THEN
`!k:num. real_integral s (f k) =
drop(integral (IMAGE lift s) (lift o f k o drop))`
(fun th -> RULE_ASSUM_TAC(REWRITE_RULE[th]) THEN REWRITE_TAC[th])
THENL
[GEN_TAC THEN MATCH_MP_TAC REAL_INTEGRAL THEN
ASM_REWRITE_TAC[REAL_INTEGRABLE_ON; o_DEF];
ALL_TAC] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [real_bounded]) THEN
REWRITE_TAC[FORALL_IN_GSPEC; IN_UNIV; GSYM ABS_DROP] THEN
DISCH_THEN(X_CHOOSE_TAC `B:real`) THEN ANTS_TAC THENL
[REWRITE_TAC[bounded] THEN EXISTS_TAC `B:real` THEN
RULE_ASSUM_TAC(REWRITE_RULE[o_DEF]) THEN
ASM_REWRITE_TAC[FORALL_IN_GSPEC; IN_UNIV];
ALL_TAC] THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM; IN_DIFF; IMP_CONJ; FORALL_IN_IMAGE] THEN
MAP_EVERY X_GEN_TAC [`g:real^1->real^1`; `k:real^1->bool`] THEN
REWRITE_TAC[IMP_IMP; LIFT_DROP] THEN STRIP_TAC THEN
MAP_EVERY EXISTS_TAC [`drop o g o lift`; `IMAGE drop k`] THEN
ASM_REWRITE_TAC[real_negligible; GSYM IMAGE_o; IMAGE_LIFT_DROP] THEN
ASM_REWRITE_TAC[IN_IMAGE_LIFT_DROP; o_THM; LIFT_DROP; ETA_AX] THEN
SUBGOAL_THEN
`real_integral s (drop o g o lift) =
drop(integral (IMAGE lift s) (lift o (drop o g o lift) o drop))`
SUBST1_TAC THENL
[MATCH_MP_TAC REAL_INTEGRAL THEN
ASM_REWRITE_TAC[REAL_INTEGRABLE_ON; o_DEF; LIFT_DROP; ETA_AX];
ASM_REWRITE_TAC[o_DEF; LIFT_DROP; ETA_AX]]);;
let REAL_BEPPO_LEVI_MONOTONE_CONVERGENCE_DECREASING = prove
(`!f s.
(!k. (f k) real_integrable_on s) /\
(!k x. x IN s ==> f (SUC k) x <= f k x) /\
real_bounded {real_integral s (f k) | k IN (:num)}
==> ?g k. real_negligible k /\
(!x. x IN (s DIFF k) ==> ((\k. f k x) ---> g x) sequentially) /\
g real_integrable_on s /\
((\k. real_integral s (f k)) ---> real_integral s g)
sequentially`,
REPEAT GEN_TAC THEN REWRITE_TAC[REAL_INTEGRABLE_ON; TENDSTO_REAL] THEN
REWRITE_TAC[o_DEF] THEN STRIP_TAC THEN
MP_TAC(ISPECL [`\n x. lift(f (n:num) (drop x))`;
`IMAGE lift s`]
BEPPO_LEVI_MONOTONE_CONVERGENCE_DECREASING) THEN
ASM_REWRITE_TAC[FORALL_IN_IMAGE; LIFT_DROP; o_DEF] THEN
SUBGOAL_THEN
`!k:num. real_integral s (f k) =
drop(integral (IMAGE lift s) (lift o f k o drop))`
(fun th -> RULE_ASSUM_TAC(REWRITE_RULE[th]) THEN REWRITE_TAC[th])
THENL
[GEN_TAC THEN MATCH_MP_TAC REAL_INTEGRAL THEN
ASM_REWRITE_TAC[REAL_INTEGRABLE_ON; o_DEF];
ALL_TAC] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [real_bounded]) THEN
REWRITE_TAC[FORALL_IN_GSPEC; IN_UNIV; GSYM ABS_DROP] THEN
DISCH_THEN(X_CHOOSE_TAC `B:real`) THEN ANTS_TAC THENL
[REWRITE_TAC[bounded] THEN EXISTS_TAC `B:real` THEN
RULE_ASSUM_TAC(REWRITE_RULE[o_DEF]) THEN
ASM_REWRITE_TAC[FORALL_IN_GSPEC; IN_UNIV];
ALL_TAC] THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM; IN_DIFF; IMP_CONJ; FORALL_IN_IMAGE] THEN
MAP_EVERY X_GEN_TAC [`g:real^1->real^1`; `k:real^1->bool`] THEN
REWRITE_TAC[IMP_IMP; LIFT_DROP] THEN STRIP_TAC THEN
MAP_EVERY EXISTS_TAC [`drop o g o lift`; `IMAGE drop k`] THEN
ASM_REWRITE_TAC[real_negligible; GSYM IMAGE_o; IMAGE_LIFT_DROP] THEN
ASM_REWRITE_TAC[IN_IMAGE_LIFT_DROP; o_THM; LIFT_DROP; ETA_AX] THEN
SUBGOAL_THEN
`real_integral s (drop o g o lift) =
drop(integral (IMAGE lift s) (lift o (drop o g o lift) o drop))`
SUBST1_TAC THENL
[MATCH_MP_TAC REAL_INTEGRAL THEN
ASM_REWRITE_TAC[REAL_INTEGRABLE_ON; o_DEF; LIFT_DROP; ETA_AX];
ASM_REWRITE_TAC[o_DEF; LIFT_DROP; ETA_AX]]);;
let REAL_INTEGRAL_ABS_BOUND_INTEGRAL = prove
(`!f:real->real g s.
f real_integrable_on s /\ g real_integrable_on s /\
(!x. x IN s ==> abs(f x) <= g x)
==> abs(real_integral s f) <= real_integral s g`,
SIMP_TAC[REAL_INTEGRAL; GSYM ABS_DROP] THEN
SIMP_TAC[REAL_INTEGRABLE_ON; INTEGRAL_NORM_BOUND_INTEGRAL] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC INTEGRAL_NORM_BOUND_INTEGRAL THEN
ASM_SIMP_TAC[FORALL_IN_IMAGE; o_THM; LIFT_DROP; NORM_LIFT]);;
let ABSOLUTELY_REAL_INTEGRABLE_LE = prove
(`!f:real->real s.
f absolutely_real_integrable_on s
==> abs(real_integral s f) <= real_integral s (\x. abs(f x))`,
SIMP_TAC[absolutely_real_integrable_on] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_INTEGRAL_ABS_BOUND_INTEGRAL THEN
ASM_REWRITE_TAC[REAL_LE_REFL]);;
let ABSOLUTELY_REAL_INTEGRABLE_0 = prove
(`!s. (\x. &0) absolutely_real_integrable_on s`,
REWRITE_TAC[absolutely_real_integrable_on; REAL_ABS_NUM;
REAL_INTEGRABLE_0]);;
let ABSOLUTELY_REAL_INTEGRABLE_CONST = prove
(`!a b c. (\x. c) absolutely_real_integrable_on real_interval[a,b]`,
REWRITE_TAC[absolutely_real_integrable_on; REAL_INTEGRABLE_CONST]);;
let ABSOLUTELY_REAL_INTEGRABLE_LMUL = prove
(`!f s c. f absolutely_real_integrable_on s
==> (\x. c * f(x)) absolutely_real_integrable_on s`,
SIMP_TAC[absolutely_real_integrable_on;
REAL_INTEGRABLE_LMUL; REAL_ABS_MUL]);;
let ABSOLUTELY_REAL_INTEGRABLE_RMUL = prove
(`!f s c. f absolutely_real_integrable_on s
==> (\x. f(x) * c) absolutely_real_integrable_on s`,
SIMP_TAC[absolutely_real_integrable_on;
REAL_INTEGRABLE_RMUL; REAL_ABS_MUL]);;
let ABSOLUTELY_REAL_INTEGRABLE_NEG = prove
(`!f s. f absolutely_real_integrable_on s
==> (\x. --f(x)) absolutely_real_integrable_on s`,
SIMP_TAC[absolutely_real_integrable_on; REAL_INTEGRABLE_NEG; REAL_ABS_NEG]);;
let ABSOLUTELY_REAL_INTEGRABLE_ABS = prove
(`!f s. f absolutely_real_integrable_on s
==> (\x. abs(f x)) absolutely_real_integrable_on s`,
SIMP_TAC[absolutely_real_integrable_on; REAL_ABS_ABS]);;
let ABSOLUTELY_REAL_INTEGRABLE_ON_SUBINTERVAL = prove
(`!f:real->real s a b.
f absolutely_real_integrable_on s /\ real_interval[a,b] SUBSET s
==> f absolutely_real_integrable_on real_interval[a,b]`,
REWRITE_TAC[absolutely_real_integrable_on] THEN
MESON_TAC[REAL_INTEGRABLE_ON_SUBINTERVAL]);;
let ABSOLUTELY_REAL_INTEGRABLE_RESTRICT_UNIV = prove
(`!f s. (\x. if x IN s then f x else &0)
absolutely_real_integrable_on (:real) <=>
f absolutely_real_integrable_on s`,
REWRITE_TAC[absolutely_real_integrable_on; REAL_INTEGRABLE_RESTRICT_UNIV;
COND_RAND; REAL_ABS_NUM]);;
let ABSOLUTELY_REAL_INTEGRABLE_ADD = prove
(`!f:real->real g s.
f absolutely_real_integrable_on s /\
g absolutely_real_integrable_on s
==> (\x. f(x) + g(x)) absolutely_real_integrable_on s`,
REWRITE_TAC[ABSOLUTELY_REAL_INTEGRABLE_ON] THEN
SIMP_TAC[o_DEF; LIFT_ADD; ABSOLUTELY_INTEGRABLE_ADD]);;
let ABSOLUTELY_REAL_INTEGRABLE_SUB = prove
(`!f:real->real g s.
f absolutely_real_integrable_on s /\
g absolutely_real_integrable_on s
==> (\x. f(x) - g(x)) absolutely_real_integrable_on s`,
REWRITE_TAC[ABSOLUTELY_REAL_INTEGRABLE_ON] THEN
SIMP_TAC[o_DEF; LIFT_SUB; ABSOLUTELY_INTEGRABLE_SUB]);;
let ABSOLUTELY_REAL_INTEGRABLE_LINEAR = prove
(`!f h s.
f absolutely_real_integrable_on s /\ linear(lift o h o drop)
==> (h o f) absolutely_real_integrable_on s`,
REPEAT GEN_TAC THEN REWRITE_TAC[ABSOLUTELY_REAL_INTEGRABLE_ON] THEN
DISCH_THEN(MP_TAC o MATCH_MP ABSOLUTELY_INTEGRABLE_LINEAR) THEN
REWRITE_TAC[o_DEF; LIFT_DROP]);;
let ABSOLUTELY_REAL_INTEGRABLE_SUM = prove
(`!f:A->real->real s t.
FINITE t /\
(!a. a IN t ==> (f a) absolutely_real_integrable_on s)
==> (\x. sum t (\a. f a x)) absolutely_real_integrable_on s`,
GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[SUM_CLAUSES; ABSOLUTELY_REAL_INTEGRABLE_0; IN_INSERT;
ABSOLUTELY_REAL_INTEGRABLE_ADD; ETA_AX]);;
let ABSOLUTELY_REAL_INTEGRABLE_MAX = prove
(`!f:real->real g:real->real s.
f absolutely_real_integrable_on s /\ g absolutely_real_integrable_on s
==> (\x. max (f x) (g x))
absolutely_real_integrable_on s`,
REPEAT STRIP_TAC THEN
REWRITE_TAC[REAL_ARITH `max a b = &1 / &2 * ((a + b) + abs(a - b))`] THEN
MATCH_MP_TAC ABSOLUTELY_REAL_INTEGRABLE_LMUL THEN
ASM_SIMP_TAC[ABSOLUTELY_REAL_INTEGRABLE_SUB; ABSOLUTELY_REAL_INTEGRABLE_ADD;
ABSOLUTELY_REAL_INTEGRABLE_ABS]);;
let ABSOLUTELY_REAL_INTEGRABLE_MIN = prove
(`!f:real->real g:real->real s.
f absolutely_real_integrable_on s /\ g absolutely_real_integrable_on s
==> (\x. min (f x) (g x))
absolutely_real_integrable_on s`,
REPEAT STRIP_TAC THEN
REWRITE_TAC[REAL_ARITH `min a b = &1 / &2 * ((a + b) - abs(a - b))`] THEN
MATCH_MP_TAC ABSOLUTELY_REAL_INTEGRABLE_LMUL THEN
ASM_SIMP_TAC[ABSOLUTELY_REAL_INTEGRABLE_SUB; ABSOLUTELY_REAL_INTEGRABLE_ADD;
ABSOLUTELY_REAL_INTEGRABLE_ABS]);;
let ABSOLUTELY_REAL_INTEGRABLE_IMP_INTEGRABLE = prove
(`!f s. f absolutely_real_integrable_on s ==> f real_integrable_on s`,
SIMP_TAC[absolutely_real_integrable_on]);;
let ABSOLUTELY_REAL_INTEGRABLE_CONTINUOUS = prove
(`!f a b.
f real_continuous_on real_interval[a,b]
==> f absolutely_real_integrable_on real_interval[a,b]`,
REWRITE_TAC[REAL_CONTINUOUS_ON; ABSOLUTELY_REAL_INTEGRABLE_ON;
has_real_integral;
GSYM integrable_on; GSYM EXISTS_LIFT] THEN
REWRITE_TAC[IMAGE_LIFT_REAL_INTERVAL; ABSOLUTELY_INTEGRABLE_CONTINUOUS]);;
let NONNEGATIVE_ABSOLUTELY_REAL_INTEGRABLE = prove
(`!f s.
(!x. x IN s ==> &0 <= f(x)) /\
f real_integrable_on s
==> f absolutely_real_integrable_on s`,
SIMP_TAC[absolutely_real_integrable_on] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_INTEGRABLE_EQ THEN
EXISTS_TAC `f:real->real` THEN ASM_SIMP_TAC[real_abs]);;
let ABSOLUTELY_REAL_INTEGRABLE_INTEGRABLE_BOUND = prove
(`!f:real->real g s.
(!x. x IN s ==> abs(f x) <= g x) /\
f real_integrable_on s /\ g real_integrable_on s
==> f absolutely_real_integrable_on s`,
REWRITE_TAC[REAL_INTEGRABLE_ON; ABSOLUTELY_REAL_INTEGRABLE_ON] THEN
REPEAT STRIP_TAC THEN
MATCH_MP_TAC ABSOLUTELY_INTEGRABLE_INTEGRABLE_BOUND THEN
EXISTS_TAC `lift o g o drop` THEN ASM_REWRITE_TAC[FORALL_IN_IMAGE] THEN
ASM_REWRITE_TAC[o_DEF; LIFT_DROP; NORM_LIFT]);;
let ABSOLUTELY_REAL_INTEGRABLE_ABSOLUTELY_REAL_INTEGRABLE_BOUND = prove
(`!f:real->real g:real->real s.
(!x. x IN s ==> abs(f x) <= abs(g x)) /\
f real_integrable_on s /\ g absolutely_real_integrable_on s
==> f absolutely_real_integrable_on s`,
REPEAT STRIP_TAC THEN
MATCH_MP_TAC ABSOLUTELY_REAL_INTEGRABLE_INTEGRABLE_BOUND THEN
EXISTS_TAC `\x:real. abs(g x)` THEN ASM_REWRITE_TAC[] THEN
RULE_ASSUM_TAC(REWRITE_RULE[absolutely_real_integrable_on]) THEN
ASM_REWRITE_TAC[]);;
let ABSOLUTELY_REAL_INTEGRABLE_ABSOLUTELY_REAL_INTEGRABLE_UBOUND = prove
(`!f:real->real g:real->real s.
(!x. x IN s ==> f x <= g x) /\
f real_integrable_on s /\ g absolutely_real_integrable_on s
==> g absolutely_real_integrable_on s`,
REWRITE_TAC[ABSOLUTELY_REAL_INTEGRABLE_ON; REAL_INTEGRABLE_ON] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC
ABSOLUTELY_INTEGRABLE_ABSOLUTELY_INTEGRABLE_COMPONENT_UBOUND THEN
EXISTS_TAC `lift o g o drop` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN
ASM_REWRITE_TAC[IMP_IMP; DIMINDEX_1; FORALL_1; o_THM; LIFT_DROP;
GSYM drop]);;
let ABSOLUTELY_REAL_INTEGRABLE_ABSOLUTELY_REAL_INTEGRABLE_LBOUND = prove
(`!f:real->real g:real->real s.
(!x. x IN s ==> f x <= g x) /\
f absolutely_real_integrable_on s /\ g real_integrable_on s
==> g absolutely_real_integrable_on s`,
REWRITE_TAC[ABSOLUTELY_REAL_INTEGRABLE_ON; REAL_INTEGRABLE_ON] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC
ABSOLUTELY_INTEGRABLE_ABSOLUTELY_INTEGRABLE_COMPONENT_LBOUND THEN
EXISTS_TAC `lift o f o drop` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN
ASM_REWRITE_TAC[IMP_IMP; DIMINDEX_1; FORALL_1; o_THM; LIFT_DROP;
GSYM drop]);;
let ABSOLUTELY_REAL_INTEGRABLE_INF = prove
(`!fs s:real->bool k:A->bool.
FINITE k /\ ~(k = {}) /\
(!i. i IN k ==> (\x. fs x i) absolutely_real_integrable_on s)
==> (\x. inf (IMAGE (fs x) k)) absolutely_real_integrable_on s`,
GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[IMAGE_CLAUSES] THEN
SIMP_TAC[INF_INSERT_FINITE; FINITE_IMAGE; IMAGE_EQ_EMPTY] THEN
MAP_EVERY X_GEN_TAC [`a:A`; `k:A->bool`] THEN
ASM_CASES_TAC `k:A->bool = {}` THEN ASM_REWRITE_TAC[] THEN
SIMP_TAC[IN_SING; LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN
REWRITE_TAC[IMP_IMP; GSYM CONJ_ASSOC] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC ABSOLUTELY_REAL_INTEGRABLE_MIN THEN
CONJ_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[IN_INSERT] THEN
REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[IN_INSERT]);;
let ABSOLUTELY_REAL_INTEGRABLE_SUP = prove
(`!fs s:real->bool k:A->bool.
FINITE k /\ ~(k = {}) /\
(!i. i IN k ==> (\x. fs x i) absolutely_real_integrable_on s)
==> (\x. sup (IMAGE (fs x) k)) absolutely_real_integrable_on s`,
GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[IMAGE_CLAUSES] THEN
SIMP_TAC[SUP_INSERT_FINITE; FINITE_IMAGE; IMAGE_EQ_EMPTY] THEN
MAP_EVERY X_GEN_TAC [`a:A`; `k:A->bool`] THEN
ASM_CASES_TAC `k:A->bool = {}` THEN ASM_REWRITE_TAC[] THEN
SIMP_TAC[IN_SING; LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN
REWRITE_TAC[IMP_IMP; GSYM CONJ_ASSOC] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC ABSOLUTELY_REAL_INTEGRABLE_MAX THEN
CONJ_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[IN_INSERT] THEN
REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[IN_INSERT]);;
let REAL_DOMINATED_CONVERGENCE = prove
(`!f:num->real->real g h s.
(!k. (f k) real_integrable_on s) /\ h real_integrable_on s /\
(!k x. x IN s ==> abs(f k x) <= h x) /\
(!x. x IN s ==> ((\k. f k x) ---> g x) sequentially)
==> g real_integrable_on s /\
((\k. real_integral s (f k)) ---> real_integral s g) sequentially`,
REPEAT GEN_TAC THEN REWRITE_TAC[REAL_INTEGRABLE_ON; TENDSTO_REAL] THEN
REWRITE_TAC[o_DEF] THEN STRIP_TAC THEN
MP_TAC(ISPECL [`\n x. lift(f (n:num) (drop x))`;
`lift o g o drop`; `lift o h o drop`; `IMAGE lift s`]
DOMINATED_CONVERGENCE) THEN
ASM_REWRITE_TAC[FORALL_IN_IMAGE; LIFT_DROP; o_DEF; NORM_LIFT] THEN
SUBGOAL_THEN
`!k:num. real_integral s (f k) =
drop(integral (IMAGE lift s) (lift o f k o drop))`
(fun th -> RULE_ASSUM_TAC(REWRITE_RULE[th]) THEN REWRITE_TAC[th])
THENL
[GEN_TAC THEN MATCH_MP_TAC REAL_INTEGRAL THEN
ASM_REWRITE_TAC[REAL_INTEGRABLE_ON; o_DEF];
ALL_TAC] THEN
REWRITE_TAC[o_DEF; LIFT_DROP] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN
ONCE_REWRITE_TAC[GSYM DROP_EQ] THEN REWRITE_TAC[LIFT_DROP] THEN
CONV_TAC SYM_CONV THEN REWRITE_TAC[GSYM o_DEF] THEN
MATCH_MP_TAC REAL_INTEGRAL THEN ASM_REWRITE_TAC[REAL_INTEGRABLE_ON; o_DEF]);;
let HAS_REAL_MEASURE_HAS_MEASURE = prove
(`!s m. s has_real_measure m <=> (IMAGE lift s) has_measure m`,
REWRITE_TAC[has_real_measure; has_measure; has_real_integral] THEN
REWRITE_TAC[o_DEF; LIFT_NUM]);;
let REAL_MEASURABLE_MEASURABLE = prove
(`!s. real_measurable s <=> measurable(IMAGE lift s)`,
REWRITE_TAC[real_measurable; measurable; HAS_REAL_MEASURE_HAS_MEASURE]);;
let REAL_MEASURE_MEASURE = prove
(`!s. real_measure s = measure (IMAGE lift s)`,
REWRITE_TAC[real_measure; measure; HAS_REAL_MEASURE_HAS_MEASURE]);;
let HAS_REAL_MEASURE_MEASURE = prove
(`!s. real_measurable s <=> s has_real_measure (real_measure s)`,
REWRITE_TAC[real_measure; real_measurable] THEN MESON_TAC[]);;
let HAS_REAL_MEASURE_UNIQUE = prove
(`!s m1 m2. s has_real_measure m1 /\ s has_real_measure m2 ==> m1 = m2`,
REWRITE_TAC[has_real_measure] THEN MESON_TAC[HAS_REAL_INTEGRAL_UNIQUE]);;
let REAL_MEASURE_UNIQUE = prove
(`!s m. s has_real_measure m ==> real_measure s = m`,
MESON_TAC[HAS_REAL_MEASURE_UNIQUE; HAS_REAL_MEASURE_MEASURE;
real_measurable]);;
let HAS_REAL_MEASURE_REAL_MEASURABLE_REAL_MEASURE = prove
(`!s m. s has_real_measure m <=> real_measurable s /\ real_measure s = m`,
REWRITE_TAC[HAS_REAL_MEASURE_MEASURE] THEN MESON_TAC[REAL_MEASURE_UNIQUE]);;
let HAS_REAL_MEASURE_IMP_REAL_MEASURABLE = prove
(`!s m. s has_real_measure m ==> real_measurable s`,
REWRITE_TAC[real_measurable] THEN MESON_TAC[]);;
let HAS_REAL_MEASURE = prove
(`!s m. s has_real_measure m <=>
((\x. if x IN s then &1 else &0) has_real_integral m) (:real)`,
SIMP_TAC[HAS_REAL_INTEGRAL_RESTRICT_UNIV; has_real_measure]);;
let REAL_MEASURABLE = prove
(`!s. real_measurable s <=> (\x. &1) real_integrable_on s`,
REWRITE_TAC[real_measurable; real_integrable_on;
has_real_measure; EXISTS_DROP; LIFT_DROP]);;
let REAL_MEASURABLE_REAL_INTEGRABLE = prove
(`real_measurable s <=>
(\x. if x IN s then &1 else &0) real_integrable_on UNIV`,
REWRITE_TAC[real_measurable; real_integrable_on; HAS_REAL_MEASURE]);;
let REAL_MEASURE_REAL_INTEGRAL = prove
(`!s. real_measurable s ==> real_measure s = real_integral s (\x. &1)`,
REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN
MATCH_MP_TAC REAL_INTEGRAL_UNIQUE THEN
ASM_REWRITE_TAC[GSYM has_real_measure; GSYM HAS_REAL_MEASURE_MEASURE]);;
let REAL_MEASURE_REAL_INTEGRAL_UNIV = prove
(`!s. real_measurable s
==> real_measure s =
real_integral UNIV (\x. if x IN s then &1 else &0)`,
REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN
MATCH_MP_TAC REAL_INTEGRAL_UNIQUE THEN
ASM_REWRITE_TAC[GSYM HAS_REAL_MEASURE; GSYM HAS_REAL_MEASURE_MEASURE]);;
let REAL_INTEGRAL_REAL_MEASURE = prove
(`!s. real_measurable s ==> real_integral s (\x. &1) = real_measure s`,
SIMP_TAC[GSYM DROP_EQ; LIFT_DROP; REAL_MEASURE_REAL_INTEGRAL]);;
let REAL_INTEGRAL_REAL_MEASURE_UNIV = prove
(`!s. real_measurable s
==> real_integral UNIV (\x. if x IN s then &1 else &0) =
real_measure s`,
SIMP_TAC[REAL_MEASURE_REAL_INTEGRAL_UNIV]);;
let HAS_REAL_MEASURE_REAL_INTERVAL = prove
(`(!a b. real_interval[a,b] has_real_measure (max (b - a) (&0))) /\
(!a b. real_interval(a,b) has_real_measure (max (b - a) (&0)))`,
REWRITE_TAC[HAS_REAL_MEASURE_HAS_MEASURE; IMAGE_LIFT_REAL_INTERVAL] THEN
REWRITE_TAC[HAS_MEASURE_MEASURABLE_MEASURE; MEASURABLE_INTERVAL;
MEASURE_INTERVAL] THEN
REWRITE_TAC[CONTENT_CLOSED_INTERVAL_CASES; DIMINDEX_1; FORALL_1] THEN
REWRITE_TAC[PRODUCT_1; GSYM drop; LIFT_DROP] THEN REAL_ARITH_TAC);;
let REAL_MEASURABLE_REAL_INTERVAL = prove
(`(!a b. real_measurable (real_interval[a,b])) /\
(!a b. real_measurable (real_interval(a,b)))`,
REWRITE_TAC[real_measurable] THEN
MESON_TAC[HAS_REAL_MEASURE_REAL_INTERVAL]);;
let REAL_MEASURE_REAL_INTERVAL = prove
(`(!a b. real_measure(real_interval[a,b]) = max (b - a) (&0)) /\
(!a b. real_measure(real_interval(a,b)) = max (b - a) (&0))`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_MEASURE_UNIQUE THEN
REWRITE_TAC[HAS_REAL_MEASURE_REAL_INTERVAL]);;
let REAL_MEASURABLE_INTER = prove
(`!s t. real_measurable s /\ real_measurable t
==> real_measurable (s INTER t)`,
REPEAT GEN_TAC THEN REWRITE_TAC[REAL_MEASURABLE_MEASURABLE] THEN
DISCH_THEN(MP_TAC o MATCH_MP MEASURABLE_INTER) THEN
MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN SET_TAC[LIFT_DROP]);;
let REAL_MEASURABLE_UNION = prove
(`!s t. real_measurable s /\ real_measurable t
==> real_measurable (s UNION t)`,
REPEAT GEN_TAC THEN REWRITE_TAC[REAL_MEASURABLE_MEASURABLE] THEN
DISCH_THEN(MP_TAC o MATCH_MP MEASURABLE_UNION) THEN
MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN SET_TAC[LIFT_DROP]);;
let HAS_REAL_MEASURE_DISJOINT_UNION = prove
(`!s1 s2 m1 m2. s1 has_real_measure m1 /\ s2 has_real_measure m2 /\
DISJOINT s1 s2
==> (s1 UNION s2) has_real_measure (m1 + m2)`,
REPEAT GEN_TAC THEN
REWRITE_TAC[HAS_REAL_MEASURE_HAS_MEASURE; IMAGE_UNION] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_MEASURE_DISJOINT_UNION THEN
ASM SET_TAC[LIFT_DROP]);;
let REAL_MEASURE_DISJOINT_UNION = prove
(`!s t. real_measurable s /\ real_measurable t /\ DISJOINT s t
==> real_measure(s UNION t) = real_measure s + real_measure t`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_MEASURE_UNIQUE THEN
ASM_SIMP_TAC[HAS_REAL_MEASURE_DISJOINT_UNION;
GSYM HAS_REAL_MEASURE_MEASURE]);;
let HAS_REAL_MEASURE_POS_LE = prove
(`!m s. s has_real_measure m ==> &0 <= m`,
REWRITE_TAC[HAS_REAL_MEASURE_HAS_MEASURE; HAS_MEASURE_POS_LE]);;
let REAL_MEASURE_POS_LE = prove
(`!s. real_measurable s ==> &0 <= real_measure s`,
REWRITE_TAC[HAS_REAL_MEASURE_MEASURE; HAS_REAL_MEASURE_POS_LE]);;
let HAS_REAL_MEASURE_SUBSET = prove
(`!s1 s2 m1 m2.
s1 has_real_measure m1 /\ s2 has_real_measure m2 /\ s1 SUBSET s2
==> m1 <= m2`,
REWRITE_TAC[HAS_REAL_MEASURE_HAS_MEASURE] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC(ISPECL [`IMAGE lift s1`; `IMAGE lift s2`]
HAS_MEASURE_SUBSET) THEN
ASM SET_TAC[HAS_MEASURE_SUBSET]);;
let REAL_MEASURE_SUBSET = prove
(`!s t. real_measurable s /\ real_measurable t /\ s SUBSET t
==> real_measure s <= real_measure t`,
REWRITE_TAC[HAS_REAL_MEASURE_MEASURE] THEN
MESON_TAC[HAS_REAL_MEASURE_SUBSET]);;
let HAS_REAL_MEASURE_0 = prove
(`!s. s has_real_measure &0 <=> real_negligible s`,
REWRITE_TAC[real_negligible; HAS_REAL_MEASURE_HAS_MEASURE] THEN
REWRITE_TAC[HAS_MEASURE_0]);;
let REAL_MEASURE_EQ_0 = prove
(`!s. real_negligible s ==> real_measure s = &0`,
MESON_TAC[REAL_MEASURE_UNIQUE; HAS_REAL_MEASURE_0]);;
let HAS_REAL_MEASURE_EMPTY = prove
(`{} has_real_measure &0`,
REWRITE_TAC[HAS_REAL_MEASURE_0; REAL_NEGLIGIBLE_EMPTY]);;
let REAL_MEASURE_EMPTY = prove
(`real_measure {} = &0`,
SIMP_TAC[REAL_MEASURE_EQ_0; REAL_NEGLIGIBLE_EMPTY]);;
let REAL_MEASURABLE_EMPTY = prove
(`real_measurable {}`,
REWRITE_TAC[real_measurable] THEN MESON_TAC[HAS_REAL_MEASURE_EMPTY]);;
let REAL_MEASURABLE_REAL_MEASURE_EQ_0 = prove
(`!s. real_measurable s ==> (real_measure s = &0 <=> real_negligible s)`,
REWRITE_TAC[HAS_REAL_MEASURE_MEASURE; GSYM HAS_REAL_MEASURE_0] THEN
MESON_TAC[REAL_MEASURE_UNIQUE]);;
let REAL_MEASURABLE_REAL_MEASURE_POS_LT = prove
(`!s. real_measurable s ==> (&0 < real_measure s <=> ~real_negligible s)`,
SIMP_TAC[REAL_LT_LE; REAL_MEASURE_POS_LE;
GSYM REAL_MEASURABLE_REAL_MEASURE_EQ_0] THEN
REWRITE_TAC[EQ_SYM_EQ]);;
let REAL_NEGLIGIBLE_REAL_INTERVAL = prove
(`(!a b. real_negligible(real_interval[a,b]) <=> real_interval(a,b) = {}) /\
(!a b. real_negligible(real_interval(a,b)) <=> real_interval(a,b) = {})`,
REWRITE_TAC[real_negligible; IMAGE_LIFT_REAL_INTERVAL] THEN
REWRITE_TAC[NEGLIGIBLE_INTERVAL] THEN
REWRITE_TAC[REAL_INTERVAL_EQ_EMPTY; INTERVAL_EQ_EMPTY_1; LIFT_DROP]);;
let REAL_MEASURABLE_UNIONS = prove
(`!f. FINITE f /\ (!s. s IN f ==> real_measurable s)
==> real_measurable (UNIONS f)`,
REWRITE_TAC[REAL_MEASURABLE_MEASURABLE; IMAGE_UNIONS] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC MEASURABLE_UNIONS THEN
ASM_SIMP_TAC[FINITE_IMAGE; FORALL_IN_IMAGE]);;
let HAS_REAL_MEASURE_DIFF_SUBSET = prove
(`!s1 s2 m1 m2.
s1 has_real_measure m1 /\ s2 has_real_measure m2 /\ s2 SUBSET s1
==> (s1 DIFF s2) has_real_measure (m1 - m2)`,
REWRITE_TAC[HAS_REAL_MEASURE_HAS_MEASURE] THEN REPEAT STRIP_TAC THEN
SIMP_TAC[IMAGE_DIFF_INJ; LIFT_EQ] THEN
MATCH_MP_TAC HAS_MEASURE_DIFF_SUBSET THEN
ASM_SIMP_TAC[IMAGE_SUBSET]);;
let REAL_MEASURABLE_DIFF = prove
(`!s t. real_measurable s /\ real_measurable t
==> real_measurable (s DIFF t)`,
SIMP_TAC[REAL_MEASURABLE_MEASURABLE; IMAGE_DIFF_INJ; LIFT_EQ] THEN
REWRITE_TAC[MEASURABLE_DIFF]);;
let REAL_MEASURE_DIFF_SUBSET = prove
(`!s t. real_measurable s /\ real_measurable t /\ t SUBSET s
==> real_measure(s DIFF t) = real_measure s - real_measure t`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_MEASURE_UNIQUE THEN
ASM_SIMP_TAC[HAS_REAL_MEASURE_DIFF_SUBSET; GSYM HAS_REAL_MEASURE_MEASURE]);;
let HAS_REAL_MEASURE_UNION_REAL_NEGLIGIBLE = prove
(`!s t m.
s has_real_measure m /\ real_negligible t
==> (s UNION t) has_real_measure m`,
REWRITE_TAC[HAS_REAL_MEASURE_HAS_MEASURE; real_negligible; IMAGE_UNION] THEN
REWRITE_TAC[HAS_MEASURE_UNION_NEGLIGIBLE]);;
let HAS_REAL_MEASURE_DIFF_REAL_NEGLIGIBLE = prove
(`!s t m.
s has_real_measure m /\ real_negligible t
==> (s DIFF t) has_real_measure m`,
REWRITE_TAC[HAS_REAL_MEASURE_HAS_MEASURE; real_negligible] THEN
SIMP_TAC[IMAGE_DIFF_INJ; LIFT_EQ] THEN
REWRITE_TAC[HAS_MEASURE_DIFF_NEGLIGIBLE]);;
let HAS_REAL_MEASURE_UNION_REAL_NEGLIGIBLE_EQ = prove
(`!s t m.
real_negligible t
==> ((s UNION t) has_real_measure m <=> s has_real_measure m)`,
REWRITE_TAC[HAS_REAL_MEASURE_HAS_MEASURE; real_negligible; IMAGE_UNION] THEN
REWRITE_TAC[HAS_MEASURE_UNION_NEGLIGIBLE_EQ]);;
let HAS_REAL_MEASURE_DIFF_REAL_NEGLIGIBLE_EQ = prove
(`!s t m.
real_negligible t
==> ((s DIFF t) has_real_measure m <=> s has_real_measure m)`,
REWRITE_TAC[HAS_REAL_MEASURE_HAS_MEASURE; real_negligible] THEN
SIMP_TAC[IMAGE_DIFF_INJ; LIFT_EQ] THEN
REWRITE_TAC[HAS_MEASURE_DIFF_NEGLIGIBLE_EQ]);;
let HAS_REAL_MEASURE_ALMOST = prove
(`!s s' t m. s has_real_measure m /\ real_negligible t /\
s UNION t = s' UNION t
==> s' has_real_measure m`,
REWRITE_TAC[HAS_REAL_MEASURE_HAS_MEASURE; real_negligible; IMAGE_UNION] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_MEASURE_ALMOST THEN
MAP_EVERY EXISTS_TAC [`IMAGE lift s`; `IMAGE lift t`] THEN ASM SET_TAC[]);;
let HAS_REAL_MEASURE_ALMOST_EQ = prove
(`!s s' t. real_negligible t /\ s UNION t = s' UNION t
==> (s has_real_measure m <=> s' has_real_measure m)`,
MESON_TAC[HAS_REAL_MEASURE_ALMOST]);;
let REAL_MEASURABLE_ALMOST = prove
(`!s s' t. real_measurable s /\ real_negligible t /\ s UNION t = s' UNION t
==> real_measurable s'`,
REWRITE_TAC[real_measurable] THEN MESON_TAC[HAS_REAL_MEASURE_ALMOST]);;
let HAS_REAL_MEASURE_REAL_NEGLIGIBLE_UNION = prove
(`!s1 s2 m1 m2.
s1 has_real_measure m1 /\ s2 has_real_measure m2 /\
real_negligible(s1 INTER s2)
==> (s1 UNION s2) has_real_measure (m1 + m2)`,
REWRITE_TAC[HAS_REAL_MEASURE_HAS_MEASURE; real_negligible; IMAGE_UNION] THEN
SIMP_TAC[IMAGE_INTER_INJ; LIFT_EQ] THEN
REWRITE_TAC[HAS_MEASURE_NEGLIGIBLE_UNION]);;
let REAL_MEASURE_REAL_NEGLIGIBLE_UNION = prove
(`!s t. real_measurable s /\ real_measurable t /\ real_negligible(s INTER t)
==> real_measure(s UNION t) = real_measure s + real_measure t`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_MEASURE_UNIQUE THEN
ASM_SIMP_TAC[HAS_REAL_MEASURE_REAL_NEGLIGIBLE_UNION;
GSYM HAS_REAL_MEASURE_MEASURE]);;
let HAS_REAL_MEASURE_REAL_NEGLIGIBLE_SYMDIFF = prove
(`!s t m.
s has_real_measure m /\
real_negligible((s DIFF t) UNION (t DIFF s))
==> t has_real_measure m`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_REAL_MEASURE_ALMOST THEN
MAP_EVERY EXISTS_TAC
[`s:real->bool`; `(s DIFF t) UNION (t DIFF s):real->bool`] THEN
ASM_REWRITE_TAC[] THEN SET_TAC[]);;
let REAL_MEASURABLE_REAL_NEGLIGIBLE_SYMDIFF = prove
(`!s t. real_measurable s /\ real_negligible((s DIFF t) UNION (t DIFF s))
==> real_measurable t`,
REWRITE_TAC[real_measurable] THEN
MESON_TAC[HAS_REAL_MEASURE_REAL_NEGLIGIBLE_SYMDIFF]);;
let REAL_MEASURE_REAL_NEGLIGIBLE_SYMDIFF = prove
(`!s t. (real_measurable s \/ real_measurable t) /\
real_negligible((s DIFF t) UNION (t DIFF s))
==> real_measure s = real_measure t`,
MESON_TAC[HAS_REAL_MEASURE_REAL_NEGLIGIBLE_SYMDIFF; REAL_MEASURE_UNIQUE;
UNION_COMM; HAS_REAL_MEASURE_MEASURE]);;
let HAS_REAL_MEASURE_REAL_NEGLIGIBLE_UNIONS = prove
(`!m f. FINITE f /\
(!s. s IN f ==> s has_real_measure (m s)) /\
(!s t. s IN f /\ t IN f /\ ~(s = t) ==> real_negligible(s INTER t))
==> (UNIONS f) has_real_measure (sum f m)`,
GEN_TAC THEN ONCE_REWRITE_TAC[IMP_CONJ] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[SUM_CLAUSES; UNIONS_0; UNIONS_INSERT; HAS_REAL_MEASURE_EMPTY] THEN
REWRITE_TAC[IN_INSERT] THEN
MAP_EVERY X_GEN_TAC [`s:real->bool`; `f:(real->bool)->bool`] THEN
STRIP_TAC THEN STRIP_TAC THEN
MATCH_MP_TAC HAS_REAL_MEASURE_REAL_NEGLIGIBLE_UNION THEN
REPEAT(CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC]) THEN
REWRITE_TAC[INTER_UNIONS] THEN MATCH_MP_TAC REAL_NEGLIGIBLE_UNIONS THEN
ONCE_REWRITE_TAC[SIMPLE_IMAGE] THEN
ASM_SIMP_TAC[FINITE_IMAGE; FORALL_IN_IMAGE] THEN REPEAT STRIP_TAC THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_MESON_TAC[]);;
let REAL_MEASURE_REAL_NEGLIGIBLE_UNIONS = prove
(`!m f. FINITE f /\
(!s. s IN f ==> s has_real_measure (m s)) /\
(!s t. s IN f /\ t IN f /\ ~(s = t) ==> real_negligible(s INTER t))
==> real_measure(UNIONS f) = sum f m`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_MEASURE_UNIQUE THEN
ASM_SIMP_TAC[HAS_REAL_MEASURE_REAL_NEGLIGIBLE_UNIONS]);;
let HAS_REAL_MEASURE_DISJOINT_UNIONS = prove
(`!m f. FINITE f /\
(!s. s IN f ==> s has_real_measure (m s)) /\
(!s t. s IN f /\ t IN f /\ ~(s = t) ==> DISJOINT s t)
==> (UNIONS f) has_real_measure (sum f m)`,
REWRITE_TAC[DISJOINT] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC HAS_REAL_MEASURE_REAL_NEGLIGIBLE_UNIONS THEN
ASM_SIMP_TAC[REAL_NEGLIGIBLE_EMPTY]);;
let REAL_MEASURE_DISJOINT_UNIONS = prove
(`!m f:(real->bool)->bool.
FINITE f /\
(!s. s IN f ==> s has_real_measure (m s)) /\
(!s t. s IN f /\ t IN f /\ ~(s = t) ==> DISJOINT s t)
==> real_measure(UNIONS f) = sum f m`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_MEASURE_UNIQUE THEN
ASM_SIMP_TAC[HAS_REAL_MEASURE_DISJOINT_UNIONS]);;
let HAS_REAL_MEASURE_REAL_NEGLIGIBLE_UNIONS_IMAGE = prove
(`!f:A->(real->bool) s.
FINITE s /\
(!x. x IN s ==> real_measurable(f x)) /\
(!x y. x IN s /\ y IN s /\ ~(x = y)
==> real_negligible((f x) INTER (f y)))
==> (UNIONS (IMAGE f s)) has_real_measure
(sum s (\x. real_measure(f x)))`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`sum s (\x. real_measure(f x)) =
sum (IMAGE (f:A->real->bool) s) real_measure`
SUBST1_TAC THENL
[CONV_TAC SYM_CONV THEN ONCE_REWRITE_TAC[GSYM o_DEF] THEN
MATCH_MP_TAC SUM_IMAGE_NONZERO THEN ASM_REWRITE_TAC[] THEN
MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`x:A`; `y:A`]) THEN
ASM_SIMP_TAC[INTER_ACI; REAL_MEASURABLE_REAL_MEASURE_EQ_0];
MATCH_MP_TAC HAS_REAL_MEASURE_REAL_NEGLIGIBLE_UNIONS THEN
ASM_SIMP_TAC[RIGHT_FORALL_IMP_THM; IMP_CONJ; FORALL_IN_IMAGE] THEN
ASM_MESON_TAC[FINITE_IMAGE; HAS_REAL_MEASURE_MEASURE]]);;
let REAL_MEASURE_REAL_NEGLIGIBLE_UNIONS_IMAGE = prove
(`!f:A->real->bool s.
FINITE s /\
(!x. x IN s ==> real_measurable(f x)) /\
(!x y. x IN s /\ y IN s /\ ~(x = y)
==> real_negligible((f x) INTER (f y)))
==> real_measure(UNIONS (IMAGE f s)) = sum s (\x. real_measure(f x))`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_MEASURE_UNIQUE THEN
ASM_SIMP_TAC[HAS_REAL_MEASURE_REAL_NEGLIGIBLE_UNIONS_IMAGE]);;
let HAS_REAL_MEASURE_DISJOINT_UNIONS_IMAGE = prove
(`!f:A->real->bool s.
FINITE s /\
(!x. x IN s ==> real_measurable(f x)) /\
(!x y. x IN s /\ y IN s /\ ~(x = y) ==> DISJOINT (f x) (f y))
==> (UNIONS (IMAGE f s)) has_real_measure
(sum s (\x. real_measure(f x)))`,
REWRITE_TAC[DISJOINT] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC HAS_REAL_MEASURE_REAL_NEGLIGIBLE_UNIONS_IMAGE THEN
ASM_SIMP_TAC[REAL_NEGLIGIBLE_EMPTY]);;
let REAL_MEASURE_DISJOINT_UNIONS_IMAGE = prove
(`!f:A->real->bool s.
FINITE s /\
(!x. x IN s ==> real_measurable(f x)) /\
(!x y. x IN s /\ y IN s /\ ~(x = y) ==> DISJOINT (f x) (f y))
==> real_measure(UNIONS (IMAGE f s)) = sum s (\x. real_measure(f x))`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_MEASURE_UNIQUE THEN
ASM_SIMP_TAC[HAS_REAL_MEASURE_DISJOINT_UNIONS_IMAGE]);;
let HAS_REAL_MEASURE_REAL_NEGLIGIBLE_UNIONS_IMAGE_STRONG = prove
(`!f:A->real->bool s.
FINITE {x | x IN s /\ ~(f x = {})} /\
(!x. x IN s ==> real_measurable(f x)) /\
(!x y. x IN s /\ y IN s /\ ~(x = y)
==> real_negligible((f x) INTER (f y)))
==> (UNIONS (IMAGE f s)) has_real_measure
(sum s (\x. real_measure(f x)))`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`f:A->real->bool`;
`{x | x IN s /\ ~((f:A->real->bool) x = {})}`]
HAS_REAL_MEASURE_REAL_NEGLIGIBLE_UNIONS_IMAGE) THEN
ASM_SIMP_TAC[IN_ELIM_THM; FINITE_RESTRICT] THEN
MATCH_MP_TAC EQ_IMP THEN BINOP_TAC THENL
[GEN_REWRITE_TAC I [EXTENSION] THEN
REWRITE_TAC[IN_UNIONS; IN_IMAGE; IN_ELIM_THM] THEN
MESON_TAC[NOT_IN_EMPTY];
CONV_TAC SYM_CONV THEN MATCH_MP_TAC SUM_SUPERSET THEN
SIMP_TAC[SUBSET; IN_ELIM_THM; TAUT `a /\ ~(a /\ b) <=> a /\ ~b`] THEN
REWRITE_TAC[REAL_MEASURE_EMPTY]]);;
let REAL_MEASURE_REAL_NEGLIGIBLE_UNIONS_IMAGE_STRONG = prove
(`!f:A->real->bool s.
FINITE {x | x IN s /\ ~(f x = {})} /\
(!x. x IN s ==> real_measurable(f x)) /\
(!x y. x IN s /\ y IN s /\ ~(x = y)
==> real_negligible((f x) INTER (f y)))
==> real_measure(UNIONS (IMAGE f s)) = sum s (\x. real_measure(f x))`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_MEASURE_UNIQUE THEN
ASM_SIMP_TAC[HAS_REAL_MEASURE_REAL_NEGLIGIBLE_UNIONS_IMAGE_STRONG]);;
let HAS_REAL_MEASURE_DISJOINT_UNIONS_IMAGE_STRONG = prove
(`!f:A->real->bool s.
FINITE {x | x IN s /\ ~(f x = {})} /\
(!x. x IN s ==> real_measurable(f x)) /\
(!x y. x IN s /\ y IN s /\ ~(x = y) ==> DISJOINT (f x) (f y))
==> (UNIONS (IMAGE f s)) has_real_measure
(sum s (\x. real_measure(f x)))`,
REWRITE_TAC[DISJOINT] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC HAS_REAL_MEASURE_REAL_NEGLIGIBLE_UNIONS_IMAGE_STRONG THEN
ASM_SIMP_TAC[REAL_NEGLIGIBLE_EMPTY]);;
let REAL_MEASURE_DISJOINT_UNIONS_IMAGE_STRONG = prove
(`!f:A->real->bool s.
FINITE {x | x IN s /\ ~(f x = {})} /\
(!x. x IN s ==> real_measurable(f x)) /\
(!x y. x IN s /\ y IN s /\ ~(x = y) ==> DISJOINT (f x) (f y))
==> real_measure(UNIONS (IMAGE f s)) = sum s (\x. real_measure(f x))`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_MEASURE_UNIQUE THEN
ASM_SIMP_TAC[HAS_REAL_MEASURE_DISJOINT_UNIONS_IMAGE_STRONG]);;
let REAL_MEASURE_UNION = prove
(`!s t. real_measurable s /\ real_measurable t
==> real_measure(s UNION t) =
real_measure(s) + real_measure(t) - real_measure(s INTER t)`,
REPEAT STRIP_TAC THEN
ONCE_REWRITE_TAC[SET_RULE
`s UNION t = (s INTER t) UNION (s DIFF t) UNION (t DIFF s)`] THEN
ONCE_REWRITE_TAC[REAL_ARITH `a + b - c:real = c + (a - c) + (b - c)`] THEN
MP_TAC(ISPECL [`s DIFF t:real->bool`; `t DIFF s:real->bool`]
REAL_MEASURE_DISJOINT_UNION) THEN
ASM_SIMP_TAC[REAL_MEASURABLE_DIFF] THEN
ANTS_TAC THENL [SET_TAC[]; ALL_TAC] THEN
MP_TAC(ISPECL [`s INTER t:real->bool`;
`(s DIFF t) UNION (t DIFF s):real->bool`]
REAL_MEASURE_DISJOINT_UNION) THEN
ASM_SIMP_TAC[REAL_MEASURABLE_DIFF;
REAL_MEASURABLE_UNION; REAL_MEASURABLE_INTER] THEN
ANTS_TAC THENL [SET_TAC[]; ALL_TAC] THEN
REPEAT(DISCH_THEN SUBST1_TAC) THEN AP_TERM_TAC THEN BINOP_TAC THEN
REWRITE_TAC[REAL_EQ_SUB_LADD] THEN MATCH_MP_TAC EQ_TRANS THENL
[EXISTS_TAC `real_measure((s DIFF t) UNION (s INTER t):real->bool)`;
EXISTS_TAC `real_measure((t DIFF s) UNION (s INTER t):real->bool)`] THEN
(CONJ_TAC THENL
[CONV_TAC SYM_CONV THEN MATCH_MP_TAC REAL_MEASURE_DISJOINT_UNION THEN
ASM_SIMP_TAC[REAL_MEASURABLE_DIFF; REAL_MEASURABLE_INTER];
AP_TERM_TAC] THEN
SET_TAC[]));;
let REAL_MEASURE_UNION_LE = prove
(`!s t. real_measurable s /\ real_measurable t
==> real_measure(s UNION t) <= real_measure s + real_measure t`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[REAL_MEASURE_UNION] THEN
REWRITE_TAC[REAL_ARITH `a + b - c <= a + b <=> &0 <= c`] THEN
MATCH_MP_TAC REAL_MEASURE_POS_LE THEN ASM_SIMP_TAC[REAL_MEASURABLE_INTER]);;
let REAL_MEASURE_UNIONS_LE = prove
(`!f. FINITE f /\ (!s. s IN f ==> real_measurable s)
==> real_measure(UNIONS f) <= sum f (\s. real_measure s)`,
REWRITE_TAC[IMP_CONJ] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[UNIONS_0; UNIONS_INSERT; SUM_CLAUSES] THEN
REWRITE_TAC[REAL_MEASURE_EMPTY; REAL_LE_REFL] THEN
MAP_EVERY X_GEN_TAC [`s:real->bool`; `f:(real->bool)->bool`] THEN
REWRITE_TAC[IN_INSERT] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `real_measure(s) + real_measure(UNIONS f)` THEN
ASM_SIMP_TAC[REAL_MEASURE_UNION_LE; REAL_MEASURABLE_UNIONS] THEN
REWRITE_TAC[REAL_LE_LADD] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_SIMP_TAC[]);;
let REAL_MEASURE_UNIONS_LE_IMAGE = prove
(`!f:A->bool s:A->(real->bool).
FINITE f /\ (!a. a IN f ==> real_measurable(s a))
==> real_measure(UNIONS (IMAGE s f)) <= sum f (\a. real_measure(s a))`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `sum (IMAGE s (f:A->bool)) (\k:real->bool. real_measure k)` THEN
ASM_SIMP_TAC[REAL_MEASURE_UNIONS_LE; FORALL_IN_IMAGE; FINITE_IMAGE] THEN
GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM o_DEF] THEN
REWRITE_TAC[ETA_AX] THEN MATCH_MP_TAC SUM_IMAGE_LE THEN
ASM_SIMP_TAC[REAL_MEASURE_POS_LE]);;
let REAL_NEGLIGIBLE_OUTER = prove
(`!s. real_negligible s <=>
!e. &0 < e
==> ?t. s SUBSET t /\ real_measurable t /\ real_measure t < e`,
REWRITE_TAC[real_negligible; REAL_MEASURABLE_MEASURABLE;
REAL_MEASURE_MEASURE; SUBSET_LIFT_IMAGE;
NEGLIGIBLE_OUTER; EXISTS_LIFT_IMAGE]);;
let REAL_NEGLIGIBLE_OUTER_LE = prove
(`!s. real_negligible s <=>
!e. &0 < e
==> ?t. s SUBSET t /\ real_measurable t /\ real_measure t <= e`,
REWRITE_TAC[real_negligible; REAL_MEASURABLE_MEASURABLE;
REAL_MEASURE_MEASURE; SUBSET_LIFT_IMAGE;
NEGLIGIBLE_OUTER_LE; EXISTS_LIFT_IMAGE]);;
let REAL_MEASURABLE_INNER_OUTER = prove
(`!s. real_measurable s <=>
!e. &0 < e
==> ?t u. t SUBSET s /\ s SUBSET u /\
real_measurable t /\ real_measurable u /\
abs(real_measure t - real_measure u) < e`,
GEN_TAC THEN EQ_TAC THEN DISCH_TAC THENL
[GEN_TAC THEN DISCH_TAC THEN REPEAT(EXISTS_TAC `s:real->bool`) THEN
ASM_REWRITE_TAC[SUBSET_REFL; REAL_SUB_REFL; REAL_ABS_NUM];
ALL_TAC] THEN
REWRITE_TAC[REAL_MEASURABLE_REAL_INTEGRABLE] THEN
MATCH_MP_TAC REAL_INTEGRABLE_STRADDLE THEN
X_GEN_TAC `e:real` THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `e:real`) THEN
ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`t:real->bool`; `u:real->bool`] THEN STRIP_TAC THEN
MAP_EVERY EXISTS_TAC
[`(\x. if x IN t then &1 else &0):real->real`;
`(\x. if x IN u then &1 else &0):real->real`;
`real_measure(t:real->bool)`;
`real_measure(u:real->bool)`] THEN
ASM_REWRITE_TAC[GSYM HAS_REAL_MEASURE; GSYM HAS_REAL_MEASURE_MEASURE] THEN
ASM_REWRITE_TAC[GSYM LIFT_SUB; NORM_LIFT] THEN REPEAT STRIP_TAC THEN
REPEAT(COND_CASES_TAC THEN
ASM_REWRITE_TAC[DROP_VEC; REAL_POS; REAL_LE_REFL]) THEN
ASM SET_TAC[]);;
let HAS_REAL_MEASURE_INNER_OUTER = prove
(`!s m. s has_real_measure m <=>
(!e. &0 < e ==> ?t. t SUBSET s /\ real_measurable t /\
m - e < real_measure t) /\
(!e. &0 < e ==> ?u. s SUBSET u /\ real_measurable u /\
real_measure u < m + e)`,
REPEAT GEN_TAC THEN
GEN_REWRITE_TAC LAND_CONV
[HAS_REAL_MEASURE_REAL_MEASURABLE_REAL_MEASURE] THEN EQ_TAC THENL
[REPEAT STRIP_TAC THEN EXISTS_TAC `s:real->bool` THEN
ASM_REWRITE_TAC[SUBSET_REFL] THEN ASM_REAL_ARITH_TAC;
ALL_TAC] THEN
DISCH_THEN(CONJUNCTS_THEN2 (LABEL_TAC "t") (LABEL_TAC "u")) THEN
MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL
[GEN_REWRITE_TAC I [REAL_MEASURABLE_INNER_OUTER] THEN
X_GEN_TAC `e:real` THEN DISCH_TAC THEN
REMOVE_THEN "u" (MP_TAC o SPEC `e / &2`) THEN
REMOVE_THEN "t" (MP_TAC o SPEC `e / &2`) THEN
ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN
REWRITE_TAC[IMP_IMP; LEFT_AND_EXISTS_THM] THEN
REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN
REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(REAL_ARITH
`&0 < e /\ t <= u /\ m - e / &2 < t /\ u < m + e / &2
==> abs(t - u) < e`) THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_MEASURE_SUBSET THEN
ASM_REWRITE_TAC[] THEN ASM SET_TAC[];
DISCH_TAC THEN MATCH_MP_TAC(REAL_ARITH
`~(&0 < x - y) /\ ~(&0 < y - x) ==> x = y`) THEN
CONJ_TAC THEN DISCH_TAC THENL
[REMOVE_THEN "u" (MP_TAC o SPEC `real_measure(s:real->bool) - m`) THEN
ASM_REWRITE_TAC[REAL_SUB_ADD2; GSYM REAL_NOT_LE];
REMOVE_THEN "t" (MP_TAC o SPEC `m - real_measure(s:real->bool)`) THEN
ASM_REWRITE_TAC[REAL_SUB_SUB2; GSYM REAL_NOT_LE]] THEN
ASM_MESON_TAC[REAL_MEASURE_SUBSET]]);;
let HAS_REAL_MEASURE_INNER_OUTER_LE = prove
(`!s:real->bool m.
s has_real_measure m <=>
(!e. &0 < e ==> ?t. t SUBSET s /\ real_measurable t /\
m - e <= real_measure t) /\
(!e. &0 < e ==> ?u. s SUBSET u /\ real_measurable u /\
real_measure u <= m + e)`,
REWRITE_TAC[HAS_REAL_MEASURE_INNER_OUTER] THEN
MESON_TAC[REAL_ARITH `&0 < e /\ m - e / &2 <= t ==> m - e < t`;
REAL_ARITH `&0 < e /\ u <= m + e / &2 ==> u < m + e`;
REAL_ARITH `&0 < e <=> &0 < e / &2`; REAL_LT_IMP_LE]);;
let HAS_REAL_MEASURE_AFFINITY = prove
(`!s m c y. s has_real_measure y
==> (IMAGE (\x. m * x + c) s) has_real_measure abs(m) * y`,
REPEAT GEN_TAC THEN REWRITE_TAC[HAS_REAL_MEASURE_HAS_MEASURE] THEN
DISCH_THEN(MP_TAC o SPECL [`m:real`; `lift c`] o MATCH_MP
HAS_MEASURE_AFFINITY) THEN
REWRITE_TAC[DIMINDEX_1; REAL_POW_1; GSYM IMAGE_o] THEN
MATCH_MP_TAC EQ_IMP THEN REPEAT(AP_THM_TAC THEN AP_TERM_TAC) THEN
SIMP_TAC[FUN_EQ_THM; FORALL_DROP; o_THM; LIFT_DROP; LIFT_ADD; LIFT_CMUL]);;
let HAS_REAL_MEASURE_SCALING = prove
(`!s m y. s has_real_measure y
==> (IMAGE (\x. m * x) s) has_real_measure abs(m) * y`,
ONCE_REWRITE_TAC[REAL_ARITH `m * x = m * x + &0`] THEN
REWRITE_TAC[REAL_ARITH `abs m * x + &0 = abs m * x`] THEN
REWRITE_TAC[HAS_REAL_MEASURE_AFFINITY]);;
let HAS_REAL_MEASURE_TRANSLATION = prove
(`!s m a. s has_real_measure m ==> (IMAGE (\x. a + x) s) has_real_measure m`,
REPEAT GEN_TAC THEN
ONCE_REWRITE_TAC[REAL_ARITH `a + x = &1 * x + a`] THEN
GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [REAL_ARITH `m = abs(&1) * m`] THEN
REWRITE_TAC[HAS_REAL_MEASURE_AFFINITY]);;
let REAL_NEGLIGIBLE_TRANSLATION = prove
(`!s a. real_negligible s ==> real_negligible (IMAGE (\x. a + x) s)`,
SIMP_TAC[GSYM HAS_REAL_MEASURE_0; HAS_REAL_MEASURE_TRANSLATION]);;
let HAS_REAL_MEASURE_TRANSLATION_EQ = prove
(`!s m. (IMAGE (\x. a + x) s) has_real_measure m <=> s has_real_measure m`,
REPEAT GEN_TAC THEN EQ_TAC THEN
REWRITE_TAC[HAS_REAL_MEASURE_TRANSLATION] THEN
DISCH_THEN(MP_TAC o SPEC `--a:real` o
MATCH_MP HAS_REAL_MEASURE_TRANSLATION) THEN
MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[GSYM IMAGE_o; o_DEF; REAL_ARITH `--a + a + b:real = b`] THEN
SET_TAC[]);;
let REAL_NEGLIGIBLE_TRANSLATION_REV = prove
(`!s a. real_negligible (IMAGE (\x. a + x) s) ==> real_negligible s`,
SIMP_TAC[GSYM HAS_REAL_MEASURE_0; HAS_REAL_MEASURE_TRANSLATION_EQ]);;
let REAL_NEGLIGIBLE_TRANSLATION_EQ = prove
(`!s a. real_negligible (IMAGE (\x. a + x) s) <=> real_negligible s`,
SIMP_TAC[GSYM HAS_REAL_MEASURE_0; HAS_REAL_MEASURE_TRANSLATION_EQ]);;
let REAL_MEASURABLE_TRANSLATION = prove
(`!s. real_measurable (IMAGE (\x. a + x) s) <=> real_measurable s`,
REWRITE_TAC[real_measurable; HAS_REAL_MEASURE_TRANSLATION_EQ]);;
let REAL_MEASURE_TRANSLATION = prove
(`!s. real_measurable s
==> real_measure(IMAGE (\x. a + x) s) = real_measure s`,
REWRITE_TAC[HAS_REAL_MEASURE_MEASURE] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC REAL_MEASURE_UNIQUE THEN
ASM_REWRITE_TAC[HAS_REAL_MEASURE_TRANSLATION_EQ]);;
let HAS_REAL_MEASURE_SCALING_EQ = prove
(`!s m c. ~(c = &0)
==> ((IMAGE (\x. c * x) s) has_real_measure (abs(c) * m) <=>
s has_real_measure m)`,
REPEAT STRIP_TAC THEN EQ_TAC THEN REWRITE_TAC[HAS_REAL_MEASURE_SCALING] THEN
DISCH_THEN(MP_TAC o SPEC `inv(c:real)` o
MATCH_MP HAS_REAL_MEASURE_SCALING) THEN
REWRITE_TAC[GSYM IMAGE_o; o_DEF; GSYM REAL_ABS_MUL] THEN
REWRITE_TAC[GSYM REAL_POW_MUL; REAL_MUL_ASSOC] THEN
ASM_SIMP_TAC[GSYM REAL_ABS_MUL; REAL_MUL_LINV] THEN
REWRITE_TAC[REAL_POW_ONE; REAL_ABS_NUM; REAL_MUL_LID] THEN
MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN SET_TAC[]);;
let REAL_MEASURABLE_SCALING = prove
(`!s c. real_measurable s ==> real_measurable (IMAGE (\x. c * x) s)`,
REWRITE_TAC[real_measurable] THEN MESON_TAC[HAS_REAL_MEASURE_SCALING]);;
let REAL_MEASURABLE_SCALING_EQ = prove
(`!s c. ~(c = &0)
==> (real_measurable (IMAGE (\x. c * x) s) <=> real_measurable s)`,
REPEAT STRIP_TAC THEN EQ_TAC THEN REWRITE_TAC[REAL_MEASURABLE_SCALING] THEN
DISCH_THEN(MP_TAC o SPEC `inv c:real` o MATCH_MP REAL_MEASURABLE_SCALING) THEN
REWRITE_TAC[GSYM IMAGE_o; o_DEF; GSYM REAL_ABS_MUL] THEN
MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN
ASM_SIMP_TAC[REAL_MUL_ASSOC; REAL_MUL_LINV; REAL_MUL_LID] THEN
SET_TAC[]);;
let REAL_MEASURE_SCALING = prove
(`!s. real_measurable s
==> real_measure(IMAGE (\x. c * x) s) = abs(c) * real_measure s`,
REWRITE_TAC[HAS_REAL_MEASURE_MEASURE] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC REAL_MEASURE_UNIQUE THEN
ASM_SIMP_TAC[HAS_REAL_MEASURE_SCALING]);;
let HAS_REAL_MEASURE_NESTED_UNIONS = prove
(`!s B. (!n. real_measurable(s n)) /\
(!n. real_measure(s n) <= B) /\
(!n. s(n) SUBSET s(SUC n))
==> real_measurable(UNIONS { s(n) | n IN (:num) }) /\
((\n. real_measure(s n))
---> real_measure(UNIONS { s(n) | n IN (:num) }))
sequentially`,
REPEAT GEN_TAC THEN REWRITE_TAC[TENDSTO_REAL; o_DEF] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
ASM_SIMP_TAC[REAL_MEASURE_MEASURE] THEN POP_ASSUM MP_TAC THEN
REWRITE_TAC[REAL_MEASURABLE_MEASURABLE] THEN
REPEAT(DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC)) THEN
MP_TAC(ISPECL [`IMAGE lift o (s:num->real->bool)`; `B:real`]
HAS_MEASURE_NESTED_UNIONS) THEN
ASM_SIMP_TAC[o_THM; IMAGE_SUBSET] THEN
REWRITE_TAC[SET_RULE `{IMAGE f (s n) | P n} = IMAGE (IMAGE f) {s n | P n}`;
GSYM IMAGE_UNIONS] THEN
SIMP_TAC[REAL_MEASURE_MEASURE; REAL_MEASURABLE_MEASURABLE]);;
let REAL_MEASURABLE_NESTED_UNIONS = prove
(`!s B. (!n. real_measurable(s n)) /\
(!n. real_measure(s n) <= B) /\
(!n. s(n) SUBSET s(SUC n))
==> real_measurable(UNIONS { s(n) | n IN (:num) })`,
REPEAT GEN_TAC THEN
DISCH_THEN(MP_TAC o MATCH_MP HAS_REAL_MEASURE_NESTED_UNIONS) THEN
SIMP_TAC[]);;
let HAS_REAL_MEASURE_COUNTABLE_REAL_NEGLIGIBLE_UNIONS = prove
(`!s:num->real->bool B.
(!n. real_measurable(s n)) /\
(!m n. ~(m = n) ==> real_negligible(s m INTER s n)) /\
(!n. sum (0..n) (\k. real_measure(s k)) <= B)
==> real_measurable(UNIONS { s(n) | n IN (:num) }) /\
((\n. real_measure(s n)) real_sums
real_measure(UNIONS { s(n) | n IN (:num) })) (from 0)`,
REPEAT GEN_TAC THEN STRIP_TAC THEN
MP_TAC(ISPECL [`\n. UNIONS (IMAGE s (0..n)):real->bool`; `B:real`]
HAS_REAL_MEASURE_NESTED_UNIONS) THEN
REWRITE_TAC[real_sums; FROM_0; INTER_UNIV] THEN
SUBGOAL_THEN
`!n. (UNIONS (IMAGE s (0..n)):real->bool) has_real_measure
(sum(0..n) (\k. real_measure(s k)))`
MP_TAC THENL
[GEN_TAC THEN MATCH_MP_TAC HAS_REAL_MEASURE_REAL_NEGLIGIBLE_UNIONS_IMAGE THEN
ASM_SIMP_TAC[FINITE_NUMSEG];
ALL_TAC] THEN
DISCH_THEN(fun th -> ASSUME_TAC th THEN
ASSUME_TAC(GEN `n:num` (MATCH_MP REAL_MEASURE_UNIQUE
(SPEC `n:num` th)))) THEN
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
[CONJ_TAC THENL [ASM_MESON_TAC[real_measurable]; ALL_TAC] THEN
GEN_TAC THEN MATCH_MP_TAC SUBSET_UNIONS THEN
MATCH_MP_TAC IMAGE_SUBSET THEN
REWRITE_TAC[SUBSET; IN_NUMSEG] THEN ARITH_TAC;
ALL_TAC] THEN
SIMP_TAC[LIFT_SUM; FINITE_NUMSEG; o_DEF] THEN
SUBGOAL_THEN
`UNIONS {UNIONS (IMAGE s (0..n)) | n IN (:num)}:real->bool =
UNIONS (IMAGE s (:num))`
(fun th -> REWRITE_TAC[th] THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE] THEN
REWRITE_TAC[]) THEN
GEN_REWRITE_TAC I [EXTENSION] THEN X_GEN_TAC `x:real` THEN
REWRITE_TAC[IN_UNIONS] THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE] THEN
REWRITE_TAC[EXISTS_IN_IMAGE; EXISTS_IN_UNIONS; IN_UNIV] THEN
REWRITE_TAC[IN_UNIONS; EXISTS_IN_IMAGE] THEN
REWRITE_TAC[IN_NUMSEG; LE_0] THEN MESON_TAC[LE_REFL]);;
let REAL_NEGLIGIBLE_COUNTABLE_UNIONS = prove
(`!s:num->real->bool.
(!n. real_negligible(s n))
==> real_negligible(UNIONS {s(n) | n IN (:num)})`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`s:num->real->bool`; `&0`]
HAS_REAL_MEASURE_COUNTABLE_REAL_NEGLIGIBLE_UNIONS) THEN
ASM_SIMP_TAC[REAL_MEASURE_EQ_0; SUM_0; REAL_LE_REFL; LIFT_NUM] THEN
ANTS_TAC THENL
[ASM_MESON_TAC[HAS_REAL_MEASURE_0; real_measurable; INTER_SUBSET;
REAL_NEGLIGIBLE_SUBSET];
ALL_TAC] THEN
SIMP_TAC[GSYM REAL_MEASURABLE_REAL_MEASURE_EQ_0] THEN
STRIP_TAC THEN
MATCH_MP_TAC REAL_SERIES_UNIQUE THEN REWRITE_TAC[LIFT_NUM] THEN
MAP_EVERY EXISTS_TAC [`(\k. &0):num->real`; `from 0`] THEN
ASM_REWRITE_TAC[REAL_SERIES_0]);;
let REAL_MEASURABLE_COUNTABLE_UNIONS_STRONG = prove
(`!s:num->real->bool B.
(!n. real_measurable(s n)) /\
(!n. real_measure(UNIONS {s k | k <= n}) <= B)
==> real_measurable(UNIONS { s(n) | n IN (:num) })`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE] THEN STRIP_TAC THEN
MP_TAC(ISPECL [`\n. UNIONS (IMAGE s (0..n)):real->bool`; `B:real`]
REAL_MEASURABLE_NESTED_UNIONS) THEN
SUBGOAL_THEN
`UNIONS {UNIONS (IMAGE s (0..n)) | n IN (:num)}:real->bool =
UNIONS (IMAGE s (:num))`
(fun th -> REWRITE_TAC[th])
THENL
[GEN_REWRITE_TAC I [EXTENSION] THEN X_GEN_TAC `x:real` THEN
REWRITE_TAC[IN_UNIONS] THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE] THEN
REWRITE_TAC[EXISTS_IN_IMAGE; EXISTS_IN_UNIONS; IN_UNIV] THEN
REWRITE_TAC[IN_UNIONS; EXISTS_IN_IMAGE] THEN
REWRITE_TAC[IN_NUMSEG; LE_0] THEN MESON_TAC[LE_REFL];
ALL_TAC] THEN
DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL
[GEN_TAC THEN MATCH_MP_TAC REAL_MEASURABLE_UNIONS THEN
ASM_SIMP_TAC[FINITE_IMAGE; FORALL_IN_IMAGE; FINITE_NUMSEG];
ONCE_REWRITE_TAC[GSYM SIMPLE_IMAGE] THEN
ASM_REWRITE_TAC[IN_NUMSEG; LE_0];
GEN_TAC THEN MATCH_MP_TAC SUBSET_UNIONS THEN
MATCH_MP_TAC IMAGE_SUBSET THEN
REWRITE_TAC[SUBSET; IN_NUMSEG; LE_0] THEN ARITH_TAC]);;
let HAS_REAL_MEASURE_COUNTABLE_REAL_NEGLIGIBLE_UNIONS_BOUNDED = prove
(`!s. (!n. real_measurable(s n)) /\
(!m n. ~(m = n) ==> real_negligible(s m INTER s n)) /\
real_bounded(UNIONS { s(n) | n IN (:num) })
==> real_measurable(UNIONS { s(n) | n IN (:num) }) /\
((\n. real_measure(s n)) real_sums
real_measure(UNIONS { s(n) | n IN (:num) })) (from 0)`,
REPEAT GEN_TAC THEN REWRITE_TAC[TENDSTO_REAL; o_DEF] THEN
REWRITE_TAC[REAL_BOUNDED] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
ASM_SIMP_TAC[REAL_MEASURE_MEASURE] THEN POP_ASSUM MP_TAC THEN
REWRITE_TAC[REAL_MEASURABLE_MEASURABLE; real_negligible] THEN
REPEAT(DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC)) THEN
MP_TAC(ISPEC `IMAGE lift o (s:num->real->bool)`
HAS_MEASURE_COUNTABLE_NEGLIGIBLE_UNIONS_BOUNDED) THEN
ASM_SIMP_TAC[o_THM; IMAGE_SUBSET] THEN
REWRITE_TAC[SET_RULE `{IMAGE f (s n) | P n} = IMAGE (IMAGE f) {s n | P n}`;
GSYM IMAGE_UNIONS] THEN
ASM_SIMP_TAC[GSYM IMAGE_INTER_INJ; LIFT_EQ] THEN
SIMP_TAC[REAL_SUMS; o_DEF; REAL_MEASURE_MEASURE;
REAL_MEASURABLE_MEASURABLE]);;
let REAL_MEASURABLE_COUNTABLE_UNIONS = prove
(`!s B. (!n. real_measurable(s n)) /\
(!n. sum (0..n) (\k. real_measure(s k)) <= B)
==> real_measurable(UNIONS { s(n) | n IN (:num) })`,
REPEAT STRIP_TAC THEN
MATCH_MP_TAC REAL_MEASURABLE_COUNTABLE_UNIONS_STRONG THEN
EXISTS_TAC `B:real` THEN ASM_REWRITE_TAC[] THEN
X_GEN_TAC `n:num` THEN MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `sum(0..n) (\k. real_measure(s k:real->bool))` THEN
ASM_REWRITE_TAC[] THEN
W(MP_TAC o PART_MATCH (rand o rand) REAL_MEASURE_UNIONS_LE_IMAGE o
rand o snd) THEN
ASM_REWRITE_TAC[FINITE_NUMSEG] THEN
ONCE_REWRITE_TAC[GSYM SIMPLE_IMAGE] THEN
REWRITE_TAC[IN_NUMSEG; LE_0]);;
let REAL_MEASURABLE_COUNTABLE_UNIONS_BOUNDED = prove
(`!s. (!n. real_measurable(s n)) /\
real_bounded(UNIONS { s(n) | n IN (:num) })
==> real_measurable(UNIONS { s(n) | n IN (:num) })`,
REWRITE_TAC[REAL_MEASURABLE_MEASURABLE; REAL_BOUNDED] THEN
SIMP_TAC[IMAGE_INTER_INJ; LIFT_EQ; IMAGE_UNIONS] THEN
REWRITE_TAC[SET_RULE `IMAGE f {g x | x IN s} = {f(g x) | x IN s}`] THEN
REWRITE_TAC[MEASURABLE_COUNTABLE_UNIONS_BOUNDED]);;
let REAL_MEASURABLE_COUNTABLE_INTERS = prove
(`!s. (!n. real_measurable(s n))
==> real_measurable(INTERS { s(n) | n IN (:num) })`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `INTERS { s(n):real->bool | n IN (:num) } =
s 0 DIFF (UNIONS {s 0 DIFF s n | n IN (:num)})`
SUBST1_TAC THENL
[GEN_REWRITE_TAC I [EXTENSION] THEN
REWRITE_TAC[IN_INTERS; IN_DIFF; IN_UNIONS] THEN
REWRITE_TAC[SIMPLE_IMAGE; FORALL_IN_IMAGE; EXISTS_IN_IMAGE] THEN
ASM SET_TAC[];
ALL_TAC] THEN
MATCH_MP_TAC REAL_MEASURABLE_DIFF THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC REAL_MEASURABLE_COUNTABLE_UNIONS_STRONG THEN
EXISTS_TAC `real_measure(s 0:real->bool)` THEN
ASM_SIMP_TAC[REAL_MEASURABLE_DIFF; LE_0] THEN
GEN_TAC THEN MATCH_MP_TAC REAL_MEASURE_SUBSET THEN
ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
[ALL_TAC;
REWRITE_TAC[SUBSET; FORALL_IN_UNIONS; IN_ELIM_THM; IN_DIFF] THEN
MESON_TAC[IN_DIFF]] THEN
ONCE_REWRITE_TAC[GSYM IN_NUMSEG_0] THEN
ONCE_REWRITE_TAC[SIMPLE_IMAGE] THEN
ASM_SIMP_TAC[FORALL_IN_IMAGE; FINITE_IMAGE; FINITE_NUMSEG;
REAL_MEASURABLE_DIFF; REAL_MEASURABLE_UNIONS]);;
let REAL_NEGLIGIBLE_COUNTABLE = prove
(`!s. COUNTABLE s ==> real_negligible s`,
REPEAT STRIP_TAC THEN REWRITE_TAC[real_negligible] THEN
MATCH_MP_TAC NEGLIGIBLE_COUNTABLE THEN ASM_SIMP_TAC[COUNTABLE_IMAGE]);;
let REAL_MEASURABLE_COMPACT = prove
(`!s. real_compact s ==> real_measurable s`,
REWRITE_TAC[REAL_MEASURABLE_MEASURABLE; real_compact; MEASURABLE_COMPACT]);;
let REAL_MEASURABLE_OPEN = prove
(`!s. real_bounded s /\ real_open s ==> real_measurable s`,
REWRITE_TAC[REAL_MEASURABLE_MEASURABLE; REAL_OPEN; REAL_BOUNDED;
MEASURABLE_OPEN]);;
let HAS_REAL_INTEGRAL_NEGLIGIBLE_EQ = prove
(`!f s. (!x. x IN s ==> &0 <= f(x))
==> ((f has_real_integral &0) s <=>
real_negligible {x | x IN s /\ ~(f x = &0)})`,
REPEAT STRIP_TAC THEN EQ_TAC THEN DISCH_TAC THENL
[ALL_TAC;
MATCH_MP_TAC HAS_REAL_INTEGRAL_NEGLIGIBLE THEN
EXISTS_TAC `{x | x IN s /\ ~((f:real->real) x = &0)}` THEN
ASM_REWRITE_TAC[IN_DIFF; IN_ELIM_THM] THEN MESON_TAC[]] THEN
MATCH_MP_TAC REAL_NEGLIGIBLE_SUBSET THEN EXISTS_TAC
`UNIONS {{x:real | x IN s /\ abs(f x) >= &1 / (&n + &1)} |
n IN (:num)}` THEN
CONJ_TAC THENL
[MATCH_MP_TAC REAL_NEGLIGIBLE_COUNTABLE_UNIONS THEN
X_GEN_TAC `n:num` THEN REWRITE_TAC[GSYM HAS_REAL_MEASURE_0] THEN
REWRITE_TAC[HAS_REAL_MEASURE] THEN
MATCH_MP_TAC HAS_REAL_INTEGRAL_STRADDLE_NULL THEN
EXISTS_TAC `\x:real. if x IN s then (&n + &1) * f(x) else &0` THEN
CONJ_TAC THENL
[REWRITE_TAC[IN_UNIV; IN_ELIM_THM; real_ge] THEN
X_GEN_TAC `x:real` THEN COND_CASES_TAC THEN
ASM_SIMP_TAC[REAL_POS] THENL
[ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
ASM_SIMP_TAC[GSYM REAL_LE_LDIV_EQ; REAL_ARITH `&0 < &n + &1`] THEN
MATCH_MP_TAC(REAL_ARITH `&0 <= x /\ a <= abs x ==> a <= x`) THEN
ASM_SIMP_TAC[];
COND_CASES_TAC THEN REWRITE_TAC[REAL_POS] THEN
ASM_SIMP_TAC[REAL_POS; REAL_LE_MUL; REAL_LE_ADD]];
REWRITE_TAC[HAS_REAL_INTEGRAL_RESTRICT_UNIV] THEN
SUBST1_TAC(REAL_ARITH `&0 = (&n + &1) * &0`) THEN
MATCH_MP_TAC HAS_REAL_INTEGRAL_LMUL THEN ASM_REWRITE_TAC[]];
REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN X_GEN_TAC `x:real` THEN
REWRITE_TAC[REAL_ABS_NZ] THEN ONCE_REWRITE_TAC[REAL_ARCH_INV] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_THEN `n:num`
STRIP_ASSUME_TAC)) THEN
REWRITE_TAC[IN_UNIONS; EXISTS_IN_GSPEC] THEN
EXISTS_TAC `n - 1` THEN ASM_SIMP_TAC[IN_UNIV; IN_ELIM_THM; real_ge] THEN
ASM_SIMP_TAC[REAL_OF_NUM_ADD; SUB_ADD; LE_1] THEN
ASM_SIMP_TAC[real_div; REAL_MUL_LID; REAL_LT_IMP_LE]]);;
(* ------------------------------------------------------------------------- *)
(* Integration by parts. *)
(* ------------------------------------------------------------------------- *)
let REAL_INTEGRATION_BY_PARTS = prove
(`!f g f' g' a b c.
a <= b /\ COUNTABLE c /\
(\x. f x * g x) real_continuous_on real_interval[a,b] /\
(!x. x IN real_interval(a,b) DIFF c
==> (f has_real_derivative f'(x)) (atreal x) /\
(g has_real_derivative g'(x)) (atreal x)) /\
((\x. f(x) * g'(x)) has_real_integral ((f b * g b - f a * g a) - y))
(real_interval[a,b])
==> ((\x. f'(x) * g(x)) has_real_integral y) (real_interval[a,b])`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`\x. (f:real->real)(x) * g(x)`;
`\x. (f:real->real)(x) * g'(x) + f'(x) * g(x)`;
`c:real->bool`; `a:real`; `b:real`]
REAL_FUNDAMENTAL_THEOREM_OF_CALCULUS_INTERIOR_STRONG) THEN
ASM_SIMP_TAC[HAS_REAL_DERIVATIVE_MUL_ATREAL] THEN
FIRST_ASSUM(fun th -> MP_TAC th THEN REWRITE_TAC[GSYM IMP_CONJ_ALT] THEN
DISCH_THEN(MP_TAC o MATCH_MP HAS_REAL_INTEGRAL_SUB)) THEN
REWRITE_TAC[REAL_ARITH `b - a - (b - a - y):real = y`; REAL_ADD_SUB]);;
let REAL_INTEGRATION_BY_PARTS_SIMPLE = prove
(`!f g f' g' a b.
a <= b /\
(!x. x IN real_interval[a,b]
==> (f has_real_derivative f'(x))
(atreal x within real_interval[a,b]) /\
(g has_real_derivative g'(x))
(atreal x within real_interval[a,b])) /\
((\x. f(x) * g'(x)) has_real_integral ((f b * g b - f a * g a) - y))
(real_interval[a,b])
==> ((\x. f'(x) * g(x)) has_real_integral y) (real_interval[a,b])`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`\x. (f:real->real)(x) * g(x)`;
`\x. (f:real->real)(x) * g'(x) + f'(x) * g(x)`;
`a:real`; `b:real`] REAL_FUNDAMENTAL_THEOREM_OF_CALCULUS) THEN
ASM_SIMP_TAC[HAS_REAL_DERIVATIVE_MUL_WITHIN] THEN
FIRST_ASSUM(fun th -> MP_TAC th THEN REWRITE_TAC[GSYM IMP_CONJ_ALT] THEN
DISCH_THEN(MP_TAC o MATCH_MP HAS_REAL_INTEGRAL_SUB)) THEN
REWRITE_TAC[REAL_ARITH `b - a - (b - a - y):real = y`; REAL_ADD_SUB]);;
let REAL_INTEGRABLE_BY_PARTS = prove
(`!f g f' g' a b c.
COUNTABLE c /\
(\x. f x * g x) real_continuous_on real_interval[a,b] /\
(!x. x IN real_interval(a,b) DIFF c
==> (f has_real_derivative f'(x)) (atreal x) /\
(g has_real_derivative g'(x)) (atreal x)) /\
(\x. f(x) * g'(x)) real_integrable_on real_interval[a,b]
==> (\x. f'(x) * g(x)) real_integrable_on real_interval[a,b]`,
REPEAT GEN_TAC THEN DISJ_CASES_TAC(REAL_ARITH `b <= a \/ a <= b`) THEN
ASM_SIMP_TAC[REAL_INTEGRABLE_ON_NULL] THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
REWRITE_TAC[real_integrable_on] THEN
DISCH_THEN(X_CHOOSE_THEN `y:real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `((f:real->real) b * g b - f a * g a) - y` THEN
MATCH_MP_TAC REAL_INTEGRATION_BY_PARTS THEN MAP_EVERY EXISTS_TAC
[`f:real->real`; `g':real->real`; `c:real->bool`] THEN
ASM_REWRITE_TAC[REAL_ARITH `b - a - ((b - a) - y):real = y`]);;
let REAL_INTEGRABLE_BY_PARTS_EQ = prove
(`!f g f' g' a b c.
COUNTABLE c /\
(\x. f x * g x) real_continuous_on real_interval[a,b] /\
(!x. x IN real_interval(a,b) DIFF c
==> (f has_real_derivative f'(x)) (atreal x) /\
(g has_real_derivative g'(x)) (atreal x))
==> ((\x. f(x) * g'(x)) real_integrable_on real_interval[a,b] <=>
(\x. f'(x) * g(x)) real_integrable_on real_interval[a,b])`,
REPEAT STRIP_TAC THEN EQ_TAC THENL
[ASM_MESON_TAC[REAL_INTEGRABLE_BY_PARTS]; DISCH_TAC] THEN
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
MATCH_MP_TAC REAL_INTEGRABLE_BY_PARTS THEN
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN ASM_MESON_TAC[]);;
let ABSOLUTE_REAL_INTEGRATION_BY_PARTS = prove
(`!f g f' g' a b.
a <= b /\
f' absolutely_real_integrable_on real_interval[a,b] /\
g' absolutely_real_integrable_on real_interval[a,b] /\
(!x. x IN real_interval[a,b]
==> (f' has_real_integral f(x)) (real_interval[a,x])) /\
(!x. x IN real_interval[a,b]
==> (g' has_real_integral g(x)) (real_interval[a,x]))
==> (\x. f x * g' x) absolutely_real_integrable_on
real_interval[a,b] /\
(\x. f' x * g x) absolutely_real_integrable_on
real_interval[a,b] /\
real_integral (real_interval[a,b]) (\x. f x * g' x) +
real_integral (real_interval[a,b]) (\x. f' x * g x) =
f b * g b - f a * g a`,
REWRITE_TAC[FORALL_DROP; ABSOLUTELY_REAL_INTEGRABLE_ON; HAS_REAL_INTEGRAL;
GSYM IMAGE_DROP_INTERVAL; DROP_IN_IMAGE_DROP] THEN
REWRITE_TAC[GSYM IMAGE_o; o_DEF; LIFT_DROP; IMAGE_ID] THEN
REPEAT GEN_TAC THEN
SUBGOAL_THEN `bilinear (\x y. lift(drop x * drop y))` MP_TAC THENL
[REWRITE_TAC[bilinear; linear; FORALL_LIFT; LIFT_DROP;
DROP_ADD; DROP_CMUL; GSYM LIFT_ADD; LIFT_EQ; GSYM LIFT_CMUL] THEN
REAL_ARITH_TAC;
REWRITE_TAC[IMP_IMP; GSYM CONJ_ASSOC] THEN
DISCH_THEN(MP_TAC o MATCH_MP ABSOLUTE_INTEGRATION_BY_PARTS) THEN
REWRITE_TAC[LIFT_DROP] THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
ASM_REWRITE_TAC[GSYM LIFT_EQ; LIFT_ADD; LIFT_SUB] THEN
DISCH_THEN(SUBST1_TAC o SYM) THEN BINOP_TAC THEN
REWRITE_TAC[GSYM DROP_EQ; LIFT_DROP] THEN
W(MP_TAC o PART_MATCH (lhs o rand) REAL_INTEGRAL o lhs o snd) THEN
ASM_SIMP_TAC[REAL_INTEGRABLE_ON; GSYM IMAGE_o; o_DEF; IMAGE_ID;
LIFT_DROP; ABSOLUTELY_INTEGRABLE_IMP_INTEGRABLE]]);;
(* ------------------------------------------------------------------------- *)
(* Change of variable in real integral (one that we know exists). *)
(* ------------------------------------------------------------------------- *)
let HAS_REAL_INTEGRAL_SUBSTITUTION_STRONG = prove
(`!f g g' a b c d k.
COUNTABLE k /\
f real_integrable_on real_interval[c,d] /\
g real_continuous_on real_interval[a,b] /\
IMAGE g (real_interval[a,b]) SUBSET real_interval[c,d] /\
(!x. x IN real_interval[a,b] DIFF k
==> (g has_real_derivative g'(x))
(atreal x within real_interval[a,b]) /\
f real_continuous
(atreal(g x)) within real_interval[c,d]) /\
a <= b /\ c <= d /\ g a <= g b
==> ((\x. f(g x) * g'(x)) has_real_integral
real_integral (real_interval[g a,g b]) f) (real_interval[a,b])`,
REPEAT STRIP_TAC THEN
ABBREV_TAC `ff = \x. real_integral (real_interval[c,x]) f` THEN
MP_TAC(ISPECL
[`(ff:real->real) o (g:real->real)`;
`\x:real. (f:real->real)(g x) * g'(x)`; `k:real->bool`; `a:real`; `b:real`]
REAL_FUNDAMENTAL_THEOREM_OF_CALCULUS_INTERIOR_STRONG) THEN
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
[CONJ_TAC THENL
[MATCH_MP_TAC REAL_CONTINUOUS_ON_COMPOSE THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC REAL_CONTINUOUS_ON_SUBSET THEN
EXISTS_TAC `real_interval [c,d]` THEN ASM_REWRITE_TAC[] THEN
EXPAND_TAC "ff" THEN
MATCH_MP_TAC REAL_INDEFINITE_INTEGRAL_CONTINUOUS_RIGHT THEN
ASM_REWRITE_TAC[];
X_GEN_TAC `x:real` THEN REWRITE_TAC[IN_DIFF] THEN STRIP_TAC THEN
FIRST_ASSUM(ASSUME_TAC o MATCH_MP (REWRITE_RULE[SUBSET]
REAL_INTERVAL_OPEN_SUBSET_CLOSED)) THEN
SUBGOAL_THEN `(ff o g has_real_derivative f (g x:real) * g' x)
(atreal x within real_interval[a,b])`
MP_TAC THENL
[MATCH_MP_TAC REAL_DIFF_CHAIN_WITHIN THEN
ASM_SIMP_TAC[HAS_REAL_DERIVATIVE_ATREAL_WITHIN; IN_DIFF] THEN
MP_TAC(ISPECL [`f:real->real`; `c:real`; `d:real`; `(g:real->real) x`]
REAL_INTEGRAL_HAS_REAL_DERIVATIVE_POINTWISE) THEN
ASM_SIMP_TAC[REAL_CONTINUOUS_ATREAL_WITHINREAL; IN_DIFF] THEN
ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
ASM_MESON_TAC[HAS_REAL_DERIVATIVE_WITHIN_SUBSET];
DISCH_THEN(MP_TAC o SPEC `real_interval(a,b)` o MATCH_MP
(REWRITE_RULE[IMP_CONJ] HAS_REAL_DERIVATIVE_WITHIN_SUBSET)) THEN
REWRITE_TAC[REAL_INTERVAL_OPEN_SUBSET_CLOSED] THEN
REWRITE_TAC[HAS_REAL_DERIVATIVE_WITHINREAL] THEN
ASM_SIMP_TAC[REALLIM_WITHIN_REAL_OPEN; REAL_OPEN_REAL_INTERVAL] THEN
REWRITE_TAC[HAS_REAL_DERIVATIVE_ATREAL]]];
EXPAND_TAC "ff" THEN
MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[o_DEF] THEN MATCH_MP_TAC(REAL_ARITH
`z + w:real = y ==> y - z = w`) THEN
MATCH_MP_TAC REAL_INTEGRAL_COMBINE THEN ASM_REWRITE_TAC[] THEN
CONJ_TAC THENL
[ALL_TAC;
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ]
REAL_INTEGRABLE_SUBINTERVAL))] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [SUBSET]) THEN
REWRITE_TAC[FORALL_IN_IMAGE; IN_REAL_INTERVAL; SUBSET] THEN
ASM_MESON_TAC[REAL_LE_REFL; REAL_LE_TRANS]]);;
let HAS_REAL_INTEGRAL_SUBSTITUTION = prove
(`!f g g' a b c d k.
COUNTABLE k /\
f real_continuous_on real_interval[c,d] /\
g real_continuous_on real_interval[a,b] /\
IMAGE g (real_interval[a,b]) SUBSET real_interval[c,d] /\
(!x. x IN real_interval[a,b] DIFF k
==> (g has_real_derivative g'(x)) (atreal x)) /\
a <= b /\ c <= d /\ g a <= g b
==> ((\x. f(g x) * g'(x)) has_real_integral
real_integral (real_interval[g a,g b]) f) (real_interval[a,b])`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`f:real->real`; `c:real`; `d:real`]
REAL_INTEGRAL_HAS_REAL_DERIVATIVE) THEN
ASM_REWRITE_TAC[] THEN
ABBREV_TAC `h = \u. real_integral (real_interval[c,u]) f` THEN DISCH_TAC THEN
MP_TAC(ISPECL
[`(h:real->real) o (g:real->real)`;
`\x:real. (f:real->real)(g x) * g' x`;
`k:real->bool`; `a:real`; `b:real`]
REAL_FUNDAMENTAL_THEOREM_OF_CALCULUS_INTERIOR_STRONG) THEN
MP_TAC(ISPECL
[`h:real->real`; `f:real->real`;
`(g:real->real) a`; `(g:real->real) b`]
REAL_FUNDAMENTAL_THEOREM_OF_CALCULUS) THEN
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
[X_GEN_TAC `x:real` THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `x:real`) THEN ANTS_TAC THENL
[FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE
`x IN s ==> s SUBSET t ==> x IN t`));
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT]
HAS_REAL_DERIVATIVE_WITHIN_SUBSET)] THEN
REWRITE_TAC[SUBSET_REAL_INTERVAL] THEN DISJ2_TAC THEN
MATCH_MP_TAC(REAL_ARITH
`(c <= ga /\ ga <= d) /\ (c <= gb /\ gb <= d) /\ ga <= gb
==> c <= ga /\ ga <= gb /\ gb <= d`) THEN
ASM_REWRITE_TAC[GSYM IN_REAL_INTERVAL] THEN CONJ_TAC THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [SUBSET]) THEN
REWRITE_TAC[FORALL_IN_IMAGE] THEN DISCH_THEN MATCH_MP_TAC THEN
ASM_REWRITE_TAC[IN_REAL_INTERVAL; REAL_LE_REFL];
DISCH_THEN(SUBST1_TAC o MATCH_MP REAL_INTEGRAL_UNIQUE) THEN
REWRITE_TAC[o_THM] THEN DISCH_THEN MATCH_MP_TAC THEN CONJ_TAC THENL
[MATCH_MP_TAC REAL_CONTINUOUS_ON_COMPOSE THEN ASM_REWRITE_TAC[] THEN
EXPAND_TAC "h" THEN
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT]
REAL_CONTINUOUS_ON_SUBSET)) THEN
MATCH_MP_TAC REAL_INDEFINITE_INTEGRAL_CONTINUOUS_RIGHT THEN
ASM_SIMP_TAC[REAL_INTEGRABLE_CONTINUOUS];
X_GEN_TAC `x:real` THEN REWRITE_TAC[IN_DIFF] THEN STRIP_TAC THEN
FIRST_ASSUM(ASSUME_TAC o MATCH_MP (REWRITE_RULE[SUBSET]
REAL_INTERVAL_OPEN_SUBSET_CLOSED)) THEN
SUBGOAL_THEN
`(h o (g:real->real) has_real_derivative f(g x) * g' x)
(atreal x within real_interval[a,b])`
MP_TAC THENL
[MATCH_MP_TAC REAL_DIFF_CHAIN_WITHIN THEN
ASM_SIMP_TAC[IN_DIFF; HAS_REAL_DERIVATIVE_ATREAL_WITHIN] THEN
FIRST_X_ASSUM(MP_TAC o SPEC `(g:real->real) x`) THEN
ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT]
HAS_REAL_DERIVATIVE_WITHIN_SUBSET) THEN
ASM_REWRITE_TAC[];
REWRITE_TAC[HAS_REAL_DERIVATIVE_WITHINREAL; HAS_REAL_DERIVATIVE_ATREAL;
REALLIM_WITHINREAL_WITHIN; REALLIM_ATREAL_AT] THEN
REWRITE_TAC[IMAGE_LIFT_REAL_INTERVAL; TENDSTO_REAL] THEN
MATCH_MP_TAC EQ_IMP THEN MATCH_MP_TAC LIM_WITHIN_INTERIOR THEN
REWRITE_TAC[INTERIOR_INTERVAL; GSYM IMAGE_LIFT_REAL_INTERVAL] THEN
ASM_SIMP_TAC[FUN_IN_IMAGE]]]]);;
let REAL_INTEGRAL_SUBSTITUTION = prove
(`!f g g' a b c d k.
COUNTABLE k /\
f real_continuous_on real_interval[c,d] /\
g real_continuous_on real_interval[a,b] /\
IMAGE g (real_interval[a,b]) SUBSET real_interval[c,d] /\
(!x. x IN real_interval[a,b] DIFF k
==> (g has_real_derivative g'(x)) (atreal x)) /\
a <= b /\ c <= d /\ g a <= g b
==> real_integral (real_interval[a,b]) (\x. f(g x) * g'(x)) =
real_integral (real_interval[g a,g b]) f`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_INTEGRAL_UNIQUE THEN
ASM_MESON_TAC[HAS_REAL_INTEGRAL_SUBSTITUTION]);;
let HAS_REAL_INTEGRAL_SUBSTITUTION_SIMPLE = prove
(`!f g g' a b c d.
f real_continuous_on real_interval[c,d] /\
(!x. x IN real_interval[a,b]
==> (g has_real_derivative g'(x))
(atreal x within real_interval[a,b])) /\
IMAGE g (real_interval[a,b]) SUBSET real_interval[c,d] /\
a <= b /\ c <= d /\ g a <= g b
==> ((\x. f(g x) * g'(x)) has_real_integral
real_integral (real_interval[g a,g b]) f) (real_interval[a,b])`,
REPEAT STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP REAL_INTEGRAL_HAS_REAL_DERIVATIVE) THEN
ABBREV_TAC `h = \u. real_integral (real_interval[c,u]) f` THEN
DISCH_TAC THEN
MP_TAC(ISPECL
[`(h:real->real) o (g:real->real)`;
`\x:real. (f:real->real)(g x) * g' x`;
`a:real`; `b:real`]
REAL_FUNDAMENTAL_THEOREM_OF_CALCULUS) THEN
MP_TAC(ISPECL
[`h:real->real`; `f:real->real`; `(g:real->real) a`; `(g:real->real) b`]
REAL_FUNDAMENTAL_THEOREM_OF_CALCULUS) THEN
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
[X_GEN_TAC `x:real` THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `x:real`) THEN ANTS_TAC THENL
[FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE
`x IN s ==> s SUBSET t ==> x IN t`));
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT]
HAS_REAL_DERIVATIVE_WITHIN_SUBSET)] THEN
REWRITE_TAC[SUBSET_REAL_INTERVAL] THEN DISJ2_TAC THEN
MATCH_MP_TAC(REAL_ARITH
`(c <= ga /\ ga <= d) /\ (c <= gb /\ gb <= d) /\ ga <= gb
==> c <= ga /\ ga <= gb /\ gb <= d`) THEN
ASM_REWRITE_TAC[GSYM IN_REAL_INTERVAL] THEN CONJ_TAC THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [SUBSET]) THEN
REWRITE_TAC[FORALL_IN_IMAGE] THEN DISCH_THEN MATCH_MP_TAC THEN
ASM_REWRITE_TAC[IN_REAL_INTERVAL; REAL_LE_REFL];
DISCH_THEN(SUBST1_TAC o MATCH_MP REAL_INTEGRAL_UNIQUE) THEN
REWRITE_TAC[o_THM] THEN DISCH_THEN MATCH_MP_TAC THEN
X_GEN_TAC `x:real` THEN STRIP_TAC THEN
MATCH_MP_TAC REAL_DIFF_CHAIN_WITHIN THEN ASM_SIMP_TAC[] THEN
FIRST_X_ASSUM(MP_TAC o SPEC `(g:real->real) x`) THEN
ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT]
HAS_REAL_DERIVATIVE_WITHIN_SUBSET) THEN
ASM_REWRITE_TAC[]]);;
let REAL_INTEGRAL_SUBSTITUTION_SIMPLE = prove
(`!f g g' a b c d.
f real_continuous_on real_interval[c,d] /\
(!x. x IN real_interval[a,b]
==> (g has_real_derivative g'(x))
(atreal x within real_interval[a,b])) /\
IMAGE g (real_interval[a,b]) SUBSET real_interval[c,d] /\
a <= b /\ c <= d /\ g a <= g b
==> real_integral (real_interval[a,b]) (\x. f(g x) * g'(x)) =
real_integral (real_interval[g a,g b]) f`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_INTEGRAL_UNIQUE THEN
ASM_MESON_TAC[HAS_REAL_INTEGRAL_SUBSTITUTION_SIMPLE]);;
(* ------------------------------------------------------------------------- *)
(* Take slice of set s at x$k = t and drop the k'th coordinate. *)
(* ------------------------------------------------------------------------- *)
let slice = new_definition
`slice k t s = IMAGE (dropout k) (s INTER {x | x$k = t})`;;
let IN_SLICE = prove
(`!s:real^N->bool y:real^M.
dimindex(:M) + 1 = dimindex(:N) /\ 1 <= k /\ k <= dimindex(:N)
==> (y IN slice k t s <=> pushin k t y IN s)`,
SIMP_TAC[slice; IN_IMAGE_DROPOUT; IN_INTER; IN_ELIM_THM] THEN
REPEAT STRIP_TAC THEN REWRITE_TAC[pushin] THEN
ASM_SIMP_TAC[LAMBDA_BETA; LT_REFL] THEN MESON_TAC[]);;
let INTERVAL_INTER_HYPERPLANE = prove
(`!k t a b:real^N.
1 <= k /\ k <= dimindex(:N)
==> interval[a,b] INTER {x | x$k = t} =
if a$k <= t /\ t <= b$k
then interval[(lambda i. if i = k then t else a$i),
(lambda i. if i = k then t else b$i)]
else {}`,
REPEAT STRIP_TAC THEN
REWRITE_TAC[EXTENSION; IN_INTER; IN_INTERVAL; IN_ELIM_THM] THEN
X_GEN_TAC `x:real^N` THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL
[ALL_TAC; ASM_MESON_TAC[NOT_IN_EMPTY]] THEN
SIMP_TAC[IN_INTERVAL; LAMBDA_BETA] THEN
EQ_TAC THEN STRIP_TAC THENL [ASM_MESON_TAC[REAL_LE_ANTISYM]; ALL_TAC] THEN
CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[REAL_LE_ANTISYM]] THEN
X_GEN_TAC `i:num` THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `i:num`) THEN ASM_REWRITE_TAC[] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC);;
let SLICE_INTERVAL = prove
(`!k a b t. dimindex(:M) + 1 = dimindex(:N) /\
1 <= k /\ k <= dimindex(:N)
==> slice k t (interval[a,b]) =
if a$k <= t /\ t <= b$k
then interval[(dropout k:real^N->real^M) a,dropout k b]
else {}`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[slice; INTERVAL_INTER_HYPERPLANE] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[IMAGE_CLAUSES] THEN
ASM_SIMP_TAC[IMAGE_DROPOUT_CLOSED_INTERVAL; LAMBDA_BETA; REAL_LE_REFL] THEN
MATCH_MP_TAC(MESON[]
`a = a' /\ b = b' ==> interval[a,b] = interval[a',b']`) THEN
SIMP_TAC[CART_EQ; LAMBDA_BETA; dropout] THEN
SUBGOAL_THEN
`!i. i <= dimindex(:M) ==> i <= dimindex(:N) /\ i + 1 <= dimindex(:N)`
MP_TAC THENL
[ASM_ARITH_TAC;
ASM_SIMP_TAC[LAMBDA_BETA; ARITH_RULE `1 <= i + 1`] THEN ARITH_TAC]);;
let SLICE_DIFF = prove
(`!k a s t.
dimindex(:M) + 1 = dimindex(:N) /\ 1 <= k /\ k <= dimindex(:N)
==> (slice k a:(real^N->bool)->(real^M->bool)) (s DIFF t) =
(slice k a s) DIFF (slice k a t)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[slice] THEN
SIMP_TAC[SET_RULE `(s DIFF t) INTER u = (s INTER u) DIFF (t INTER u)`] THEN
MATCH_MP_TAC(SET_RULE
`(!x y. x IN a /\ y IN a /\ f x = f y ==> x = y)
==> IMAGE f ((s INTER a) DIFF (t INTER a)) =
IMAGE f (s INTER a) DIFF IMAGE f (t INTER a)`) THEN
REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[DROPOUT_EQ]);;
let SLICE_UNIV = prove
(`!k a. dimindex(:M) + 1 = dimindex(:N) /\ 1 <= k /\ k <= dimindex(:N)
==> slice k a (:real^N) = (:real^M)`,
REPEAT STRIP_TAC THEN
SIMP_TAC[EXTENSION; IN_UNIV; IN_IMAGE; slice; INTER_UNIV; IN_ELIM_THM] THEN
X_GEN_TAC `y:real^M` THEN EXISTS_TAC `(pushin k a:real^M->real^N) y` THEN
ASM_SIMP_TAC[DROPOUT_PUSHIN] THEN
ASM_SIMP_TAC[pushin; LAMBDA_BETA; LT_REFL]);;
let SLICE_EMPTY = prove
(`!k a. slice k a {} = {}`,
REWRITE_TAC[slice; INTER_EMPTY; IMAGE_CLAUSES]);;
let SLICE_SUBSET = prove
(`!s t k a. s SUBSET t ==> slice k a s SUBSET slice k a t`,
REWRITE_TAC[slice] THEN SET_TAC[]);;
let SLICE_UNIONS = prove
(`!s k a. slice k a (UNIONS s) = UNIONS (IMAGE (slice k a) s)`,
REPEAT GEN_TAC THEN REWRITE_TAC[slice; INTER_UNIONS; IMAGE_UNIONS] THEN
ONCE_REWRITE_TAC[SIMPLE_IMAGE] THEN REWRITE_TAC[GSYM IMAGE_o] THEN
AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[FUN_EQ_THM; o_THM; slice]);;
let SLICE_UNION = prove
(`!k a s t.
dimindex(:M) + 1 = dimindex(:N) /\ 1 <= k /\ k <= dimindex(:N)
==> (slice k a:(real^N->bool)->(real^M->bool)) (s UNION t) =
(slice k a s) UNION (slice k a t)`,
REPEAT GEN_TAC THEN REWRITE_TAC[slice; IMAGE_UNION;
SET_RULE `(s UNION t) INTER u = (s INTER u) UNION (t INTER u)`] THEN
ONCE_REWRITE_TAC[SIMPLE_IMAGE] THEN REWRITE_TAC[GSYM IMAGE_o] THEN
AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[FUN_EQ_THM; o_THM; slice]);;
let SLICE_INTER = prove
(`!k a s t.
dimindex(:M) + 1 = dimindex(:N) /\ 1 <= k /\ k <= dimindex(:N)
==> (slice k a:(real^N->bool)->(real^M->bool)) (s INTER t) =
(slice k a s) INTER (slice k a t)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[slice] THEN
MATCH_MP_TAC(SET_RULE
`(!x y. x IN u /\ y IN u /\ f x = f y ==> x = y)
==> IMAGE f ((s INTER t) INTER u) =
IMAGE f (s INTER u) INTER IMAGE f (t INTER u)`) THEN
REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[DROPOUT_EQ]);;
let CONVEX_SLICE = prove
(`!k t s. dimindex(:M) < dimindex(:N) /\ convex s
==> convex((slice k t:(real^N->bool)->(real^M->bool)) s)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[slice] THEN
MATCH_MP_TAC CONVEX_LINEAR_IMAGE THEN ASM_SIMP_TAC[LINEAR_DROPOUT] THEN
MATCH_MP_TAC CONVEX_INTER THEN ASM_REWRITE_TAC[CONVEX_STANDARD_HYPERPLANE]);;
let COMPACT_SLICE = prove
(`!k t s. dimindex(:M) < dimindex(:N) /\ compact s
==> compact((slice k t:(real^N->bool)->(real^M->bool)) s)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[slice] THEN
MATCH_MP_TAC COMPACT_LINEAR_IMAGE THEN ASM_SIMP_TAC[LINEAR_DROPOUT] THEN
REWRITE_TAC[COMPACT_EQ_BOUNDED_CLOSED] THEN CONJ_TAC THENL
[MATCH_MP_TAC BOUNDED_INTER THEN ASM_SIMP_TAC[COMPACT_IMP_BOUNDED];
MATCH_MP_TAC CLOSED_INTER THEN
ASM_SIMP_TAC[COMPACT_IMP_CLOSED; CLOSED_STANDARD_HYPERPLANE]]);;
let CLOSED_SLICE = prove
(`!k t s. dimindex(:M) + 1 = dimindex(:N) /\ 1 <= k /\ k <= dimindex(:N) /\
closed s
==> closed((slice k t:(real^N->bool)->(real^M->bool)) s)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[slice] THEN
SUBGOAL_THEN
`closed(IMAGE (dropout k:real^N->real^M)
(IMAGE (\x. x - t % basis k)
(s INTER {x | x$k = t})))`
MP_TAC THENL
[ALL_TAC;
REWRITE_TAC[GSYM IMAGE_o] THEN MATCH_MP_TAC EQ_IMP THEN
AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[FUN_EQ_THM; o_THM; dropout] THEN
SUBGOAL_THEN
`!i. i <= dimindex(:M) ==> i <= dimindex(:N) /\ i + 1 <= dimindex(:N)`
MP_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
SIMP_TAC[VECTOR_SUB_COMPONENT; VECTOR_MUL_COMPONENT; CART_EQ;
LAMBDA_BETA; BASIS_COMPONENT; ARITH_RULE `1 <= i + 1`] THEN
SIMP_TAC[ARITH_RULE `i:num < k ==> ~(i = k)`;
ARITH_RULE `~(i < k) ==> ~(i + 1 = k)`] THEN
REWRITE_TAC[REAL_MUL_RZERO; REAL_SUB_RZERO]] THEN
MATCH_MP_TAC CLOSED_INJECTIVE_IMAGE_SUBSET_SUBSPACE THEN
EXISTS_TAC `{x:real^N | x$k = &0}` THEN
ASM_SIMP_TAC[SUBSPACE_SPECIAL_HYPERPLANE; LINEAR_DROPOUT;
ARITH_RULE `m + 1 = n ==> m < n`] THEN
REPEAT CONJ_TAC THENL
[ONCE_REWRITE_TAC[VECTOR_ARITH `x - t % b:real^N = --(t % b) + x`] THEN
ASM_SIMP_TAC[CLOSED_TRANSLATION_EQ; CLOSED_INTER;
CLOSED_STANDARD_HYPERPLANE];
MATCH_MP_TAC(SET_RULE
`IMAGE f t SUBSET u ==> IMAGE f (s INTER t) SUBSET u`) THEN
REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_ELIM_THM] THEN
ASM_SIMP_TAC[VECTOR_SUB_COMPONENT; VECTOR_MUL_COMPONENT; BASIS_COMPONENT;
REAL_MUL_RID; REAL_SUB_REFL];
REWRITE_TAC[IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC DROPOUT_EQ THEN EXISTS_TAC `k:num` THEN
ASM_REWRITE_TAC[DROPOUT_0; VEC_COMPONENT]]);;
let OPEN_SLICE = prove
(`!k t s. dimindex(:M) + 1 = dimindex(:N) /\ 1 <= k /\ k <= dimindex(:N) /\
open s
==> open((slice k t:(real^N->bool)->(real^M->bool)) s)`,
REWRITE_TAC[OPEN_CLOSED] THEN REPEAT STRIP_TAC THEN
SUBGOAL_THEN `closed(slice k t ((:real^N) DIFF s):real^M->bool)`
MP_TAC THENL
[ASM_SIMP_TAC[CLOSED_SLICE];
ASM_SIMP_TAC[SLICE_DIFF; SLICE_UNIV]]);;
let BOUNDED_SLICE = prove
(`!k t s. dimindex(:M) + 1 = dimindex(:N) /\ 1 <= k /\ k <= dimindex(:N) /\
bounded s
==> bounded((slice k t:(real^N->bool)->(real^M->bool)) s)`,
REPEAT STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP BOUNDED_SUBSET_CLOSED_INTERVAL) THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`a:real^N`; `b:real^N`] THEN DISCH_TAC THEN
MATCH_MP_TAC BOUNDED_SUBSET THEN
EXISTS_TAC `(slice k t:(real^N->bool)->(real^M->bool)) (interval[a,b])` THEN
ASM_SIMP_TAC[SLICE_SUBSET] THEN ASM_SIMP_TAC[SLICE_INTERVAL] THEN
MESON_TAC[BOUNDED_EMPTY; BOUNDED_INTERVAL]);;
let SLICE_CBALL = prove
(`!k t x r.
dimindex(:M) + 1 = dimindex(:N) /\ 1 <= k /\ k <= dimindex(:N)
==> (slice k t:(real^N->bool)->(real^M->bool)) (cball(x,r)) =
if abs(t - x$k) <= r
then cball(dropout k x,sqrt(r pow 2 - (t - x$k) pow 2))
else {}`,
REPEAT STRIP_TAC THEN REWRITE_TAC[slice] THEN COND_CASES_TAC THENL
[ALL_TAC;
REWRITE_TAC[IMAGE_EQ_EMPTY] THEN
REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INTER; NOT_IN_EMPTY; IN_CBALL] THEN
X_GEN_TAC `y:real^N` THEN REWRITE_TAC[dist] THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
`~(a <= r) ==> a <= b ==> b <= r ==> F`)) THEN
ASM_MESON_TAC[VECTOR_SUB_COMPONENT; COMPONENT_LE_NORM; NORM_SUB]] THEN
FIRST_ASSUM(ASSUME_TAC o MATCH_MP(REAL_ARITH `abs(x) <= r ==> &0 <= r`)) THEN
REWRITE_TAC[EXTENSION; IN_IMAGE; IN_CBALL] THEN X_GEN_TAC `y:real^M` THEN
ASM_SIMP_TAC[DROPOUT_GALOIS; LEFT_AND_EXISTS_THM] THEN
ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN REWRITE_TAC[UNWIND_THM2] THEN
REWRITE_TAC[IN_CBALL; IN_INTER; IN_ELIM_THM] THEN
ASM_SIMP_TAC[pushin; LAMBDA_BETA; LT_REFL] THEN
ONCE_REWRITE_TAC[CONJ_SYM] THEN REWRITE_TAC[UNWIND_THM2] THEN
ASM_REWRITE_TAC[dist; NORM_LE_SQUARE; GSYM pushin] THEN
ASM_SIMP_TAC[SQRT_POW_2; SQRT_POS_LE; REAL_SUB_LE; GSYM REAL_LE_SQUARE_ABS;
REAL_ARITH `abs(x) <= r ==> abs(x) <= abs(r)`] THEN
REWRITE_TAC[VECTOR_ARITH
`(x - y:real^N) dot (x - y) = x dot x + y dot y - &2 * x dot y`] THEN
ASM_SIMP_TAC[DOT_DROPOUT; DOT_PUSHIN] THEN MATCH_MP_TAC(REAL_FIELD
`a = t * k + b
==> (xx + (yy + t * t) - &2 * a <= r pow 2 <=>
xx - k * k + yy - &2 * b <= r pow 2 - (t - k) pow 2)`) THEN
SUBGOAL_THEN
`y:real^M = dropout k (pushin k t y:real^N)`
(fun th -> GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [th])
THENL
[CONV_TAC SYM_CONV THEN MATCH_MP_TAC DROPOUT_PUSHIN THEN ASM_ARITH_TAC;
ASM_SIMP_TAC[DOT_DROPOUT] THEN
ASM_SIMP_TAC[pushin; LAMBDA_BETA; LT_REFL] THEN REAL_ARITH_TAC]);;
let SLICE_BALL = prove
(`!k t x r.
dimindex(:M) + 1 = dimindex(:N) /\ 1 <= k /\ k <= dimindex(:N)
==> (slice k t:(real^N->bool)->(real^M->bool)) (ball(x,r)) =
if abs(t - x$k) < r
then ball(dropout k x,sqrt(r pow 2 - (t - x$k) pow 2))
else {}`,
REPEAT STRIP_TAC THEN REWRITE_TAC[slice] THEN COND_CASES_TAC THENL
[ALL_TAC;
REWRITE_TAC[IMAGE_EQ_EMPTY] THEN
REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INTER; NOT_IN_EMPTY; IN_BALL] THEN
X_GEN_TAC `y:real^N` THEN REWRITE_TAC[dist] THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
`~(a < r) ==> a <= b ==> b < r ==> F`)) THEN
ASM_MESON_TAC[VECTOR_SUB_COMPONENT; COMPONENT_LE_NORM; NORM_SUB]] THEN
FIRST_ASSUM(ASSUME_TAC o MATCH_MP(REAL_ARITH `abs(x) < r ==> &0 < r`)) THEN
REWRITE_TAC[EXTENSION; IN_IMAGE; IN_BALL] THEN X_GEN_TAC `y:real^M` THEN
ASM_SIMP_TAC[DROPOUT_GALOIS; LEFT_AND_EXISTS_THM] THEN
ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN REWRITE_TAC[UNWIND_THM2] THEN
REWRITE_TAC[IN_BALL; IN_INTER; IN_ELIM_THM] THEN
ASM_SIMP_TAC[pushin; LAMBDA_BETA; LT_REFL] THEN
ONCE_REWRITE_TAC[CONJ_SYM] THEN REWRITE_TAC[UNWIND_THM2] THEN
ASM_REWRITE_TAC[dist; NORM_LT_SQUARE; GSYM pushin] THEN
ASM_SIMP_TAC[SQRT_POW_2; SQRT_POS_LT; REAL_SUB_LT; GSYM REAL_LT_SQUARE_ABS;
REAL_LT_IMP_LE; REAL_ARITH `abs(x) < r ==> abs(x) < abs(r)`] THEN
REWRITE_TAC[VECTOR_ARITH
`(x - y:real^N) dot (x - y) = x dot x + y dot y - &2 * x dot y`] THEN
ASM_SIMP_TAC[DOT_DROPOUT; DOT_PUSHIN] THEN MATCH_MP_TAC(REAL_FIELD
`a = t * k + b
==> (xx + (yy + t * t) - &2 * a < r pow 2 <=>
xx - k * k + yy - &2 * b < r pow 2 - (t - k) pow 2)`) THEN
SUBGOAL_THEN
`y:real^M = dropout k (pushin k t y:real^N)`
(fun th -> GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [th])
THENL
[CONV_TAC SYM_CONV THEN MATCH_MP_TAC DROPOUT_PUSHIN THEN ASM_ARITH_TAC;
ASM_SIMP_TAC[DOT_DROPOUT] THEN
ASM_SIMP_TAC[pushin; LAMBDA_BETA; LT_REFL] THEN REAL_ARITH_TAC]);;
(* ------------------------------------------------------------------------- *)
(* Weak but useful versions of Fubini's theorem. *)
(* ------------------------------------------------------------------------- *)
let FUBINI_CLOSED_INTERVAL = prove
(`!k a b:real^N.
dimindex(:M) + 1 = dimindex(:N) /\
1 <= k /\ k <= dimindex(:N) /\
a$k <= b$k
==> ((\t. measure (slice k t (interval[a,b]) :real^M->bool))
has_real_integral
(measure(interval[a,b]))) (:real)`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[SLICE_INTERVAL] THEN
ONCE_REWRITE_TAC[COND_RAND] THEN
REWRITE_TAC[MEASURE_EMPTY; MEASURE_INTERVAL] THEN
REWRITE_TAC[GSYM IN_REAL_INTERVAL] THEN
SIMP_TAC[HAS_REAL_INTEGRAL_RESTRICT; SUBSET_UNIV] THEN
SUBGOAL_THEN
`content(interval[a:real^N,b]) =
content(interval[dropout k a:real^M,dropout k b]) * (b$k - a$k)`
SUBST1_TAC THEN ASM_SIMP_TAC[HAS_REAL_INTEGRAL_CONST] THEN
REWRITE_TAC[CONTENT_CLOSED_INTERVAL_CASES] THEN
GEN_REWRITE_TAC (RAND_CONV o RATOR_CONV) [COND_RAND] THEN
GEN_REWRITE_TAC RAND_CONV [COND_RATOR] THEN
REWRITE_TAC[REAL_MUL_LZERO] THEN MATCH_MP_TAC(TAUT
`(p <=> p') /\ x = x'
==> (if p then x else y) = (if p' then x' else y)`) THEN
CONJ_TAC THENL
[SIMP_TAC[dropout; LAMBDA_BETA] THEN EQ_TAC THEN DISCH_TAC THEN
X_GEN_TAC `i:num` THEN STRIP_TAC THEN
(ASM_CASES_TAC `i <= dimindex(:N)` THENL
[ASM_REWRITE_TAC[]; ASM_ARITH_TAC])
THENL
[REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[REAL_LE_REFL]) THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_ARITH_TAC;
ASM_CASES_TAC `i:num = k` THEN ASM_REWRITE_TAC[] THEN
ASM_CASES_TAC `i:num < k` THENL
[FIRST_X_ASSUM(MP_TAC o SPEC `i:num`) THEN ASM_REWRITE_TAC[];
FIRST_X_ASSUM(MP_TAC o SPEC `i - 1`) THEN
COND_CASES_TAC THENL [ASM_ARITH_TAC; ASM_SIMP_TAC[SUB_ADD]]] THEN
DISCH_THEN MATCH_MP_TAC THEN ASM_ARITH_TAC];
ALL_TAC] THEN
SUBGOAL_THEN `1..dimindex(:N) =
(1..(k-1)) UNION
(k INSERT (IMAGE (\x. x + 1) (k..dimindex(:M))))`
SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_NUMSEG; IN_UNION; IN_INSERT; IN_IMAGE] THEN
ASM_SIMP_TAC[ARITH_RULE
`1 <= k
==> (x = y + 1 /\ k <= y /\ y <= n <=>
y = x - 1 /\ k + 1 <= x /\ x <= n + 1)`] THEN
REWRITE_TAC[CONJ_ASSOC; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN
ASM_ARITH_TAC;
ALL_TAC] THEN
REWRITE_TAC[SET_RULE `s UNION (x INSERT t) = x INSERT (s UNION t)`] THEN
SIMP_TAC[PRODUCT_CLAUSES; FINITE_NUMSEG; FINITE_UNION; FINITE_IMAGE] THEN
ASM_SIMP_TAC[IN_NUMSEG; IN_UNION; IN_IMAGE; ARITH_RULE
`1 <= k ==> ~(k <= k - 1)`] THEN
COND_CASES_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
GEN_REWRITE_TAC RAND_CONV [REAL_MUL_SYM] THEN AP_TERM_TAC THEN
MP_TAC(ISPECL [`1`; `k - 1`; `dimindex(:M)`] NUMSEG_COMBINE_R) THEN
ANTS_TAC THENL [ASM_ARITH_TAC; DISCH_THEN(SUBST1_TAC o SYM)] THEN
W(MP_TAC o PART_MATCH (lhs o rand) PRODUCT_UNION o lhand o snd) THEN
SIMP_TAC[FINITE_NUMSEG; FINITE_IMAGE; IN_NUMSEG; SET_RULE
`DISJOINT s (IMAGE f t) <=> !x. x IN t ==> ~(f x IN s)`] THEN
ANTS_TAC THENL [ASM_ARITH_TAC; DISCH_THEN SUBST1_TAC] THEN
W(MP_TAC o PART_MATCH (lhs o rand) PRODUCT_UNION o rand o snd) THEN
SIMP_TAC[FINITE_NUMSEG; FINITE_IMAGE; IN_NUMSEG; SET_RULE
`DISJOINT s t <=> !x. ~(x IN s /\ x IN t)`] THEN
ANTS_TAC THENL [ASM_ARITH_TAC; DISCH_THEN SUBST1_TAC] THEN
ASM_SIMP_TAC[PRODUCT_IMAGE; EQ_ADD_RCANCEL; SUB_ADD] THEN
BINOP_TAC THEN MATCH_MP_TAC PRODUCT_EQ_NUMSEG THEN
SIMP_TAC[dropout; LAMBDA_BETA; o_THM] THEN
REPEAT STRIP_TAC THEN BINOP_TAC THEN
(W(MP_TAC o PART_MATCH (lhs o rand) LAMBDA_BETA o rand o snd) THEN
ANTS_TAC THENL [ASM_ARITH_TAC; DISCH_THEN SUBST1_TAC] THEN
REWRITE_TAC[] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
ASM_ARITH_TAC));;
let MEASURABLE_OUTER_INTERVALS_BOUNDED_EXPLICIT_SPECIAL = prove
(`!s a b e.
2 <= dimindex(:N) /\ 1 <= k /\ k <= dimindex(:N) /\
measurable s /\ s SUBSET interval[a,b] /\ &0 < e
==> ?f:num->real^N->bool.
(!i. (f i) SUBSET interval[a,b] /\
?c d. c$k <= d$k /\ f i = interval[c,d]) /\
(!i j. ~(i = j) ==> negligible(f i INTER f j)) /\
s SUBSET UNIONS {f n | n IN (:num)} /\
measurable(UNIONS {f n | n IN (:num)}) /\
measure(UNIONS {f n | n IN (:num)}) <= measure s + e`,
let lemma = prove
(`UNIONS {if n IN s then f n else {} | n IN (:num)} =
UNIONS (IMAGE f s)`,
SIMP_TAC[EXTENSION; IN_UNIONS; IN_ELIM_THM; IN_UNIV; EXISTS_IN_IMAGE] THEN
MESON_TAC[NOT_IN_EMPTY]) in
REPEAT GEN_TAC THEN
REPLICATE_TAC 3 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
DISCH_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP MEASURABLE_OUTER_INTERVALS_BOUNDED) THEN
DISCH_THEN(X_CHOOSE_THEN `d:(real^N->bool)->bool` STRIP_ASSUME_TAC) THEN
ASM_CASES_TAC `FINITE(d:(real^N->bool)->bool)` THENL
[FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [FINITE_INDEX_NUMSEG]) THEN
DISCH_THEN(X_CHOOSE_THEN `f:num->real^N->bool`
(fun th -> SUBST_ALL_TAC(CONJUNCT2 th) THEN ASSUME_TAC(CONJUNCT1 th))) THEN
RULE_ASSUM_TAC(REWRITE_RULE[IMP_CONJ; FORALL_IN_IMAGE;
RIGHT_FORALL_IMP_THM; IN_UNIV]) THEN
EXISTS_TAC `\k. if k IN 1..CARD(d:(real^N->bool)->bool) then f k
else ({}:real^N->bool)` THEN
REWRITE_TAC[] THEN CONJ_TAC THENL
[X_GEN_TAC `i:num` THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL
[ASM_MESON_TAC[REAL_NOT_LT; IN_NUMSEG; REAL_NOT_LE; INTERVAL_EQ_EMPTY];
REWRITE_TAC[EMPTY_SUBSET] THEN CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN
EXISTS_TAC `(lambda i. if i = k then &0 else &1):real^N` THEN
EXISTS_TAC `(lambda i. if i = k then &1 else &0):real^N` THEN
REWRITE_TAC[INTERVAL_EQ_EMPTY] THEN CONJ_TAC THENL
[SIMP_TAC[LAMBDA_BETA; ASSUME `1 <= k`; ASSUME `k <= dimindex(:N)`;
REAL_POS];
ALL_TAC] THEN
SUBGOAL_THEN `?j. 1 <= j /\ j <= dimindex(:N) /\ ~(j = k)` MP_TAC THENL
[MATCH_MP_TAC(MESON[] `P(k - 1) \/ P(k + 1) ==> ?i. P i`) THEN
ASM_ARITH_TAC;
MATCH_MP_TAC MONO_EXISTS THEN SIMP_TAC[LAMBDA_BETA] THEN
REAL_ARITH_TAC]];
ALL_TAC] THEN
CONJ_TAC THENL [ALL_TAC; ASM_REWRITE_TAC[lemma]] THEN
REPEAT GEN_TAC THEN
REPEAT(COND_CASES_TAC THEN
ASM_REWRITE_TAC[INTER_EMPTY; NEGLIGIBLE_EMPTY]);
MP_TAC(ISPEC `d:(real^N->bool)->bool` COUNTABLE_AS_INJECTIVE_IMAGE) THEN
ASM_REWRITE_TAC[INFINITE] THEN MATCH_MP_TAC MONO_EXISTS THEN
X_GEN_TAC `f:num->real^N->bool` THEN
DISCH_THEN(CONJUNCTS_THEN2 SUBST_ALL_TAC ASSUME_TAC) THEN
RULE_ASSUM_TAC(REWRITE_RULE[IMP_CONJ; FORALL_IN_IMAGE;
RIGHT_FORALL_IMP_THM; IN_UNIV]) THEN
RULE_ASSUM_TAC(REWRITE_RULE[GSYM SIMPLE_IMAGE]) THEN
ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
[ASM_MESON_TAC[REAL_NOT_LT; IN_NUMSEG; REAL_NOT_LE; INTERVAL_EQ_EMPTY];
ALL_TAC] THEN
MAP_EVERY X_GEN_TAC [`i:num`; `j:num`]] THEN
(DISCH_TAC THEN
SUBGOAL_THEN `negligible(interior((f:num->real^N->bool) i) INTER
interior(f j))`
MP_TAC THENL [ASM_MESON_TAC[NEGLIGIBLE_EMPTY]; ALL_TAC] THEN
REWRITE_TAC[GSYM INTERIOR_INTER] THEN
REWRITE_TAC[GSYM HAS_MEASURE_0] THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT]
HAS_MEASURE_NEGLIGIBLE_SYMDIFF) THEN
SIMP_TAC[INTERIOR_SUBSET; SET_RULE
`interior(s) SUBSET s
==> (interior s DIFF s) UNION (s DIFF interior s) =
s DIFF interior s`] THEN
SUBGOAL_THEN `(?c d. (f:num->real^N->bool) i = interval[c,d]) /\
(?c d. (f:num->real^N->bool) j = interval[c,d])`
STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
ASM_REWRITE_TAC[INTER_INTERVAL; NEGLIGIBLE_FRONTIER_INTERVAL;
INTERIOR_CLOSED_INTERVAL]));;
let REAL_MONOTONE_CONVERGENCE_INCREASING_AE = prove
(`!f:num->real->real g s.
(!k. (f k) real_integrable_on s) /\
(!k x. x IN s ==> f k x <= f (SUC k) x) /\
(?t. real_negligible t /\
!x. x IN (s DIFF t) ==> ((\k. f k x) ---> g x) sequentially) /\
real_bounded {real_integral s (f k) | k IN (:num)}
==> g real_integrable_on s /\
((\k. real_integral s (f k)) ---> real_integral s g) sequentially`,
REPEAT GEN_TAC THEN STRIP_TAC THEN
SUBGOAL_THEN
`g real_integrable_on (s DIFF t) /\
((\k. real_integral (s DIFF t) (f k)) ---> real_integral (s DIFF t) g)
sequentially`
MP_TAC THENL
[MATCH_MP_TAC REAL_MONOTONE_CONVERGENCE_INCREASING THEN
REPEAT CONJ_TAC THENL
[UNDISCH_TAC `!k:num. f k real_integrable_on s` THEN
MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN
MATCH_MP_TAC REAL_INTEGRABLE_SPIKE_SET;
ASM_SIMP_TAC[IN_DIFF];
ASM_REWRITE_TAC[];
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [real_bounded]) THEN
REWRITE_TAC[real_bounded; FORALL_IN_GSPEC; IN_UNIV] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `B:real` THEN
MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN MATCH_MP_TAC EQ_IMP THEN
AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN
MATCH_MP_TAC REAL_INTEGRAL_SPIKE_SET];
MATCH_MP_TAC EQ_IMP THEN BINOP_TAC THENL
[MATCH_MP_TAC REAL_INTEGRABLE_SPIKE_SET_EQ THEN
MATCH_MP_TAC REAL_NEGLIGIBLE_SUBSET THEN
EXISTS_TAC `t:real->bool` THEN ASM_REWRITE_TAC[] THEN SET_TAC[];
AP_THM_TAC THEN BINOP_TAC THENL
[ABS_TAC; ALL_TAC] THEN
MATCH_MP_TAC REAL_INTEGRAL_SPIKE_SET]] THEN
MATCH_MP_TAC REAL_NEGLIGIBLE_SUBSET THEN
EXISTS_TAC `t:real->bool` THEN ASM_REWRITE_TAC[] THEN SET_TAC[]);;
let FUBINI_SIMPLE_LEMMA = prove
(`!k s:real^N->bool e.
&0 < e /\
dimindex(:M) + 1 = dimindex(:N) /\
1 <= k /\ k <= dimindex(:N) /\
bounded s /\ measurable s /\
(!t. measurable(slice k t s:real^M->bool)) /\
(\t. measure (slice k t s:real^M->bool)) real_integrable_on (:real)
==> real_integral(:real) (\t. measure (slice k t s :real^M->bool))
<= measure s + e`,
REPEAT STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP BOUNDED_SUBSET_CLOSED_INTERVAL) THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`a:real^N`; `b:real^N`] THEN DISCH_TAC THEN
MP_TAC(ISPECL [`s:real^N->bool`; `a:real^N`; `b:real^N`; `e:real`]
MEASURABLE_OUTER_INTERVALS_BOUNDED_EXPLICIT_SPECIAL) THEN
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
[SUBGOAL_THEN `1 <= dimindex(:M)` MP_TAC THENL
[REWRITE_TAC[DIMINDEX_GE_1]; ASM_ARITH_TAC];
ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `d:num->(real^N->bool)` STRIP_ASSUME_TAC) THEN
SUBGOAL_THEN `!t n:num. measurable((slice k t:(real^N->bool)->real^M->bool)
(d n))`
ASSUME_TAC THENL
[MAP_EVERY X_GEN_TAC [`t:real`; `n:num`] THEN
FIRST_X_ASSUM(STRIP_ASSUME_TAC o CONJUNCT2 o SPEC `n:num`) THEN
ASM_SIMP_TAC[SLICE_INTERVAL] THEN
MESON_TAC[MEASURABLE_EMPTY; MEASURABLE_INTERVAL];
ALL_TAC] THEN
MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `measure(UNIONS {d n | n IN (:num)}:real^N->bool)` THEN
ASM_REWRITE_TAC[] THEN
MP_TAC(ISPECL
[`\n t. sum(0..n)
(\m. measure((slice k t:(real^N->bool)->real^M->bool)
(d m)))`;
`\t. measure((slice k t:(real^N->bool)->real^M->bool)
(UNIONS {d n | n IN (:num)}))`; `(:real)`]
REAL_MONOTONE_CONVERGENCE_INCREASING_AE) THEN
REWRITE_TAC[] THEN ANTS_TAC THENL
[CONJ_TAC THENL
[X_GEN_TAC `i:num` THEN MATCH_MP_TAC REAL_INTEGRABLE_SUM THEN
ASM_REWRITE_TAC[FINITE_NUMSEG] THEN X_GEN_TAC `j:num` THEN
DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o CONJUNCT2 o SPEC `j:num`) THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`u:real^N`; `v:real^N`] THEN STRIP_TAC THEN
MP_TAC(ISPECL [`k:num`; `u:real^N`; `v:real^N`]
FUBINI_CLOSED_INTERVAL) THEN
ASM_REWRITE_TAC[] THEN MESON_TAC[real_integrable_on];
ALL_TAC] THEN
CONJ_TAC THENL
[REPEAT STRIP_TAC THEN REWRITE_TAC[SUM_CLAUSES_NUMSEG; LE_0] THEN
REWRITE_TAC[REAL_LE_ADDR] THEN MATCH_MP_TAC MEASURE_POS_LE THEN
ASM_REWRITE_TAC[];
ALL_TAC] THEN
CONJ_TAC THENL
[ALL_TAC;
REWRITE_TAC[real_bounded; FORALL_IN_GSPEC; IN_UNIV] THEN
EXISTS_TAC `measure(interval[a:real^N,b])` THEN X_GEN_TAC `i:num` THEN
W(MP_TAC o PART_MATCH (lhand o rand) REAL_INTEGRAL_SUM o
rand o lhand o snd) THEN
ANTS_TAC THENL
[REWRITE_TAC[FINITE_NUMSEG] THEN X_GEN_TAC `j:num` THEN DISCH_TAC THEN
SUBGOAL_THEN `?u v. u$k <= v$k /\
(d:num->real^N->bool) j = interval[u,v]`
STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN REWRITE_TAC[real_integrable_on] THEN
EXISTS_TAC `measure(interval[u:real^N,v])` THEN
MATCH_MP_TAC FUBINI_CLOSED_INTERVAL THEN ASM_REWRITE_TAC[];
ALL_TAC] THEN
DISCH_THEN SUBST1_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `abs(sum(0..i) (\m. measure(d m:real^N->bool)))` THEN
CONJ_TAC THENL
[MATCH_MP_TAC REAL_EQ_IMP_LE THEN AP_TERM_TAC THEN
MATCH_MP_TAC SUM_EQ_NUMSEG THEN
X_GEN_TAC `j:num` THEN STRIP_TAC THEN REWRITE_TAC[] THEN
MATCH_MP_TAC REAL_INTEGRAL_UNIQUE THEN
SUBGOAL_THEN `?u v. u$k <= v$k /\
(d:num->real^N->bool) j = interval[u,v]`
STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC FUBINI_CLOSED_INTERVAL THEN ASM_REWRITE_TAC[];
ALL_TAC] THEN
MATCH_MP_TAC(REAL_ARITH `&0 <= x /\ x <= a ==> abs x <= a`) THEN
CONJ_TAC THENL
[MATCH_MP_TAC SUM_POS_LE THEN REWRITE_TAC[FINITE_NUMSEG] THEN
ASM_MESON_TAC[MEASURE_POS_LE; MEASURABLE_INTERVAL];
ALL_TAC] THEN
W(MP_TAC o PART_MATCH (rhs o rand) MEASURE_NEGLIGIBLE_UNIONS_IMAGE o
lhand o snd) THEN
ANTS_TAC THENL
[ASM_SIMP_TAC[FINITE_NUMSEG] THEN ASM_MESON_TAC[MEASURABLE_INTERVAL];
ALL_TAC] THEN
DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_MP_TAC MEASURE_SUBSET THEN
REWRITE_TAC[MEASURABLE_INTERVAL] THEN CONJ_TAC THENL
[MATCH_MP_TAC MEASURABLE_UNIONS THEN
ASM_SIMP_TAC[FINITE_NUMSEG; FINITE_IMAGE; FORALL_IN_IMAGE] THEN
ASM_MESON_TAC[MEASURABLE_INTERVAL];
REWRITE_TAC[UNIONS_SUBSET; FORALL_IN_IMAGE] THEN ASM_MESON_TAC[]]] THEN
EXISTS_TAC
`(IMAGE (\i. (interval_lowerbound(d i):real^N)$k) (:num)) UNION
(IMAGE (\i. (interval_upperbound(d i):real^N)$k) (:num))` THEN
CONJ_TAC THENL
[MATCH_MP_TAC REAL_NEGLIGIBLE_COUNTABLE THEN
SIMP_TAC[COUNTABLE_UNION; COUNTABLE_IMAGE; NUM_COUNTABLE];
ALL_TAC] THEN
X_GEN_TAC `t:real` THEN
REWRITE_TAC[IN_DIFF; IN_UNION; IN_IMAGE] THEN
GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) [IN_UNIV] THEN
REWRITE_TAC[DE_MORGAN_THM; NOT_EXISTS_THM] THEN DISCH_TAC THEN
MP_TAC(ISPEC `\n:num. (slice k t:(real^N->bool)->real^M->bool)
(d n)`
HAS_MEASURE_COUNTABLE_NEGLIGIBLE_UNIONS_BOUNDED) THEN
ASM_REWRITE_TAC[SLICE_UNIONS] THEN ANTS_TAC THENL
[ALL_TAC;
DISCH_THEN(MP_TAC o CONJUNCT2) THEN
GEN_REWRITE_TAC (LAND_CONV o RATOR_CONV o LAND_CONV) [GSYM o_DEF] THEN
REWRITE_TAC[GSYM REAL_SUMS; real_sums; FROM_INTER_NUMSEG] THEN
REWRITE_TAC[SIMPLE_IMAGE; GSYM IMAGE_o; o_DEF]] THEN
CONJ_TAC THENL
[ALL_TAC;
MATCH_MP_TAC BOUNDED_SUBSET THEN
EXISTS_TAC `(slice k t:(real^N->bool)->real^M->bool) (interval[a,b])` THEN
CONJ_TAC THENL
[ASM_SIMP_TAC[SLICE_INTERVAL] THEN
MESON_TAC[BOUNDED_INTERVAL; BOUNDED_EMPTY];
REWRITE_TAC[UNIONS_SUBSET; FORALL_IN_GSPEC] THEN
ASM_MESON_TAC[SLICE_SUBSET]]] THEN
MAP_EVERY X_GEN_TAC [`i:num`; `j:num`] THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`i:num`; `j:num`]) THEN
ASM_REWRITE_TAC[] THEN
ASM_CASES_TAC `(d:num->real^N->bool) i = {}` THENL
[ASM_REWRITE_TAC[INTER_EMPTY; NEGLIGIBLE_EMPTY; SLICE_EMPTY];
UNDISCH_TAC `~((d:num->real^N->bool) i = {})`] THEN
ASM_CASES_TAC `(d:num->real^N->bool) j = {}` THENL
[ASM_REWRITE_TAC[INTER_EMPTY; NEGLIGIBLE_EMPTY; SLICE_EMPTY];
UNDISCH_TAC `~((d:num->real^N->bool) j = {})`] THEN
FIRST_ASSUM(fun th ->
MAP_EVERY (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)
[SPEC `i:num` th; SPEC `j:num` th]) THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`w:real^N`; `x:real^N`] THEN STRIP_TAC THEN
MAP_EVERY X_GEN_TAC [`u:real^N`; `v:real^N`] THEN STRIP_TAC THEN
ASM_SIMP_TAC[SLICE_INTERVAL; INTERVAL_NE_EMPTY] THEN
DISCH_TAC THEN DISCH_TAC THEN
REPEAT(COND_CASES_TAC THEN
ASM_REWRITE_TAC[INTER_EMPTY; NEGLIGIBLE_EMPTY]) THEN
REWRITE_TAC[INTER_INTERVAL; NEGLIGIBLE_INTERVAL; INTERVAL_EQ_EMPTY] THEN
ONCE_REWRITE_TAC[TAUT `a /\ b /\ c <=> ~(a /\ b ==> ~c)`] THEN
SIMP_TAC[LAMBDA_BETA] THEN REWRITE_TAC[NOT_IMP] THEN
DISCH_THEN(X_CHOOSE_THEN `l:num` STRIP_ASSUME_TAC) THEN
SUBGOAL_THEN `~(l:num = k)` ASSUME_TAC THENL
[FIRST_X_ASSUM(CONJUNCTS_THEN
(fun th -> MP_TAC(SPEC `i:num` th) THEN MP_TAC(SPEC `j:num` th))) THEN
ASM_SIMP_TAC[INTERVAL_LOWERBOUND; INTERVAL_UPPERBOUND] THEN
REWRITE_TAC[IMP_IMP] THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN
REWRITE_TAC[] THEN DISCH_THEN SUBST_ALL_TAC THEN ASM_REAL_ARITH_TAC;
ALL_TAC] THEN
FIRST_ASSUM(DISJ_CASES_TAC o MATCH_MP (ARITH_RULE
`~(l:num = k) ==> l < k \/ k < l`))
THENL
[EXISTS_TAC `l:num` THEN
MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN
CONJ_TAC THENL [ASM_ARITH_TAC; SIMP_TAC[dropout; LAMBDA_BETA]] THEN
ASM_REWRITE_TAC[];
ALL_TAC] THEN
EXISTS_TAC `l - 1` THEN
MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN
CONJ_TAC THENL [ASM_ARITH_TAC; SIMP_TAC[dropout; LAMBDA_BETA]] THEN
ASM_SIMP_TAC[ARITH_RULE `k < l ==> ~(l - 1 < k)`] THEN
ASM_SIMP_TAC[SUB_ADD];
ALL_TAC] THEN
STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC
`real_integral (:real)
(\t. measure ((slice k t :(real^N->bool)->real^M->bool)
(UNIONS {d n | n IN (:num)})))` THEN
CONJ_TAC THENL
[MATCH_MP_TAC REAL_INTEGRAL_LE THEN ASM_REWRITE_TAC[] THEN
X_GEN_TAC `t:real` THEN DISCH_TAC THEN MATCH_MP_TAC MEASURE_SUBSET THEN
ASM_SIMP_TAC[SLICE_SUBSET; SLICE_UNIONS] THEN
ONCE_REWRITE_TAC[SIMPLE_IMAGE] THEN REWRITE_TAC[GSYM IMAGE_o] THEN
ONCE_REWRITE_TAC[GSYM SIMPLE_IMAGE] THEN
MATCH_MP_TAC MEASURABLE_COUNTABLE_UNIONS_BOUNDED THEN
ASM_REWRITE_TAC[o_THM] THEN
MATCH_MP_TAC BOUNDED_SUBSET THEN
EXISTS_TAC `(slice k t:(real^N->bool)->real^M->bool) (interval[a,b])` THEN
CONJ_TAC THENL
[ASM_SIMP_TAC[SLICE_INTERVAL] THEN
MESON_TAC[BOUNDED_INTERVAL; BOUNDED_EMPTY];
REWRITE_TAC[UNIONS_SUBSET; FORALL_IN_GSPEC] THEN
ASM_MESON_TAC[SLICE_SUBSET]];
MATCH_MP_TAC REAL_EQ_IMP_LE THEN
MATCH_MP_TAC(ISPEC `sequentially` REALLIM_UNIQUE) THEN
EXISTS_TAC `\n. real_integral (:real)
(\t. sum (0..n) (\m. measure((slice k t:(real^N->bool)->real^M->bool)
(d m))))` THEN
ASM_REWRITE_TAC[TRIVIAL_LIMIT_SEQUENTIALLY] THEN
MP_TAC(ISPEC `d:num->(real^N->bool)`
HAS_MEASURE_COUNTABLE_NEGLIGIBLE_UNIONS_BOUNDED) THEN
ANTS_TAC THENL
[ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
[ASM_MESON_TAC[MEASURABLE_INTERVAL]; ALL_TAC] THEN
MATCH_MP_TAC BOUNDED_SUBSET THEN EXISTS_TAC `interval[a:real^N,b]` THEN
REWRITE_TAC[BOUNDED_INTERVAL; UNIONS_SUBSET; IN_ELIM_THM] THEN
ASM_MESON_TAC[];
ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN
GEN_REWRITE_TAC (LAND_CONV o RATOR_CONV o LAND_CONV) [GSYM o_DEF] THEN
REWRITE_TAC[GSYM REAL_SUMS] THEN
REWRITE_TAC[real_sums; FROM_INTER_NUMSEG] THEN
MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_THM_TAC THEN
AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN
X_GEN_TAC `i:num` THEN REWRITE_TAC[] THEN
W(MP_TAC o PART_MATCH (lhand o rand) REAL_INTEGRAL_SUM o rand o snd) THEN
ANTS_TAC THENL
[REWRITE_TAC[FINITE_NUMSEG] THEN X_GEN_TAC `j:num` THEN DISCH_TAC THEN
SUBGOAL_THEN `?u v. u$k <= v$k /\
(d:num->real^N->bool) j = interval[u,v]`
STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN REWRITE_TAC[real_integrable_on] THEN
EXISTS_TAC `measure(interval[u:real^N,v])` THEN
MATCH_MP_TAC FUBINI_CLOSED_INTERVAL THEN ASM_REWRITE_TAC[];
ALL_TAC] THEN
DISCH_THEN SUBST1_TAC THEN MATCH_MP_TAC SUM_EQ_NUMSEG THEN
X_GEN_TAC `j:num` THEN STRIP_TAC THEN REWRITE_TAC[] THEN
CONV_TAC SYM_CONV THEN MATCH_MP_TAC REAL_INTEGRAL_UNIQUE THEN
SUBGOAL_THEN `?u v. u$k <= v$k /\
(d:num->real^N->bool) j = interval[u,v]`
STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC FUBINI_CLOSED_INTERVAL THEN ASM_REWRITE_TAC[]]);;
let FUBINI_SIMPLE = prove
(`!k s:real^N->bool.
dimindex(:M) + 1 = dimindex(:N) /\
1 <= k /\ k <= dimindex(:N) /\
bounded s /\
measurable s /\
(!t. measurable(slice k t s :real^M->bool)) /\
(\t. measure (slice k t s :real^M->bool)) real_integrable_on (:real)
==> measure s =
real_integral(:real)(\t. measure (slice k t s :real^M->bool))`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `s:real^N->bool = {}` THENL
[ASM_REWRITE_TAC[SLICE_EMPTY; MEASURE_EMPTY; REAL_INTEGRAL_0];
ALL_TAC] THEN
FIRST_ASSUM(MP_TAC o MATCH_MP BOUNDED_SUBSET_CLOSED_INTERVAL) THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`a:real^N`; `b:real^N`] THEN DISCH_TAC THEN
SUBGOAL_THEN `~(interval[a:real^N,b] = {})` MP_TAC THENL
[ASM SET_TAC[]; REWRITE_TAC[INTERVAL_NE_EMPTY] THEN DISCH_TAC] THEN
MATCH_MP_TAC(REAL_ARITH `~(&0 < b - a) /\ ~(&0 < a - b) ==> a:real = b`) THEN
CONJ_TAC THEN MATCH_MP_TAC(MESON[]
`(!e. x - y = e ==> ~(&0 < e)) ==> ~(&0 < x - y)`) THEN
X_GEN_TAC `e:real` THEN REPEAT STRIP_TAC THENL
[MP_TAC(ISPECL [`k:num`; `s:real^N->bool`; `e / &2`]
FUBINI_SIMPLE_LEMMA) THEN
ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC;
ALL_TAC] THEN
MP_TAC(ISPECL [`k:num`; `interval[a:real^N,b] DIFF s`; `e / &2`]
FUBINI_SIMPLE_LEMMA) THEN
ASM_REWRITE_TAC[NOT_IMP; GSYM CONJ_ASSOC] THEN
CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
CONJ_TAC THENL [SIMP_TAC[BOUNDED_DIFF; BOUNDED_INTERVAL]; ALL_TAC] THEN
CONJ_TAC THENL
[ASM_SIMP_TAC[MEASURABLE_DIFF; MEASURABLE_INTERVAL]; ALL_TAC] THEN
ASM_SIMP_TAC[SLICE_DIFF] THEN
MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL
[X_GEN_TAC `t:real` THEN MATCH_MP_TAC MEASURABLE_DIFF THEN
ASM_SIMP_TAC[SLICE_INTERVAL] THEN
MESON_TAC[MEASURABLE_EMPTY; MEASURABLE_INTERVAL];
DISCH_TAC] THEN
SUBGOAL_THEN
`!t. measure(slice k t (interval[a:real^N,b]) DIFF
slice k t (s:real^N->bool) :real^M->bool) =
measure(slice k t (interval[a:real^N,b]):real^M->bool) -
measure(slice k t s :real^M->bool)`
(fun th -> REWRITE_TAC[th])
THENL
[X_GEN_TAC `t:real` THEN MATCH_MP_TAC MEASURE_DIFF_SUBSET THEN
ASM_SIMP_TAC[SLICE_SUBSET] THEN
ASM_SIMP_TAC[SLICE_INTERVAL] THEN
MESON_TAC[MEASURABLE_EMPTY; MEASURABLE_INTERVAL];
ALL_TAC] THEN
MP_TAC(ISPECL [`k:num`; `a:real^N`; `b:real^N`] FUBINI_CLOSED_INTERVAL) THEN
ASM_SIMP_TAC[] THEN DISCH_TAC THEN CONJ_TAC THENL
[MATCH_MP_TAC REAL_INTEGRABLE_SUB THEN ASM_MESON_TAC[real_integrable_on];
ALL_TAC] THEN
REWRITE_TAC[REAL_NOT_LE] THEN
ASM_SIMP_TAC[MEASURE_DIFF_SUBSET; MEASURABLE_INTERVAL] THEN
W(MP_TAC o PART_MATCH (lhs o rand) REAL_INTEGRAL_SUB o rand o snd) THEN
ANTS_TAC THENL
[ASM_MESON_TAC[real_integrable_on]; DISCH_THEN SUBST1_TAC] THEN
FIRST_ASSUM(SUBST1_TAC o MATCH_MP REAL_INTEGRAL_UNIQUE) THEN
ASM_REAL_ARITH_TAC);;
let FUBINI_SIMPLE_ALT = prove
(`!k s:real^N->bool.
dimindex(:M) + 1 = dimindex(:N) /\
1 <= k /\ k <= dimindex(:N) /\
bounded s /\
measurable s /\
(!t. measurable(slice k t s :real^M->bool)) /\
((\t. measure (slice k t s :real^M->bool)) has_real_integral B) (:real)
==> measure s = B`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC
`real_integral (:real)
(\t. measure (slice k t (s:real^N->bool) :real^M->bool))` THEN
CONJ_TAC THENL
[MATCH_MP_TAC FUBINI_SIMPLE THEN ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[real_integrable_on];
MATCH_MP_TAC REAL_INTEGRAL_UNIQUE THEN ASM_REWRITE_TAC[]]);;
let FUBINI_SIMPLE_COMPACT_STRONG = prove
(`!k s:real^N->bool.
dimindex(:M) + 1 = dimindex(:N) /\
1 <= k /\ k <= dimindex(:N) /\
compact s /\
((\t. measure (slice k t s :real^M->bool)) has_real_integral B) (:real)
==> measurable s /\ measure s = B`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[MEASURABLE_COMPACT] THEN
MATCH_MP_TAC FUBINI_SIMPLE_ALT THEN
EXISTS_TAC `k:num` THEN ASM_REWRITE_TAC[] THEN
ASM_SIMP_TAC[COMPACT_IMP_BOUNDED; MEASURABLE_COMPACT] THEN
GEN_TAC THEN MATCH_MP_TAC MEASURABLE_COMPACT THEN
MATCH_MP_TAC COMPACT_SLICE THEN ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC);;
let FUBINI_SIMPLE_COMPACT = prove
(`!k s:real^N->bool.
dimindex(:M) + 1 = dimindex(:N) /\
1 <= k /\ k <= dimindex(:N) /\
compact s /\
((\t. measure (slice k t s :real^M->bool)) has_real_integral B) (:real)
==> measure s = B`,
REPEAT GEN_TAC THEN
DISCH_THEN(MP_TAC o MATCH_MP FUBINI_SIMPLE_COMPACT_STRONG) THEN SIMP_TAC[]);;
let FUBINI_SIMPLE_CONVEX_STRONG = prove
(`!k s:real^N->bool.
dimindex(:M) + 1 = dimindex(:N) /\
1 <= k /\ k <= dimindex(:N) /\
bounded s /\ convex s /\
((\t. measure (slice k t s :real^M->bool)) has_real_integral B) (:real)
==> measurable s /\ measure s = B`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[MEASURABLE_CONVEX] THEN
MATCH_MP_TAC FUBINI_SIMPLE_ALT THEN
EXISTS_TAC `k:num` THEN ASM_REWRITE_TAC[] THEN
ASM_SIMP_TAC[MEASURABLE_CONVEX] THEN
GEN_TAC THEN MATCH_MP_TAC MEASURABLE_CONVEX THEN CONJ_TAC THENL
[MATCH_MP_TAC CONVEX_SLICE; MATCH_MP_TAC BOUNDED_SLICE] THEN
ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC);;
let FUBINI_SIMPLE_CONVEX = prove
(`!k s:real^N->bool.
dimindex(:M) + 1 = dimindex(:N) /\
1 <= k /\ k <= dimindex(:N) /\
bounded s /\ convex s /\
((\t. measure (slice k t s :real^M->bool)) has_real_integral B) (:real)
==> measure s = B`,
REPEAT GEN_TAC THEN
DISCH_THEN(MP_TAC o MATCH_MP FUBINI_SIMPLE_CONVEX_STRONG) THEN SIMP_TAC[]);;
let FUBINI_SIMPLE_OPEN_STRONG = prove
(`!k s:real^N->bool.
dimindex(:M) + 1 = dimindex(:N) /\
1 <= k /\ k <= dimindex(:N) /\
bounded s /\ open s /\
((\t. measure (slice k t s :real^M->bool)) has_real_integral B) (:real)
==> measurable s /\ measure s = B`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[MEASURABLE_OPEN] THEN
MATCH_MP_TAC FUBINI_SIMPLE_ALT THEN
EXISTS_TAC `k:num` THEN ASM_REWRITE_TAC[] THEN
ASM_SIMP_TAC[MEASURABLE_OPEN] THEN
GEN_TAC THEN MATCH_MP_TAC MEASURABLE_OPEN THEN CONJ_TAC THENL
[MATCH_MP_TAC BOUNDED_SLICE; MATCH_MP_TAC OPEN_SLICE] THEN
ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC);;
let FUBINI_SIMPLE_OPEN = prove
(`!k s:real^N->bool.
dimindex(:M) + 1 = dimindex(:N) /\
1 <= k /\ k <= dimindex(:N) /\
bounded s /\ open s /\
((\t. measure (slice k t s :real^M->bool)) has_real_integral B) (:real)
==> measure s = B`,
REPEAT GEN_TAC THEN
DISCH_THEN(MP_TAC o MATCH_MP FUBINI_SIMPLE_OPEN_STRONG) THEN SIMP_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Scaled integer, and hence rational, values are dense in the reals. *)
(* ------------------------------------------------------------------------- *)
let REAL_OPEN_SET_RATIONAL = prove
(`!s. real_open s /\ ~(s = {}) ==> ?x. rational x /\ x IN s`,
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN
MP_TAC(ISPEC `IMAGE lift s` OPEN_SET_RATIONAL_COORDINATES) THEN
ASM_REWRITE_TAC[GSYM REAL_OPEN; IMAGE_EQ_EMPTY; EXISTS_IN_IMAGE] THEN
SIMP_TAC[DIMINDEX_1; FORALL_1; GSYM drop; LIFT_DROP]);;
let REAL_OPEN_RATIONAL = prove
(`!P. real_open {x | P x} /\ (?x. P x) ==> ?x. rational x /\ P x`,
REPEAT STRIP_TAC THEN
MP_TAC(SPEC `{x:real | P x}` REAL_OPEN_SET_RATIONAL) THEN
ASM_REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; IN_ELIM_THM] THEN ASM_MESON_TAC[]);;
let REAL_OPEN_SET_EXISTS_RATIONAL = prove
(`!s. real_open s ==> ((?x. rational x /\ x IN s) <=> (?x. x IN s))`,
REPEAT STRIP_TAC THEN EQ_TAC THEN
ASM_MESON_TAC[REAL_OPEN_SET_RATIONAL; GSYM MEMBER_NOT_EMPTY]);;
let REAL_OPEN_EXISTS_RATIONAL = prove
(`!P. real_open {x | P x} ==> ((?x. rational x /\ P x) <=> (?x. P x))`,
GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP REAL_OPEN_SET_EXISTS_RATIONAL) THEN
REWRITE_TAC[IN_ELIM_THM]);;
(* ------------------------------------------------------------------------- *)
(* Hence a criterion for two functions to agree. *)
(* ------------------------------------------------------------------------- *)
let CONTINUOUS_ON_CONST_DYADIC_RATIONALS = prove
(`!f:real^M->real^N a.
f continuous_on (:real^M) /\
(!x. (!i. 1 <= i /\ i <= dimindex(:M) ==> integer(x$i)) ==> f(x) = a) /\
(!x. f(x) = a ==> f(inv(&2) % x) = a)
==> !x. f(x) = a`,
REPEAT GEN_TAC THEN STRIP_TAC THEN MP_TAC(ISPECL
[`f:real^M->real^N`;
`{ inv(&2 pow n) % x:real^M |n,x|
!i. 1 <= i /\ i <= dimindex(:M) ==> integer(x$i) }`;
`a:real^N`] CONTINUOUS_CONSTANT_ON_CLOSURE) THEN
ASM_REWRITE_TAC[FORALL_IN_GSPEC; CLOSURE_DYADIC_RATIONALS; IN_UNIV] THEN
DISCH_THEN MATCH_MP_TAC THEN
INDUCT_TAC THEN ASM_REWRITE_TAC[real_pow; REAL_INV_1; VECTOR_MUL_LID] THEN
ASM_SIMP_TAC[REAL_INV_MUL; GSYM VECTOR_MUL_ASSOC]);;
let REAL_CONTINUOUS_ON_CONST_DYADIC_RATIONALS = prove
(`!f a.
f real_continuous_on (:real) /\
(!x. integer(x) ==> f(x) = a) /\
(!x. f(x) = a ==> f(x / &2) = a)
==> !x. f(x) = a`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`lift o f o drop`; `lift a`]
CONTINUOUS_ON_CONST_DYADIC_RATIONALS) THEN
ASM_REWRITE_TAC[GSYM REAL_CONTINUOUS_ON; GSYM IMAGE_LIFT_UNIV] THEN
ASM_SIMP_TAC[o_THM; DIMINDEX_1; FORALL_1; GSYM drop; LIFT_EQ; DROP_CMUL;
REAL_ARITH `inv(&2) * x = x / &2`] THEN
ASM_MESON_TAC[LIFT_DROP]);;
let REAL_CONTINUOUS_ADDITIVE_IMP_LINEAR = prove
(`!f. f real_continuous_on (:real) /\
(!x y. f(x + y) = f(x) + f(y))
==> !a x. f(a * x) = a * f(x)`,
GEN_TAC THEN STRIP_TAC THEN
MP_TAC(ISPEC `lift o f o drop` CONTINUOUS_ADDITIVE_IMP_LINEAR) THEN
ASM_REWRITE_TAC[GSYM REAL_CONTINUOUS_ON; GSYM IMAGE_LIFT_UNIV] THEN
ASM_REWRITE_TAC[linear; GSYM FORALL_DROP; o_THM; DROP_ADD; LIFT_DROP;
DROP_CMUL; GSYM LIFT_ADD; GSYM LIFT_CMUL; LIFT_EQ]);;
(* ------------------------------------------------------------------------- *)
(* Extending a continuous function in a periodic way. *)
(* ------------------------------------------------------------------------- *)
let REAL_CONTINUOUS_FLOOR = prove
(`!x. ~(integer x) ==> floor real_continuous (atreal x)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[real_continuous_atreal] THEN
X_GEN_TAC `e:real` THEN DISCH_TAC THEN
EXISTS_TAC `min (x - floor x) ((floor x + &1) - x)` THEN
ASM_REWRITE_TAC[REAL_LT_MIN; REAL_SUB_LT; REAL_FLOOR_LT_REFL; FLOOR] THEN
REPEAT STRIP_TAC THEN
MATCH_MP_TAC(REAL_ARITH `&0 < e /\ x = y ==> abs(x - y) < e`) THEN
ASM_REWRITE_TAC[GSYM FLOOR_UNIQUE; FLOOR] THEN
MP_TAC(ISPEC `x:real` FLOOR) THEN ASM_REAL_ARITH_TAC);;
let REAL_CONTINUOUS_FRAC = prove
(`!x. ~(integer x) ==> frac real_continuous (atreal x)`,
REPEAT STRIP_TAC THEN GEN_REWRITE_TAC LAND_CONV [GSYM ETA_AX] THEN
REWRITE_TAC[FRAC_FLOOR] THEN MATCH_MP_TAC REAL_CONTINUOUS_SUB THEN
ASM_SIMP_TAC[REAL_CONTINUOUS_FLOOR; REAL_CONTINUOUS_AT_ID]);;
let REAL_CONTINUOUS_ON_COMPOSE_FRAC = prove
(`!f. f real_continuous_on real_interval[&0,&1] /\ f(&1) = f(&0)
==> (f o frac) real_continuous_on (:real)`,
REPEAT STRIP_TAC THEN
UNDISCH_TAC `f real_continuous_on real_interval[&0,&1]` THEN
REWRITE_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN; WITHINREAL_UNIV] THEN
DISCH_TAC THEN X_GEN_TAC `x:real` THEN DISCH_TAC THEN
ASM_CASES_TAC `integer x` THENL
[ALL_TAC;
MATCH_MP_TAC REAL_CONTINUOUS_ATREAL_COMPOSE THEN
ASM_SIMP_TAC[REAL_CONTINUOUS_FRAC] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE LAND_CONV [IN_REAL_INTERVAL] o
SPEC `frac x`) THEN
ASM_SIMP_TAC[FLOOR_FRAC; REAL_LT_IMP_LE] THEN
REWRITE_TAC[real_continuous_atreal; real_continuous_withinreal] THEN
MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN
ASM_CASES_TAC `&0 < e` THEN ASM_REWRITE_TAC[IN_REAL_INTERVAL] THEN
DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `min d (min (frac x) (&1 - frac x))` THEN
ASM_SIMP_TAC[REAL_LT_MIN; REAL_SUB_LT; FLOOR_FRAC; REAL_FRAC_POS_LT] THEN
REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_REAL_ARITH_TAC] THEN
ASM_SIMP_TAC[real_continuous_atreal; REAL_FRAC_ZERO; REAL_FLOOR_REFL] THEN
X_GEN_TAC `e:real` THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE (BINDER_CONV o LAND_CONV)
[IN_REAL_INTERVAL]) THEN
DISCH_THEN(fun th -> MP_TAC(SPEC `&1` th) THEN MP_TAC(SPEC `&0` th)) THEN
REWRITE_TAC[REAL_LE_REFL; REAL_POS] THEN
REWRITE_TAC[IMP_IMP; real_continuous_withinreal; AND_FORALL_THM] THEN
DISCH_THEN(MP_TAC o SPEC `e:real`) THEN
ASM_REWRITE_TAC[IN_REAL_INTERVAL] THEN
DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `d1:real` STRIP_ASSUME_TAC)
(X_CHOOSE_THEN `d2:real` STRIP_ASSUME_TAC)) THEN
EXISTS_TAC `min (&1) (min d1 d2)` THEN
ASM_REWRITE_TAC[REAL_LT_01; REAL_LT_MIN; o_DEF] THEN
X_GEN_TAC `y:real` THEN STRIP_TAC THEN
DISJ_CASES_TAC(REAL_ARITH `x <= y \/ y < x`) THENL
[SUBGOAL_THEN `floor y = floor x` ASSUME_TAC THENL
[REWRITE_TAC[GSYM FLOOR_UNIQUE; FLOOR] THEN
ASM_SIMP_TAC[REAL_FLOOR_REFL] THEN ASM_REAL_ARITH_TAC;
ASM_SIMP_TAC[FRAC_FLOOR; REAL_FLOOR_REFL; REAL_SUB_REFL] THEN
FIRST_X_ASSUM(fun th -> MATCH_MP_TAC th THEN ASM_REAL_ARITH_TAC)];
SUBGOAL_THEN `floor y = floor x - &1` ASSUME_TAC THENL
[REWRITE_TAC[GSYM FLOOR_UNIQUE; FLOOR] THEN
ASM_SIMP_TAC[REAL_FLOOR_REFL; INTEGER_CLOSED] THEN ASM_REAL_ARITH_TAC;
ASM_SIMP_TAC[FRAC_FLOOR; REAL_FLOOR_REFL; REAL_SUB_REFL] THEN
FIRST_X_ASSUM(fun th -> MATCH_MP_TAC th THEN ASM_REAL_ARITH_TAC)]]);;
let REAL_TIETZE_PERIODIC_INTERVAL = prove
(`!f a b.
f real_continuous_on real_interval[a,b] /\ f(a) = f(b)
==> ?g. g real_continuous_on (:real) /\
(!x. x IN real_interval[a,b] ==> g(x) = f(x)) /\
(!x. g(x + (b - a)) = g x)`,
REPEAT STRIP_TAC THEN DISJ_CASES_TAC(REAL_ARITH `b:real <= a \/ a < b`) THENL
[EXISTS_TAC `\x:real. (f:real->real) a` THEN
REWRITE_TAC[IN_REAL_INTERVAL; REAL_CONTINUOUS_ON_CONST] THEN
ASM_MESON_TAC[REAL_LE_TRANS; REAL_LE_ANTISYM];
EXISTS_TAC `(f:real->real) o (\y. a + (b - a) * y) o frac o
(\x. (x - a) / (b - a))` THEN
REWRITE_TAC[o_THM] THEN REPEAT CONJ_TAC THENL
[REWRITE_TAC[o_ASSOC] THEN MATCH_MP_TAC REAL_CONTINUOUS_ON_COMPOSE THEN
SIMP_TAC[real_div; REAL_CONTINUOUS_ON_RMUL; REAL_CONTINUOUS_ON_SUB;
REAL_CONTINUOUS_ON_CONST; REAL_CONTINUOUS_ON_ID] THEN
MATCH_MP_TAC REAL_CONTINUOUS_ON_SUBSET THEN EXISTS_TAC `(:real)` THEN
REWRITE_TAC[SUBSET_UNIV] THEN
MATCH_MP_TAC REAL_CONTINUOUS_ON_COMPOSE_FRAC THEN
ASM_SIMP_TAC[o_THM; REAL_MUL_RZERO; REAL_MUL_RID; REAL_SUB_ADD2;
REAL_ADD_RID] THEN
MATCH_MP_TAC REAL_CONTINUOUS_ON_COMPOSE THEN
SIMP_TAC[REAL_CONTINUOUS_ON_LMUL; REAL_CONTINUOUS_ON_ADD;
REAL_CONTINUOUS_ON_CONST; REAL_CONTINUOUS_ON_ID] THEN
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ]
REAL_CONTINUOUS_ON_SUBSET)) THEN
REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_REAL_INTERVAL] THEN
ASM_SIMP_TAC[REAL_LE_ADDR; REAL_LE_MUL; REAL_LT_IMP_LE; REAL_SUB_LT] THEN
REWRITE_TAC[REAL_ARITH
`a + (b - a) * x <= b <=> &0 <= (b - a) * (&1 - x)`] THEN
ASM_SIMP_TAC[REAL_LE_ADDR; REAL_LE_MUL; REAL_LT_IMP_LE; REAL_SUB_LE];
X_GEN_TAC `x:real` THEN REWRITE_TAC[IN_REAL_INTERVAL] THEN
STRIP_TAC THEN ASM_CASES_TAC `x:real = b` THENL
[ASM_SIMP_TAC[REAL_DIV_REFL; REAL_LT_IMP_NZ; REAL_SUB_LT] THEN
ASM_REWRITE_TAC[FRAC_NUM; REAL_MUL_RZERO; REAL_ADD_RID];
SUBGOAL_THEN `frac((x - a) / (b - a)) = (x - a) / (b - a)`
SUBST1_TAC THENL
[REWRITE_TAC[REAL_FRAC_EQ] THEN
ASM_SIMP_TAC[REAL_LE_RDIV_EQ; REAL_LT_LDIV_EQ; REAL_SUB_LT] THEN
ASM_REAL_ARITH_TAC;
AP_TERM_TAC THEN UNDISCH_TAC `a:real < b` THEN CONV_TAC REAL_FIELD]];
ASM_SIMP_TAC[REAL_FIELD
`a < b ==> ((x + b - a) - a) / (b - a) = &1 + (x - a) / (b - a)`] THEN
REWRITE_TAC[REAL_FRAC_ADD; FRAC_NUM; FLOOR_FRAC; REAL_ADD_LID]]]);;
(* ------------------------------------------------------------------------- *)
(* A variant of REAL_CONTINUOUS_ADDITIVE_IMP_LINEAR for intervals. *)
(* ------------------------------------------------------------------------- *)
let REAL_CONTINUOUS_ADDITIVE_EXTEND = prove
(`!f. f real_continuous_on real_interval[&0,&1] /\
(!x y. &0 <= x /\ &0 <= y /\ x + y <= &1
==> f(x + y) = f(x) + f(y))
==> ?g. g real_continuous_on (:real) /\
(!x y. g(x + y) = g(x) + g(y)) /\
(!x. x IN real_interval[&0,&1] ==> g x = f x)`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `f(&0) = &0` ASSUME_TAC THENL
[FIRST_ASSUM(MP_TAC o ISPECL [`&0`; `&0`]) THEN
REWRITE_TAC[REAL_ADD_LID] THEN REAL_ARITH_TAC;
ALL_TAC] THEN
EXISTS_TAC `\x. f(&1) * floor(x) + f(frac x)` THEN
REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL
[UNDISCH_TAC `f real_continuous_on real_interval[&0,&1]` THEN
REWRITE_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN; WITHINREAL_UNIV] THEN
DISCH_TAC THEN X_GEN_TAC `x:real` THEN DISCH_TAC THEN
ASM_CASES_TAC `integer x` THENL
[ALL_TAC;
MATCH_MP_TAC REAL_CONTINUOUS_ADD THEN CONJ_TAC THEN
ASM_SIMP_TAC[REAL_CONTINUOUS_LMUL; REAL_CONTINUOUS_FLOOR; ETA_AX] THEN
MATCH_MP_TAC(REWRITE_RULE[o_DEF] REAL_CONTINUOUS_ATREAL_COMPOSE) THEN
ASM_SIMP_TAC[REAL_CONTINUOUS_FRAC] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE LAND_CONV [IN_REAL_INTERVAL] o
SPEC `frac x`) THEN
ASM_SIMP_TAC[FLOOR_FRAC; REAL_LT_IMP_LE] THEN
REWRITE_TAC[real_continuous_atreal; real_continuous_withinreal] THEN
MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN
ASM_CASES_TAC `&0 < e` THEN ASM_REWRITE_TAC[IN_REAL_INTERVAL] THEN
DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `min d (min (frac x) (&1 - frac x))` THEN
ASM_SIMP_TAC[REAL_LT_MIN; REAL_SUB_LT; FLOOR_FRAC; REAL_FRAC_POS_LT] THEN
REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_REAL_ARITH_TAC] THEN
ASM_SIMP_TAC[real_continuous_atreal; REAL_FRAC_ZERO; REAL_FLOOR_REFL] THEN
X_GEN_TAC `e:real` THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE (BINDER_CONV o LAND_CONV)
[IN_REAL_INTERVAL]) THEN
DISCH_THEN(fun th -> MP_TAC(SPEC `&1` th) THEN MP_TAC(SPEC `&0` th)) THEN
REWRITE_TAC[REAL_LE_REFL; REAL_POS] THEN
REWRITE_TAC[IMP_IMP; real_continuous_withinreal; AND_FORALL_THM] THEN
DISCH_THEN(MP_TAC o SPEC `e:real`) THEN
ASM_REWRITE_TAC[IN_REAL_INTERVAL] THEN
DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `d1:real` STRIP_ASSUME_TAC)
(X_CHOOSE_THEN `d2:real` STRIP_ASSUME_TAC)) THEN
EXISTS_TAC `min (&1) (min d1 d2)` THEN
ASM_REWRITE_TAC[REAL_LT_01; REAL_LT_MIN] THEN
X_GEN_TAC `y:real` THEN STRIP_TAC THEN
DISJ_CASES_TAC(REAL_ARITH `x <= y \/ y < x`) THENL
[SUBGOAL_THEN `floor y = floor x` ASSUME_TAC THENL
[REWRITE_TAC[GSYM FLOOR_UNIQUE; FLOOR] THEN
ASM_SIMP_TAC[REAL_FLOOR_REFL] THEN ASM_REAL_ARITH_TAC;
ASM_SIMP_TAC[FRAC_FLOOR; REAL_FLOOR_REFL] THEN
REWRITE_TAC[REAL_ARITH `(a + x) - (a + &0) = x - &0`] THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REAL_ARITH_TAC];
SUBGOAL_THEN `floor y = floor x - &1` ASSUME_TAC THENL
[REWRITE_TAC[GSYM FLOOR_UNIQUE; FLOOR] THEN
ASM_SIMP_TAC[REAL_FLOOR_REFL; INTEGER_CLOSED] THEN ASM_REAL_ARITH_TAC;
ASM_SIMP_TAC[FRAC_FLOOR; REAL_FLOOR_REFL] THEN
REWRITE_TAC[REAL_ARITH `(f1 * (x - &1) + f) - (f1 * x + &0) =
f - f1`] THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REAL_ARITH_TAC]];
REPEAT GEN_TAC THEN REWRITE_TAC[REAL_FLOOR_ADD; REAL_FRAC_ADD] THEN
COND_CASES_TAC THEN
ASM_SIMP_TAC[REAL_LT_IMP_LE; FLOOR_FRAC; REAL_LE_ADD] THENL
[REAL_ARITH_TAC; ALL_TAC] THEN
REWRITE_TAC[REAL_ARITH
`f1 * ((x + y) + &1) + g = (f1 * x + z) + f1 * y + h <=>
f1 / &2 + g / &2 = z / &2 + h / &2`] THEN
SUBGOAL_THEN
`!t. &0 <= t /\ t <= &1 ==> f(t) / &2 = f(t / &2)`
ASSUME_TAC THENL
[GEN_TAC THEN FIRST_ASSUM(MP_TAC o ISPECL [`t / &2`; `t / &2`]) THEN
REWRITE_TAC[REAL_HALF] THEN REAL_ARITH_TAC;
ALL_TAC] THEN
ASM_SIMP_TAC[REAL_POS; REAL_LE_REFL; FLOOR_FRAC; REAL_LT_IMP_LE;
REAL_ARITH `~(x + y < &1) ==> &0 <= (x + y) - &1`;
REAL_ARITH `x < &1 /\ y < &1 ==> (x + y) - &1 <= &1`] THEN
MATCH_MP_TAC(MESON[]
`f(a + b) = f a + f b /\ f(c + d) = f(c) + f(d) /\ a + b = c + d
==> (f:real->real)(a) + f(b) = f(c) + f(d)`) THEN
REPEAT CONJ_TAC THEN TRY REAL_ARITH_TAC THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN
MAP_EVERY (MP_TAC o C SPEC FLOOR_FRAC) [`x:real`; `y:real`] THEN
ASM_REAL_ARITH_TAC;
GEN_TAC THEN REWRITE_TAC[IN_REAL_INTERVAL] THEN ASM_CASES_TAC `x = &1` THEN
ASM_REWRITE_TAC[FLOOR_NUM; FRAC_NUM; REAL_MUL_RID; REAL_ADD_RID] THEN
STRIP_TAC THEN SUBGOAL_THEN `floor x = &0` ASSUME_TAC THENL
[ASM_REWRITE_TAC[GSYM FLOOR_UNIQUE; INTEGER_CLOSED];
ASM_REWRITE_TAC[FRAC_FLOOR; REAL_SUB_RZERO]] THEN
ASM_REAL_ARITH_TAC]);;
let REAL_CONTINUOUS_ADDITIVE_IMP_LINEAR_INTERVAL = prove
(`!f b. (f ---> &0) (atreal (&0) within {x | &0 <= x}) /\
(!x y. &0 <= x /\ &0 <= y /\ x + y <= b ==> f(x + y) = f(x) + f(y))
==> !a x. &0 <= x /\ x <= b /\
&0 <= a * x /\ a * x <= b
==> f(a * x) = a * f(x)`,
SUBGOAL_THEN
`!f. (f ---> &0) (atreal (&0) within {x | &0 <= x}) /\
(!x y. &0 <= x /\ &0 <= y /\ x + y <= &1 ==> f(x + y) = f(x) + f(y))
==> !a x. &0 <= x /\ x <= &1 /\ &0 <= a * x /\ a * x <= &1
==> f(a * x) = a * f(x)`
ASSUME_TAC THENL
[SUBGOAL_THEN
`!f. f real_continuous_on real_interval[&0,&1] /\
(!x y. &0 <= x /\ &0 <= y /\ x + y <= &1 ==> f(x + y) = f(x) + f(y))
==> !a x. &0 <= x /\ x <= &1 /\ &0 <= a * x /\ a * x <= &1
==> f(a * x) = a * f(x)`
(fun th -> GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC th) THENL
[REPEAT STRIP_TAC THEN
MP_TAC(ISPEC `f:real->real` REAL_CONTINUOUS_ADDITIVE_EXTEND) THEN
ASM_REWRITE_TAC[IN_REAL_INTERVAL] THEN
DISCH_THEN(X_CHOOSE_THEN `g:real->real` STRIP_ASSUME_TAC) THEN
MP_TAC(ISPEC `g:real->real` REAL_CONTINUOUS_ADDITIVE_IMP_LINEAR) THEN
ASM_MESON_TAC[];
ASM_REWRITE_TAC[real_continuous_on; IN_REAL_INTERVAL] THEN
X_GEN_TAC `x:real` THEN STRIP_TAC THEN
X_GEN_TAC `e:real` THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [REALLIM_WITHINREAL]) THEN
DISCH_THEN(MP_TAC o SPEC `e:real`) THEN
ASM_REWRITE_TAC[REAL_SUB_RZERO] THEN REWRITE_TAC[IN_REAL_INTERVAL] THEN
DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `d:real` THEN ASM_SIMP_TAC[REAL_LT_MUL] THEN
X_GEN_TAC `y:real` THEN STRIP_TAC THEN
REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC
(REAL_ARITH `y = x \/ y < x \/ x < y`) THENL
[ASM_REWRITE_TAC[REAL_SUB_REFL; REAL_ABS_NUM];
SUBGOAL_THEN `(f:real->real)(y + (x - y)) = f(y) + f(x - y)`
MP_TAC THENL
[FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REAL_ARITH_TAC;
REWRITE_TAC[REAL_SUB_ADD2] THEN DISCH_THEN SUBST1_TAC THEN
REWRITE_TAC[REAL_ADD_SUB2; REAL_ABS_NEG] THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN
REWRITE_TAC[IN_ELIM_THM] THEN ASM_REAL_ARITH_TAC];
SUBGOAL_THEN `(f:real->real)(x + (y - x)) = f(x) + f(y - x)`
MP_TAC THENL
[FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REAL_ARITH_TAC;
REWRITE_TAC[REAL_SUB_ADD2] THEN DISCH_THEN SUBST1_TAC THEN
REWRITE_TAC[REAL_ADD_SUB] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
REWRITE_TAC[IN_ELIM_THM] THEN ASM_REAL_ARITH_TAC]]];
REPEAT GEN_TAC THEN STRIP_TAC THEN REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC
(REAL_ARITH `b < &0 \/ b = &0 \/ &0 < b`)
THENL
[ASM_REAL_ARITH_TAC;
ASM_SIMP_TAC[REAL_ARITH
`a <= x /\ x <= a /\ a <= y /\ y <= a <=> x = a /\ y = a`] THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`&0`; `&0`]) THEN
ASM_REWRITE_TAC[REAL_ADD_LID; REAL_LE_REFL] THEN CONV_TAC REAL_RING;
ALL_TAC] THEN
FIRST_X_ASSUM(MP_TAC o ISPEC `(\x. f(b * x)):real->real`) THEN
REWRITE_TAC[] THEN ANTS_TAC THENL
[ALL_TAC;
MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `a:real` THEN
DISCH_THEN(fun th -> X_GEN_TAC `x:real` THEN STRIP_TAC THEN
MP_TAC(ISPEC `x / b:real` th)) THEN
ASM_SIMP_TAC[REAL_FIELD `&0 < b ==> b * a * x / b = a * x`;
REAL_DIV_LMUL; REAL_LT_IMP_NZ] THEN
DISCH_THEN MATCH_MP_TAC THEN
REWRITE_TAC[REAL_ARITH `a * x / b:real = (a * x) / b`] THEN
ASM_SIMP_TAC[REAL_LE_RDIV_EQ; REAL_LE_LDIV_EQ] THEN
ASM_REAL_ARITH_TAC] THEN
CONJ_TAC THENL
[ALL_TAC;
REPEAT STRIP_TAC THEN REWRITE_TAC[REAL_ADD_LDISTRIB] THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_SIMP_TAC[REAL_ARITH `b * x + b * y <= b <=> &0 <= b * (&1 - (x + y))`;
REAL_LE_MUL; REAL_LT_IMP_LE; REAL_SUB_LE]] THEN
REWRITE_TAC[REALLIM_WITHINREAL] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [REALLIM_WITHINREAL]) THEN
DISCH_THEN(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[REAL_SUB_RZERO] THEN
REWRITE_TAC[REAL_SUB_RZERO; IN_ELIM_THM] THEN
DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `d / b:real` THEN ASM_SIMP_TAC[REAL_LT_DIV] THEN
REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_SIMP_TAC[REAL_LE_MUL; REAL_LT_IMP_LE; REAL_ABS_MUL] THEN
ASM_SIMP_TAC[REAL_ARITH `&0 < b ==> abs b * x = x * b`] THEN
ASM_SIMP_TAC[REAL_LT_MUL; GSYM REAL_LT_RDIV_EQ]]);;
(* ------------------------------------------------------------------------- *)
(* More Steinhaus variants. *)
(* ------------------------------------------------------------------------- *)
let STEINHAUS_TRIVIAL = prove
(`!s e. ~(negligible s) /\ &0 < e
==> ?x y:real^N. x IN s /\ y IN s /\ ~(x = y) /\ norm(x - y) < e`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN REWRITE_TAC[] THEN DISCH_TAC THEN
MATCH_MP_TAC NEGLIGIBLE_COUNTABLE THEN
MATCH_MP_TAC DISCRETE_IMP_COUNTABLE THEN
ASM_MESON_TAC[REAL_NOT_LT]);;
let REAL_STEINHAUS = prove
(`!s. real_measurable s /\ &0 < real_measure s
==> ?d. &0 < d /\
real_interval(--d,d) SUBSET {x - y | x IN s /\ y IN s}`,
GEN_TAC THEN SIMP_TAC[IMP_CONJ; REAL_MEASURE_MEASURE] THEN
REWRITE_TAC[IMP_IMP; REAL_MEASURABLE_MEASURABLE] THEN
DISCH_THEN(MP_TAC o MATCH_MP STEINHAUS) THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:real` THEN
REWRITE_TAC[SUBSET; BALL_INTERVAL; IN_INTERVAL_1; IN_REAL_INTERVAL] THEN
REWRITE_TAC[SET_RULE `{g x y | x IN IMAGE f s /\ y IN IMAGE f t} =
{g (f x) (f y) | x IN s /\ y IN t}`] THEN
REWRITE_TAC[GSYM LIFT_SUB] THEN
REWRITE_TAC[SET_RULE `{lift(f x y) | P x y} = IMAGE lift {f x y | P x y}`;
IN_IMAGE_LIFT_DROP; GSYM FORALL_DROP] THEN
REWRITE_TAC[DROP_SUB; DROP_VEC; LIFT_DROP; DROP_ADD] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Bernstein polynomials. *)
(* ------------------------------------------------------------------------- *)
let bernstein = new_definition
`bernstein n k x = &(binom(n,k)) * x pow k * (&1 - x) pow (n - k)`;;
let BERNSTEIN_CONV =
GEN_REWRITE_CONV I [bernstein] THENC
COMB2_CONV (RAND_CONV(RAND_CONV NUM_BINOM_CONV))
(RAND_CONV(RAND_CONV NUM_SUB_CONV)) THENC
REAL_POLY_CONV;;
(* ------------------------------------------------------------------------- *)
(* Lemmas about Bernstein polynomials. *)
(* ------------------------------------------------------------------------- *)
let BERNSTEIN_POS = prove
(`!n k x. &0 <= x /\ x <= &1 ==> &0 <= bernstein n k x`,
REPEAT STRIP_TAC THEN REWRITE_TAC[bernstein] THEN
MATCH_MP_TAC REAL_LE_MUL THEN REWRITE_TAC[REAL_POS] THEN
MATCH_MP_TAC REAL_LE_MUL THEN CONJ_TAC THEN
MATCH_MP_TAC REAL_POW_LE THEN ASM_REAL_ARITH_TAC);;
let SUM_BERNSTEIN = prove
(`!n. sum (0..n) (\k. bernstein n k x) = &1`,
REWRITE_TAC[bernstein; GSYM REAL_BINOMIAL_THEOREM] THEN
REWRITE_TAC[REAL_SUB_ADD2; REAL_POW_ONE]);;
let BERNSTEIN_LEMMA = prove
(`!n x. sum(0..n) (\k. (&k - &n * x) pow 2 * bernstein n k x) =
&n * x * (&1 - x)`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`!x y. sum(0..n) (\k. &(binom(n,k)) * x pow k * y pow (n - k)) =
(x + y) pow n`
(LABEL_TAC "0") THENL [ASM_REWRITE_TAC[REAL_BINOMIAL_THEOREM]; ALL_TAC] THEN
SUBGOAL_THEN
`!x y. sum(0..n) (\k. &k * &(binom(n,k)) * x pow (k - 1) * y pow (n - k)) =
&n * (x + y) pow (n - 1)`
(LABEL_TAC "1") THENL
[REPEAT GEN_TAC THEN MATCH_MP_TAC REAL_DERIVATIVE_UNIQUE_ATREAL THEN
MAP_EVERY EXISTS_TAC
[`\x. sum(0..n) (\k. &(binom(n,k)) * x pow k * y pow (n - k))`;
`x:real`] THEN
CONJ_TAC THENL
[MATCH_MP_TAC HAS_REAL_DERIVATIVE_SUM THEN REWRITE_TAC[FINITE_NUMSEG];
ASM_REWRITE_TAC[]] THEN
REPEAT STRIP_TAC THEN REAL_DIFF_TAC THEN CONV_TAC REAL_RING;
ALL_TAC] THEN
SUBGOAL_THEN
`!x y. sum(0..n)
(\k. &k * &(k - 1) * &(binom(n,k)) * x pow (k - 2) * y pow (n - k)) =
&n * &(n - 1) * (x + y) pow (n - 2)`
(LABEL_TAC "2") THENL
[REPEAT GEN_TAC THEN MATCH_MP_TAC REAL_DERIVATIVE_UNIQUE_ATREAL THEN
MAP_EVERY EXISTS_TAC
[`\x. sum(0..n) (\k. &k * &(binom(n,k)) * x pow (k - 1) * y pow (n - k))`;
`x:real`] THEN
CONJ_TAC THENL
[MATCH_MP_TAC HAS_REAL_DERIVATIVE_SUM THEN REWRITE_TAC[FINITE_NUMSEG];
ASM_REWRITE_TAC[]] THEN
REPEAT STRIP_TAC THEN REAL_DIFF_TAC THEN
REWRITE_TAC[ARITH_RULE `n - 1 - 1 = n - 2`] THEN CONV_TAC REAL_RING;
ALL_TAC] THEN
REWRITE_TAC[REAL_ARITH
`(a - b) pow 2 * x =
a * (a - &1) * x + (&1 - &2 * b) * a * x + b * b * x`] THEN
REWRITE_TAC[SUM_ADD_NUMSEG; SUM_LMUL; SUM_BERNSTEIN] THEN
SUBGOAL_THEN `sum(0..n) (\k. &k * bernstein n k x) = &n * x` SUBST1_TAC THENL
[REMOVE_THEN "1" (MP_TAC o SPECL [`x:real`; `&1 - x`]) THEN
REWRITE_TAC[REAL_SUB_ADD2; REAL_POW_ONE; bernstein; REAL_MUL_RID] THEN
DISCH_THEN(SUBST1_TAC o SYM) THEN REWRITE_TAC[GSYM SUM_RMUL] THEN
MATCH_MP_TAC SUM_EQ_NUMSEG THEN X_GEN_TAC `k:num` THEN STRIP_TAC THEN
REWRITE_TAC[REAL_ARITH
`(k * b * xk * y) * x:real = k * b * (x * xk) * y`] THEN
REWRITE_TAC[GSYM(CONJUNCT2 real_pow)] THEN
DISJ_CASES_TAC(ARITH_RULE `k = 0 \/ SUC(k - 1) = k`) THEN
ASM_REWRITE_TAC[REAL_MUL_LZERO];
ALL_TAC] THEN
SUBGOAL_THEN
`sum(0..n) (\k. &k * (&k - &1) * bernstein n k x) = &n * (&n - &1) * x pow 2`
SUBST1_TAC THENL [ALL_TAC; CONV_TAC REAL_RING] THEN
REMOVE_THEN "2" (MP_TAC o SPECL [`x:real`; `&1 - x`]) THEN
REWRITE_TAC[REAL_SUB_ADD2; REAL_POW_ONE; bernstein; REAL_MUL_RID] THEN
ASM_CASES_TAC `n = 0` THEN
ASM_REWRITE_TAC[SUM_SING_NUMSEG; REAL_MUL_LZERO] THEN
ASM_SIMP_TAC[GSYM REAL_OF_NUM_SUB; LE_1; REAL_MUL_ASSOC] THEN
DISCH_THEN(SUBST1_TAC o SYM) THEN REWRITE_TAC[GSYM SUM_RMUL] THEN
MATCH_MP_TAC SUM_EQ_NUMSEG THEN X_GEN_TAC `k:num` THEN STRIP_TAC THEN
REWRITE_TAC[REAL_ARITH `((((k * k1) * b) * xk) * y) * x2:real =
k * k1 * b * y * (x2 * xk)`] THEN
REWRITE_TAC[GSYM REAL_POW_ADD; GSYM REAL_MUL_ASSOC] THEN
REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC
(ARITH_RULE `k = 0 \/ k = 1 \/ 1 <= k /\ 2 + k - 2 = k`) THEN
ASM_REWRITE_TAC[REAL_MUL_LZERO; REAL_MUL_LID; SUB_REFL; REAL_SUB_REFL] THEN
ASM_SIMP_TAC[GSYM REAL_OF_NUM_SUB] THEN REWRITE_TAC[REAL_MUL_AC]);;
(* ------------------------------------------------------------------------- *)
(* Explicit Bernstein version of 1D Weierstrass approximation theorem *)
(* ------------------------------------------------------------------------- *)
let BERNSTEIN_WEIERSTRASS = prove
(`!f e.
f real_continuous_on real_interval[&0,&1] /\ &0 < e
==> ?N. !n x. N <= n /\ x IN real_interval[&0,&1]
==> abs(f x -
sum(0..n) (\k. f(&k / &n) * bernstein n k x)) < e`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `real_bounded(IMAGE f (real_interval[&0,&1]))` MP_TAC THENL
[MATCH_MP_TAC REAL_COMPACT_IMP_BOUNDED THEN
MATCH_MP_TAC REAL_COMPACT_CONTINUOUS_IMAGE THEN
ASM_REWRITE_TAC[REAL_COMPACT_INTERVAL];
REWRITE_TAC[REAL_BOUNDED_POS; LEFT_IMP_EXISTS_THM; FORALL_IN_IMAGE] THEN
REWRITE_TAC[IN_REAL_INTERVAL] THEN X_GEN_TAC `M:real` THEN STRIP_TAC] THEN
SUBGOAL_THEN `f real_uniformly_continuous_on real_interval[&0,&1]`
MP_TAC THENL
[ASM_SIMP_TAC[REAL_COMPACT_UNIFORMLY_CONTINUOUS; REAL_COMPACT_INTERVAL];
REWRITE_TAC[real_uniformly_continuous_on] THEN
DISCH_THEN(MP_TAC o SPEC `e / &2`) THEN
ASM_REWRITE_TAC[REAL_HALF; IN_REAL_INTERVAL] THEN
DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC)] THEN
SUBGOAL_THEN
`!n x. 0 < n /\ &0 <= x /\ x <= &1
==> abs(f x - sum(0..n) (\k. f(&k / &n) * bernstein n k x))
<= e / &2 + (&2 * M) / (d pow 2 * &n)`
ASSUME_TAC THENL
[REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `abs(sum(0..n) (\k. (f x - f(&k / &n)) * bernstein n k x))` THEN
CONJ_TAC THENL
[REWRITE_TAC[REAL_SUB_RDISTRIB; SUM_SUB_NUMSEG; SUM_LMUL] THEN
REWRITE_TAC[SUM_BERNSTEIN; REAL_MUL_RID; REAL_LE_REFL];
ALL_TAC] THEN
W(MP_TAC o PART_MATCH lhand SUM_ABS_NUMSEG o lhand o snd) THEN
MATCH_MP_TAC(REAL_ARITH `a <= b ==> x <= a ==> x <= b`) THEN
REWRITE_TAC[REAL_ABS_MUL] THEN
ASM_SIMP_TAC[BERNSTEIN_POS; REAL_ARITH `&0 <= x ==> abs x = x`] THEN
MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC
`sum(0..n) (\k. (e / &2 + &2 * M / d pow 2 * (x - &k / &n) pow 2) *
bernstein n k x)` THEN
CONJ_TAC THENL
[MATCH_MP_TAC SUM_LE_NUMSEG THEN X_GEN_TAC `k:num` THEN STRIP_TAC THEN
REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_RMUL THEN
ASM_SIMP_TAC[BERNSTEIN_POS] THEN
SUBGOAL_THEN `&0 <= &k / &n /\ &k / &n <= &1` STRIP_ASSUME_TAC THENL
[ASM_SIMP_TAC[REAL_LE_LDIV_EQ; REAL_LE_RDIV_EQ; REAL_OF_NUM_LT] THEN
ASM_REWRITE_TAC[REAL_OF_NUM_MUL; REAL_OF_NUM_LE; MULT_CLAUSES];
ALL_TAC] THEN
DISJ_CASES_TAC(REAL_ARITH
`abs(x - &k / &n) < d \/ d <= abs(x - &k / &n)`)
THENL
[MATCH_MP_TAC(REAL_ARITH `x < e /\ &0 <= d ==> x <= e + d`) THEN
ASM_SIMP_TAC[REAL_ARITH `&0 <= &2 * x <=> &0 <= x`] THEN
ASM_SIMP_TAC[REAL_LE_MUL; REAL_LE_DIV; REAL_POW_2; REAL_LE_SQUARE;
REAL_LT_IMP_LE];
MATCH_MP_TAC(REAL_ARITH `&0 < e /\ x <= d ==> x <= e / &2 + d`) THEN
ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC(REAL_ARITH
`abs(x) <= M /\ abs(y) <= M /\ M * &1 <= M * b / d
==> abs(x - y) <= &2 * M / d * b`) THEN
ASM_SIMP_TAC[REAL_LE_LMUL_EQ; REAL_POW_LT; REAL_LE_RDIV_EQ] THEN
REWRITE_TAC[REAL_MUL_LID; GSYM REAL_LE_SQUARE_ABS] THEN
ASM_REAL_ARITH_TAC];
REWRITE_TAC[REAL_ADD_RDISTRIB; SUM_ADD_NUMSEG; SUM_LMUL] THEN
REWRITE_TAC[SUM_BERNSTEIN; REAL_MUL_RID; REAL_LE_LADD] THEN
REWRITE_TAC[GSYM REAL_MUL_ASSOC; SUM_LMUL] THEN
REWRITE_TAC[real_div; REAL_INV_MUL; GSYM REAL_MUL_ASSOC] THEN
ASM_SIMP_TAC[REAL_LE_LMUL_EQ; REAL_OF_NUM_LT; ARITH; REAL_POW_LT;
REAL_LT_INV_EQ] THEN
MATCH_MP_TAC REAL_LE_LCANCEL_IMP THEN EXISTS_TAC `&n pow 2` THEN
ASM_SIMP_TAC[GSYM SUM_LMUL; REAL_POW_LT; REAL_OF_NUM_LT; REAL_FIELD
`&0 < n ==> n pow 2 * inv(n) = n`] THEN
REWRITE_TAC[REAL_MUL_ASSOC; GSYM REAL_POW_MUL] THEN
ASM_SIMP_TAC[REAL_OF_NUM_LT; REAL_FIELD
`&0 < n ==> n * (x - k * inv n) = n * x - k`] THEN
ONCE_REWRITE_TAC[REAL_ARITH `(x - y:real) pow 2 = (y - x) pow 2`] THEN
REWRITE_TAC[BERNSTEIN_LEMMA; REAL_ARITH
`&n * x <= &n <=> &n * x <= &n * &1 * &1`] THEN
MATCH_MP_TAC REAL_LE_LMUL THEN REWRITE_TAC[REAL_POS] THEN
MATCH_MP_TAC REAL_LE_MUL2 THEN ASM_REAL_ARITH_TAC];
MP_TAC(ISPEC `(e / &4 * d pow 2) / (&2 * M)` REAL_ARCH_INV) THEN
ASM_SIMP_TAC[REAL_LT_RDIV_EQ; REAL_OF_NUM_LT; ARITH; REAL_LT_MUL] THEN
ASM_SIMP_TAC[GSYM REAL_LT_LDIV_EQ; REAL_POW_LT; REAL_MUL_LZERO] THEN
REWRITE_TAC[real_div; REAL_MUL_LZERO] THEN
REWRITE_TAC[REAL_ARITH `(x * &2 * m) * i = (&2 * m) * (i * x)`] THEN
REWRITE_TAC[GSYM REAL_INV_MUL] THEN
ASM_SIMP_TAC[GSYM real_div; REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `N:num` THEN STRIP_TAC THEN
MAP_EVERY X_GEN_TAC [`n:num`; `x:real`] THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`n:num`; `x:real`]) THEN ASM_SIMP_TAC[] THEN
ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
MATCH_MP_TAC(REAL_ARITH
`&0 < e /\ k < e / &4 ==> x <= e / &2 + k ==> x < e`) THEN
ASM_SIMP_TAC[] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
`x < e ==> y <= x ==> y < e`)) THEN
ASM_SIMP_TAC[real_div; REAL_LE_LMUL_EQ; REAL_LT_MUL;
REAL_OF_NUM_LT; ARITH] THEN
MATCH_MP_TAC REAL_LE_INV2 THEN
ASM_SIMP_TAC[REAL_LE_LMUL_EQ; REAL_LT_MUL; REAL_POW_LT;
REAL_OF_NUM_LT; LE_1; REAL_OF_NUM_LE]]);;
(* ------------------------------------------------------------------------- *)
(* General Stone-Weierstrass theorem. *)
(* ------------------------------------------------------------------------- *)
let STONE_WEIERSTRASS_ALT = prove
(`!(P:(real^N->real)->bool) (s:real^N->bool).
compact s /\
(!c. P(\x. c)) /\
(!f g. P(f) /\ P(g) ==> P(\x. f x + g x)) /\
(!f g. P(f) /\ P(g) ==> P(\x. f x * g x)) /\
(!x y. x IN s /\ y IN s /\ ~(x = y)
==> ?f. (!x. x IN s ==> f real_continuous (at x within s)) /\
P(f) /\ ~(f x = f y))
==> !f e. (!x. x IN s ==> f real_continuous (at x within s)) /\ &0 < e
==> ?g. P(g) /\ !x. x IN s ==> abs(f x - g x) < e`,
REPEAT GEN_TAC THEN STRIP_TAC THEN MAP_EVERY ABBREV_TAC
[`C = \f. !x:real^N. x IN s ==> f real_continuous at x within s`;
`A = \f. C f /\
!e. &0 < e
==> ?g. P(g) /\ !x:real^N. x IN s ==> abs(f x - g x) < e`] THEN
SUBGOAL_THEN `!f:real^N->real. C(f) ==> A(f)` MP_TAC THENL
[ALL_TAC; MAP_EVERY EXPAND_TAC ["A"; "C"] THEN SIMP_TAC[]] THEN
SUBGOAL_THEN `!c:real. A(\x:real^N. c)` (LABEL_TAC "const") THENL
[MAP_EVERY EXPAND_TAC ["A"; "C"] THEN X_GEN_TAC `c:real` THEN
ASM_REWRITE_TAC[REAL_CONTINUOUS_CONST] THEN X_GEN_TAC `e:real` THEN
DISCH_TAC THEN EXISTS_TAC `(\x. c):real^N->real` THEN
ASM_REWRITE_TAC[REAL_SUB_REFL; REAL_ABS_0];
ALL_TAC] THEN
SUBGOAL_THEN `!f g:real^N->real. A(f) /\ A(g) ==> A(\x. f x + g x)`
(LABEL_TAC "add") THENL
[MAP_EVERY EXPAND_TAC ["A"; "C"] THEN SIMP_TAC[REAL_CONTINUOUS_ADD] THEN
MAP_EVERY X_GEN_TAC [`f:real^N->real`; `g:real^N->real`] THEN
DISCH_THEN(fun th -> REPEAT STRIP_TAC THEN MP_TAC th) THEN
DISCH_THEN(CONJUNCTS_THEN (MP_TAC o SPEC `e / &2` o CONJUNCT2)) THEN
ASM_REWRITE_TAC[REAL_HALF; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `g':real^N->real` THEN STRIP_TAC THEN
X_GEN_TAC `f':real^N->real` THEN STRIP_TAC THEN
EXISTS_TAC `(\x. f' x + g' x):real^N->real` THEN
ASM_SIMP_TAC[REAL_ARITH
`abs(f - f') < e / &2 /\ abs(g - g') < e / &2
==> abs((f + g) - (f' + g')) < e`];
ALL_TAC] THEN
SUBGOAL_THEN `!f:real^N->real. A(f) ==> C(f)` (LABEL_TAC "AC") THENL
[EXPAND_TAC "A" THEN SIMP_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN `!f:real^N->real. C(f) ==> real_bounded(IMAGE f s)`
(LABEL_TAC "bound") THENL
[GEN_TAC THEN EXPAND_TAC "C" THEN
REWRITE_TAC[REAL_BOUNDED; GSYM IMAGE_o] THEN
REWRITE_TAC[REAL_CONTINUOUS_CONTINUOUS1] THEN
REWRITE_TAC[GSYM CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN] THEN
ASM_SIMP_TAC[COMPACT_IMP_BOUNDED; COMPACT_CONTINUOUS_IMAGE];
ALL_TAC] THEN
SUBGOAL_THEN `!f g:real^N->real. A(f) /\ A(g) ==> A(\x. f x * g x)`
(LABEL_TAC "mul") THENL
[MAP_EVERY X_GEN_TAC [`f:real^N->real`; `g:real^N->real`] THEN
DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN MP_TAC th) THEN
MAP_EVERY EXPAND_TAC ["A"; "C"] THEN SIMP_TAC[REAL_CONTINUOUS_MUL] THEN
REWRITE_TAC[IMP_CONJ] THEN
MAP_EVERY (DISCH_THEN o LABEL_TAC) ["cf"; "af"; "cg"; "ag"] THEN
SUBGOAL_THEN
`real_bounded(IMAGE (f:real^N->real) s) /\
real_bounded(IMAGE (g:real^N->real) s)`
MP_TAC THENL
[ASM_SIMP_TAC[]; REWRITE_TAC[REAL_BOUNDED_POS_LT; FORALL_IN_IMAGE]] THEN
DISCH_THEN(CONJUNCTS_THEN2
(X_CHOOSE_THEN `Bf:real` STRIP_ASSUME_TAC)
(X_CHOOSE_THEN `Bg:real` STRIP_ASSUME_TAC)) THEN
X_GEN_TAC `e:real` THEN DISCH_TAC THEN
REMOVE_THEN "ag" (MP_TAC o SPEC `e / &2 / Bf`) THEN
ASM_SIMP_TAC[REAL_HALF; REAL_LT_DIV; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `g':real^N->real` THEN STRIP_TAC THEN
REMOVE_THEN "af" (MP_TAC o SPEC `e / &2 / (Bg + e / &2 / Bf)`) THEN
ASM_SIMP_TAC[REAL_HALF; REAL_LT_DIV; REAL_LT_ADD] THEN
DISCH_THEN(X_CHOOSE_THEN `f':real^N->real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `(\x. f'(x) * g'(x)):real^N->real` THEN
ASM_SIMP_TAC[REAL_ARITH
`f * g - f' * g':real = f * (g - g') + g' * (f - f')`] THEN
X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN
SUBGOAL_THEN `e = Bf * e / &2 / Bf +
(Bg + e / &2 / Bf) * e / &2 / (Bg + e / &2 / Bf)`
SUBST1_TAC THENL
[MATCH_MP_TAC(REAL_ARITH `a = e / &2 /\ b = e / &2 ==> e = a + b`) THEN
CONJ_TAC THEN MAP_EVERY MATCH_MP_TAC [REAL_DIV_LMUL; REAL_LT_IMP_NZ] THEN
ASM_SIMP_TAC[REAL_LT_DIV; REAL_LT_ADD; REAL_HALF];
MATCH_MP_TAC(REAL_ARITH
`abs a < c /\ abs b < d ==> abs(a + b) < c + d`) THEN
REWRITE_TAC[REAL_ABS_MUL] THEN CONJ_TAC THEN
MATCH_MP_TAC REAL_LT_MUL2 THEN ASM_SIMP_TAC[REAL_ABS_POS] THEN
MATCH_MP_TAC(REAL_ARITH
`!g. abs(g) < Bg /\ abs(g - g') < e ==> abs(g') < Bg + e`) THEN
EXISTS_TAC `(g:real^N->real) x` THEN ASM_SIMP_TAC[]];
ALL_TAC] THEN
SUBGOAL_THEN
`!x y. x IN s /\ y IN s /\ ~(x = y)
==> ?f:real^N->real. A(f) /\ ~(f x = f y)`
(LABEL_TAC "sep") THENL
[MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`] THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`x:real^N`; `y:real^N`]) THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN
MAP_EVERY EXPAND_TAC ["A"; "C"] THEN
ASM_MESON_TAC[REAL_SUB_REFL; REAL_ABS_0];
ALL_TAC] THEN
SUBGOAL_THEN `!f. A(f) ==> A(\x:real^N. abs(f x))` (LABEL_TAC "abs") THENL
[SUBGOAL_THEN `!f. A(f) /\ (!x. x IN s ==> abs(f x) <= &1 / &4)
==> A(\x:real^N. abs(f x))`
ASSUME_TAC THENL
[ALL_TAC;
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `real_bounded(IMAGE (f:real^N->real) s)` MP_TAC THENL
[ASM_SIMP_TAC[]; REWRITE_TAC[REAL_BOUNDED_POS_LT; FORALL_IN_IMAGE]] THEN
DISCH_THEN(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC) THEN
SUBGOAL_THEN `A(\x:real^N. (&4 * B) * abs(inv(&4 * B) * f x)):bool`
MP_TAC THENL
[USE_THEN "mul" MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[REAL_ABS_MUL] THEN
ASM_SIMP_TAC[REAL_ARITH `&0 < B ==> abs(B) = B`;
REAL_LT_INV_EQ; REAL_LT_MUL; REAL_OF_NUM_LT; ARITH] THEN
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
ASM_SIMP_TAC[GSYM real_div; REAL_LE_LDIV_EQ; REAL_LT_MUL;
REAL_OF_NUM_LT; ARITH; REAL_MUL_ASSOC] THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN
ASM_SIMP_TAC[REAL_MUL_LID; REAL_LT_IMP_LE];
ASM_SIMP_TAC[REAL_ABS_MUL; REAL_ARITH `&0 < B ==> abs(B) = B`;
REAL_LT_INV_EQ; REAL_LT_MUL; REAL_OF_NUM_LT; ARITH] THEN
ASM_SIMP_TAC[REAL_MUL_ASSOC; REAL_MUL_RINV; REAL_MUL_LID;
REAL_ARITH `&0 < B ==> ~(&4 * B = &0)`]]] THEN
X_GEN_TAC `f:real^N->real` THEN MAP_EVERY EXPAND_TAC ["A"; "C"] THEN
DISCH_THEN(fun th -> CONJ_TAC THEN MP_TAC th) THENL
[DISCH_THEN(MP_TAC o CONJUNCT1 o CONJUNCT1) THEN
MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN MATCH_MP_TAC MONO_IMP THEN
REWRITE_TAC[] THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT; o_DEF]
REAL_CONTINUOUS_WITHIN_COMPOSE) THEN
REWRITE_TAC[real_continuous_withinreal] THEN
MESON_TAC[ARITH_RULE `abs(x - y) < d ==> abs(abs x - abs y) < d`];
ALL_TAC] THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
DISCH_THEN(fun t -> X_GEN_TAC `e:real` THEN DISCH_TAC THEN MP_TAC t) THEN
DISCH_THEN(MP_TAC o SPEC `min (e / &2) (&1 / &4)`) THEN
ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
REWRITE_TAC[REAL_LT_MIN; FORALL_AND_THM;
TAUT `(a ==> b /\ c) <=> (a ==> b) /\ (a ==> c)`] THEN
DISCH_THEN(X_CHOOSE_THEN `p:real^N->real` STRIP_ASSUME_TAC) THEN
MP_TAC(ISPECL [`\x. abs(x - &1 / &2)`; `e / &2`]
BERNSTEIN_WEIERSTRASS) THEN
REWRITE_TAC[] THEN ANTS_TAC THENL
[ASM_REWRITE_TAC[real_continuous_on; REAL_HALF] THEN
MESON_TAC[ARITH_RULE
`abs(x - y) < d ==> abs(abs(x - a) - abs(y - a)) < d`];
ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `n:num` (MP_TAC o SPEC `n:num`)) THEN
REWRITE_TAC[LE_REFL] THEN DISCH_TAC THEN
EXISTS_TAC `\x:real^N. sum(0..n) (\k. abs(&k / &n - &1 / &2) *
bernstein n k (&1 / &2 + p x))` THEN
REWRITE_TAC[] THEN CONJ_TAC THENL
[SUBGOAL_THEN
`!m c z. P(\x:real^N.
sum(0..m) (\k. c k * bernstein (z m) k (&1 / &2 + p x)))`
(fun th -> REWRITE_TAC[th]) THEN
SUBGOAL_THEN
`!m k. P(\x:real^N. bernstein m k (&1 / &2 + p x))`
ASSUME_TAC THENL
[ALL_TAC; INDUCT_TAC THEN ASM_SIMP_TAC[SUM_CLAUSES_NUMSEG; LE_0]] THEN
REPEAT GEN_TAC THEN REWRITE_TAC[bernstein] THEN
REWRITE_TAC[REAL_ARITH `&1 - (&1 / &2 + p) = &1 / &2 + -- &1 * p`] THEN
REPEAT(FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]) THEN
SUBGOAL_THEN
`!f:real^N->real k. P(f) ==> P(\x. f(x) pow k)`
(fun th -> ASM_SIMP_TAC[th]) THEN
GEN_TAC THEN INDUCT_TAC THEN ASM_SIMP_TAC[real_pow];
REPEAT STRIP_TAC THEN MATCH_MP_TAC(REAL_ARITH
`!p. abs(abs(p x) - s) < e / &2 /\
abs(f x - p x) < e / &2
==> abs(abs(f x) - s) < e`) THEN
EXISTS_TAC `p:real^N->real` THEN ASM_SIMP_TAC[] THEN
GEN_REWRITE_TAC (PAT_CONV `\x. abs(abs x - a) < e`)
[REAL_ARITH `x = (&1 / &2 + x) - &1 / &2`] THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[IN_REAL_INTERVAL] THEN
MATCH_MP_TAC(REAL_ARITH
`!f. abs(f) <= &1 / &4 /\ abs(f - p) < &1 / &4
==> &0 <= &1 / &2 + p /\ &1 / &2 + p <= &1`) THEN
EXISTS_TAC `(f:real^N->real) x` THEN ASM_SIMP_TAC[]];
ALL_TAC] THEN
SUBGOAL_THEN `!f:real^N->real g. A(f) /\ A(g) ==> A(\x. max (f x) (g x))`
(LABEL_TAC "max") THENL
[REPEAT STRIP_TAC THEN REWRITE_TAC[REAL_ARITH
`max a b = inv(&2) * (a + b + abs(a + -- &1 * b))`] THEN
REPEAT(FIRST_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[]);
ALL_TAC] THEN
SUBGOAL_THEN `!f:real^N->real g. A(f) /\ A(g) ==> A(\x. min (f x) (g x))`
(LABEL_TAC "min") THENL
[ASM_SIMP_TAC[REAL_ARITH `min a b = -- &1 * (max(-- &1 * a) (-- &1 * b))`];
ALL_TAC] THEN
SUBGOAL_THEN
`!t. FINITE t /\ (!f. f IN t ==> A(f)) ==> A(\x:real^N. sup {f(x) | f IN t})`
(LABEL_TAC "sup") THENL
[REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
ASM_SIMP_TAC[FORALL_IN_INSERT; SIMPLE_IMAGE; IMAGE_CLAUSES] THEN
ASM_SIMP_TAC[SUP_INSERT_FINITE; FINITE_IMAGE; IMAGE_EQ_EMPTY] THEN
MAP_EVERY X_GEN_TAC [`f:real^N->real`; `t:(real^N->real)->bool`] THEN
ASM_CASES_TAC `t:(real^N->real)->bool = {}` THEN ASM_SIMP_TAC[ETA_AX];
ALL_TAC] THEN
SUBGOAL_THEN
`!t. FINITE t /\ (!f. f IN t ==> A(f)) ==> A(\x:real^N. inf {f(x) | f IN t})`
(LABEL_TAC "inf") THENL
[REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
ASM_SIMP_TAC[FORALL_IN_INSERT; SIMPLE_IMAGE; IMAGE_CLAUSES] THEN
ASM_SIMP_TAC[INF_INSERT_FINITE; FINITE_IMAGE; IMAGE_EQ_EMPTY] THEN
MAP_EVERY X_GEN_TAC [`f:real^N->real`; `t:(real^N->real)->bool`] THEN
ASM_CASES_TAC `t:(real^N->real)->bool = {}` THEN ASM_SIMP_TAC[ETA_AX];
ALL_TAC] THEN
SUBGOAL_THEN
`!f:real^N->real e.
C(f) /\ &0 < e ==> ?g. A(g) /\ !x. x IN s ==> abs(f x - g x) < e`
ASSUME_TAC THENL
[ALL_TAC;
X_GEN_TAC `f:real^N->real` THEN DISCH_TAC THEN EXPAND_TAC "A" THEN
CONJ_TAC THENL [FIRST_X_ASSUM ACCEPT_TAC; ALL_TAC] THEN
X_GEN_TAC `e:real` THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`f:real^N->real`; `e / &2`]) THEN
ASM_REWRITE_TAC[REAL_HALF; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `h:real^N->real` THEN EXPAND_TAC "A" THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
DISCH_THEN(MP_TAC o SPEC `e / &2` o CONJUNCT2) THEN
ASM_REWRITE_TAC[REAL_HALF] THEN MATCH_MP_TAC MONO_EXISTS THEN
ASM_MESON_TAC[REAL_ARITH
`abs(f - h) < e / &2 /\ abs(h - g) < e / &2 ==> abs(f - g) < e`]] THEN
MAP_EVERY X_GEN_TAC [`f:real^N->real`; `e:real`] THEN EXPAND_TAC "C" THEN
STRIP_TAC THEN
SUBGOAL_THEN
`!x y. x IN s /\ y IN s
==> ?h:real^N->real. A(h) /\ h(x) = f(x) /\ h(y) = f(y)`
MP_TAC THENL
[REPEAT STRIP_TAC THEN ASM_CASES_TAC `y:real^N = x` THENL
[EXISTS_TAC `\z:real^N. (f:real^N->real) x` THEN ASM_SIMP_TAC[];
SUBGOAL_THEN `?h:real^N->real. A(h) /\ ~(h x = h y)`
STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
EXISTS_TAC `\z. (f y - f x) / (h y - h x) * (h:real^N->real)(z) +
(f x - (f y - f x) / (h y - h x) * h(x))` THEN
ASM_SIMP_TAC[] THEN
UNDISCH_TAC `~((h:real^N->real) x = h y)` THEN CONV_TAC REAL_FIELD];
ALL_TAC] THEN
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN
REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `f2:real^N->real^N->real^N->real` THEN DISCH_TAC THEN
ABBREV_TAC `G = \x y.
{z | z IN s /\ (f2:real^N->real^N->real^N->real) x y z < f(z) + e}` THEN
SUBGOAL_THEN `!x y:real^N. x IN s /\ y IN s ==> x IN G x y /\ y IN G x y`
ASSUME_TAC THENL
[EXPAND_TAC "G" THEN REWRITE_TAC[IN_ELIM_THM] THEN
ASM_SIMP_TAC[REAL_LT_ADDR];
ALL_TAC] THEN
SUBGOAL_THEN
`!x. x IN s ==> ?f1. A(f1) /\ f1 x = f x /\
!y:real^N. y IN s ==> f1 y < f y + e`
MP_TAC THENL
[REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o
GEN_REWRITE_RULE I [COMPACT_EQ_HEINE_BOREL_SUBTOPOLOGY]) THEN
DISCH_THEN(MP_TAC o SPEC
`{(G:real^N->real^N->real^N->bool) x y | y IN s}`) THEN
REWRITE_TAC[SIMPLE_IMAGE; UNIONS_IMAGE; FORALL_IN_IMAGE; ETA_AX] THEN
ANTS_TAC THENL
[CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN
EXPAND_TAC "G" THEN REWRITE_TAC[] THEN X_GEN_TAC `w:real^N` THEN
DISCH_TAC THEN
MP_TAC(ISPECL [`lift o (\z:real^N. f2 (x:real^N) (w:real^N) z - f z)`;
`s:real^N->bool`;
`{x:real^1 | x$1 < e}`] CONTINUOUS_OPEN_IN_PREIMAGE) THEN
REWRITE_TAC[OPEN_HALFSPACE_COMPONENT_LT; IN_ELIM_THM] THEN
REWRITE_TAC[GSYM drop; LIFT_DROP; o_DEF] THEN
REWRITE_TAC[LIFT_SUB; GSYM REAL_CONTINUOUS_CONTINUOUS1;
REAL_ARITH `x < y + e <=> x - y < e`] THEN
DISCH_THEN MATCH_MP_TAC THEN MATCH_MP_TAC CONTINUOUS_ON_SUB THEN
ONCE_REWRITE_TAC[GSYM o_DEF] THEN
REWRITE_TAC[CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN] THEN
REWRITE_TAC[GSYM REAL_CONTINUOUS_CONTINUOUS1; ETA_AX] THEN
ASM_MESON_TAC[];
ALL_TAC] THEN
ONCE_REWRITE_TAC[TAUT `a /\ b /\ c <=> b /\ a /\ c`] THEN
REWRITE_TAC[EXISTS_FINITE_SUBSET_IMAGE; UNIONS_IMAGE] THEN
DISCH_THEN(X_CHOOSE_THEN `t:real^N->bool` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `\z:real^N. inf {f2 (x:real^N) (y:real^N) z | y IN t}` THEN
REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL
[GEN_REWRITE_TAC RAND_CONV [REAL_ARITH `x = min x x`] THEN
REWRITE_TAC[REAL_MIN_INF; INSERT_AC] THEN AP_TERM_TAC THEN ASM SET_TAC[];
REMOVE_THEN "inf" (MP_TAC o SPEC
`IMAGE (\y z. (f2:real^N->real^N->real^N->real) x y z) t`) THEN
ASM_SIMP_TAC[FINITE_IMAGE; FORALL_IN_IMAGE] THEN
REWRITE_TAC[SIMPLE_IMAGE; ETA_AX] THEN
ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
REWRITE_TAC[GSYM IMAGE_o; o_DEF];
SUBGOAL_THEN `~(t:real^N->bool = {})` ASSUME_TAC THENL
[ASM SET_TAC[]; ALL_TAC] THEN
ASM_SIMP_TAC[REAL_INF_LT_FINITE; SIMPLE_IMAGE;
FINITE_IMAGE; IMAGE_EQ_EMPTY] THEN
REWRITE_TAC[EXISTS_IN_IMAGE] THEN
X_GEN_TAC `y:real^N` THEN DISCH_TAC THEN
UNDISCH_TAC
`s SUBSET {y:real^N | ?z:real^N. z IN t /\ y IN G (x:real^N) z}` THEN
REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN
DISCH_THEN(MP_TAC o SPEC `y:real^N`) THEN ASM_REWRITE_TAC[] THEN
EXPAND_TAC "G" THEN REWRITE_TAC[IN_ELIM_THM] THEN ASM_REWRITE_TAC[]];
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV)
[RIGHT_IMP_EXISTS_THM] THEN
REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `f1:real^N->real^N->real` THEN DISCH_TAC] THEN
ABBREV_TAC `H = \x:real^N. {z:real^N | z IN s /\ f z - e < f1 x z}` THEN
SUBGOAL_THEN `!x:real^N. x IN s ==> x IN (H x)` ASSUME_TAC THENL
[EXPAND_TAC "H" THEN REWRITE_TAC[IN_ELIM_THM] THEN
ASM_SIMP_TAC[REAL_ARITH `x - e < x <=> &0 < e`];
ALL_TAC] THEN
FIRST_ASSUM(MP_TAC o
GEN_REWRITE_RULE I [COMPACT_EQ_HEINE_BOREL_SUBTOPOLOGY]) THEN
DISCH_THEN(MP_TAC o SPEC
`{(H:real^N->real^N->bool) x | x IN s}`) THEN
REWRITE_TAC[SIMPLE_IMAGE; UNIONS_IMAGE; FORALL_IN_IMAGE; ETA_AX] THEN
ANTS_TAC THENL
[CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN EXPAND_TAC "H" THEN
REWRITE_TAC[] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN
MP_TAC(ISPECL [`lift o (\z:real^N. f z - f1 (x:real^N) z)`;
`s:real^N->bool`;
`{x:real^1 | x$1 < e}`] CONTINUOUS_OPEN_IN_PREIMAGE) THEN
REWRITE_TAC[OPEN_HALFSPACE_COMPONENT_LT; IN_ELIM_THM] THEN
REWRITE_TAC[GSYM drop; LIFT_DROP; o_DEF] THEN
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV)
[REAL_ARITH `x - y < z <=> x - z < y`] THEN
DISCH_THEN MATCH_MP_TAC THEN
REWRITE_TAC[LIFT_SUB; GSYM REAL_CONTINUOUS_CONTINUOUS1;
REAL_ARITH `x < y + e <=> x - y < e`] THEN
MATCH_MP_TAC CONTINUOUS_ON_SUB THEN
ONCE_REWRITE_TAC[GSYM o_DEF] THEN
REWRITE_TAC[CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN] THEN
REWRITE_TAC[GSYM REAL_CONTINUOUS_CONTINUOUS1; ETA_AX] THEN
ASM_MESON_TAC[];
ALL_TAC] THEN
ONCE_REWRITE_TAC[TAUT `a /\ b /\ c <=> b /\ a /\ c`] THEN
REWRITE_TAC[EXISTS_FINITE_SUBSET_IMAGE; UNIONS_IMAGE] THEN
DISCH_THEN(X_CHOOSE_THEN `t:real^N->bool` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `\z:real^N. sup {f1 (x:real^N) z | x IN t}` THEN
REWRITE_TAC[] THEN CONJ_TAC THENL
[REMOVE_THEN "sup" (MP_TAC o SPEC `IMAGE (f1:real^N->real^N->real) t`) THEN
ASM_SIMP_TAC[FINITE_IMAGE; FORALL_IN_IMAGE] THEN
REWRITE_TAC[SIMPLE_IMAGE; ETA_AX] THEN
ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
REWRITE_TAC[GSYM IMAGE_o; o_DEF];
ALL_TAC] THEN
X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN
SUBGOAL_THEN `~(t:real^N->bool = {})` ASSUME_TAC THENL
[ASM SET_TAC[]; ALL_TAC] THEN
REWRITE_TAC[SIMPLE_IMAGE; REAL_ARITH
`abs(f - s) < e <=> f - e < s /\ s < f + e`] THEN
ASM_SIMP_TAC[REAL_SUP_LT_FINITE; REAL_LT_SUP_FINITE;
FINITE_IMAGE; IMAGE_EQ_EMPTY] THEN
REWRITE_TAC[EXISTS_IN_IMAGE; FORALL_IN_IMAGE] THEN
CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN
UNDISCH_TAC `s SUBSET {y:real^N | ?x:real^N. x IN t /\ y IN H x}` THEN
REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN
DISCH_THEN(MP_TAC o SPEC `x:real^N`) THEN ASM_REWRITE_TAC[] THEN
EXPAND_TAC "H" THEN REWRITE_TAC[IN_ELIM_THM] THEN ASM_REWRITE_TAC[]);;
let STONE_WEIERSTRASS = prove
(`!(P:(real^N->real)->bool) (s:real^N->bool).
compact s /\
(!f. P(f) ==> !x. x IN s ==> f real_continuous (at x within s)) /\
(!c. P(\x. c)) /\
(!f g. P(f) /\ P(g) ==> P(\x. f x + g x)) /\
(!f g. P(f) /\ P(g) ==> P(\x. f x * g x)) /\
(!x y. x IN s /\ y IN s /\ ~(x = y) ==> ?f. P(f) /\ ~(f x = f y))
==> !f e. (!x. x IN s ==> f real_continuous (at x within s)) /\ &0 < e
==> ?g. P(g) /\ !x. x IN s ==> abs(f x - g x) < e`,
REPEAT GEN_TAC THEN STRIP_TAC THEN
MATCH_MP_TAC STONE_WEIERSTRASS_ALT THEN ASM_SIMP_TAC[] THEN
MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`] THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`x:real^N`; `y:real^N`]) THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Real and complex versions of Stone-Weierstrass theorem. *)
(* ------------------------------------------------------------------------- *)
let REAL_STONE_WEIERSTRASS_ALT = prove
(`!P s. real_compact s /\
(!c. P (\x. c)) /\
(!f g. P f /\ P g ==> P (\x. f x + g x)) /\
(!f g. P f /\ P g ==> P (\x. f x * g x)) /\
(!x y. x IN s /\ y IN s /\ ~(x = y)
==> ?f. f real_continuous_on s /\ P f /\ ~(f x = f y))
==> !f e. f real_continuous_on s /\ &0 < e
==> ?g. P g /\ !x. x IN s ==> abs(f x - g x) < e`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL
[`\f. (P:(real->real)->bool)(f o lift)`;
`IMAGE lift s`] STONE_WEIERSTRASS_ALT) THEN
ASM_SIMP_TAC[GSYM real_compact; o_DEF] THEN
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN
REWRITE_TAC[IMP_IMP; GSYM CONJ_ASSOC] THEN ANTS_TAC THENL
[X_GEN_TAC `x:real` THEN DISCH_TAC THEN
X_GEN_TAC `y:real` THEN REWRITE_TAC[LIFT_EQ] THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`x:real`; `y:real`]) THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `g:real->real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `(g:real->real) o drop` THEN
ASM_REWRITE_TAC[o_THM; LIFT_DROP; ETA_AX] THEN
UNDISCH_TAC `g real_continuous_on s` THEN
REWRITE_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN] THEN
REWRITE_TAC[REAL_CONTINUOUS_CONTINUOUS_WITHINREAL] THEN
REWRITE_TAC[real_continuous_within; continuous_within] THEN
REWRITE_TAC[o_THM; LIFT_DROP; DIST_LIFT];
DISCH_THEN(MP_TAC o SPEC `(f:real->real) o drop`) THEN ANTS_TAC THENL
[UNDISCH_TAC `f real_continuous_on s` THEN
REWRITE_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN] THEN
REWRITE_TAC[REAL_CONTINUOUS_CONTINUOUS_WITHINREAL] THEN
REWRITE_TAC[real_continuous_within; continuous_within] THEN
REWRITE_TAC[o_THM; LIFT_DROP; DIST_LIFT];
DISCH_THEN(MP_TAC o SPEC `e:real`) THEN
ASM_REWRITE_TAC[o_DEF; LIFT_DROP] THEN
DISCH_THEN(X_CHOOSE_THEN `g:real^1->real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `(g:real^1->real) o lift` THEN ASM_REWRITE_TAC[o_DEF]]]);;
let REAL_STONE_WEIERSTRASS = prove
(`!P s. real_compact s /\
(!f. P f ==> f real_continuous_on s) /\
(!c. P (\x. c)) /\
(!f g. P f /\ P g ==> P (\x. f x + g x)) /\
(!f g. P f /\ P g ==> P (\x. f x * g x)) /\
(!x y. x IN s /\ y IN s /\ ~(x = y) ==> ?f. P f /\ ~(f x = f y))
==> !f e. f real_continuous_on s /\ &0 < e
==> ?g. P g /\ !x. x IN s ==> abs(f x - g x) < e`,
REPEAT GEN_TAC THEN STRIP_TAC THEN
MATCH_MP_TAC REAL_STONE_WEIERSTRASS_ALT THEN ASM_SIMP_TAC[] THEN
MAP_EVERY X_GEN_TAC [`x:real`; `y:real`] THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`x:real`; `y:real`]) THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM_MESON_TAC[]);;
let COMPLEX_STONE_WEIERSTRASS_ALT = prove
(`!P s. compact s /\
(!c. P (\x. c)) /\
(!f. P f ==> P(\x. cnj(f x))) /\
(!f g. P f /\ P g ==> P (\x. f x + g x)) /\
(!f g. P f /\ P g ==> P (\x. f x * g x)) /\
(!x y. x IN s /\ y IN s /\ ~(x = y)
==> ?f. P f /\ f continuous_on s /\ ~(f x = f y))
==> !f:real^N->complex e.
f continuous_on s /\ &0 < e
==> ?g. P g /\ !x. x IN s ==> norm(f x - g x) < e`,
REPEAT GEN_TAC THEN STRIP_TAC THEN
SUBGOAL_THEN `!f. P f ==> P(\x:real^N. Cx(Re(f x)))` ASSUME_TAC THENL
[ASM_SIMP_TAC[CX_RE_CNJ; SIMPLE_COMPLEX_ARITH
`x / Cx(&2) = inv(Cx(&2)) * x`];
ALL_TAC] THEN
SUBGOAL_THEN `!f. P f ==> P(\x:real^N. Cx(Im(f x)))` ASSUME_TAC THENL
[ASM_SIMP_TAC[CX_IM_CNJ; SIMPLE_COMPLEX_ARITH
`x - y = x + --Cx(&1) * y /\ x / Cx(&2) = inv(Cx(&2)) * x`] THEN
REPEAT STRIP_TAC THEN REPEAT(FIRST_ASSUM MATCH_MP_TAC ORELSE CONJ_TAC) THEN
ASM_SIMP_TAC[];
ALL_TAC] THEN
MP_TAC(ISPECL [`\x. x IN {Re o f | P (f:real^N->complex)}`; `s:real^N->bool`]
STONE_WEIERSTRASS_ALT) THEN
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_GSPEC] THEN
REWRITE_TAC[EXISTS_IN_GSPEC; IMP_IMP; GSYM CONJ_ASSOC] THEN ANTS_TAC THENL
[ASM_REWRITE_TAC[IMP_IMP; RIGHT_IMP_FORALL_THM; IN_ELIM_THM] THEN
REPEAT CONJ_TAC THENL
[X_GEN_TAC `c:real` THEN EXISTS_TAC `\x:real^N. Cx(c)` THEN
ASM_REWRITE_TAC[FUN_EQ_THM; o_THM; RE_CX];
MAP_EVERY X_GEN_TAC [`f:real^N->complex`; `g:real^N->complex`] THEN
DISCH_TAC THEN EXISTS_TAC `(\x. f x + g x):real^N->complex` THEN
ASM_SIMP_TAC[o_THM; RE_ADD; FUN_EQ_THM];
MAP_EVERY X_GEN_TAC [`f:real^N->complex`; `g:real^N->complex`] THEN
STRIP_TAC THEN
EXISTS_TAC `\x:real^N. Cx(Re(f x)) * Cx(Re(g x))` THEN
ASM_SIMP_TAC[FUN_EQ_THM; RE_CX; o_THM; RE_MUL_CX];
MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`] THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`x:real^N`; `y:real^N`]) THEN
ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `f:real^N->complex` THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [COMPLEX_EQ] THEN
REWRITE_TAC[DE_MORGAN_THM] THEN STRIP_TAC THENL
[EXISTS_TAC `\x:real^N. Re(f x)` THEN ASM_REWRITE_TAC[o_DEF] THEN
CONJ_TAC THENL
[ALL_TAC; EXISTS_TAC `f:real^N->complex` THEN ASM_REWRITE_TAC[]];
EXISTS_TAC `\x:real^N. Im(f x)` THEN ASM_REWRITE_TAC[o_DEF] THEN
CONJ_TAC THENL
[ALL_TAC;
EXISTS_TAC `\x:real^N. Cx(Im(f x))` THEN ASM_SIMP_TAC[RE_CX]]] THEN
X_GEN_TAC `a:real^N` THEN DISCH_TAC THEN REWRITE_TAC[GSYM o_DEF] THEN
MATCH_MP_TAC REAL_CONTINUOUS_CONTINUOUS_WITHIN_COMPOSE THEN
SIMP_TAC[REAL_CONTINUOUS_COMPLEX_COMPONENTS_AT;
REAL_CONTINUOUS_AT_WITHIN] THEN
ASM_MESON_TAC[CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN]];
DISCH_THEN(LABEL_TAC "*") THEN X_GEN_TAC `f:real^N->complex` THEN
DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN
REMOVE_THEN "*"
(fun th -> MP_TAC(ISPEC `Re o (f:real^N->complex)` th) THEN
MP_TAC(ISPEC `Im o (f:real^N->complex)` th)) THEN
MATCH_MP_TAC(TAUT `(p1 /\ p2) /\ (q1 /\ q2 ==> r)
==> (p1 ==> q1) ==> (p2 ==> q2) ==> r`) THEN
CONJ_TAC THENL
[CONJ_TAC THEN X_GEN_TAC `a:real^N` THEN DISCH_TAC THEN
MATCH_MP_TAC REAL_CONTINUOUS_CONTINUOUS_WITHIN_COMPOSE THEN
SIMP_TAC[REAL_CONTINUOUS_COMPLEX_COMPONENTS_AT;
REAL_CONTINUOUS_AT_WITHIN] THEN
ASM_MESON_TAC[CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN];
ALL_TAC] THEN
REWRITE_TAC[AND_FORALL_THM] THEN
DISCH_THEN(MP_TAC o SPEC `e / &2`) THEN
ASM_REWRITE_TAC[REAL_HALF; o_THM] THEN
DISCH_THEN(CONJUNCTS_THEN2
(X_CHOOSE_THEN `g:real^N->complex` STRIP_ASSUME_TAC)
(X_CHOOSE_THEN `h:real^N->complex` STRIP_ASSUME_TAC)) THEN
EXISTS_TAC `\x:real^N. Cx(Re(h x)) + ii * Cx(Re(g x))` THEN
ASM_SIMP_TAC[] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o LAND_CONV) [COMPLEX_EXPAND] THEN
MATCH_MP_TAC(NORM_ARITH
`norm(x1 - x2) < e / &2 /\ norm(y1 - y2) < e / &2
==> norm((x1 + y1) - (x2 + y2)) < e`) THEN
ASM_SIMP_TAC[GSYM CX_SUB; COMPLEX_NORM_CX; GSYM COMPLEX_SUB_LDISTRIB;
COMPLEX_NORM_MUL; COMPLEX_NORM_II; REAL_MUL_LID]]);;
let COMPLEX_STONE_WEIERSTRASS = prove
(`!P s. compact s /\
(!f. P f ==> f continuous_on s) /\
(!c. P (\x. c)) /\
(!f. P f ==> P(\x. cnj(f x))) /\
(!f g. P f /\ P g ==> P (\x. f x + g x)) /\
(!f g. P f /\ P g ==> P (\x. f x * g x)) /\
(!x y. x IN s /\ y IN s /\ ~(x = y) ==> ?f. P f /\ ~(f x = f y))
==> !f:real^N->complex e.
f continuous_on s /\ &0 < e
==> ?g. P g /\ !x. x IN s ==> norm(f x - g x) < e`,
REPEAT GEN_TAC THEN STRIP_TAC THEN
MATCH_MP_TAC COMPLEX_STONE_WEIERSTRASS_ALT THEN ASM_SIMP_TAC[] THEN
MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`] THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`x:real^N`; `y:real^N`]) THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Stone-Weierstrass for R^n -> R polynomials. *)
(* ------------------------------------------------------------------------- *)
let real_polynomial_function_RULES,
real_polynomial_function_INDUCT,
real_polynomial_function_CASES = new_inductive_definition
`(!i. 1 <= i /\ i <= dimindex(:N)
==> real_polynomial_function(\x:real^N. x$i)) /\
(!c. real_polynomial_function(\x:real^N. c)) /\
(!f g. real_polynomial_function f /\ real_polynomial_function g
==> real_polynomial_function(\x:real^N. f x + g x)) /\
(!f g. real_polynomial_function f /\ real_polynomial_function g
==> real_polynomial_function(\x:real^N. f x * g x))`;;
let REAL_POLYNOMIAL_FUNCTION_ADD = prove
(`!f g. real_polynomial_function f /\ real_polynomial_function g
==> real_polynomial_function(\x. f x + g x)`,
REWRITE_TAC[real_polynomial_function_RULES]);;
let REAL_POLYNOMIAL_FUNCTION_MUL = prove
(`!f g. real_polynomial_function f /\ real_polynomial_function g
==> real_polynomial_function(\x. f x * g x)`,
REWRITE_TAC[real_polynomial_function_RULES]);;
let REAL_POLYNOMIAL_FUNCTION_NEG = prove
(`!f:real^N->real.
real_polynomial_function(\x. --(f x)) <=> real_polynomial_function f`,
MATCH_MP_TAC(MESON[]
`(!x. n(n x) = x) /\ (!x. P x ==> P(n x)) ==> (!x. P(n x) <=> P x)`) THEN
REWRITE_TAC[REAL_NEG_NEG; ETA_AX] THEN REPEAT STRIP_TAC THEN
ONCE_REWRITE_TAC[REAL_ARITH `--x:real = --(&1) * x`] THEN
ASM_SIMP_TAC[real_polynomial_function_RULES; ETA_AX]);;
let REAL_POLYNOMIAL_FUNCTION_SUB = prove
(`!f g:real^N->real.
real_polynomial_function f /\ real_polynomial_function g
==> real_polynomial_function (\x. f x - g x)`,
SIMP_TAC[real_sub; REAL_POLYNOMIAL_FUNCTION_NEG;
REAL_POLYNOMIAL_FUNCTION_ADD]);;
let REAL_POLYNOMIAL_FUNCTION_SUM = prove
(`!f s. FINITE s /\
(!a. a IN s ==> real_polynomial_function(\x. f x a))
==> real_polynomial_function (\x. sum s (f x))`,
GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[real_polynomial_function_RULES; SUM_CLAUSES; FORALL_IN_INSERT]);;
let REAL_POLYNOMIAL_FUNCTION_PRODUCT = prove
(`!f s. FINITE s /\
(!a. a IN s ==> real_polynomial_function(\x. f x a))
==> real_polynomial_function (\x. product s (f x))`,
GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[real_polynomial_function_RULES; PRODUCT_CLAUSES;
FORALL_IN_INSERT]);;
let REAL_POLYNOMIAL_FUNCTION_POW = prove
(`!p n. real_polynomial_function p
==> real_polynomial_function(\x. p(x) pow n)`,
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN
GEN_TAC THEN DISCH_TAC THEN
INDUCT_TAC THEN ASM_SIMP_TAC[real_polynomial_function_RULES; real_pow]);;
let REAL_POLYNOMIAL_FUNCTION_EXPLICIT,
REAL_POLYNOMIAL_FUNCTION_EXPLICIT_NZ,
REAL_POLYNOMIAL_FUNCTION_EXPLICIT_UNIV =
let lemma1,lemma2 = (CONJ_PAIR o prove)
(`(!f:real^N->real.
(?a:num^N->real.
FINITE {k | ~(a k = &0)} /\
f = \x. sum (:num^N)
(\k. a(k) * product(1..dimindex(:N)) (\i. x$i pow k$i))) <=>
(?(s:num^N->bool) a.
FINITE s /\
f = \x. sum s
(\k. a(k) * product(1..dimindex(:N)) (\i. x$i pow k$i)))) /\
(!f:real^N->real.
(?a:num^N->real.
FINITE {k | ~(a k = &0)} /\
f = \x. sum (:num^N)
(\k. a(k) * product(1..dimindex(:N)) (\i. x$i pow k$i))) <=>
(?(s:num^N->bool) a.
FINITE s /\ (!k. k IN s ==> ~(a k = &0)) /\
f = \x. sum s
(\k. a(k) * product(1..dimindex(:N)) (\i. x$i pow k$i))))`,
REWRITE_TAC[AND_FORALL_THM] THEN GEN_TAC THEN MATCH_MP_TAC(TAUT
`(r ==> q) /\ (p ==> r) /\ (q ==> p) ==> (p <=> q) /\ (p <=> r)`) THEN
REPEAT CONJ_TAC THENL
[MESON_TAC[];
ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN
X_GEN_TAC `a:num^N->real` THEN STRIP_TAC THEN
EXISTS_TAC `{k:num^N | ~(a k = &0)}` THEN
ASM_REWRITE_TAC[IN_ELIM_THM] THEN
ABS_TAC THEN MATCH_MP_TAC SUM_SUPERSET THEN
SIMP_TAC[SUBSET_UNIV; IN_ELIM_THM; IN_UNIV; REAL_MUL_LZERO];
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`s:num^N->bool`; `a:num^N->real`] THEN
STRIP_TAC THEN
EXISTS_TAC `\k. if k IN s then (a:num^N->real) k else &0` THEN
ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
[FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ]
FINITE_SUBSET)) THEN
SET_TAC[];
ABS_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC SUM_EQ_SUPERSET THEN
ASM_SIMP_TAC[SUBSET_UNIV; REAL_MUL_LZERO]]]) in
let REAL_POLYNOMIAL_FUNCTION_EXPLICIT_UNIV = prove
(`!f:real^N->real.
real_polynomial_function f <=>
?a:num^N->real.
FINITE {k | ~(a k = &0)} /\
f = \x. sum (:num^N)
(\k. a(k) * product(1..dimindex(:N)) (\i. x$i pow k$i))`,
REWRITE_TAC[TAUT `(p <=> q) <=> (q ==> p) /\ (p ==> q)`;
FORALL_AND_THM] THEN
CONJ_TAC THENL
[GEN_TAC THEN REWRITE_TAC[lemma1] THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`s:num^N->bool`; `a:num^N->real`] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC REAL_POLYNOMIAL_FUNCTION_SUM THEN
ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC REAL_POLYNOMIAL_FUNCTION_MUL THEN
REWRITE_TAC[real_polynomial_function_RULES] THEN
MATCH_MP_TAC REAL_POLYNOMIAL_FUNCTION_PRODUCT THEN
REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC REAL_POLYNOMIAL_FUNCTION_POW THEN
ASM_SIMP_TAC[real_polynomial_function_RULES];
ALL_TAC] THEN
MATCH_MP_TAC real_polynomial_function_INDUCT THEN
MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL
[X_GEN_TAC `j:num` THEN STRIP_TAC THEN REWRITE_TAC[lemma1] THEN
EXISTS_TAC `{(lambda i. if i = j then 1 else 0):num^N}` THEN
EXISTS_TAC `\k:num^N. &1` THEN
REWRITE_TAC[FINITE_SING; SUM_SING; REAL_MUL_LID] THEN ABS_TAC THEN
ASM_SIMP_TAC[LAMBDA_BETA; COND_RAND; real_pow; PRODUCT_DELTA; IN_NUMSEG;
REAL_POW_1];
DISCH_TAC] THEN
MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL
[X_GEN_TAC `c:real` THEN REWRITE_TAC[lemma1] THEN
EXISTS_TAC `{(lambda i. 0):num^N}` THEN
EXISTS_TAC `(\k. c):num^N->real` THEN
REWRITE_TAC[FINITE_SING; SUM_SING] THEN ABS_TAC THEN
ASM_SIMP_TAC[LAMBDA_BETA; real_pow; PRODUCT_ONE; REAL_MUL_RID];
DISCH_TAC] THEN
MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL
[REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2
(X_CHOOSE_THEN `a:num^N->real` STRIP_ASSUME_TAC)
(X_CHOOSE_THEN `b:num^N->real` STRIP_ASSUME_TAC)) THEN
EXISTS_TAC `(\k. a k + b k):num^N->real` THEN
REWRITE_TAC[] THEN CONJ_TAC THENL
[MATCH_MP_TAC FINITE_SUBSET THEN
EXISTS_TAC `{k:num^N | ~(a k = &0)} UNION {k:num^N | ~(b k = &0)}` THEN
ASM_REWRITE_TAC[FINITE_UNION; SUBSET; IN_UNION; IN_ELIM_THM] THEN
REAL_ARITH_TAC;
ASM_REWRITE_TAC[REAL_ADD_RDISTRIB] THEN ABS_TAC THEN
CONV_TAC SYM_CONV THEN MATCH_MP_TAC SUM_ADD_GEN THEN
REWRITE_TAC[IN_UNIV; REAL_ENTIRE; DE_MORGAN_THM] THEN
CONJ_TAC THEN MATCH_MP_TAC(MESON[FINITE_SUBSET]
`FINITE {k | P k} /\ {k | P k /\ Q k} SUBSET {k | P k}
==> FINITE {k | P k /\ Q k}`) THEN
ASM_REWRITE_TAC[] THEN SET_TAC[]];
DISCH_TAC] THEN
REPEAT GEN_TAC THEN REWRITE_TAC[lemma1] THEN DISCH_THEN(CONJUNCTS_THEN2
(X_CHOOSE_THEN `s:num^N->bool` (X_CHOOSE_THEN `a:num^N->real`
STRIP_ASSUME_TAC))
(X_CHOOSE_THEN `t:num^N->bool` (X_CHOOSE_THEN `b:num^N->real`
STRIP_ASSUME_TAC))) THEN
ASM_REWRITE_TAC[GSYM SUM_RMUL] THEN ASM_REWRITE_TAC[GSYM SUM_LMUL] THEN
ASM_SIMP_TAC[SUM_SUM_PRODUCT] THEN
MP_TAC(GEN `g:num^N#num^N->real` (ISPECL
[`(\(k,l). lambda i. k$i + l$i):num^N#num^N->num^N`;
`g:num^N#num^N->real`; `{k,l | (k:num^N) IN s /\ (l:num^N) IN t}`;
`(:num^N)`] SUM_GROUP)) THEN
ASM_SIMP_TAC[FINITE_PRODUCT; SUBSET_UNIV; GSYM lemma1] THEN
DISCH_THEN(fun th -> REWRITE_TAC[GSYM th]) THEN
EXISTS_TAC `\m:num^N. sum {(k:num^N,l:num^N) | k IN s /\ l IN t /\
(lambda i. k$i + l$i) = m}
(\(k,l). (a:num^N->real) k * b l)` THEN
REWRITE_TAC[] THEN CONJ_TAC THENL
[MATCH_MP_TAC FINITE_SUBSET THEN
EXISTS_TAC `IMAGE ((\(k,l). lambda i. k$i + l$i):num^N#num^N->num^N)
{k,l | k IN s /\ l IN t}` THEN
ASM_SIMP_TAC[FINITE_PRODUCT; FINITE_IMAGE] THEN
REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN
REWRITE_TAC[CONTRAPOS_THM; SET_RULE
`x IN IMAGE f s <=> ~({y | y IN s /\ f y = x} = {})`] THEN
GEN_TAC THEN DISCH_THEN(fun th ->
MATCH_MP_TAC(MESON[SUM_CLAUSES] `s = {} ==> sum s f = &0`) THEN
GEN_REWRITE_TAC RAND_CONV [GSYM th]) THEN
REWRITE_TAC[EXTENSION; FORALL_PAIR_THM; IN_ELIM_PAIR_THM] THEN
REWRITE_TAC[IN_ELIM_THM; IN_ELIM_PAIR_THM; GSYM CONJ_ASSOC];
ABS_TAC THEN MATCH_MP_TAC SUM_EQ THEN X_GEN_TAC `m:num^N` THEN
REWRITE_TAC[IN_UNIV; GSYM SUM_RMUL] THEN
MATCH_MP_TAC(MESON[SUM_EQ]
`s = t /\ (!x. x IN t ==> f x = g x) ==> sum s f = sum t g`) THEN
REWRITE_TAC[FORALL_IN_GSPEC; EXTENSION; FORALL_PAIR_THM;
IN_ELIM_PAIR_THM; IN_ELIM_THM; GSYM CONJ_ASSOC] THEN
REPEAT GEN_TAC THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN
MATCH_MP_TAC(REAL_RING
`p1 * p2:real = p ==> (a * p1) * (b * p2) = (a * b) * p`) THEN
ASM_SIMP_TAC[GSYM PRODUCT_MUL_NUMSEG; LAMBDA_BETA; REAL_POW_ADD]]) in
let REAL_POLYNOMIAL_FUNCTION_EXPLICIT = prove
(`!f:real^N->real.
real_polynomial_function f <=>
?(s:num^N->bool) a.
FINITE s /\
f = \x. sum s
(\k. a(k) * product(1..dimindex(:N)) (\i. x$i pow k$i))`,
REWRITE_TAC[GSYM lemma1] THEN
REWRITE_TAC[REAL_POLYNOMIAL_FUNCTION_EXPLICIT_UNIV]) in
let REAL_POLYNOMIAL_FUNCTION_EXPLICIT_NZ = prove
(`!f:real^N->real.
real_polynomial_function f <=>
?(s:num^N->bool) a.
FINITE s /\ (!k. k IN s ==> ~(a k = &0)) /\
f = \x. sum s
(\k. a(k) * product(1..dimindex(:N)) (\i. x$i pow k$i))`,
REWRITE_TAC[GSYM lemma2] THEN
REWRITE_TAC[REAL_POLYNOMIAL_FUNCTION_EXPLICIT_UNIV]) in
REAL_POLYNOMIAL_FUNCTION_EXPLICIT,
REAL_POLYNOMIAL_FUNCTION_EXPLICIT_NZ,
REAL_POLYNOMIAL_FUNCTION_EXPLICIT_UNIV;;
let REAL_CONTINUOUS_REAL_POLYMONIAL_FUNCTION = prove
(`!f x:real^N.
real_polynomial_function f ==> f real_continuous at x`,
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN
MATCH_MP_TAC real_polynomial_function_INDUCT THEN
SIMP_TAC[REAL_CONTINUOUS_ADD; REAL_CONTINUOUS_MUL;
REAL_CONTINUOUS_CONST; REAL_CONTINUOUS_AT_COMPONENT]);;
let STONE_WEIERSTRASS_REAL_POLYNOMIAL_FUNCTION = prove
(`!f:real^N->real s e.
compact s /\
(!x. x IN s ==> f real_continuous at x within s) /\
&0 < e
==> ?g. real_polynomial_function g /\
!x. x IN s ==> abs(f x - g x) < e`,
REPEAT STRIP_TAC THEN
MATCH_MP_TAC(REWRITE_RULE[RIGHT_IMP_FORALL_THM; IMP_IMP]
STONE_WEIERSTRASS) THEN
ASM_REWRITE_TAC[real_polynomial_function_RULES] THEN
SIMP_TAC[REAL_CONTINUOUS_REAL_POLYMONIAL_FUNCTION;
REAL_CONTINUOUS_AT_WITHIN] THEN
MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`] THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [CART_EQ] THEN
REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `i:num` THEN STRIP_TAC THEN EXISTS_TAC `\x:real^N. x$i` THEN
ASM_SIMP_TAC[real_polynomial_function_RULES]);;
(* ------------------------------------------------------------------------- *)
(* Stone-Weierstrass for real^M->real^N polynomials. *)
(* ------------------------------------------------------------------------- *)
let vector_polynomial_function = new_definition
`vector_polynomial_function (f:real^M->real^N) <=>
!i. 1 <= i /\ i <= dimindex(:N)
==> real_polynomial_function(\x. f(x)$i)`;;
let REAL_POLYNOMIAL_FUNCTION_DROP = prove
(`!f. real_polynomial_function(drop o f) <=> vector_polynomial_function f`,
REWRITE_TAC[vector_polynomial_function; DIMINDEX_1; FORALL_1] THEN
REWRITE_TAC[o_DEF; drop]);;
let VECTOR_POLYNOMIAL_FUNCTION_LIFT = prove
(`!f. vector_polynomial_function(lift o f) <=> real_polynomial_function f`,
REWRITE_TAC[GSYM REAL_POLYNOMIAL_FUNCTION_DROP; o_DEF; LIFT_DROP; ETA_AX]);;
let VECTOR_POLYNOMIAL_FUNCTION_CONST = prove
(`!c. vector_polynomial_function(\x. c)`,
SIMP_TAC[vector_polynomial_function; real_polynomial_function_RULES]);;
let VECTOR_POLYNOMIAL_FUNCTION_ID = prove
(`vector_polynomial_function(\x. x)`,
SIMP_TAC[vector_polynomial_function; real_polynomial_function_RULES]);;
let VECTOR_POLYNOMIAL_FUNCTION_COMPONENT = prove
(`!f:real^M->real^N i.
1 <= i /\ i <= dimindex(:N) /\ vector_polynomial_function f
==> vector_polynomial_function(\x. lift(f x$i))`,
SIMP_TAC[vector_polynomial_function; FORALL_1; DIMINDEX_1; GSYM drop;
LIFT_DROP]);;
let VECTOR_POLYNOMIAL_FUNCTION_ADD = prove
(`!f g:real^M->real^N.
vector_polynomial_function f /\ vector_polynomial_function g
==> vector_polynomial_function (\x. f x + g x)`,
REWRITE_TAC[vector_polynomial_function] THEN
SIMP_TAC[VECTOR_ADD_COMPONENT; real_polynomial_function_RULES]);;
let VECTOR_POLYNOMIAL_FUNCTION_MUL = prove
(`!f g:real^M->real^N.
vector_polynomial_function(lift o f) /\ vector_polynomial_function g
==> vector_polynomial_function (\x. f x % g x)`,
REWRITE_TAC[vector_polynomial_function; o_DEF; VECTOR_MUL_COMPONENT] THEN
REWRITE_TAC[FORALL_1; DIMINDEX_1; GSYM drop; LIFT_DROP; ETA_AX] THEN
SIMP_TAC[real_polynomial_function_RULES]);;
let VECTOR_POLYNOMIAL_FUNCTION_CMUL = prove
(`!f:real^M->real^N c.
vector_polynomial_function f
==> vector_polynomial_function (\x. c % f x)`,
SIMP_TAC[VECTOR_POLYNOMIAL_FUNCTION_CONST; VECTOR_POLYNOMIAL_FUNCTION_MUL;
ETA_AX; o_DEF]);;
let VECTOR_POLYNOMIAL_FUNCTION_NEG = prove
(`!f:real^M->real^N.
vector_polynomial_function f
==> vector_polynomial_function (\x. --(f x))`,
REWRITE_TAC[VECTOR_ARITH `--x:real^N = --(&1) % x`] THEN
REWRITE_TAC[VECTOR_POLYNOMIAL_FUNCTION_CMUL]);;
let VECTOR_POLYNOMIAL_FUNCTION_SUB = prove
(`!f g:real^M->real^N.
vector_polynomial_function f /\ vector_polynomial_function g
==> vector_polynomial_function (\x. f x - g x)`,
SIMP_TAC[VECTOR_SUB; VECTOR_POLYNOMIAL_FUNCTION_ADD;
VECTOR_POLYNOMIAL_FUNCTION_NEG]);;
let VECTOR_POLYNOMIAL_FUNCTION_VSUM = prove
(`!f:real^M->A->real^N s.
FINITE s /\ (!i. i IN s ==> vector_polynomial_function (\x. f x i))
==> vector_polynomial_function (\x. vsum s (f x))`,
GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[VSUM_CLAUSES; FORALL_IN_INSERT; VECTOR_POLYNOMIAL_FUNCTION_CONST;
VECTOR_POLYNOMIAL_FUNCTION_ADD]);;
let REAL_VECTOR_POLYNOMIAL_FUNCTION_o = prove
(`!f:real^M->real^N g.
vector_polynomial_function f /\ real_polynomial_function g
==> real_polynomial_function(g o f)`,
GEN_TAC THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN
MATCH_MP_TAC real_polynomial_function_INDUCT THEN
REWRITE_TAC[o_DEF; real_polynomial_function_RULES] THEN
ASM_REWRITE_TAC[GSYM vector_polynomial_function]);;
let VECTOR_POLYNOMIAL_FUNCTION_o = prove
(`!f:real^M->real^N g:real^N->real^P.
vector_polynomial_function f /\ vector_polynomial_function g
==> vector_polynomial_function(g o f)`,
REPEAT GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
DISCH_THEN(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ]
REAL_VECTOR_POLYNOMIAL_FUNCTION_o)) THEN
SIMP_TAC[vector_polynomial_function; o_DEF]);;
let REAL_POLYNOMIAL_FUNCTION_1 = prove
(`!f. real_polynomial_function f <=>
?a n. f = \x. sum(0..n) (\i. a i * drop x pow i)`,
REWRITE_TAC[TAUT `(p <=> q) <=> (p ==> q) /\ (q ==> p)`] THEN
REWRITE_TAC[FORALL_AND_THM] THEN CONJ_TAC THENL
[MATCH_MP_TAC real_polynomial_function_INDUCT THEN
REWRITE_TAC[DIMINDEX_1; FORALL_1; FUN_EQ_THM] THEN CONJ_TAC THENL
[MAP_EVERY EXISTS_TAC [`\i. if i = 1 then &1 else &0`; `1`] THEN
SIMP_TAC[SUM_CLAUSES_LEFT; LE_0; ARITH_EQ; REAL_MUL_LZERO; drop] THEN
SIMP_TAC[ARITH; SUM_SING_NUMSEG] THEN REAL_ARITH_TAC;
ALL_TAC] THEN
CONJ_TAC THENL
[X_GEN_TAC `c:real` THEN
MAP_EVERY EXISTS_TAC [`(\i. c):num->real`; `0`] THEN
REWRITE_TAC[SUM_SING_NUMSEG; real_pow] THEN REAL_ARITH_TAC;
ALL_TAC] THEN
CONJ_TAC THEN
MAP_EVERY X_GEN_TAC [`f:real^1->real`; `g:real^1->real`] THEN
REWRITE_TAC[IMP_CONJ; LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`a:num->real`; `m:num`] THEN STRIP_TAC THEN
MAP_EVERY X_GEN_TAC [`b:num->real`; `n:num`] THEN STRIP_TAC THEN
ASM_REWRITE_TAC[] THENL
[MAP_EVERY EXISTS_TAC
[`\i:num. (if i <= m then a i else &0) + (if i <= n then b i else &0)`;
`MAX m n`] THEN
GEN_TAC THEN REWRITE_TAC[REAL_ADD_RDISTRIB; SUM_ADD_NUMSEG] THEN
REWRITE_TAC[COND_RAND; COND_RATOR; REAL_MUL_LZERO] THEN
REWRITE_TAC[GSYM SUM_RESTRICT_SET] THEN BINOP_TAC THEN
BINOP_TAC THEN REWRITE_TAC[] THEN
REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_NUMSEG] THEN ARITH_TAC;
REWRITE_TAC[GSYM SUM_RMUL] THEN REWRITE_TAC[GSYM SUM_LMUL] THEN
SIMP_TAC[SUM_SUM_PRODUCT; FINITE_NUMSEG] THEN
EXISTS_TAC `\k. sum {x | x IN {i,j | i IN 0..m /\ j IN 0..n} /\
FST x + SND x = k}
(\(i,j). a i * b j)` THEN
EXISTS_TAC `m + n:num` THEN X_GEN_TAC `x:real^1` THEN
MP_TAC(ISPECL
[`\(i:num,j). i + j`;
`\(i,j). (a i * drop x pow i) * (b j * drop x pow j)`;
`{i,j | i IN 0..m /\ j IN 0..n}`; `0..m+n`] SUM_GROUP) THEN
SIMP_TAC[FINITE_PRODUCT; FINITE_NUMSEG; FORALL_IN_IMAGE;
FORALL_IN_GSPEC; SUBSET; IN_NUMSEG; LE_0; LE_ADD2] THEN
DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_MP_TAC SUM_EQ_NUMSEG THEN
X_GEN_TAC `k:num` THEN STRIP_TAC THEN REWRITE_TAC[GSYM SUM_RMUL] THEN
MATCH_MP_TAC(MESON[SUM_EQ] `s = t /\ (!x. x IN t ==> f x = g x)
==> sum s f = sum t g`) THEN
SIMP_TAC[GSYM SUBSET_ANTISYM_EQ; SUBSET; FORALL_IN_GSPEC; IMP_CONJ] THEN
SIMP_TAC[IN_ELIM_PAIR_THM; IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN
FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN
REWRITE_TAC[REAL_POW_ADD] THEN REAL_ARITH_TAC];
REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC[GSYM VECTOR_POLYNOMIAL_FUNCTION_LIFT] THEN
SIMP_TAC[LIFT_SUM; o_DEF; FINITE_NUMSEG; FORALL_1; DIMINDEX_1] THEN
MATCH_MP_TAC VECTOR_POLYNOMIAL_FUNCTION_VSUM THEN
REWRITE_TAC[FINITE_NUMSEG; LIFT_CMUL] THEN
X_GEN_TAC `i:num` THEN STRIP_TAC THEN
MATCH_MP_TAC VECTOR_POLYNOMIAL_FUNCTION_MUL THEN
REWRITE_TAC[GSYM REAL_POLYNOMIAL_FUNCTION_DROP; o_DEF; LIFT_DROP] THEN
REWRITE_TAC[real_polynomial_function_RULES] THEN
SPEC_TAC(`i:num`,`k:num`) THEN REWRITE_TAC[drop] THEN
INDUCT_TAC THEN
ASM_SIMP_TAC[real_polynomial_function_RULES; real_pow; DIMINDEX_1;
ARITH]]);;
let CONTINUOUS_VECTOR_POLYNOMIAL_FUNCTION = prove
(`!f:real^M->real^N x.
vector_polynomial_function f ==> f continuous at x`,
REWRITE_TAC[vector_polynomial_function; CONTINUOUS_COMPONENTWISE] THEN
REPEAT STRIP_TAC THEN
MATCH_MP_TAC REAL_CONTINUOUS_REAL_POLYMONIAL_FUNCTION THEN
ASM_SIMP_TAC[]);;
let CONTINUOUS_ON_VECTOR_POLYNOMIAL_FUNCTION = prove
(`!f:real^M->real^N s.
vector_polynomial_function f ==> f continuous_on s`,
SIMP_TAC[CONTINUOUS_AT_IMP_CONTINUOUS_ON;
CONTINUOUS_VECTOR_POLYNOMIAL_FUNCTION]);;
let HAS_VECTOR_DERIVATIVE_VECTOR_POLYNOMIAL_FUNCTION = prove
(`!p:real^1->real^N.
vector_polynomial_function p
==> ?p'. vector_polynomial_function p' /\
!x. (p has_vector_derivative p'(x)) (at x)`,
let lemma = prove
(`!p:real^1->real.
real_polynomial_function p
==> ?p'. real_polynomial_function p' /\
!x. ((p o lift) has_real_derivative (p'(lift x))) (atreal x)`,
MATCH_MP_TAC
(derive_strong_induction(real_polynomial_function_RULES,
real_polynomial_function_INDUCT)) THEN
REWRITE_TAC[DIMINDEX_1; FORALL_1; o_DEF; GSYM drop; LIFT_DROP] THEN
CONJ_TAC THENL
[EXISTS_TAC `\x:real^1. &1` THEN
REWRITE_TAC[real_polynomial_function_RULES; HAS_REAL_DERIVATIVE_ID];
ALL_TAC] THEN
CONJ_TAC THENL
[X_GEN_TAC `c:real` THEN EXISTS_TAC `\x:real^1. &0` THEN
REWRITE_TAC[real_polynomial_function_RULES; HAS_REAL_DERIVATIVE_CONST];
ALL_TAC] THEN
CONJ_TAC THEN
MAP_EVERY X_GEN_TAC [`f:real^1->real`; `g:real^1->real`] THEN
DISCH_THEN(CONJUNCTS_THEN2
(CONJUNCTS_THEN2 ASSUME_TAC
(X_CHOOSE_THEN `f':real^1->real` STRIP_ASSUME_TAC))
(CONJUNCTS_THEN2 ASSUME_TAC
(X_CHOOSE_THEN `g':real^1->real` STRIP_ASSUME_TAC)))
THENL
[EXISTS_TAC `\x. (f':real^1->real) x + g' x`;
EXISTS_TAC `\x. (f:real^1->real) x * g' x + f' x * g x`] THEN
ASM_SIMP_TAC[real_polynomial_function_RULES; HAS_REAL_DERIVATIVE_ADD;
HAS_REAL_DERIVATIVE_MUL_ATREAL]) in
GEN_TAC THEN REWRITE_TAC[vector_polynomial_function] THEN DISCH_TAC THEN
SUBGOAL_THEN
`!i. 1 <= i /\ i <= dimindex(:N)
==> ?q. real_polynomial_function q /\
(!x. ((\x. lift(((p x):real^N)$i)) has_vector_derivative
lift(q x)) (at x))`
MP_TAC THENL
[X_GEN_TAC `i:num` THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `i:num`) THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(MP_TAC o MATCH_MP lemma) THEN
REWRITE_TAC[HAS_REAL_VECTOR_DERIVATIVE_AT] THEN
REWRITE_TAC[o_DEF; LIFT_DROP; FORALL_DROP];
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN
REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `q:num->real^1->real` THEN DISCH_TAC THEN
EXISTS_TAC `(\x. lambda i. (q:num->real^1->real) i x):real^1->real^N` THEN
ASM_SIMP_TAC[LAMBDA_BETA; ETA_AX] THEN
REWRITE_TAC[has_vector_derivative; has_derivative_at] THEN
ONCE_REWRITE_TAC[LIM_COMPONENTWISE] THEN X_GEN_TAC `x:real^1` THEN
SIMP_TAC[LINEAR_VMUL_DROP; LINEAR_ID] THEN X_GEN_TAC `i:num` THEN
STRIP_TAC THEN
REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `i:num`)) THEN
ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `x:real^1`) THEN
REWRITE_TAC[has_vector_derivative; has_derivative_at] THEN
ASM_SIMP_TAC[VECTOR_MUL_COMPONENT; VEC_COMPONENT; VECTOR_SUB_COMPONENT;
VECTOR_ADD_COMPONENT; LAMBDA_BETA; REAL_TENDSTO] THEN
SIMP_TAC[DROP_ADD; DROP_VEC; LIFT_DROP; DROP_CMUL; DROP_SUB; o_DEF]]);;
let STONE_WEIERSTRASS_VECTOR_POLYNOMIAL_FUNCTION = prove
(`!f:real^M->real^N s e.
compact s /\ f continuous_on s /\ &0 < e
==> ?g. vector_polynomial_function g /\
!x. x IN s ==> norm(f x - g x) < e`,
REPEAT STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I
[CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN]) THEN
REWRITE_TAC[CONTINUOUS_COMPONENTWISE] THEN
REWRITE_TAC[IMP_IMP; RIGHT_IMP_FORALL_THM] THEN DISCH_TAC THEN
SUBGOAL_THEN
`!i. 1 <= i /\ i <= dimindex(:N)
==> ?g. real_polynomial_function g /\
!x. x IN s ==> abs((f:real^M->real^N) x$i - g x) <
e / &(dimindex(:N))`
MP_TAC THENL
[REPEAT STRIP_TAC THEN
MATCH_MP_TAC STONE_WEIERSTRASS_REAL_POLYNOMIAL_FUNCTION THEN
ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; DIMINDEX_GE_1; LE_1];
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV)
[RIGHT_IMP_EXISTS_THM] THEN
REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `g:num->real^M->real` THEN DISCH_TAC THEN
EXISTS_TAC `(\x. lambda i. g i x):real^M->real^N` THEN
ASM_SIMP_TAC[vector_polynomial_function; LAMBDA_BETA; ETA_AX] THEN
X_GEN_TAC `x:real^M` THEN DISCH_TAC THEN
W(MP_TAC o PART_MATCH lhand NORM_LE_L1 o lhand o snd) THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] REAL_LET_TRANS) THEN
MATCH_MP_TAC SUM_BOUND_LT_GEN THEN
REWRITE_TAC[FINITE_NUMSEG; CARD_NUMSEG_1; NUMSEG_EMPTY; NOT_LT] THEN
ASM_SIMP_TAC[IN_NUMSEG; DIMINDEX_GE_1; LAMBDA_BETA;
VECTOR_SUB_COMPONENT]]);;
let STONE_WEIERSTRASS_VECTOR_POLYNOMIAL_FUNCTION_SUBSPACE = prove
(`!f:real^M->real^N s e t.
compact s /\ f continuous_on s /\ &0 < e /\
subspace t /\ IMAGE f s SUBSET t
==> ?g. vector_polynomial_function g /\ IMAGE g s SUBSET t /\
!x. x IN s ==> norm(f x - g x) < e`,
REPEAT STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP ORTHONORMAL_BASIS_SUBSPACE) THEN
DISCH_THEN(X_CHOOSE_THEN `bas:real^N->bool` MP_TAC) THEN
ASM_CASES_TAC `FINITE(bas:real^N->bool)` THENL
[ALL_TAC; ASM_MESON_TAC[HAS_SIZE]] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [FINITE_INDEX_NUMSEG]) THEN
ABBREV_TAC `n = CARD(bas:real^N->bool)` THEN
REWRITE_TAC[INJECTIVE_ON_ALT; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `b:num->real^N` THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC SUBST1_TAC) THEN
ASM_SIMP_TAC[REWRITE_RULE[INJECTIVE_ON_ALT] HAS_SIZE_IMAGE_INJ_EQ] THEN
REWRITE_TAC[HAS_SIZE; FINITE_NUMSEG; CARD_NUMSEG_1] THEN
ASM_CASES_TAC `dim(t:real^N->bool) = n` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN STRIP_TAC THEN
MP_TAC(ISPEC `t:real^N->bool` DIM_SUBSET_UNIV) THEN ASM_REWRITE_TAC[] THEN
DISCH_TAC THEN MP_TAC(ISPECL
[`(\x. lambda i. (f x:real^N) dot (b i)):real^M->real^N`;
`s:real^M->bool`; `e:real`]
STONE_WEIERSTRASS_VECTOR_POLYNOMIAL_FUNCTION) THEN
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
[ONCE_REWRITE_TAC[CONTINUOUS_ON_COMPONENTWISE_LIFT] THEN
SIMP_TAC[LAMBDA_BETA] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC CONTINUOUS_ON_LIFT_DOT2 THEN
ASM_REWRITE_TAC[CONTINUOUS_ON_CONST];
DISCH_THEN(X_CHOOSE_THEN `g:real^M->real^N` STRIP_ASSUME_TAC)] THEN
EXISTS_TAC `(\x. vsum(1..n) (\i. (g x:real^N)$i % b i)):real^M->real^N` THEN
REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL
[MATCH_MP_TAC VECTOR_POLYNOMIAL_FUNCTION_VSUM THEN
REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC VECTOR_POLYNOMIAL_FUNCTION_MUL THEN
REWRITE_TAC[VECTOR_POLYNOMIAL_FUNCTION_CONST; o_DEF] THEN
MATCH_MP_TAC VECTOR_POLYNOMIAL_FUNCTION_COMPONENT THEN
ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC;
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSPACE_VSUM THEN
ASM_SIMP_TAC[SUBSPACE_MUL; FINITE_NUMSEG];
X_GEN_TAC `x:real^M` THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `x:real^M`) THEN
ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[DOT_SYM] THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] REAL_LET_TRANS) THEN
SUBGOAL_THEN
`vsum(IMAGE b (1..n)) (\v. (v dot f x) % v) = (f:real^M->real^N) x`
(fun th -> GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [SYM th])
THENL
[MATCH_MP_TAC ORTHONORMAL_BASIS_EXPAND THEN
ASM_REWRITE_TAC[FORALL_IN_IMAGE] THEN ASM SET_TAC[];
ASM_SIMP_TAC[REWRITE_RULE[INJECTIVE_ON_ALT] VSUM_IMAGE;
FINITE_NUMSEG] THEN
REWRITE_TAC[GSYM VSUM_SUB_NUMSEG; o_DEF; GSYM VECTOR_SUB_RDISTRIB] THEN
REWRITE_TAC[NORM_LE; GSYM NORM_POW_2] THEN
W(MP_TAC o PART_MATCH (lhs o rand) NORM_VSUM_PYTHAGOREAN o
lhand o snd) THEN
RULE_ASSUM_TAC(REWRITE_RULE[PAIRWISE_IMAGE]) THEN
RULE_ASSUM_TAC(REWRITE_RULE[pairwise]) THEN
ASM_SIMP_TAC[pairwise; ORTHOGONAL_MUL; FINITE_NUMSEG] THEN
DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[NORM_MUL] THEN
REWRITE_TAC[NORM_POW_2] THEN GEN_REWRITE_TAC RAND_CONV [dot] THEN
SIMP_TAC[GSYM REAL_POW_2; VECTOR_SUB_COMPONENT; LAMBDA_BETA] THEN
MATCH_MP_TAC SUM_LE_INCLUDED THEN EXISTS_TAC `\n:num. n` THEN
REWRITE_TAC[FINITE_NUMSEG; REAL_LE_POW_2] THEN
ONCE_REWRITE_TAC[TAUT `p /\ q /\ r <=> q /\ p /\ r`] THEN
REWRITE_TAC[UNWIND_THM2] THEN
ONCE_REWRITE_TAC[TAUT `p ==> q /\ r <=> p ==> q /\ (q ==> r)`] THEN
RULE_ASSUM_TAC(REWRITE_RULE[IN_NUMSEG]) THEN
ASM_SIMP_TAC[LAMBDA_BETA; UNWIND_THM2; IN_NUMSEG] THEN
REWRITE_TAC[REAL_MUL_RID; REAL_POW2_ABS; REAL_LE_REFL] THEN
ASM_ARITH_TAC]]);;
let STONE_WEIERSTRASS_VECTOR_POLYNOMIAL_FUNCTION_AFFINE = prove
(`!f:real^M->real^N s e t.
compact s /\ f continuous_on s /\ &0 < e /\
affine t /\ IMAGE f s SUBSET t
==> ?g. vector_polynomial_function g /\ IMAGE g s SUBSET t /\
!x. x IN s ==> norm(f x - g x) < e`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `t:real^N->bool = {}` THEN
ASM_REWRITE_TAC[SUBSET_EMPTY; IMAGE_EQ_EMPTY] THENL
[MESON_TAC[VECTOR_POLYNOMIAL_FUNCTION_CONST; NOT_IN_EMPTY];
STRIP_TAC] THEN
MP_TAC(ISPEC `t:real^N->bool` AFFINE_TRANSLATION_SUBSPACE) THEN
ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`a:real^N`; `u:real^N->bool`] THEN STRIP_TAC THEN
FIRST_X_ASSUM SUBST_ALL_TAC THEN
MP_TAC(ISPECL
[`(\x. f x - a):real^M->real^N`; `s:real^M->bool`; `e:real`;
`u:real^N->bool`] STONE_WEIERSTRASS_VECTOR_POLYNOMIAL_FUNCTION_SUBSPACE) THEN
ASM_SIMP_TAC[CONTINUOUS_ON_SUB; CONTINUOUS_ON_CONST] THEN
FIRST_ASSUM(MP_TAC o ISPEC `\x:real^N. x - a` o MATCH_MP IMAGE_SUBSET) THEN
REWRITE_TAC[GSYM IMAGE_o; o_DEF; VECTOR_ADD_SUB; IMAGE_ID] THEN
DISCH_TAC THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `g:real^M->real^N` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `(\x. g x + a):real^M->real^N` THEN
ASM_SIMP_TAC[VECTOR_POLYNOMIAL_FUNCTION_ADD;
VECTOR_POLYNOMIAL_FUNCTION_CONST;
VECTOR_ARITH `a - (b + c):real^N = a - c - b`] THEN
FIRST_ASSUM(MP_TAC o ISPEC `\x:real^N. a + x` o MATCH_MP IMAGE_SUBSET) THEN
REWRITE_TAC[GSYM IMAGE_o; o_DEF; VECTOR_ADD_AC]);;
(* ------------------------------------------------------------------------- *)
(* One application is to pick a smooth approximation to a path, or just pick *)
(* a smooth path anyway in an open connected set. *)
(* ------------------------------------------------------------------------- *)
let PATH_VECTOR_POLYNOMIAL_FUNCTION = prove
(`!g:real^1->real^N. vector_polynomial_function g ==> path g`,
SIMP_TAC[path; CONTINUOUS_ON_VECTOR_POLYNOMIAL_FUNCTION]);;
let RECTIFIABLE_PATH_VECTOR_POLYNOMIAL_FUNCTION = prove
(`!p:real^1->real^N. vector_polynomial_function p ==> rectifiable_path p`,
SIMP_TAC[rectifiable_path; PATH_VECTOR_POLYNOMIAL_FUNCTION] THEN
REWRITE_TAC[vector_polynomial_function] THEN
ONCE_REWRITE_TAC[HAS_BOUNDED_VARIATION_ON_COMPONENTWISE] THEN
GEN_TAC THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `i:num` THEN
DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th THEN ASM_REWRITE_TAC[]) THEN
GEN_REWRITE_TAC (RAND_CONV o LAND_CONV) [GSYM o_DEF] THEN
SPEC_TAC(`\x. (p:real^1->real^N) x$i`,`p:real^1->real`) THEN
POP_ASSUM_LIST(K ALL_TAC) THEN
MATCH_MP_TAC real_polynomial_function_INDUCT THEN
REWRITE_TAC[o_DEF; DIMINDEX_1; FORALL_1; LIFT_ADD] THEN
REWRITE_TAC[HAS_BOUNDED_VARIATION_ON_CONST; GSYM drop; LIFT_DROP] THEN
SIMP_TAC[HAS_BOUNDED_VARIATION_ON_ID; BOUNDED_INTERVAL] THEN
REWRITE_TAC[HAS_BOUNDED_VARIATION_ON_ADD] THEN
REPEAT GEN_TAC THEN
DISCH_THEN(MP_TAC o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ]
(ONCE_REWRITE_RULE[CONJ_ASSOC] HAS_BOUNDED_VARIATION_ON_MUL))) THEN
REWRITE_TAC[IS_INTERVAL_INTERVAL] THEN
REWRITE_TAC[LIFT_CMUL; LIFT_DROP; DROP_CMUL]);;
let PATH_APPROX_VECTOR_POLYNOMIAL_FUNCTION = prove
(`!g:real^1->real^N e.
path g /\ &0 < e
==> ?p. vector_polynomial_function p /\
pathstart p = pathstart g /\
pathfinish p = pathfinish g /\
!t. t IN interval[vec 0,vec 1] ==> norm(p t - g t) < e`,
REWRITE_TAC[path] THEN REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`g:real^1->real^N`; `interval[vec 0:real^1,vec 1]`; `e / &4`]
STONE_WEIERSTRASS_VECTOR_POLYNOMIAL_FUNCTION) THEN
ASM_REWRITE_TAC[COMPACT_INTERVAL; REAL_ARITH `&0 < x / &4 <=> &0 < x`] THEN
DISCH_THEN(X_CHOOSE_THEN `q:real^1->real^N` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `\t. (q:real^1->real^N)(t) + (g(vec 0:real^1) - q(vec 0)) +
drop t % ((g(vec 1) - q(vec 1)) - (g(vec 0) - q(vec 0)))` THEN
REWRITE_TAC[pathstart; pathfinish; DROP_VEC] THEN REPEAT CONJ_TAC THENL
[SIMP_TAC[vector_polynomial_function; VECTOR_ADD_COMPONENT;
VECTOR_MUL_COMPONENT; VECTOR_SUB_COMPONENT] THEN
REPEAT STRIP_TAC THEN
RULE_ASSUM_TAC(REWRITE_RULE[vector_polynomial_function]) THEN
MATCH_MP_TAC(el 2 (CONJUNCTS real_polynomial_function_RULES)) THEN
ASM_SIMP_TAC[real_polynomial_function_RULES; drop; DIMINDEX_1; ARITH];
VECTOR_ARITH_TAC;
VECTOR_ARITH_TAC;
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[VECTOR_SUB_LDISTRIB] THEN
MATCH_MP_TAC(NORM_ARITH
`norm(x - a) < e / &4 /\ norm b < e / &4 /\ norm c <= &1 * e / &4 /\
norm d <= &1 * e / &4
==> norm((a + b + c - d) - x:real^N) < e`) THEN
ASM_SIMP_TAC[NORM_MUL; IN_INTERVAL_1; DROP_VEC; REAL_POS] THEN
CONJ_TAC THEN MATCH_MP_TAC REAL_LE_MUL2 THEN
ASM_SIMP_TAC[REAL_LT_IMP_LE; IN_INTERVAL_1; DROP_VEC; REAL_POS;
REAL_LE_REFL; NORM_POS_LE] THEN
RULE_ASSUM_TAC(REWRITE_RULE[IN_INTERVAL_1; DROP_VEC]) THEN
ASM_REAL_ARITH_TAC]);;
let CONNECTED_OPEN_VECTOR_POLYNOMIAL_CONNECTED = prove
(`!s:real^N->bool.
open s /\ connected s
==> !x y. x IN s /\ y IN s
==> ?g. vector_polynomial_function g /\
path_image g SUBSET s /\
pathstart g = x /\
pathfinish g = y`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `path_connected(s:real^N->bool)` MP_TAC THENL
[ASM_SIMP_TAC[CONNECTED_OPEN_PATH_CONNECTED];
REWRITE_TAC[path_connected]] THEN
DISCH_THEN(MP_TAC o SPECL [`x:real^N`; `y:real^N`]) THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `p:real^1->real^N` STRIP_ASSUME_TAC) THEN
SUBGOAL_THEN
`?e. &0 < e /\ !x. x IN path_image p ==> ball(x:real^N,e) SUBSET s`
STRIP_ASSUME_TAC THENL
[ASM_CASES_TAC `s = (:real^N)` THEN ASM_REWRITE_TAC[SUBSET_UNIV] THENL
[MESON_TAC[REAL_LT_01]; ALL_TAC] THEN
EXISTS_TAC `setdist(path_image p,(:real^N) DIFF s)` THEN CONJ_TAC THENL
[ASM_REWRITE_TAC[REAL_ARITH `&0 < x <=> &0 <= x /\ ~(x = &0)`] THEN
ASM_SIMP_TAC[SETDIST_POS_LE; SETDIST_EQ_0_COMPACT_CLOSED;
COMPACT_PATH_IMAGE; GSYM OPEN_CLOSED] THEN
ASM_SIMP_TAC[PATH_IMAGE_NONEMPTY] THEN ASM SET_TAC[];
X_GEN_TAC `z:real^N` THEN DISCH_TAC THEN REWRITE_TAC[SUBSET] THEN
X_GEN_TAC `w:real^N` THEN REWRITE_TAC[IN_BALL; GSYM REAL_NOT_LE] THEN
MATCH_MP_TAC(SET_RULE
`(w IN (UNIV DIFF s) ==> p) ==> (~p ==> w IN s)`) THEN
ASM_SIMP_TAC[SETDIST_LE_DIST]];
MP_TAC(ISPECL [`p:real^1->real^N`; `e:real`]
PATH_APPROX_VECTOR_POLYNOMIAL_FUNCTION) THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN
X_GEN_TAC `q:real^1->real^N` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[path_image; FORALL_IN_IMAGE; SUBSET] THEN RULE_ASSUM_TAC
(REWRITE_RULE[SUBSET; path_image; FORALL_IN_IMAGE;IN_BALL; dist]) THEN
ASM_MESON_TAC[NORM_SUB]]);;
(* ------------------------------------------------------------------------- *)
(* Lipschitz property for real and vector polynomials. *)
(* ------------------------------------------------------------------------- *)
let LIPSCHITZ_REAL_POLYNOMIAL_FUNCTION = prove
(`!f:real^N->real s.
real_polynomial_function f /\ bounded s
==> ?B. &0 < B /\
!x y. x IN s /\ y IN s ==> abs(f x - f y) <= B * norm(x - y)`,
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN GEN_TAC THEN
ASM_CASES_TAC `bounded(s:real^N->bool)` THEN ASM_REWRITE_TAC[] THEN
ASM_CASES_TAC `s:real^N->bool = {}` THENL
[ASM_REWRITE_TAC[NOT_IN_EMPTY] THEN MESON_TAC[REAL_LT_01]; ALL_TAC] THEN
MATCH_MP_TAC real_polynomial_function_INDUCT THEN REPEAT CONJ_TAC THENL
[REPEAT STRIP_TAC THEN EXISTS_TAC `&1` THEN REWRITE_TAC[REAL_LT_01] THEN
ASM_SIMP_TAC[REAL_MUL_LID; GSYM VECTOR_SUB_COMPONENT; COMPONENT_LE_NORM];
GEN_TAC THEN EXISTS_TAC `&1` THEN
SIMP_TAC[REAL_LT_01; REAL_SUB_REFL; REAL_ABS_NUM; REAL_MUL_LID;
NORM_POS_LE];
ALL_TAC; ALL_TAC] THEN
MAP_EVERY X_GEN_TAC [`f:real^N->real`; `g:real^N->real`] THEN
DISCH_THEN(CONJUNCTS_THEN2
(X_CHOOSE_THEN `B1:real` STRIP_ASSUME_TAC)
(X_CHOOSE_THEN `B2:real` STRIP_ASSUME_TAC))
THENL
[EXISTS_TAC `B1 + B2:real` THEN ASM_SIMP_TAC[REAL_LT_ADD] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC(REAL_ARITH
`abs(f - f') <= B1 * n /\ abs(g - g') <= B2 * n
==> abs((f + g) - (f' + g')) <= (B1 + B2) * n`) THEN
ASM_SIMP_TAC[];
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN
DISCH_THEN(X_CHOOSE_TAC `a:real^N`) THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [BOUNDED_POS]) THEN
DISCH_THEN(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `B1 * (abs(g(a:real^N)) + B2 * &2 * B) +
B2 * (abs(f a) + B1 * &2 * B)` THEN
CONJ_TAC THENL
[MATCH_MP_TAC REAL_LT_ADD THEN CONJ_TAC THEN MATCH_MP_TAC REAL_LT_MUL THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(REAL_ARITH
`&0 < x ==> &0 < abs a + x`) THEN
MATCH_MP_TAC REAL_LT_MUL THEN ASM_REAL_ARITH_TAC;
REPEAT STRIP_TAC THEN REWRITE_TAC[] THEN MATCH_MP_TAC(REAL_ARITH
`abs((f - f') * g) <= a * n /\ abs((g - g') * f') <= b * n
==> abs(f * g - f' * g') <= (a + b) * n`) THEN
ONCE_REWRITE_TAC[REAL_ARITH `(a * b) * c:real = (a * c) * b`] THEN
REWRITE_TAC[REAL_ABS_MUL] THEN
CONJ_TAC THEN MATCH_MP_TAC REAL_LE_MUL2 THEN
ASM_SIMP_TAC[REAL_ABS_POS] THEN MATCH_MP_TAC(REAL_ARITH
`abs(g x - g a) <= C * norm(x - a) /\
C * norm(x - a:real^N) <= C * B ==> abs(g x) <= abs(g a) + C * B`) THEN
ASM_SIMP_TAC[REAL_LE_LMUL_EQ] THEN MATCH_MP_TAC(NORM_ARITH
`norm x <= B /\ norm a <= B ==> norm(x - a:real^N) <= &2 * B`) THEN
ASM_SIMP_TAC[]]]);;
let LIPSCHITZ_VECTOR_POLYNOMIAL_FUNCTION = prove
(`!f:real^M->real^N s.
vector_polynomial_function f /\ bounded s
==> ?B. &0 < B /\
!x y. x IN s /\ y IN s ==> norm(f x - f y) <= B * norm(x - y)`,
REWRITE_TAC[vector_polynomial_function] THEN REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`?b. !i. 1 <= i /\ i <= dimindex(:N)
==> &0 < (b:real^N)$i /\
!x y. x IN s /\ y IN s
==> abs((f:real^M->real^N) x$i - f y$i) <=
b$i * norm(x - y)`
STRIP_ASSUME_TAC THENL
[REWRITE_TAC[GSYM LAMBDA_SKOLEM] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC LIPSCHITZ_REAL_POLYNOMIAL_FUNCTION THEN
ASM_SIMP_TAC[LIPSCHITZ_REAL_POLYNOMIAL_FUNCTION];
EXISTS_TAC `&1 + sum(1..dimindex(:N)) (\i. (b:real^N)$i)` THEN
CONJ_TAC THENL
[MATCH_MP_TAC(REAL_ARITH `&0 <= x ==> &0 < &1 + x`) THEN
MATCH_MP_TAC SUM_POS_LE_NUMSEG THEN ASM_SIMP_TAC[REAL_LT_IMP_LE];
REPEAT STRIP_TAC THEN
W(MP_TAC o PART_MATCH lhand NORM_LE_L1 o lhand o snd) THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] REAL_LE_TRANS) THEN
REWRITE_TAC[REAL_ADD_RDISTRIB; GSYM SUM_RMUL; REAL_MUL_LID] THEN
MATCH_MP_TAC(NORM_ARITH `x <= y ==> x <= norm(a:real^N) + y`) THEN
MATCH_MP_TAC SUM_LE_NUMSEG THEN
ASM_SIMP_TAC[VECTOR_SUB_COMPONENT]]]);;
(* ------------------------------------------------------------------------- *)
(* Differentiability of real and vector polynomial functions. *)
(* ------------------------------------------------------------------------- *)
let DIFFERENTIABLE_REAL_POLYNOMIAL_FUNCTION_AT = prove
(`!f:real^N->real a.
real_polynomial_function f ==> (lift o f) differentiable (at a)`,
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN GEN_TAC THEN
MATCH_MP_TAC real_polynomial_function_INDUCT THEN
REWRITE_TAC[o_DEF; LIFT_ADD; LIFT_CMUL] THEN
REWRITE_TAC[DIFFERENTIABLE_LIFT_COMPONENT; DIFFERENTIABLE_CONST] THEN
SIMP_TAC[DIFFERENTIABLE_ADD] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC DIFFERENTIABLE_MUL_AT THEN
ASM_REWRITE_TAC[o_DEF]);;
let DIFFERENTIABLE_ON_REAL_POLYNOMIAL_FUNCTION = prove
(`!f:real^N->real s.
real_polynomial_function f ==> (lift o f) differentiable_on s`,
SIMP_TAC[DIFFERENTIABLE_AT_IMP_DIFFERENTIABLE_ON;
DIFFERENTIABLE_REAL_POLYNOMIAL_FUNCTION_AT]);;
let DIFFERENTIABLE_VECTOR_POLYNOMIAL_FUNCTION = prove
(`!f:real^M->real^N a.
vector_polynomial_function f ==> f differentiable (at a)`,
REWRITE_TAC[vector_polynomial_function] THEN REPEAT STRIP_TAC THEN
ONCE_REWRITE_TAC[DIFFERENTIABLE_COMPONENTWISE_AT] THEN
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM o_DEF] THEN
MATCH_MP_TAC DIFFERENTIABLE_REAL_POLYNOMIAL_FUNCTION_AT THEN
ASM_SIMP_TAC[]);;
let DIFFERENTIABLE_ON_VECTOR_POLYNOMIAL_FUNCTION = prove
(`!f:real^M->real^N s.
vector_polynomial_function f ==> f differentiable_on s`,
SIMP_TAC[DIFFERENTIABLE_AT_IMP_DIFFERENTIABLE_ON;
DIFFERENTIABLE_VECTOR_POLYNOMIAL_FUNCTION]);;
(* ------------------------------------------------------------------------- *)
(* Some basic properties of affine real algebraic varieties. *)
(* ------------------------------------------------------------------------- *)
let CLOSED_ALGEBRAIC_VARIETY = prove
(`!f c. real_polynomial_function f ==> closed {x | f x = c}`,
REPEAT STRIP_TAC THEN
REWRITE_TAC[GSYM LIFT_EQ] THEN ONCE_REWRITE_TAC[GSYM IN_SING] THEN
MATCH_MP_TAC CONTINUOUS_CLOSED_PREIMAGE_UNIV THEN
REWRITE_TAC[CLOSED_SING] THEN GEN_TAC THEN
MATCH_MP_TAC CONTINUOUS_VECTOR_POLYNOMIAL_FUNCTION THEN
REWRITE_TAC[GSYM REAL_POLYNOMIAL_FUNCTION_DROP; o_DEF; LIFT_DROP] THEN
ASM_REWRITE_TAC[ETA_AX]);;
let NEGLIGIBLE_ALGEBRAIC_VARIETY = prove
(`!f c. real_polynomial_function f /\ ~(!x. f x = c)
==> negligible {x | f x = c}`,
let lemma0 = prove
(`negligible {x | INFINITE {a | P a x}}
==> negligible {x | ~negligible {lift a | P a x}}`,
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] NEGLIGIBLE_SUBSET) THEN
REWRITE_TAC[SUBSET; IN_ELIM_THM; INFINITE; CONTRAPOS_THM] THEN
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN
ASM_SIMP_TAC[NEGLIGIBLE_FINITE; FINITE_IMAGE]) in
let lemma1 = prove
(`!n s a.
n <= dimindex(:N) /\ FINITE s /\
~(!x:real^N. sum s
(\k. a(k) * product(1..n) (\i. x$i pow (k i))) = &0)
==> negligible {x:real^N | sum s
(\k. a(k) * product(1..n) (\i. x$i pow (k i))) =
&0}`,
INDUCT_TAC THENL
[REWRITE_TAC[PRODUCT_CLAUSES_NUMSEG; ARITH] THEN
SIMP_TAC[SET_RULE `{x | P} = if P then UNIV else {}`; NEGLIGIBLE_EMPTY];
MAP_EVERY X_GEN_TAC [`s:(num->num)->bool`; `a:(num->num)->real`] THEN
REPLICATE_TAC 2 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC))] THEN
SUBGOAL_THEN
`closed {x:real^N | sum s (\k. a(k) * product (1..SUC n)
(\i. x$i pow (k i))) = &0}`
MP_TAC THENL
[MATCH_MP_TAC CLOSED_ALGEBRAIC_VARIETY THEN
MATCH_MP_TAC REAL_POLYNOMIAL_FUNCTION_SUM THEN
ASM_SIMP_TAC[FINITE_RESTRICT] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_POLYNOMIAL_FUNCTION_MUL THEN
REWRITE_TAC[real_polynomial_function_RULES] THEN
MATCH_MP_TAC REAL_POLYNOMIAL_FUNCTION_PRODUCT THEN
REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC REAL_POLYNOMIAL_FUNCTION_POW THEN
MATCH_MP_TAC(CONJUNCT1 real_polynomial_function_RULES) THEN
ASM_ARITH_TAC;
ALL_TAC] THEN
REWRITE_TAC[PRODUCT_CLAUSES_NUMSEG; ARITH_RULE `1 <= SUC n`] THEN
MP_TAC(ISPECL
[`\k. (k: num->num) (SUC n)`; `s:(num->num)->bool`]
UPPER_BOUND_FINITE_SET) THEN
ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_TAC `m:num`) THEN
MP_TAC(GEN `g:(num->num)->real` (ISPECL
[`\k. (k: num->num) (SUC n)`;
`g:(num->num)->real`; `s:(num->num)->bool`;
`0..m`] SUM_GROUP)) THEN
ASM_REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_NUMSEG; LE_0] THEN
DISCH_THEN(fun th -> ONCE_REWRITE_TAC[GSYM th]) THEN
SIMP_TAC[IN_ELIM_THM] THEN REWRITE_TAC[REAL_MUL_ASSOC; SUM_RMUL] THEN
DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN
DISCH_THEN(MP_TAC o MATCH_MP LEBESGUE_MEASURABLE_CLOSED) THEN
DISCH_THEN(MP_TAC o SPEC `SUC n` o MATCH_MP
FUBINI_NEGLIGIBLE_REPLACEMENTS_ALT) THEN
DISCH_THEN SUBST1_TAC THEN
SUBGOAL_THEN `SUC n <= dimindex(:N) /\
!i. i <= n ==> i <= dimindex(:N)` MP_TAC THENL
[ASM_ARITH_TAC; ALL_TAC] THEN
SIMP_TAC[IN_ELIM_THM; LAMBDA_BETA; ARITH_RULE `1 <= SUC n`] THEN
DISCH_THEN(K ALL_TAC) THEN MATCH_MP_TAC lemma0 THEN
SIMP_TAC[ARITH_RULE `i <= n ==> ~(i = SUC n)`] THEN
REWRITE_TAC[SUM_RMUL; REAL_MUL_ASSOC] THEN
REWRITE_TAC[INFINITE; REAL_POLYFUN_FINITE_ROOTS] THEN
REWRITE_TAC[MESON[] `~(?y. y IN s /\ ~P y) <=> !i. i IN s ==> P i`] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_FORALL_THM]) THEN
DISCH_THEN(X_CHOOSE_THEN `x:real^N` MP_TAC) THEN
DISCH_THEN(MP_TAC o MATCH_MP
(ONCE_REWRITE_RULE[GSYM CONTRAPOS_THM] SUM_EQ_0)) THEN
REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; IN_NUMSEG; LE_0] THEN
DISCH_THEN(X_CHOOSE_THEN `j:num` MP_TAC) THEN
SIMP_TAC[IN_ELIM_THM] THEN REWRITE_TAC[REAL_MUL_ASSOC; SUM_RMUL] THEN
REWRITE_TAC[REAL_ENTIRE; DE_MORGAN_THM] THEN STRIP_TAC THEN
MATCH_MP_TAC(MESON[NEGLIGIBLE_SUBSET]
`!k:num. {x | !i:num. i <= m ==> P i x} SUBSET {x | P k x} /\
negligible {x | P k x}
==> negligible {x:real^N | !i:num. i <= m ==> P i x}`) THEN
EXISTS_TAC `j:num` THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[FINITE_RESTRICT] THEN
CONJ_TAC THENL [ASM_ARITH_TAC; ASM_MESON_TAC[]]) in
let lemma2 = prove
(`!f:real^N->real.
real_polynomial_function f /\ ~(!x. f x = &0)
==> negligible {x | f x = &0}`,
GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
REWRITE_TAC[REAL_POLYNOMIAL_FUNCTION_EXPLICIT; LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`s:num^N->bool`; `a:num^N->real`] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC SUBST1_TAC) THEN
MP_TAC(ISPECL
[`dimindex(:N)`; `IMAGE (\x:num^N i. x$i) s`;
`(a:num^N->real) o (\k. lambda i. k i)`] lemma1) THEN
ASM_SIMP_TAC[FINITE_IMAGE; LE_REFL] THEN
SIMP_TAC[SUM_IMAGE; FUN_EQ_THM; CART_EQ] THEN
REWRITE_TAC[o_DEF; LAMBDA_ETA]) in
ONCE_REWRITE_TAC[GSYM REAL_SUB_0] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC lemma2 THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_POLYNOMIAL_FUNCTION_SUB THEN
ASM_REWRITE_TAC[real_polynomial_function_RULES]);;
let EMPTY_INTERIOR_ALGEBRAIC_VARIETY = prove
(`!f c. real_polynomial_function f /\ ~(!x. f x = c)
==> interior {x:real^N | f(x) = c} = {}`,
SIMP_TAC[NEGLIGIBLE_ALGEBRAIC_VARIETY; NEGLIGIBLE_EMPTY_INTERIOR]);;
let NOWHERE_DENSE_ALGEBRAIC_VARIETY = prove
(`!f c. real_polynomial_function f /\ ~(!x. f x = c)
==> interior(closure {x:real^N | f(x) = c}) = {}`,
MESON_TAC[EMPTY_INTERIOR_ALGEBRAIC_VARIETY; CLOSURE_EQ;
CLOSED_ALGEBRAIC_VARIETY]);;
(* ------------------------------------------------------------------------- *)
(* Bernoulli polynomials, defined recursively. We don't explicitly introduce *)
(* a definition for Bernoulli numbers, but use "bernoulli n (&0)" for that. *)
(* ------------------------------------------------------------------------- *)
let bernoulli = define
`(!x. bernoulli 0 x = &1) /\
(!n x. bernoulli (n + 1) x =
x pow (n + 1) -
sum(0..n) (\k. &(binom(n+2,k)) * bernoulli k x) / (&n + &2))`;;
let BERNOULLI_CONV =
let btm = `bernoulli` in
let rec bernoullis n =
if n < 0 then [] else
if n = 0 then [CONJUNCT1 bernoulli] else
let ths = bernoullis (n - 1) in
let th1 = SPEC(mk_small_numeral (n - 1)) (CONJUNCT2 bernoulli) in
let th2 =
CONV_RULE(BINDER_CONV (COMB2_CONV (RAND_CONV(LAND_CONV NUM_ADD_CONV))
(RAND_CONV(LAND_CONV EXPAND_SUM_CONV) THENC
NUM_REDUCE_CONV THENC
ONCE_DEPTH_CONV NUM_BINOM_CONV THENC
REWRITE_CONV ths THENC
REAL_POLY_CONV))) th1 in
th2::ths in
fun tm -> match tm with
Comb(Comb(b,n),x) when b = btm ->
let th = hd(bernoullis(dest_small_numeral n)) in
(REWR_CONV th THENC REAL_POLY_CONV) tm
| _ -> failwith "BERNOULLI_CONV";;
let BERNOULLI,BERNOULLI_EXPANSION = (CONJ_PAIR o prove)
(`(!n x. sum(0..n) (\k. &(binom(n,k)) * bernoulli k x) - bernoulli n x =
&n * x pow (n - 1)) /\
(!n x. bernoulli n x =
sum(0..n) (\k. &(binom(n,k)) * bernoulli k (&0) * x pow (n - k)))`,
let lemma = prove
(`(!n x. sum (0..n) (\k. &(binom(n,k)) * B k x) - B n x =
&n * x pow (n - 1)) <=>
(!x. B 0 x = &1) /\
(!n x. B (n + 1) x =
x pow (n + 1) -
sum(0..n) (\k. &(binom(n+2,k)) * B k x) / (&n + &2))`,
let cth = MESON[num_CASES] `(!n. P n) <=> P 0 /\ (!n. P(SUC n))` in
GEN_REWRITE_TAC LAND_CONV [cth] THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [cth] THEN
SIMP_TAC[SUM_CLAUSES_NUMSEG; LE_0; BINOM_REFL; BINOM_PENULT; SUC_SUB1] THEN
CONV_TAC NUM_REDUCE_CONV THEN
REWRITE_TAC[REAL_MUL_LID; REAL_MUL_LZERO; REAL_SUB_REFL] THEN
SIMP_TAC[ADD1; ARITH_RULE `(n + 1) + 1 = n + 2`; GSYM REAL_OF_NUM_ADD] THEN
BINOP_TAC THEN REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN
CONV_TAC REAL_FIELD) in
REWRITE_TAC[lemma; bernoulli] THEN
SUBGOAL_THEN
`!n x. sum(0..n) (\k. &(binom(n,k)) *
sum (0..k)
(\l. &(binom(k,l)) *
bernoulli l (&0) * x pow (k - l))) -
sum(0..n) (\k. &(binom(n,k)) * bernoulli k (&0) * x pow (n - k)) =
&n * x pow (n - 1)`
MP_TAC THENL
[REPEAT GEN_TAC THEN MP_TAC(ISPECL
[`\n. bernoulli n (&0)`; `n:num`; `x:real`; `&1`] APPELL_SEQUENCE) THEN
REWRITE_TAC[REAL_POW_ONE; REAL_MUL_RID] THEN DISCH_THEN SUBST1_TAC THEN
ONCE_REWRITE_TAC[REAL_ARITH `x + &1 = &1 + x`] THEN
GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [GSYM APPELL_SEQUENCE] THEN
REWRITE_TAC[REAL_POW_ONE; REAL_MUL_RID; GSYM SUM_SUB_NUMSEG] THEN
REWRITE_TAC[GSYM REAL_SUB_LDISTRIB; GSYM REAL_SUB_RDISTRIB] THEN
REWRITE_TAC[REWRITE_RULE[GSYM lemma] bernoulli] THEN
REWRITE_TAC[REAL_POW_ZERO; COND_RAND; COND_RATOR] THEN
REWRITE_TAC[ARITH_RULE `i - 1 = 0 <=> i = 0 \/ i = 1`] THEN
REWRITE_TAC[MESON[]
`(if p \/ q then x else y) = if q then x else if p then x else y`] THEN
SIMP_TAC[REAL_MUL_LZERO; REAL_MUL_RZERO; COND_ID; SUM_DELTA] THEN
REWRITE_TAC[IN_NUMSEG; LE_0; BINOM_1] THEN
ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[REAL_MUL_LZERO] THEN
ASM_SIMP_TAC[LE_1] THEN REAL_ARITH_TAC;
REWRITE_TAC[lemma] THEN STRIP_TAC THEN
MATCH_MP_TAC num_WF THEN MATCH_MP_TAC num_INDUCTION THEN
ASM_SIMP_TAC[ADD1; bernoulli;
ARITH_RULE `m < n + 1 <=> m <= n`]]);;
let BERNOULLI_ALT = prove
(`!n x. sum(0..n) (\k. &(binom(n+1,k)) * bernoulli k x) =
(&n + &1) * x pow n`,
REPEAT GEN_TAC THEN
MP_TAC(SPECL [`SUC n`; `x:real`] BERNOULLI) THEN
REWRITE_TAC[SUM_CLAUSES_NUMSEG; LE_0; SUC_SUB1; BINOM_REFL] THEN
REWRITE_TAC[ADD1; GSYM REAL_OF_NUM_ADD] THEN REAL_ARITH_TAC);;
let BERNOULLI_ADD = prove
(`!n x y. bernoulli n (x + y) =
sum(0..n) (\k. &(binom(n,k)) * bernoulli k x * y pow (n - k))`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[BERNOULLI_EXPANSION] THEN
REWRITE_TAC[APPELL_SEQUENCE]);;
let bernoulli_number = prove
(`bernoulli 0 (&0) = &1 /\
(!n. bernoulli (n + 1) (&0) =
--sum(0..n) (\k. &(binom(n+2,k)) * bernoulli k (&0)) / (&n + &2))`,
REWRITE_TAC[bernoulli; REAL_POW_ADD] THEN REAL_ARITH_TAC);;
let BERNOULLI_NUMBER = prove
(`!n. sum (0..n) (\k. &(binom (n,k)) * bernoulli k (&0)) - bernoulli n (&0) =
if n = 1 then &1 else &0`,
REWRITE_TAC[BERNOULLI] THEN
MATCH_MP_TAC num_INDUCTION THEN REWRITE_TAC[ARITH; REAL_MUL_LZERO] THEN
MATCH_MP_TAC num_INDUCTION THEN REWRITE_TAC[SUC_SUB1] THEN
REWRITE_TAC[ARITH_RULE `SUC n = 1 <=> n = 0`] THEN
CONV_TAC NUM_REDUCE_CONV THEN REWRITE_TAC[real_pow; REAL_MUL_LID] THEN
REWRITE_TAC[NOT_SUC; REAL_MUL_LZERO; REAL_MUL_RZERO]);;
let BERNOULLI_NUMBER_ALT = prove
(`!n. sum(0..n) (\k. &(binom(n+1,k)) * bernoulli k (&0)) =
if n = 0 then &1 else &0`,
REWRITE_TAC[BERNOULLI_ALT] THEN INDUCT_TAC THEN
REWRITE_TAC[real_pow; REAL_MUL_LZERO; REAL_MUL_RZERO; NOT_SUC] THEN
REWRITE_TAC[REAL_ADD_LID; REAL_MUL_RID]);;
let BERNOULLI_SUB_ADD1 = prove
(`!n x. bernoulli n (x + &1) - bernoulli n x = &n * x pow (n - 1)`,
REWRITE_TAC[BERNOULLI_ADD; REAL_POW_ONE; REAL_MUL_RID] THEN
REWRITE_TAC[BERNOULLI]);;
let BERNOULLI_1 = prove
(`!n. bernoulli n (&1) =
if n = 1 then bernoulli n (&0) + &1 else bernoulli n (&0)`,
GEN_TAC THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM REAL_ADD_LID] THEN
COND_CASES_TAC THENL
[REWRITE_TAC[REAL_ARITH `x = y + &1 <=> x - y = &1`];
ONCE_REWRITE_TAC[GSYM REAL_SUB_0]] THEN
REWRITE_TAC[BERNOULLI_SUB_ADD1; REAL_POW_ZERO] THEN
ASM_REWRITE_TAC[SUB_REFL; REAL_MUL_RID] THEN
ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[REAL_MUL_LZERO] THEN
COND_CASES_TAC THEN REWRITE_TAC[] THEN ASM_ARITH_TAC);;
let SUM_OF_POWERS = prove
(`!m n. sum(0..n) (\k. &k pow m) =
(bernoulli (m + 1) (&n + &1) - bernoulli (m + 1) (&0)) / (&m + &1)`,
REPEAT GEN_TAC THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o BINDER_CONV o RAND_CONV)
[GSYM SUC_SUB1] THEN
REWRITE_TAC[REAL_FIELD `x = y / (&m + &1) <=> (&m + &1) * x = y`] THEN
REWRITE_TAC[GSYM SUM_LMUL; REAL_OF_NUM_SUC; GSYM BERNOULLI_SUB_ADD1] THEN
REWRITE_TAC[ADD1; SUM_DIFFS_ALT; LE_0]);;
let HAS_REAL_DERIVATIVE_BERNOULLI = prove
(`!n x. ((bernoulli n) has_real_derivative (&n * bernoulli (n - 1) x))
(atreal x)`,
INDUCT_TAC THEN GEN_TAC THEN
GEN_REWRITE_TAC (RATOR_CONV o LAND_CONV) [GSYM ETA_AX] THEN
ONCE_REWRITE_TAC[BERNOULLI_EXPANSION] THEN
REWRITE_TAC[SUM_CLAUSES_NUMSEG; ARITH; SUB_REFL; CONJUNCT1 real_pow] THEN
REWRITE_TAC[HAS_REAL_DERIVATIVE_CONST; REAL_MUL_LZERO; LE_0] THEN
GEN_REWRITE_TAC (RATOR_CONV o RAND_CONV) [GSYM REAL_ADD_RID] THEN
MATCH_MP_TAC HAS_REAL_DERIVATIVE_ADD THEN
REWRITE_TAC[HAS_REAL_DERIVATIVE_CONST; SUC_SUB1; GSYM SUM_LMUL] THEN
MATCH_MP_TAC HAS_REAL_DERIVATIVE_SUM THEN
REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN
X_GEN_TAC `k:num` THEN STRIP_TAC THEN REAL_DIFF_TAC THEN
REWRITE_TAC[ADD1; BINOM_TOP_STEP_REAL] THEN
ASM_SIMP_TAC[GSYM REAL_OF_NUM_ADD; GSYM REAL_OF_NUM_SUB; ARITH_RULE
`k <= n ==> ~(k = n + 1) /\ (n + 1) - k - 1 = n - k /\ k <= n + 1`] THEN
UNDISCH_TAC `k:num <= n` THEN REWRITE_TAC[GSYM REAL_OF_NUM_LE] THEN
CONV_TAC REAL_FIELD);;
add_real_differentiation_theorems
(CONJUNCTS(REWRITE_RULE[FORALL_AND_THM]
(MATCH_MP HAS_REAL_DERIVATIVE_CHAIN_UNIV
(SPEC `n:num` HAS_REAL_DERIVATIVE_BERNOULLI))));;
let REAL_DIFFERENTIABLE_ON_BERNOULLI = prove
(`!n s. (bernoulli n) real_differentiable_on s`,
REWRITE_TAC[REAL_DIFFERENTIABLE_ON_DIFFERENTIABLE; real_differentiable] THEN
MESON_TAC[HAS_REAL_DERIVATIVE_BERNOULLI;
HAS_REAL_DERIVATIVE_ATREAL_WITHIN]);;
let REAL_CONTINUOUS_ON_BERNOULLI = prove
(`!n s. (bernoulli n) real_continuous_on s`,
MESON_TAC[REAL_DIFFERENTIABLE_ON_BERNOULLI;
REAL_DIFFERENTIABLE_ON_IMP_REAL_CONTINUOUS_ON]);;
let HAS_REAL_INTEGRAL_BERNOULLI = prove
(`!n. ((bernoulli n) has_real_integral (if n = 0 then &1 else &0))
(real_interval[&0,&1])`,
REPEAT STRIP_TAC THEN MP_TAC(SPECL
[`\x. bernoulli (n + 1) x / (&n + &1)`; `bernoulli n`; `&0`; `&1`]
REAL_FUNDAMENTAL_THEOREM_OF_CALCULUS) THEN
REWRITE_TAC[REAL_POS] THEN ANTS_TAC THENL
[REPEAT STRIP_TAC THEN REAL_DIFF_TAC THEN
REWRITE_TAC[ADD_SUB; GSYM REAL_OF_NUM_ADD] THEN CONV_TAC REAL_FIELD;
REWRITE_TAC[BERNOULLI_1; ARITH_RULE `n + 1 = 1 <=> n = 0`] THEN
ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[REAL_SUB_REFL] THEN
REWRITE_TAC[REAL_ADD_LID; ADD_CLAUSES; REAL_DIV_1; REAL_ADD_SUB]]);;
let POLYNOMIAL_FUNCTION_BERNOULLI = prove
(`!n. polynomial_function(bernoulli n)`,
GEN_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM ETA_AX] THEN
ONCE_REWRITE_TAC[BERNOULLI_EXPANSION] THEN
MATCH_MP_TAC POLYNOMIAL_FUNCTION_SUM THEN
SIMP_TAC[FINITE_NUMSEG; POLYNOMIAL_FUNCTION_MUL; POLYNOMIAL_FUNCTION_POW;
POLYNOMIAL_FUNCTION_ID; POLYNOMIAL_FUNCTION_CONST]);;
let BERNOULLI_UNIQUE = prove
(`!p n. polynomial_function p /\
(!x. p(x + &1) - p(x) = &n * x pow (n - 1)) /\
(real_integral (real_interval[&0,&1]) p = if n = 0 then &1 else &0)
==> p = bernoulli n`,
REPEAT STRIP_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN
ONCE_REWRITE_TAC[GSYM REAL_SUB_0] THEN
MP_TAC(SPECL [`\x. p x - bernoulli n x`; `p(&0) - bernoulli n (&0)`]
POLYNOMIAL_FUNCTION_FINITE_ROOTS) THEN
ASM_SIMP_TAC[POLYNOMIAL_FUNCTION_SUB;
POLYNOMIAL_FUNCTION_BERNOULLI; ETA_AX] THEN
MATCH_MP_TAC(TAUT `~p /\ (q ==> r) ==> (p <=> ~q) ==> r`) THEN
CONJ_TAC THENL
[REWRITE_TAC[GSYM INFINITE] THEN
MATCH_MP_TAC INFINITE_SUPERSET THEN
EXISTS_TAC `IMAGE (&) (:num)` THEN
SIMP_TAC[INFINITE_IMAGE_INJ; REAL_OF_NUM_EQ; num_INFINITE;
SUBSET; FORALL_IN_IMAGE; IN_UNIV; IN_ELIM_THM] THEN
CONV_TAC(BINDER_CONV SYM_CONV) THEN INDUCT_TAC THEN
ASM_REWRITE_TAC[GSYM REAL_OF_NUM_SUC] THEN
ASM_MESON_TAC[BERNOULLI_SUB_ADD1; REAL_ARITH
`p - b:real = p' - b' <=> p' - p = b' - b`];
DISCH_TAC THEN X_GEN_TAC `x:real` THEN ONCE_ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC HAS_REAL_INTEGRAL_UNIQUE THEN
EXISTS_TAC `\x. p x - bernoulli n x` THEN
EXISTS_TAC `real_interval[&0,&1]` THEN CONJ_TAC THENL
[GEN_REWRITE_TAC LAND_CONV [REAL_ARITH `x = x * (&1 - &0)`] THEN
ONCE_ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC HAS_REAL_INTEGRAL_CONST THEN REWRITE_TAC[REAL_POS];
GEN_REWRITE_TAC LAND_CONV
[GSYM(SPEC `if n = 0 then &1 else &0` REAL_SUB_REFL)] THEN
MATCH_MP_TAC HAS_REAL_INTEGRAL_SUB THEN
REWRITE_TAC[ETA_AX; HAS_REAL_INTEGRAL_BERNOULLI] THEN
ASM_REWRITE_TAC[HAS_REAL_INTEGRAL_INTEGRABLE_INTEGRAL] THEN
MATCH_MP_TAC REAL_INTEGRABLE_CONTINUOUS THEN
ASM_SIMP_TAC[REAL_CONTINUOUS_ON_POLYNOMIAL_FUNCTION]]]);;
let BERNOULLI_RAABE_2 = prove
(`!n x. bernoulli n ((x + &1) / &2) + bernoulli n (x / &2) =
&2 / &2 pow n * bernoulli n x`,
GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN
ASM_REWRITE_TAC[bernoulli] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN
SIMP_TAC[REAL_LT_POW2; REAL_FIELD
`&0 < p ==> (x = &2 / p * y <=> p / &2 * x = y)`] THEN
GEN_REWRITE_TAC I [GSYM FUN_EQ_THM] THEN
REWRITE_TAC[ETA_AX] THEN MATCH_MP_TAC BERNOULLI_UNIQUE THEN
REPEAT CONJ_TAC THENL
[MATCH_MP_TAC POLYNOMIAL_FUNCTION_LMUL THEN
MATCH_MP_TAC POLYNOMIAL_FUNCTION_ADD THEN CONJ_TAC THEN
MATCH_MP_TAC(REWRITE_RULE[o_DEF] POLYNOMIAL_FUNCTION_o) THEN
REWRITE_TAC[POLYNOMIAL_FUNCTION_BERNOULLI; real_div] THEN
SIMP_TAC[POLYNOMIAL_FUNCTION_ADD; POLYNOMIAL_FUNCTION_CONST;
POLYNOMIAL_FUNCTION_ID; POLYNOMIAL_FUNCTION_RMUL];
REWRITE_TAC[REAL_ARITH `((x + &1) + &1) / &2 = x / &2 + &1`] THEN
REWRITE_TAC[REAL_ARITH `a * (x + y) - a * (y + z):real = a * (x - z)`] THEN
REWRITE_TAC[BERNOULLI_SUB_ADD1; REAL_POW_DIV] THEN GEN_TAC THEN
REWRITE_TAC[REAL_ARITH `a / b * c * d / e:real = c * (a / b / e) * d`] THEN
ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[REAL_MUL_LZERO] THEN
MATCH_MP_TAC(REAL_RING `b = &1 ==> a * b * c = a * c`) THEN
REWRITE_TAC[real_div; GSYM REAL_MUL_ASSOC; GSYM REAL_INV_MUL] THEN
REWRITE_TAC[GSYM(CONJUNCT2 real_pow)] THEN
ASM_SIMP_TAC[ARITH_RULE `~(n = 0) ==> SUC(n - 1) = n`] THEN
REWRITE_TAC[GSYM real_div] THEN MATCH_MP_TAC REAL_DIV_REFL THEN
REWRITE_TAC[REAL_POW_EQ_0] THEN REAL_ARITH_TAC;
SUBGOAL_THEN
`(bernoulli n) real_integrable_on real_interval[&0,&1 / &2] /\
(bernoulli n) real_integrable_on real_interval[&1 / &2,&1]`
MP_TAC THENL
[CONJ_TAC THEN MATCH_MP_TAC REAL_INTEGRABLE_CONTINUOUS THEN
SIMP_TAC[REAL_CONTINUOUS_ON_POLYNOMIAL_FUNCTION;
POLYNOMIAL_FUNCTION_BERNOULLI];
DISCH_THEN(CONJUNCTS_THEN(MP_TAC o
MATCH_MP (REWRITE_RULE[IMP_CONJ] HAS_REAL_INTEGRAL_AFFINITY) o
MATCH_MP REAL_INTEGRABLE_INTEGRAL))] THEN
REWRITE_TAC[REAL_ARITH `m * (x - c):real = m * x + m * --c`] THEN
REWRITE_TAC[IMAGE_AFFINITY_REAL_INTERVAL; IMP_IMP] THEN
DISCH_THEN(CONJUNCTS_THEN2
(MP_TAC o SPECL [`inv(&2)`; `inv(&2)`])
(MP_TAC o SPECL [`inv(&2)`; `&0`])) THEN
REWRITE_TAC[REAL_INTERVAL_EQ_EMPTY] THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[GSYM IMP_CONJ_ALT] THEN
DISCH_THEN(MP_TAC o MATCH_MP HAS_REAL_INTEGRAL_ADD) THEN
DISCH_THEN(MP_TAC o SPEC `&2 pow n / &2` o
MATCH_MP HAS_REAL_INTEGRAL_LMUL) THEN
REWRITE_TAC[REAL_ARITH `&1 / &2 * x + &1 / &2 = (x + &1) / &2`;
REAL_ARITH `&1 / &2 * x + &0 = x / &2`] THEN
DISCH_THEN(SUBST1_TAC o MATCH_MP REAL_INTEGRAL_UNIQUE) THEN
ASM_REWRITE_TAC[REAL_ENTIRE] THEN DISJ2_TAC THEN
REWRITE_TAC[REAL_ARITH `&2 * x + &2 * y = &0 <=> y + x = &0`] THEN
IMP_REWRITE_TAC[REAL_INTEGRAL_COMBINE] THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN
REWRITE_TAC[GSYM HAS_REAL_INTEGRAL_INTEGRABLE_INTEGRAL] THEN
ASM_MESON_TAC[HAS_REAL_INTEGRAL_BERNOULLI]]);;
let BERNOULLI_HALF = prove
(`!n. bernoulli n (&1 / &2) = (&2 / &2 pow n - &1) * bernoulli n (&0)`,
GEN_TAC THEN
MP_TAC(ISPECL [`n:num`; `&1`] BERNOULLI_RAABE_2) THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN
REWRITE_TAC[REAL_ARITH `a + b:real = c * a <=> b = (c - &1) * a`] THEN
DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[BERNOULLI_1] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC);;
let BERNOULLI_REFLECT = prove
(`!n x. bernoulli n (&1 - x) = --(&1) pow n * bernoulli n x`,
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN GEN_TAC THEN
SUBGOAL_THEN
`!n. sum(0..n) (\k. &(binom(n + 1,k)) *
(bernoulli k (&1 - x) - --(&1) pow k * bernoulli k x)) =
&0`
ASSUME_TAC THENL
[REWRITE_TAC[SUM_SUB_NUMSEG; REAL_SUB_LDISTRIB] THEN
X_GEN_TAC `n:num` THEN REWRITE_TAC[REAL_SUB_0; BERNOULLI_ALT] THEN
TRANS_TAC EQ_TRANS
`--(&1) pow n * (bernoulli (n + 1) x - bernoulli (n + 1) (x - &1))` THEN
CONJ_TAC THENL
[MP_TAC(ISPECL [`n + 1`; `x - &1`] BERNOULLI_SUB_ADD1) THEN
REWRITE_TAC[REAL_ARITH `x - a + a:real = x`] THEN
DISCH_THEN SUBST1_TAC THEN
REWRITE_TAC[ADD_SUB; REAL_ARITH `&1 - x = --(&1) * (x - &1)`] THEN
REWRITE_TAC[REAL_POW_MUL; REAL_MUL_AC; GSYM REAL_OF_NUM_ADD];
MATCH_MP_TAC(REAL_FIELD
`z pow 2 = &1 /\ z * x = y ==> z * y = x`) THEN
REWRITE_TAC[REAL_POW_POW] THEN CONJ_TAC THENL
[REWRITE_TAC[REAL_POW_NEG; EVEN_MULT; ARITH; REAL_POW_ONE];
REWRITE_TAC[GSYM SUM_LMUL]] THEN
MP_TAC(ISPECL [`SUC n`; `x:real`; `--(&1)`] BERNOULLI_ADD) THEN
REWRITE_TAC[SUM_CLAUSES_NUMSEG; LE_0; BINOM_REFL; SUB_REFL] THEN
REWRITE_TAC[GSYM real_sub; ADD1; REAL_MUL_LID; CONJUNCT1 real_pow] THEN
DISCH_THEN SUBST1_TAC THEN
MATCH_MP_TAC(REAL_ARITH `--s' = s ==> s = b - (s' + b * &1)`) THEN
REWRITE_TAC[GSYM SUM_NEG] THEN MATCH_MP_TAC SUM_EQ_NUMSEG THEN
X_GEN_TAC `k:num` THEN STRIP_TAC THEN REWRITE_TAC[] THEN
MATCH_MP_TAC(REAL_RING
`--(&1) pow 1 * p = q * r ==> --(b * k * p) = q * b * r * k`) THEN
REWRITE_TAC[GSYM REAL_POW_ADD] THEN REWRITE_TAC[REAL_POW_NEG] THEN
REWRITE_TAC[EVEN_ADD; EVEN_SUB; REAL_POW_ONE; ARITH] THEN
ASM_SIMP_TAC[ARITH_RULE `k <= n ==> ~(n + 1 <= k)`] THEN
REWRITE_TAC[TAUT `~(~p <=> q) <=> (p <=> q)`]];
MATCH_MP_TAC num_WF THEN MATCH_MP_TAC num_INDUCTION THEN
REWRITE_TAC[bernoulli; CONJUNCT1 real_pow; REAL_MUL_LID] THEN
X_GEN_TAC `n:num` THEN DISCH_THEN(K ALL_TAC) THEN
REWRITE_TAC[LT_SUC_LE] THEN DISCH_THEN
(fun th -> FIRST_X_ASSUM(MP_TAC o SPEC `SUC n`) THEN ASSUME_TAC th) THEN
REWRITE_TAC[SUM_CLAUSES_NUMSEG; LE_0] THEN
ASM_SIMP_TAC[REAL_SUB_REFL; REAL_MUL_RZERO; SUM_0; REAL_ADD_LID] THEN
REWRITE_TAC[GSYM ADD1; BINOM_PENULT; GSYM REAL_OF_NUM_SUC] THEN
REWRITE_TAC[REAL_ENTIRE; REAL_SUB_0] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC]);;
let BERNOULLI_1_0 = prove
(`!n. bernoulli n (&1) = --(&1) pow n * bernoulli n (&0)`,
GEN_TAC THEN SUBST1_TAC(REAL_ARITH `&0 = &1 - &1`) THEN
REWRITE_TAC[BERNOULLI_REFLECT; REAL_MUL_ASSOC; GSYM REAL_POW_MUL] THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[REAL_POW_ONE; REAL_MUL_LID]);;
let BERNOULLI_NUMBER_ZERO = prove
(`!n. ODD n /\ ~(n = 1) ==> bernoulli n (&0) = &0`,
REPEAT STRIP_TAC THEN
MP_TAC(SPEC `n:num` BERNOULLI_1) THEN
MP_TAC(SPEC `n:num` BERNOULLI_1_0) THEN
ASM_REWRITE_TAC[REAL_POW_NEG; REAL_POW_ONE; GSYM NOT_ODD] THEN
REAL_ARITH_TAC);;
let BERNOULLI_EVEN_BOUND = prove
(`!n x. EVEN n /\ x IN real_interval[&0,&1]
==> abs(bernoulli n x) <= abs(bernoulli n (&0))`,
let lemma = prove
(`(!n x. x IN real_interval(&0,&1 / &2)
==> ~(bernoulli (2 * n + 1) x = &0)) /\
(!n x y. x IN real_interval(&0,&1 / &2) /\
y IN real_interval(&0,&1 / &2) /\
bernoulli (2 * n) x = &0 /\ bernoulli (2 * n) y = &0
==> x = y)`,
REWRITE_TAC[AND_FORALL_THM; IN_REAL_INTERVAL] THEN INDUCT_TAC THENL
[CONV_TAC NUM_REDUCE_CONV THEN
CONV_TAC(ONCE_DEPTH_CONV BERNOULLI_CONV) THEN REAL_ARITH_TAC;
POP_ASSUM MP_TAC THEN REWRITE_TAC[FORALL_AND_THM] THEN STRIP_TAC] THEN
MATCH_MP_TAC(TAUT `q /\ (q ==> p) ==> p /\ q`) THEN CONJ_TAC THENL
[MATCH_MP_TAC REAL_WLOG_LT THEN REWRITE_TAC[] THEN
CONJ_TAC THENL [REWRITE_TAC[CONJ_ACI; EQ_SYM_EQ]; ALL_TAC] THEN
MAP_EVERY X_GEN_TAC [`x:real`; `y:real`] THEN REPEAT STRIP_TAC THEN
MP_TAC(ISPECL
[`\x. bernoulli (2 * SUC n) x / (&2 * &n + &2)`;
`bernoulli (2 * n + 1)`; `x:real`; `y:real`]
REAL_ROLLE_SIMPLE) THEN
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
[REPEAT STRIP_TAC THEN REAL_DIFF_TAC THEN
REWRITE_TAC[GSYM REAL_OF_NUM_MUL; GSYM REAL_OF_NUM_SUC;
ARITH_RULE `2 * SUC n - 1 = 2 * n + 1`] THEN
CONV_TAC REAL_FIELD;
REWRITE_TAC[IN_REAL_INTERVAL; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `z:real` THEN
DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN
ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN DISCH_TAC THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[IN_REAL_INTERVAL] THEN
ASM_REAL_ARITH_TAC];
POP_ASSUM_LIST(K ALL_TAC) THEN DISCH_TAC THEN
X_GEN_TAC `x:real` THEN REPEAT STRIP_TAC THEN
MP_TAC(ISPECL
[`\x. bernoulli (2 * SUC n + 1) x / (&2 * &n + &3)`;
`bernoulli (2 * SUC n)`; `&0`; `x:real`]
REAL_ROLLE_SIMPLE) THEN
ASM_REWRITE_TAC[NOT_IMP] THEN REPEAT CONJ_TAC THENL
[REWRITE_TAC[real_div; REAL_MUL_LZERO; REAL_ENTIRE] THEN DISJ1_TAC THEN
MATCH_MP_TAC BERNOULLI_NUMBER_ZERO THEN
REWRITE_TAC[ODD_ADD; ODD_MULT; ADD1; ARITH] THEN ARITH_TAC;
REPEAT STRIP_TAC THEN REAL_DIFF_TAC THEN
SIMP_TAC[ADD_SUB; GSYM REAL_OF_NUM_MUL; GSYM REAL_OF_NUM_ADD; ADD1] THEN
CONV_TAC REAL_FIELD;
REWRITE_TAC[IN_REAL_INTERVAL; NOT_EXISTS_THM] THEN
X_GEN_TAC `u:real` THEN STRIP_TAC] THEN
MP_TAC(ISPECL
[`\x. bernoulli (2 * SUC n + 1) x / (&2 * &n + &3)`;
`bernoulli (2 * SUC n)`; `x:real`; `&1 / &2`]
REAL_ROLLE_SIMPLE) THEN
ASM_REWRITE_TAC[NOT_IMP] THEN REPEAT CONJ_TAC THENL
[REWRITE_TAC[real_div; REAL_MUL_LZERO] THEN CONV_TAC SYM_CONV THEN
REWRITE_TAC[REAL_ENTIRE] THEN DISJ1_TAC THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[BERNOULLI_HALF] THEN
REWRITE_TAC[REAL_ENTIRE] THEN DISJ2_TAC THEN
MATCH_MP_TAC BERNOULLI_NUMBER_ZERO THEN
REWRITE_TAC[ODD_ADD; ODD_MULT; ADD1; ARITH] THEN ARITH_TAC;
REPEAT STRIP_TAC THEN REAL_DIFF_TAC THEN
SIMP_TAC[ADD_SUB; GSYM REAL_OF_NUM_MUL;
GSYM REAL_OF_NUM_ADD; ADD1] THEN
CONV_TAC REAL_FIELD;
REWRITE_TAC[IN_REAL_INTERVAL; NOT_EXISTS_THM] THEN
X_GEN_TAC `v:real` THEN STRIP_TAC] THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`u:real`; `v:real`]) THEN
ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC]) in
REWRITE_TAC[IN_REAL_INTERVAL] THEN REPEAT STRIP_TAC THEN
ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[bernoulli; REAL_LE_REFL] THEN
MP_TAC(ISPECL [`\x. abs(bernoulli n x)`; `real_interval[&0,&1]`]
REAL_CONTINUOUS_ATTAINS_SUP) THEN
REWRITE_TAC[REAL_COMPACT_INTERVAL; REAL_INTERVAL_NE_EMPTY; REAL_POS] THEN
ANTS_TAC THENL
[MATCH_MP_TAC REAL_CONTINUOUS_ON_ABS THEN
MATCH_MP_TAC REAL_DIFFERENTIABLE_ON_IMP_REAL_CONTINUOUS_ON THEN
REWRITE_TAC[REAL_DIFFERENTIABLE_ON_DIFFERENTIABLE] THEN
REPEAT STRIP_TAC THEN REAL_DIFFERENTIABLE_TAC;
REWRITE_TAC[IN_REAL_INTERVAL] THEN
DISCH_THEN(X_CHOOSE_THEN `z:real` MP_TAC)] THEN
ASM_CASES_TAC `z = &0` THEN ASM_SIMP_TAC[] THEN
ASM_CASES_TAC `z = &1` THEN ASM_REWRITE_TAC[BERNOULLI_1_0] THEN
ASM_SIMP_TAC[REAL_ABS_MUL; REAL_ABS_POW; REAL_ABS_NEG; REAL_POW_ONE;
REAL_ABS_NUM; REAL_MUL_LID] THEN
STRIP_TAC THEN
MP_TAC(ISPECL [`bernoulli n`; `&n * bernoulli (n - 1) z`;
`z:real`; `real_interval(&0,&1)`]
REAL_DERIVATIVE_ZERO_MAXMIN) THEN
REWRITE_TAC[REAL_OPEN_REAL_INTERVAL; IN_REAL_INTERVAL] THEN ANTS_TAC THENL
[CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
REWRITE_TAC[HAS_REAL_DERIVATIVE_BERNOULLI] THEN
ASM_CASES_TAC `&0 <= bernoulli n z` THENL
[DISJ1_TAC; DISJ2_TAC] THEN
X_GEN_TAC `y:real` THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `y:real`) THEN
ASM_REAL_ARITH_TAC;
ALL_TAC] THEN
ASM_REWRITE_TAC[REAL_ENTIRE; REAL_OF_NUM_EQ] THEN DISCH_TAC THEN
ASM_CASES_TAC `z = &1 / &2` THENL
[MATCH_MP_TAC(REAL_ARITH `!z. x <= z /\ z <= &1 * y ==> x <= y`) THEN
EXISTS_TAC `abs(bernoulli n (&1 / &2))` THEN
CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
REWRITE_TAC[BERNOULLI_HALF; REAL_ABS_MUL] THEN
MATCH_MP_TAC REAL_LE_RMUL THEN REWRITE_TAC[REAL_ABS_POS] THEN
MATCH_MP_TAC(REAL_ARITH `&0 <= x /\ x <= &1 ==> abs(x - &1) <= &1`) THEN
SIMP_TAC[REAL_LE_LDIV_EQ; REAL_LE_RDIV_EQ; REAL_LT_POW2] THEN
REWRITE_TAC[REAL_MUL_LZERO; REAL_MUL_LID; REAL_POS] THEN
MATCH_MP_TAC(REAL_ARITH `&2 pow 1 <= x ==> &2 <= x`) THEN
MATCH_MP_TAC REAL_POW_MONO THEN REWRITE_TAC[REAL_OF_NUM_LE] THEN
ASM_ARITH_TAC;
ALL_TAC] THEN
SUBGOAL_THEN
`&0 < z /\ z < &1 / &2 \/ &1 / &2 < z /\ z < &1`
STRIP_ASSUME_TAC THENL
[ASM_REAL_ARITH_TAC;
MP_TAC(ISPECL [`(n - 2) DIV 2`; `z:real`] (CONJUNCT1 lemma)) THEN
ASM_REWRITE_TAC[IN_REAL_INTERVAL];
MP_TAC(ISPECL [`(n - 2) DIV 2`; `&1 - z`] (CONJUNCT1 lemma)) THEN
ASM_REWRITE_TAC[IN_REAL_INTERVAL] THEN
ANTS_TAC THENL [ASM_REAL_ARITH_TAC; REWRITE_TAC[BERNOULLI_REFLECT]] THEN
REWRITE_TAC[REAL_ENTIRE; REAL_POW_EQ_0] THEN
CONV_TAC REAL_RAT_REDUCE_CONV] THEN
SUBGOAL_THEN `2 * (n - 2) DIV 2 + 1 = n - 1`
(fun th -> ASM_REWRITE_TAC[th]) THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [EVEN_EXISTS]) THEN
DISCH_THEN(CHOOSE_THEN SUBST_ALL_TAC) THEN
UNDISCH_TAC `~(2 * m = 0)` THEN SPEC_TAC(`m:num`,`m:num`) THEN
INDUCT_TAC THEN REWRITE_TAC[MULT_CLAUSES; ADD_SUB2] THEN
SIMP_TAC[DIV_MULT; ARITH_EQ] THEN ARITH_TAC);;
let BERNOULLI_NUMBER_EQ_0 = prove
(`!n. bernoulli n (&0) = &0 <=> ODD n /\ ~(n = 1)`,
GEN_TAC THEN EQ_TAC THEN REWRITE_TAC[BERNOULLI_NUMBER_ZERO] THEN
ASM_CASES_TAC `n = 1` THEN
ASM_REWRITE_TAC[BERNOULLI_CONV `bernoulli 1 (&0)`] THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN DISCH_TAC THEN
DISJ_CASES_TAC(SPEC `n:num` EVEN_OR_ODD) THEN ASM_REWRITE_TAC[] THEN
MP_TAC(ISPECL [`n:num`; `\k. &(binom(n,n - k)) * bernoulli (n - k) (&0)`]
REAL_POLYFUN_FINITE_ROOTS) THEN
MATCH_MP_TAC(TAUT `q /\ ~p ==> (p <=> q) ==> r`) THEN CONJ_TAC THENL
[EXISTS_TAC `n:num` THEN SIMP_TAC[IN_NUMSEG; LE_0; LE_REFL; SUB_REFL] THEN
REWRITE_TAC[binom; REAL_MUL_RID; bernoulli] THEN REAL_ARITH_TAC;
REWRITE_TAC[GSYM INFINITE] THEN MATCH_MP_TAC INFINITE_SUPERSET THEN
EXISTS_TAC `real_interval[&0,&1]` THEN
REWRITE_TAC[real_interval; INFINITE; FINITE_REAL_INTERVAL] THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN
REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN
X_GEN_TAC `x:real` THEN STRIP_TAC THEN
MP_TAC(ISPECL [`n:num`; `x:real`] BERNOULLI_EVEN_BOUND) THEN
ASM_REWRITE_TAC[IN_REAL_INTERVAL;
REAL_ARITH `abs x <= abs(&0) <=> x = &0`] THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EQ_TRANS) THEN
GEN_REWRITE_TAC RAND_CONV [BERNOULLI_EXPANSION] THEN
MATCH_MP_TAC SUM_EQ_GENERAL_INVERSES THEN
REPEAT(EXISTS_TAC `\k:num. n - k`) THEN
SIMP_TAC[IN_NUMSEG; ARITH_RULE `k:num <= n ==> n - (n - k) = k`] THEN
REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN ARITH_TAC]);;
(* ------------------------------------------------------------------------- *)
(* This is a simple though sub-optimal bound (we can actually get *)
(* |B_{2n+1}(x)| <= (2n + 1) / (2 pi) * |B_{2n}(0)| with more work). *)
(* ------------------------------------------------------------------------- *)
let BERNOULLI_BOUND = prove
(`!n x. x IN real_interval[&0,&1]
==> abs(bernoulli n x)
<= max (&n / &2) (&1) * abs(bernoulli (2 * n DIV 2) (&0))`,
REPEAT STRIP_TAC THEN DISJ_CASES_TAC(SPEC `n:num` EVEN_OR_ODD) THENL
[FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [EVEN_EXISTS]);
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ODD_EXISTS])] THEN
DISCH_THEN(X_CHOOSE_THEN `m:num` SUBST_ALL_TAC) THENL
[REWRITE_TAC[ARITH_RULE `(2 * m) DIV 2 = m`] THEN
MATCH_MP_TAC(REAL_ARITH
`&1 * y <= max x (&1) * y /\ a <= y ==> a <= max x (&1) * y`) THEN
SIMP_TAC[REAL_LE_RMUL; REAL_ABS_POS; REAL_ARITH `y <= max x y`] THEN
MATCH_MP_TAC BERNOULLI_EVEN_BOUND THEN ASM_REWRITE_TAC[EVEN_MULT; ARITH];
POP_ASSUM MP_TAC THEN SPEC_TAC(`x:real`,`x:real`) THEN
MATCH_MP_TAC(MESON[]
`!Q. ((!x. P x /\ Q x ==> R x) ==> (!x. P x ==> R x)) /\
(!x. P x /\ Q x ==> R x)
==> !x. P x ==> R x`) THEN
EXISTS_TAC `\x. x IN real_interval[&0,&1 / &2]` THEN CONJ_TAC THENL
[REWRITE_TAC[IN_REAL_INTERVAL] THEN REPEAT STRIP_TAC THEN
ASM_CASES_TAC `x <= &1 / &2` THEN ASM_SIMP_TAC[] THEN
FIRST_ASSUM(MP_TAC o SPEC `&1 - x`) THEN
ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
REWRITE_TAC[BERNOULLI_REFLECT; REAL_ABS_MUL; REAL_ABS_POW] THEN
REWRITE_TAC[REAL_ABS_NEG; REAL_ABS_NUM; REAL_MUL_LID; REAL_POW_ONE];
REWRITE_TAC[IN_REAL_INTERVAL] THEN REPEAT STRIP_TAC THEN
REWRITE_TAC[ARITH_RULE `SUC(2 * m) DIV 2 = m`] THEN
REWRITE_TAC[GSYM REAL_OF_NUM_SUC; GSYM REAL_OF_NUM_MUL] THEN
REWRITE_TAC[ADD1; REAL_ARITH `(x + &1) + &1 = x + &2`] THEN
ASM_CASES_TAC `m = 0` THENL
[ASM_REWRITE_TAC[MULT_CLAUSES; ADD_CLAUSES] THEN
CONV_TAC(ONCE_DEPTH_CONV BERNOULLI_CONV) THEN ASM_REAL_ARITH_TAC;
MP_TAC(ISPECL [`\x. bernoulli (2 * m + 1) x / &(2 * m + 1)`;
`bernoulli (2 * m)`; `&0`; `x:real`]
REAL_FUNDAMENTAL_THEOREM_OF_CALCULUS) THEN
ASM_SIMP_TAC[BERNOULLI_NUMBER_ZERO; ODD_ADD; ODD_MULT; ARITH;
ARITH_RULE `2 * m + 1 = 1 <=> m = 0`] THEN
ANTS_TAC THENL
[REPEAT STRIP_TAC THEN REAL_DIFF_TAC THEN REWRITE_TAC[ADD_SUB] THEN
REWRITE_TAC[GSYM REAL_OF_NUM_ADD; GSYM REAL_OF_NUM_MUL] THEN
CONV_TAC REAL_FIELD;
DISCH_THEN(MP_TAC o MATCH_MP REAL_INTEGRAL_UNIQUE) THEN
REWRITE_TAC[GSYM REAL_OF_NUM_ADD; GSYM REAL_OF_NUM_MUL] THEN
REWRITE_TAC[REAL_FIELD
`i = b / (&2 * &m + &1) - &0 / (&2 * &m + &1) <=>
b = (&2 * &m + &1) * i`] THEN DISCH_THEN SUBST1_TAC THEN
REWRITE_TAC[real_max; REAL_ARITH `(x + &1) / &2 <= &1 <=> x <= &1`;
REAL_OF_NUM_MUL; REAL_OF_NUM_LE] THEN
ASM_REWRITE_TAC[ARITH_RULE `2 * m <= 1 <=> m = 0`] THEN
REWRITE_TAC[GSYM REAL_OF_NUM_MUL; real_div; GSYM REAL_MUL_ASSOC] THEN
REWRITE_TAC[REAL_ABS_MUL; REAL_ARITH
`abs(&2 * &n + &1) = &2 * &n + &1`] THEN
MATCH_MP_TAC REAL_LE_LMUL THEN
CONJ_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN
TRANS_TAC REAL_LE_TRANS
`real_integral (real_interval [&0,x])
(\x. abs(bernoulli (2 * m) (&0)))` THEN
CONJ_TAC THENL
[MATCH_MP_TAC REAL_INTEGRAL_ABS_BOUND_INTEGRAL THEN
SIMP_TAC[REAL_INTEGRABLE_CONST; REAL_INTEGRABLE_CONTINUOUS;
REAL_CONTINUOUS_ON_BERNOULLI] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC BERNOULLI_EVEN_BOUND THEN
REWRITE_TAC[EVEN_MULT; ARITH; IN_REAL_INTERVAL] THEN
RULE_ASSUM_TAC(REWRITE_RULE[IN_REAL_INTERVAL]) THEN
ASM_REAL_ARITH_TAC;
ASM_SIMP_TAC[REAL_INTEGRAL_CONST] THEN
REWRITE_TAC[REAL_ARITH `a * (x - &0) = x * a`] THEN
MATCH_MP_TAC REAL_LE_RMUL THEN REWRITE_TAC[REAL_ABS_POS] THEN
ASM_REAL_ARITH_TAC]]]]]);;
(* ------------------------------------------------------------------------- *)
(* Absolutely integrable functions remain so modified by Bernolli sawtooth. *)
(* ------------------------------------------------------------------------- *)
let ABSOLUTELY_INTEGRABLE_ON_MUL_BERNOULLI_FRAC = prove
(`!f:real^1->real^N s n.
f absolutely_integrable_on s
==> (\x. bernoulli n (frac(drop x)) % f x)
absolutely_integrable_on s`,
REPEAT GEN_TAC THEN
ONCE_REWRITE_TAC[GSYM ABSOLUTELY_INTEGRABLE_RESTRICT_UNIV] THEN
DISCH_TAC THEN MP_TAC(ISPECL
[`\x y:real^N. drop(x) % y`;
`\x:real^1. lift(bernoulli n (frac (drop x)))`;
`\x. if x IN s then (f:real^1->real^N) x else vec 0`; `(:real^1)`]
ABSOLUTELY_INTEGRABLE_BOUNDED_MEASURABLE_PRODUCT) THEN
ASM_REWRITE_TAC[LIFT_DROP; BILINEAR_DROP_MUL] THEN
ONCE_REWRITE_TAC[COND_RAND] THEN REWRITE_TAC[VECTOR_MUL_RZERO] THEN
DISCH_THEN MATCH_MP_TAC THEN CONJ_TAC THENL
[SUBGOAL_THEN
`(\x. lift(bernoulli n (frac (drop x)))) =
(lift o bernoulli n o drop) o (lift o frac o drop)`
SUBST1_TAC THENL [REWRITE_TAC[o_DEF; LIFT_DROP]; ALL_TAC] THEN
MATCH_MP_TAC MEASURABLE_ON_COMPOSE_CONTINUOUS THEN CONJ_TAC THENL
[MATCH_MP_TAC
CONTINUOUS_AE_IMP_MEASURABLE_ON_LEBESGUE_MEASURABLE_SUBSET THEN
EXISTS_TAC `IMAGE lift integer` THEN
SIMP_TAC[LEBESGUE_MEASURABLE_UNIV; NEGLIGIBLE_COUNTABLE;
COUNTABLE_IMAGE; COUNTABLE_INTEGER] THEN
MATCH_MP_TAC CONTINUOUS_AT_IMP_CONTINUOUS_ON THEN
REWRITE_TAC[FORALL_LIFT; IN_DIFF; IN_UNIV; LIFT_IN_IMAGE_LIFT] THEN
REWRITE_TAC[IN] THEN
REWRITE_TAC[GSYM REAL_CONTINUOUS_CONTINUOUS_ATREAL] THEN
REWRITE_TAC[REAL_CONTINUOUS_FRAC];
MP_TAC(SPECL [`n:num`; `(:real)`] REAL_CONTINUOUS_ON_BERNOULLI) THEN
REWRITE_TAC[REAL_CONTINUOUS_ON; IMAGE_LIFT_UNIV]];
REWRITE_TAC[bounded; FORALL_IN_IMAGE; IN_UNIV; NORM_LIFT] THEN
SUBGOAL_THEN `real_compact (IMAGE (bernoulli n) (real_interval[&0,&1]))`
MP_TAC THENL
[MATCH_MP_TAC REAL_COMPACT_CONTINUOUS_IMAGE THEN
REWRITE_TAC[REAL_CONTINUOUS_ON_BERNOULLI; REAL_COMPACT_INTERVAL];
DISCH_THEN(MP_TAC o MATCH_MP REAL_COMPACT_IMP_BOUNDED) THEN
REWRITE_TAC[real_bounded; FORALL_IN_IMAGE; IN_REAL_INTERVAL] THEN
MESON_TAC[FLOOR_FRAC; REAL_LT_IMP_LE]]]);;
(* ------------------------------------------------------------------------- *)
(* The Euler-Maclaurin summation formula for real and complex functions. *)
(* ------------------------------------------------------------------------- *)
let REAL_EULER_MACLAURIN = prove
(`!f m n p.
m <= n /\
(!k x. k <= 2 * p + 1 /\ x IN real_interval[&m,&n]
==> ((f k) has_real_derivative f (k + 1) x)
(atreal x within real_interval [&m,&n]))
==> (\x. bernoulli (2 * p + 1) (frac x) * f (2 * p + 1) x)
real_integrable_on real_interval[&m,&n] /\
sum(m..n) (\i. f 0 (&i)) =
real_integral (real_interval [&m,&n]) (f 0) +
(f 0 (&m) + f 0 (&n)) / &2 +
sum (1..p) (\k. bernoulli (2 * k) (&0) / &(FACT(2 * k)) *
(f (2 * k - 1) (&n) - f (2 * k - 1) (&m))) +
real_integral (real_interval [&m,&n])
(\x. bernoulli (2 * p + 1) (frac x) * f (2 * p + 1) x) /
&(FACT(2 * p + 1))`,
let lemma = prove
(`!f k m n.
f real_continuous_on real_interval[&m,&n] /\ m < n
==> ((\x. bernoulli k (frac x) * f x) has_real_integral
sum(m..n-1) (\j. real_integral (real_interval[&j,&j + &1])
(\x. bernoulli k (x - &j) * f x)))
(real_interval[&m,&n])`,
REPLICATE_TAC 3 GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[CONJUNCT1 LT] THEN
REWRITE_TAC[GSYM REAL_OF_NUM_SUC; LT_SUC_LE; SUC_SUB1] THEN STRIP_TAC THEN
ASM_CASES_TAC `m:num = n` THENL
[ASM_REWRITE_TAC[SUM_SING_NUMSEG] THEN (**** one ***) ALL_TAC;
SUBGOAL_THEN `0 < n` ASSUME_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
ASM_SIMP_TAC[SUM_CLAUSES_RIGHT] THEN
MATCH_MP_TAC HAS_REAL_INTEGRAL_COMBINE THEN EXISTS_TAC `&n` THEN
ASM_REWRITE_TAC[REAL_OF_NUM_LE; REAL_ARITH `x <= x + &1`] THEN
CONJ_TAC THENL
[FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[LT_LE] THEN
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ]
REAL_CONTINUOUS_ON_SUBSET)) THEN
REWRITE_TAC[SUBSET_REAL_INTERVAL] THEN
ASM_REWRITE_TAC[REAL_OF_NUM_LE; REAL_ARITH `x <= x + &1`; LE_REFL];
ALL_TAC]] THEN
MATCH_MP_TAC(MESON[REAL_INTEGRAL_SPIKE; HAS_REAL_INTEGRAL_INTEGRAL;
REAL_INTEGRABLE_SPIKE]
`!t. g real_integrable_on s /\ real_negligible t /\
(!x. x IN s DIFF t ==> f x = g x)
==> (f has_real_integral (real_integral s g)) s`) THEN
EXISTS_TAC `{&n + &1}` THEN REWRITE_TAC[REAL_NEGLIGIBLE_SING] THEN
(CONJ_TAC THENL
[MATCH_MP_TAC REAL_INTEGRABLE_CONTINUOUS THEN
MATCH_MP_TAC REAL_CONTINUOUS_ON_MUL THEN CONJ_TAC THENL
[MATCH_MP_TAC REAL_DIFFERENTIABLE_ON_IMP_REAL_CONTINUOUS_ON THEN
REWRITE_TAC[REAL_DIFFERENTIABLE_ON_DIFFERENTIABLE] THEN
REPEAT STRIP_TAC THEN REAL_DIFFERENTIABLE_TAC;
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ]
REAL_CONTINUOUS_ON_SUBSET)) THEN
REWRITE_TAC[SUBSET_REAL_INTERVAL] THEN
REWRITE_TAC[REAL_OF_NUM_ADD; REAL_OF_NUM_LE] THEN ASM_ARITH_TAC];
REWRITE_TAC[IN_DIFF; IN_SING; IN_REAL_INTERVAL] THEN
X_GEN_TAC `x:real` THEN STRIP_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
AP_TERM_TAC THEN REWRITE_TAC[GSYM FRAC_UNIQUE] THEN
REWRITE_TAC[REAL_ARITH `x - (x - &n) = &n`; INTEGER_CLOSED] THEN
ASM_REAL_ARITH_TAC])) in
let step = prove
(`!f f' k m n.
m < n /\
(!x. x IN real_interval[&m,&n]
==> (f has_real_derivative f' x)
(atreal x within real_interval[&m,&n])) /\
f' real_continuous_on real_interval[&m,&n]
==> real_integral (real_interval[&m,&n])
(\x. bernoulli (k + 1) (frac x) * f' x) =
(bernoulli (k + 1) (&0) * (f(&n) - f(&m)) +
(if k = 0 then sum(m+1..n) (\i. f(&i)) else &0)) -
(&k + &1) *
real_integral (real_interval[&m,&n])
(\x. bernoulli k (frac x) * f x)`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `f real_continuous_on real_interval[&m,&n]` ASSUME_TAC THENL
[ASM_MESON_TAC[REAL_DIFFERENTIABLE_ON_DIFFERENTIABLE;
real_differentiable;
REAL_DIFFERENTIABLE_ON_IMP_REAL_CONTINUOUS_ON];
ASM_SIMP_TAC[REWRITE_RULE[HAS_REAL_INTEGRAL_INTEGRABLE_INTEGRAL]
lemma]] THEN
TRANS_TAC EQ_TRANS
`sum(m..n-1)
(\j. (bernoulli (k + 1) (&0) * (f (&j + &1) - f (&j)) +
(if k = 0 then f (&j + &1) else &0)) -
(&k + &1) *
real_integral (real_interval[&j,&j + &1])
(\x. bernoulli k (x - &j) * f x))` THEN
CONJ_TAC THENL
[MATCH_MP_TAC SUM_EQ_NUMSEG THEN X_GEN_TAC `j:num` THEN STRIP_TAC THEN
REWRITE_TAC[] THEN MATCH_MP_TAC REAL_INTEGRAL_UNIQUE THEN
MATCH_MP_TAC(ONCE_REWRITE_RULE[REAL_MUL_SYM]
REAL_INTEGRATION_BY_PARTS_SIMPLE) THEN
MAP_EVERY EXISTS_TAC
[`f:real->real`; `\x. (&k + &1) * bernoulli k (x - &j)`] THEN
REWRITE_TAC[REAL_ADD_SUB; REAL_SUB_REFL; BERNOULLI_1] THEN
REPEAT CONJ_TAC THENL
[REAL_ARITH_TAC;
X_GEN_TAC `x:real` THEN DISCH_TAC THEN
CONJ_TAC THENL
[FIRST_X_ASSUM(MP_TAC o SPEC `x:real`) THEN ANTS_TAC THENL
[FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE
`x IN s ==> s SUBSET t ==> x IN t`));
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT]
HAS_REAL_DERIVATIVE_WITHIN_SUBSET)] THEN
REWRITE_TAC[SUBSET_REAL_INTERVAL] THEN
REWRITE_TAC[REAL_OF_NUM_LE; REAL_OF_NUM_ADD] THEN ASM_ARITH_TAC;
REAL_DIFF_TAC THEN REWRITE_TAC[GSYM REAL_OF_NUM_ADD; ADD_SUB] THEN
REAL_ARITH_TAC];
REWRITE_TAC[ARITH_RULE `k + 1 = 1 <=> k = 0`] THEN
ASM_CASES_TAC `k = 0` THEN ASM_REWRITE_TAC[] THENL
[REWRITE_TAC[REAL_ARITH
`(b + &1) * f1 - b * f0 - ((b * (f1 - f0) + f1) - w):real = w`];
REWRITE_TAC[REAL_ARITH
`b * f1 - b * f0 - ((b * (f1 - f0) + &0) - w) = w`]] THEN
REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN
MATCH_MP_TAC HAS_REAL_INTEGRAL_LMUL THEN
MATCH_MP_TAC REAL_INTEGRABLE_INTEGRAL THEN
MATCH_MP_TAC REAL_INTEGRABLE_CONTINUOUS THEN
MATCH_MP_TAC REAL_CONTINUOUS_ON_MUL THEN
(CONJ_TAC THENL
[MATCH_MP_TAC REAL_DIFFERENTIABLE_ON_IMP_REAL_CONTINUOUS_ON THEN
REWRITE_TAC[REAL_DIFFERENTIABLE_ON_DIFFERENTIABLE] THEN
REPEAT STRIP_TAC THEN REAL_DIFFERENTIABLE_TAC;
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ]
REAL_CONTINUOUS_ON_SUBSET)) THEN
REWRITE_TAC[SUBSET_REAL_INTERVAL] THEN
REWRITE_TAC[REAL_OF_NUM_LE; REAL_OF_NUM_ADD] THEN ASM_ARITH_TAC])];
REWRITE_TAC[SUM_ADD_NUMSEG; SUM_LMUL; SUM_SUB_NUMSEG] THEN
AP_THM_TAC THEN AP_TERM_TAC THEN BINOP_TAC THENL
[AP_TERM_TAC THEN REWRITE_TAC[GSYM SUM_SUB_NUMSEG] THEN
REWRITE_TAC[REAL_OF_NUM_ADD; SUM_DIFFS_ALT] THEN
COND_CASES_TAC THENL [ALL_TAC; ASM_ARITH_TAC] THEN
AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN
ASM_ARITH_TAC;
ASM_CASES_TAC `k = 0` THEN ASM_REWRITE_TAC[SUM_0] THEN
REWRITE_TAC[GSYM(SPEC `1` SUM_OFFSET); REAL_OF_NUM_ADD] THEN
AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN ASM_ARITH_TAC]]) in
REPEAT GEN_TAC THEN STRIP_TAC THEN
FIRST_X_ASSUM(DISJ_CASES_TAC o MATCH_MP (ARITH_RULE
`m:num <= n ==> m = n \/ m < n`))
THENL
[ASM_SIMP_TAC[REAL_INTEGRABLE_ON_NULL; REAL_LE_REFL] THEN
ASM_REWRITE_TAC[SUM_SING_NUMSEG; REAL_SUB_REFL; REAL_MUL_LZERO] THEN
SIMP_TAC[REAL_INTEGRAL_NULL; REAL_LE_REFL; REAL_ARITH `(x + x) / &2 = x`;
REAL_MUL_RZERO; SUM_0; real_div; REAL_MUL_LZERO] THEN
REAL_ARITH_TAC;
ALL_TAC] THEN
CONJ_TAC THENL
[REWRITE_TAC[real_integrable_on] THEN
MP_TAC(ISPECL [`f (2 * p + 1):real->real`; `2 * p + 1`; `m:num`; `n:num`]
lemma) THEN
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [ALL_TAC; MESON_TAC[]] THEN
MATCH_MP_TAC REAL_DIFFERENTIABLE_ON_IMP_REAL_CONTINUOUS_ON THEN
REWRITE_TAC[REAL_DIFFERENTIABLE_ON_DIFFERENTIABLE] THEN
REWRITE_TAC[real_differentiable] THEN ASM_MESON_TAC[LE_REFL];
ALL_TAC] THEN
ASM_SIMP_TAC[SUM_CLAUSES_LEFT; LT_IMP_LE] THEN
SUBGOAL_THEN
`!k:num. k <= 2 * p + 1
==> (f k) real_differentiable_on real_interval[&m,&n]`
ASSUME_TAC THENL [ASM_MESON_TAC[real_differentiable_on]; ALL_TAC] THEN
MP_TAC(ISPECL [`(f:num->real->real) 0`; `(f:num->real->real) (0 + 1)`;
`0`; `m:num`; `n:num`] step) THEN
ASM_SIMP_TAC[REAL_DIFFERENTIABLE_ON_IMP_REAL_CONTINUOUS_ON;
ARITH_RULE `0 + 1 <= 2 * p + 1`; LE_0] THEN
CONV_TAC NUM_REDUCE_CONV THEN REWRITE_TAC[CONJUNCT1 bernoulli] THEN
REWRITE_TAC[REAL_ADD_LID; REAL_MUL_LID; ETA_AX] THEN
REWRITE_TAC[BERNOULLI_CONV `bernoulli 1 (&0)`] THEN
MATCH_MP_TAC(REAL_ARITH
`i' = r ==> i' = (-- &1 / &2 * (n - m) + s) - i
==> m + s = i + (m + n) / &2 + r`) THEN
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ o rev) THEN
SPEC_TAC(`p:num`,`p:num`) THEN INDUCT_TAC THENL
[REWRITE_TAC[SUM_CLAUSES_NUMSEG] THEN CONV_TAC NUM_REDUCE_CONV THEN
REAL_ARITH_TAC;
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV)
[ARITH_RULE `2 * SUC p + 1 = 2 * p + 3`] THEN
FIRST_X_ASSUM(fun th -> STRIP_TAC THEN MP_TAC th) THEN
ASM_SIMP_TAC[ARITH_RULE `k <= 2 * p + 1 ==> k <= 2 * p + 3`] THEN
DISCH_TAC] THEN
ASM_REWRITE_TAC[SUM_CLAUSES_NUMSEG; ARITH_RULE `1 <= SUC n`] THEN
REWRITE_TAC[GSYM REAL_ADD_ASSOC] THEN AP_TERM_TAC THEN
MP_TAC(ISPECL [`(f:num->real->real) (2 * p + 1)`;
`(f:num->real->real) ((2 * p + 1) + 1)`;
`2 * p + 1`; `m:num`; `n:num`] step) THEN
ASM_SIMP_TAC[REAL_DIFFERENTIABLE_ON_IMP_REAL_CONTINUOUS_ON;
ARITH_RULE `(2 * p + 1) + 1 <= 2 * p + 3`;
ARITH_RULE `2 * p + 1 <= 2 * p + 3`] THEN
REWRITE_TAC[ADD_EQ_0; ARITH_EQ; REAL_ADD_RID] THEN
REWRITE_TAC[GSYM REAL_OF_NUM_ADD; GSYM REAL_OF_NUM_MUL] THEN
REWRITE_TAC[REAL_FIELD
`x = y - ((&2 * &p + &1) + &1) * z <=> z = (y - x) / (&2 * &p + &2)`] THEN
DISCH_THEN SUBST1_TAC THEN
REWRITE_TAC[ARITH_RULE `2 * SUC p - 1 = 2 * p + 1`] THEN
REWRITE_TAC[ARITH_RULE `(2 * p + 1) + 1 = 2 * SUC p`] THEN
REWRITE_TAC[ARITH_RULE `2 * SUC p = SUC(2 * p + 1)`] THEN
REWRITE_TAC[ARITH_RULE `SUC(2 * p + 1) + 1 = SUC(SUC(2 * p + 1))`] THEN
REWRITE_TAC[FACT; GSYM REAL_OF_NUM_MUL; GSYM REAL_OF_NUM_ADD;
GSYM REAL_OF_NUM_SUC] THEN
MATCH_MP_TAC(REAL_FIELD
`~(t = &0) /\
i2 = &0 - (&2 * &p + &3) * i1
==> (b * (fn - fm) - i1) / (&2 * &p + &2) / t =
b / (((&2 * &p + &1) + &1) * t) * (fn - fm) +
i2 / ((((&2 * &p + &1) + &1) + &1) * ((&2 * &p + &1) + &1) * t)`) THEN
REWRITE_TAC[REAL_OF_NUM_EQ; FACT_NZ] THEN
MP_TAC(ISPECL [`(f:num->real->real) (SUC(2 * p + 1))`;
`(f:num->real->real) (SUC(2 * p + 1) + 1)`;
`SUC(2 * p + 1)`; `m:num`; `n:num`] step) THEN
ASM_SIMP_TAC[REAL_DIFFERENTIABLE_ON_IMP_REAL_CONTINUOUS_ON; NOT_SUC;
ARITH_RULE `SUC(2 * p + 1) + 1 <= 2 * p + 3`;
ARITH_RULE `SUC(2 * p + 1) <= 2 * p + 3`] THEN
REWRITE_TAC[ADD1; GSYM ADD_ASSOC; REAL_OF_NUM_ADD] THEN
CONV_TAC NUM_REDUCE_CONV THEN
REWRITE_TAC[GSYM REAL_OF_NUM_ADD; REAL_ADD_RID; GSYM REAL_OF_NUM_MUL] THEN
DISCH_THEN SUBST1_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[REAL_ENTIRE] THEN DISJ1_TAC THEN
REWRITE_TAC[BERNOULLI_NUMBER_EQ_0] THEN
REWRITE_TAC[ODD_ADD; ODD_MULT; ARITH] THEN ARITH_TAC);;
let REAL_EULER_MACLAURIN_ANTIDERIVATIVE = prove
(`!f m n p.
m <= n /\
(!k x. k <= 2 * p + 2 /\ x IN real_interval[&m,&n]
==> ((f k) has_real_derivative f (k + 1) x)
(atreal x within real_interval [&m,&n]))
==> ((\x. bernoulli (2 * p + 1) (frac x) * f (2 * p + 2) x)
real_integrable_on real_interval[&m,&n]) /\
sum(m..n) (\i. f 1 (&i)) =
(f 0 (&n) - f 0 (&m)) +
(f 1 (&m) + f 1 (&n)) / &2 +
sum (1..p) (\k. bernoulli (2 * k) (&0) / &(FACT(2 * k)) *
(f (2 * k) (&n) - f (2 * k) (&m))) +
real_integral (real_interval [&m,&n])
(\x. bernoulli (2 * p + 1) (frac x) * f (2 * p + 2) x) /
&(FACT(2 * p + 1))`,
REPEAT GEN_TAC THEN STRIP_TAC THEN
MP_TAC(ISPECL [`\n. (f:num->real->real)(SUC n)`; `m:num`; `n:num`; `p:num`]
REAL_EULER_MACLAURIN) THEN
ASM_SIMP_TAC[ARITH_RULE `k <= 2 * p + 1 ==> SUC k <= 2 * p + 2`;
ARITH_RULE `SUC(k + 1) = SUC k + 1`;
ARITH_RULE `SUC(2 * p) + 1 = 2 * p + 2`] THEN
CONV_TAC NUM_REDUCE_CONV THEN DISCH_THEN(SUBST1_TAC o CONJUNCT2) THEN
MP_TAC(ISPECL
[`f 0:real->real`; `f (0 + 1):real->real`; `&m`; `&n`]
REAL_FUNDAMENTAL_THEOREM_OF_CALCULUS) THEN
ASM_SIMP_TAC[REAL_OF_NUM_LE; LE_0] THEN CONV_TAC NUM_REDUCE_CONV THEN
DISCH_THEN(SUBST1_TAC o MATCH_MP REAL_INTEGRAL_UNIQUE) THEN
AP_TERM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[ARITH_RULE `SUC(2 * p) + 1 = 2 * p + 2`] THEN
AP_THM_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC SUM_EQ_NUMSEG THEN
SIMP_TAC[ARITH_RULE `1 <= k ==> SUC(2 * k - 1) = 2 * k`]);;
let COMPLEX_EULER_MACLAURIN_ANTIDERIVATIVE = prove
(`!f m n p.
m <= n /\
(!k x. k <= 2 * p + 2 /\ &m <= x /\ x <= &n
==> ((f k) has_complex_derivative f (k + 1) (Cx x)) (at(Cx x)))
==> (\x. Cx(bernoulli (2 * p + 1) (frac(drop x))) *
f (2 * p + 2) (Cx(drop x)))
integrable_on interval[lift(&m),lift(&n)] /\
vsum(m..n) (\i. f 1 (Cx(&i))) =
(f 0 (Cx(&n)) - f 0 (Cx(&m))) +
(f 1 (Cx(&m)) + f 1 (Cx(&n))) / Cx(&2) +
vsum (1..p) (\k. Cx(bernoulli (2 * k) (&0) / &(FACT(2 * k))) *
(f (2 * k) (Cx(&n)) - f (2 * k) (Cx(&m)))) +
integral (interval[lift(&m),lift(&n)])
(\x. Cx(bernoulli (2 * p + 1) (frac(drop x))) *
f (2 * p + 2) (Cx(drop x))) /
Cx(&(FACT(2 * p + 1)))`,
let lemma_re,lemma_im = (CONJ_PAIR o prove)
(`((f has_complex_derivative f') (at (Cx x))
==> ((Re o f o Cx) has_real_derivative (Re f')) (atreal x)) /\
((f has_complex_derivative f') (at (Cx x))
==> ((Im o f o Cx) has_real_derivative (Im f')) (atreal x))`,
REPEAT GEN_TAC THEN CONJ_TAC THEN
REWRITE_TAC[HAS_COMPLEX_DERIVATIVE_AT; HAS_REAL_DERIVATIVE_ATREAL] THEN
REWRITE_TAC[LIM_AT; REALLIM_ATREAL; o_THM] THEN
MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN
ASM_CASES_TAC `&0 < e` THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:real` THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `y:real` THEN
STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `Cx y`) THEN
ASM_REWRITE_TAC[DIST_CX; dist] THEN
REWRITE_TAC[GSYM RE_SUB; GSYM IM_SUB; CX_SUB;
GSYM RE_DIV_CX; GSYM IM_SUB; GSYM IM_DIV_CX] THEN
MESON_TAC[COMPLEX_NORM_GE_RE_IM; REAL_LET_TRANS])
and ilemma = prove
(`f integrable_on interval[lift a,lift b]
==> Re(integral (interval[lift a,lift b]) f) =
real_integral (real_interval[a,b]) (\x. Re(f(lift x))) /\
Im(integral (interval[lift a,lift b]) f) =
real_integral (real_interval[a,b]) (\x. Im(f(lift x)))`,
REPEAT STRIP_TAC THEN REWRITE_TAC[RE_DEF; IM_DEF] THEN
ASM_SIMP_TAC[INTEGRAL_COMPONENT] THEN
IMP_REWRITE_TAC[REAL_INTEGRAL] THEN
REWRITE_TAC[o_DEF; IMAGE_LIFT_REAL_INTERVAL; LIFT_DROP] THEN
REWRITE_TAC[REAL_INTEGRABLE_ON] THEN
REWRITE_TAC[o_DEF; IMAGE_LIFT_REAL_INTERVAL; LIFT_DROP] THEN
RULE_ASSUM_TAC(ONCE_REWRITE_RULE[INTEGRABLE_COMPONENTWISE]) THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[DIMINDEX_2; ARITH]) in
REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[COMPLEX_EQ] THEN
MAP_EVERY (MP_TAC o C SPEC REAL_EULER_MACLAURIN_ANTIDERIVATIVE)
[`\n:num. (Im o f n o Cx)`; `\n:num. (Re o f n o Cx)`] THEN
REWRITE_TAC[IMP_IMP; AND_FORALL_THM] THEN
DISCH_THEN(MP_TAC o SPECL [`m:num`; `n:num`; `p:num`]) THEN
ASM_SIMP_TAC[lemma_re; lemma_im; HAS_REAL_DERIVATIVE_ATREAL_WITHIN;
o_THM; IN_REAL_INTERVAL] THEN
SIMP_TAC[RE_VSUM; IM_VSUM; FINITE_NUMSEG] THEN
DISCH_THEN(CONJUNCTS_THEN(ASSUME_TAC o CONJUNCT1)) THEN
SIMP_TAC[RE_DIV_CX; IM_DIV_CX; RE_VSUM; IM_VSUM; FINITE_NUMSEG; RE_ADD;
RE_SUB;IM_ADD; IM_SUB; RE_MUL_CX; IM_MUL_CX; RE_CX; IM_CX] THEN
MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL
[ONCE_REWRITE_TAC[INTEGRABLE_COMPONENTWISE] THEN
REWRITE_TAC[DIMINDEX_2; FORALL_2; GSYM RE_DEF; GSYM IM_DEF] THEN
REWRITE_TAC[RE_MUL_CX; IM_MUL_CX] THEN
ASM_REWRITE_TAC[REWRITE_RULE[o_DEF] (GSYM REAL_INTEGRABLE_ON);
GSYM IMAGE_LIFT_REAL_INTERVAL];
SIMP_TAC[ilemma] THEN REWRITE_TAC[RE_MUL_CX; IM_MUL_CX; LIFT_DROP]]);;
(* ------------------------------------------------------------------------- *)
(* Specific properties of complex measurable functions. *)
(* ------------------------------------------------------------------------- *)
let MEASURABLE_ON_COMPLEX_MUL = prove
(`!f g:real^N->complex s.
f measurable_on s /\ g measurable_on s
==> (\x. f x * g x) measurable_on s`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC MEASURABLE_ON_COMBINE THEN
ASM_REWRITE_TAC[COMPLEX_VEC_0; COMPLEX_MUL_LZERO] THEN
MATCH_MP_TAC CONTINUOUS_ON_COMPLEX_MUL THEN
CONJ_TAC THEN MATCH_MP_TAC LINEAR_CONTINUOUS_ON THEN
REWRITE_TAC[LINEAR_FSTCART; LINEAR_SNDCART]);;
let MEASURABLE_ON_COMPLEX_INV = prove
(`!f:real^N->real^2.
f measurable_on (:real^N) /\ negligible {x | f x = Cx(&0)}
==> (\x. inv(f x)) measurable_on (:real^N)`,
GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
REWRITE_TAC[measurable_on; IN_UNIV; LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`k:real^N->bool`; `g:num->real^N->complex`] THEN
STRIP_TAC THEN EXISTS_TAC `k UNION {x:real^N | f x = Cx(&0)}` THEN
ASM_SIMP_TAC[NEGLIGIBLE_UNION] THEN
SUBGOAL_THEN
`!n. ?h. h continuous_on (:real^N) /\
!x. x IN {x | g n x IN (:complex) DIFF ball(Cx(&0),inv(&n + &1))}
==> (h:real^N->complex) x = inv(g n x)`
MP_TAC THENL
[X_GEN_TAC `n:num` THEN MATCH_MP_TAC TIETZE_UNBOUNDED THEN CONJ_TAC THENL
[REWRITE_TAC[SUBTOPOLOGY_UNIV; GSYM CLOSED_IN] THEN
MATCH_MP_TAC CONTINUOUS_CLOSED_PREIMAGE_UNIV THEN
REWRITE_TAC[GSYM OPEN_CLOSED; OPEN_BALL; ETA_AX] THEN
ASM_MESON_TAC[CONTINUOUS_ON_EQ_CONTINUOUS_AT; OPEN_UNIV; IN_UNIV];
REWRITE_TAC[CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN] THEN
GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC CONTINUOUS_AT_WITHIN THEN
MATCH_MP_TAC CONTINUOUS_COMPLEX_INV_AT THEN CONJ_TAC THENL
[REWRITE_TAC[ETA_AX] THEN
ASM_MESON_TAC[CONTINUOUS_ON_EQ_CONTINUOUS_AT; OPEN_UNIV; IN_UNIV];
RULE_ASSUM_TAC(REWRITE_RULE[IN_ELIM_THM; IN_UNIV; IN_DIFF]) THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [IN_BALL]) THEN
SIMP_TAC[CONTRAPOS_THM; DIST_REFL; REAL_LT_INV_EQ] THEN
REAL_ARITH_TAC]];
REWRITE_TAC[SKOLEM_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN
X_GEN_TAC `h:num->real^N->complex` THEN
REWRITE_TAC[FORALL_AND_THM; IN_ELIM_THM; IN_DIFF; IN_UNION; IN_UNIV] THEN
REWRITE_TAC[IN_BALL; DE_MORGAN_THM; REAL_NOT_LT] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `x:real^N` THEN
STRIP_TAC THEN MATCH_MP_TAC LIM_TRANSFORM THEN
EXISTS_TAC `\n. inv((g:num->real^N->complex) n x)` THEN
ASM_SIMP_TAC[o_DEF; LIM_COMPLEX_INV] THEN
MATCH_MP_TAC LIM_EVENTUALLY THEN
REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN
SUBGOAL_THEN `&0 < norm((f:real^N->complex) x)` ASSUME_TAC THENL
[ASM_REWRITE_TAC[COMPLEX_NORM_NZ]; ALL_TAC] THEN
FIRST_X_ASSUM(MP_TAC o SPEC `x:real^N`) THEN
ASM_REWRITE_TAC[LIM_SEQUENTIALLY] THEN
DISCH_THEN(MP_TAC o SPEC `norm((f:real^N->complex) x) / &2`) THEN
ASM_REWRITE_TAC[REAL_HALF] THEN
DISCH_THEN(X_CHOOSE_THEN `N1:num` (LABEL_TAC "*")) THEN
MP_TAC(SPEC `norm((f:real^N->complex) x) / &2` REAL_ARCH_INV) THEN
ASM_REWRITE_TAC[REAL_HALF] THEN
DISCH_THEN(X_CHOOSE_THEN `N2:num` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `N1 + N2 + 1` THEN X_GEN_TAC `n:num` THEN STRIP_TAC THEN
REWRITE_TAC[VECTOR_SUB_EQ] THEN CONV_TAC SYM_CONV THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN
REWRITE_TAC[GSYM COMPLEX_VEC_0; DIST_0] THEN
REMOVE_THEN "*" (MP_TAC o SPEC `n:num`) THEN
ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
DISCH_THEN(MP_TAC o MATCH_MP (NORM_ARITH
`dist(g,f) < norm(f) / &2 ==> norm(f) / &2 <= norm g`)) THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] REAL_LE_TRANS) THEN
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
`x < y ==> z <= x ==> z <= y`)) THEN
MATCH_MP_TAC REAL_LE_INV2 THEN
ASM_REWRITE_TAC[REAL_OF_NUM_ADD; REAL_OF_NUM_LE; REAL_OF_NUM_LT] THEN
ASM_ARITH_TAC]);;
let MEASURABLE_ON_COMPLEX_DIV = prove
(`!f g:real^N->complex s.
f measurable_on s /\ g measurable_on (:real^N) /\
negligible {x | g(x) = Cx(&0)}
==> (\x. f(x) / g(x)) measurable_on s`,
let lemma = prove
(`!f g:real^N->complex.
f measurable_on (:real^N) /\ g measurable_on (:real^N) /\
negligible {x | g(x) = Cx(&0)}
==> (\x. f(x) / g(x)) measurable_on (:real^N)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[complex_div] THEN
ASM_SIMP_TAC[MEASURABLE_ON_COMPLEX_MUL; MEASURABLE_ON_COMPLEX_INV]) in
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM MEASURABLE_ON_UNIV] THEN
REWRITE_TAC[IN_UNIV; ETA_AX] THEN DISCH_THEN(MP_TAC o MATCH_MP lemma) THEN
MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[FUN_EQ_THM; complex_div; COMPLEX_VEC_0] THEN
GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[COMPLEX_MUL_LZERO]);;
let MEASURABLE_ON_CPRODUCT = prove
(`!f:A->real^N->complex s t.
FINITE t /\ (t = {} ==> lebesgue_measurable s) /\
(!i. i IN t ==> f i measurable_on s)
==> (\x. cproduct t (\i. f i x)) measurable_on s`,
GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[CPRODUCT_CLAUSES; MEASURABLE_ON_CONST_EQ] THEN
REWRITE_TAC[FORALL_IN_INSERT; NOT_INSERT_EMPTY] THEN
MAP_EVERY X_GEN_TAC [`a:A`; `k:A->bool`] THEN
REWRITE_TAC[IMP_IMP] THEN STRIP_TAC THEN
ASM_CASES_TAC `k:A->bool = {}` THEN
ASM_SIMP_TAC[CPRODUCT_CLAUSES; COMPLEX_MUL_RID; ETA_AX] THEN
MATCH_MP_TAC MEASURABLE_ON_COMPLEX_MUL THEN ASM_REWRITE_TAC[ETA_AX] THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Measurable real->real functions. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("real_measurable_on",(12,"right"));;
let real_measurable_on = new_definition
`f real_measurable_on s <=>
(lift o f o drop) measurable_on (IMAGE lift s)`;;
let real_lebesgue_measurable = new_definition
`real_lebesgue_measurable s <=>
(\x. if x IN s then &1 else &0) real_measurable_on (:real)`;;
let REAL_MEASURABLE_ON_UNIV = prove
(`(\x. if x IN s then f(x) else &0) real_measurable_on (:real) <=>
f real_measurable_on s`,
REWRITE_TAC[real_measurable_on; o_DEF; IMAGE_LIFT_UNIV] THEN
SIMP_TAC[COND_RAND; LIFT_NUM; MEASURABLE_ON_UNIV; GSYM IN_IMAGE_LIFT_DROP]);;
let REAL_LEBESGUE_MEASURABLE = prove
(`!s. real_lebesgue_measurable s <=> lebesgue_measurable (IMAGE lift s)`,
REWRITE_TAC[real_lebesgue_measurable; lebesgue_measurable; COND_RAND;
COND_RAND; real_measurable_on; indicator; IMAGE_LIFT_UNIV; o_DEF] THEN
REWRITE_TAC[LIFT_NUM; IN_IMAGE_LIFT_DROP]);;
let REAL_MEASURABLE_BOUNDED_BY_INTEGRABLE_IMP_INTEGRABLE = prove
(`!f g s.
f real_measurable_on s /\
g real_integrable_on s /\
(!x. x IN s ==> abs(f x) <= g x)
==> f real_integrable_on s`,
REWRITE_TAC[real_measurable_on; REAL_INTEGRABLE_ON] THEN
REPEAT STRIP_TAC THEN
MATCH_MP_TAC MEASURABLE_BOUNDED_BY_INTEGRABLE_IMP_INTEGRABLE THEN
EXISTS_TAC `lift o g o drop` THEN
ASM_REWRITE_TAC[FORALL_IN_IMAGE; o_THM; LIFT_DROP; NORM_LIFT]);;
let REAL_MEASURABLE_BOUNDED_AE_BY_INTEGRABLE_IMP_INTEGRABLE = prove
(`!f g s k.
f real_measurable_on s /\ g real_integrable_on s /\ real_negligible k /\
(!x. x IN s DIFF k ==> abs(f x) <= g x)
==> f real_integrable_on s`,
REPEAT STRIP_TAC THEN
MATCH_MP_TAC REAL_MEASURABLE_BOUNDED_BY_INTEGRABLE_IMP_INTEGRABLE THEN
EXISTS_TAC
`\x. if x IN k then abs(f x) else (g:real->real) x` THEN
ASM_SIMP_TAC[COND_RAND; IN_DIFF; LIFT_DROP; REAL_LE_REFL; COND_ID] THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_IMP] REAL_INTEGRABLE_SPIKE) THEN
MAP_EVERY EXISTS_TAC [`g:real->real`; `k:real->bool`] THEN
ASM_SIMP_TAC[IN_DIFF]);;
let REAL_MEASURABLE_BOUNDED_BY_INTEGRABLE_IMP_ABSOLUTELY_INTEGRABLE = prove
(`!f g s.
f real_measurable_on s /\
g real_integrable_on s /\
(!x. x IN s ==> abs(f x) <= g x)
==> f absolutely_real_integrable_on s`,
REWRITE_TAC[real_measurable_on; REAL_INTEGRABLE_ON;
ABSOLUTELY_REAL_INTEGRABLE_ON] THEN
REPEAT STRIP_TAC THEN
MATCH_MP_TAC MEASURABLE_BOUNDED_BY_INTEGRABLE_IMP_ABSOLUTELY_INTEGRABLE THEN
EXISTS_TAC `lift o g o drop` THEN
ASM_REWRITE_TAC[FORALL_IN_IMAGE; o_THM; LIFT_DROP; NORM_LIFT]);;
let INTEGRABLE_SUBINTERVALS_IMP_REAL_MEASURABLE = prove
(`!f. (!a b. f real_integrable_on real_interval[a,b])
==> f real_measurable_on (:real)`,
REWRITE_TAC[real_measurable_on; REAL_INTEGRABLE_ON; IMAGE_LIFT_UNIV] THEN
REWRITE_TAC[IMAGE_LIFT_REAL_INTERVAL] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC INTEGRABLE_SUBINTERVALS_IMP_MEASURABLE THEN
ASM_REWRITE_TAC[FORALL_LIFT]);;
let INTEGRABLE_IMP_REAL_MEASURABLE = prove
(`!f:real->real s.
f real_integrable_on s ==> f real_measurable_on s`,
REWRITE_TAC[real_measurable_on; REAL_INTEGRABLE_ON] THEN
REWRITE_TAC[INTEGRABLE_IMP_MEASURABLE]);;
let ABSOLUTELY_REAL_INTEGRABLE_REAL_MEASURABLE = prove
(`!f s. f absolutely_real_integrable_on s <=>
f real_measurable_on s /\ (\x. abs(f x)) real_integrable_on s`,
REPEAT GEN_TAC THEN REWRITE_TAC[absolutely_real_integrable_on] THEN
MATCH_MP_TAC(TAUT `(a ==> b) /\ (b /\ c ==> a) ==> (a /\ c <=> b /\ c)`) THEN
REWRITE_TAC[INTEGRABLE_IMP_REAL_MEASURABLE] THEN STRIP_TAC THEN
MATCH_MP_TAC REAL_MEASURABLE_BOUNDED_BY_INTEGRABLE_IMP_INTEGRABLE THEN
EXISTS_TAC `\x. abs((f:real->real) x)` THEN ASM_REWRITE_TAC[REAL_LE_REFL]);;
let REAL_MEASURABLE_ON_COMPOSE_CONTINUOUS = prove
(`!f g. f real_measurable_on (:real) /\ g real_continuous_on (:real)
==> (g o f) real_measurable_on (:real)`,
REPEAT GEN_TAC THEN REWRITE_TAC[REAL_CONTINUOUS_ON; real_measurable_on] THEN
REWRITE_TAC[IMAGE_LIFT_UNIV] THEN
DISCH_THEN(MP_TAC o MATCH_MP MEASURABLE_ON_COMPOSE_CONTINUOUS) THEN
REWRITE_TAC[o_DEF; LIFT_DROP]);;
let REAL_MEASURABLE_ON_COMPOSE_CONTINUOUS_0 = prove
(`!f:real->real g:real->real s.
f real_measurable_on s /\ g real_continuous_on (:real) /\ g(&0) = &0
==> (g o f) real_measurable_on s`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM REAL_MEASURABLE_ON_UNIV] THEN
ONCE_REWRITE_TAC[TAUT `a /\ b /\ c ==> d <=> c ==> a /\ b ==> d`] THEN
DISCH_TAC THEN
DISCH_THEN(MP_TAC o MATCH_MP REAL_MEASURABLE_ON_COMPOSE_CONTINUOUS) THEN
MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[FUN_EQ_THM; o_DEF] THEN ASM_MESON_TAC[]);;
let REAL_MEASURABLE_ON_COMPOSE_CONTINUOUS_OPEN_INTERVAL = prove
(`!f:real->real g:real->real a b.
f real_measurable_on (:real) /\
(!x. f(x) IN real_interval(a,b)) /\
g real_continuous_on real_interval(a,b)
==> (g o f) real_measurable_on (:real)`,
REPEAT GEN_TAC THEN
MP_TAC(ISPECL [`lift o f o drop`; `lift o g o drop`; `lift a`; `lift b`]
MEASURABLE_ON_COMPOSE_CONTINUOUS_OPEN_INTERVAL) THEN
REWRITE_TAC[real_measurable_on; REAL_CONTINUOUS_ON] THEN
REWRITE_TAC[o_DEF; LIFT_DROP; IMAGE_LIFT_UNIV; IMAGE_LIFT_REAL_INTERVAL] THEN
REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[GSYM FORALL_DROP] THEN REPEAT GEN_TAC THEN
REWRITE_TAC[INTERVAL_REAL_INTERVAL; LIFT_DROP] THEN ASM SET_TAC[]);;
let REAL_MEASURABLE_ON_COMPOSE_CONTINUOUS_CLOSED_SET = prove
(`!f:real->real g:real->real s.
real_closed s /\
f real_measurable_on (:real) /\
(!x. f(x) IN s) /\
g real_continuous_on s
==> (g o f) real_measurable_on (:real)`,
REPEAT GEN_TAC THEN
MP_TAC(ISPECL [`lift o f o drop`; `lift o g o drop`; `IMAGE lift s`]
MEASURABLE_ON_COMPOSE_CONTINUOUS_CLOSED_SET) THEN
REWRITE_TAC[real_measurable_on; REAL_CONTINUOUS_ON; REAL_CLOSED] THEN
REWRITE_TAC[o_DEF; LIFT_DROP; IMAGE_LIFT_UNIV; IMAGE_LIFT_REAL_INTERVAL] THEN
REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[GSYM FORALL_DROP] THEN REPEAT GEN_TAC THEN
REWRITE_TAC[INTERVAL_REAL_INTERVAL; LIFT_DROP] THEN ASM SET_TAC[]);;
let REAL_MEASURABLE_ON_COMPOSE_CONTINUOUS_CLOSED_SET_0 = prove
(`!f:real->real g:real->real s t.
real_closed s /\
f real_measurable_on t /\
(!x. f(x) IN s) /\
g real_continuous_on s /\
&0 IN s /\ g(&0) = &0
==> (g o f) real_measurable_on t`,
REPEAT GEN_TAC THEN
MP_TAC(ISPECL [`lift o f o drop`; `lift o g o drop`;
`IMAGE lift s`; `IMAGE lift t`]
MEASURABLE_ON_COMPOSE_CONTINUOUS_CLOSED_SET_0) THEN
REWRITE_TAC[real_measurable_on; REAL_CONTINUOUS_ON; REAL_CLOSED] THEN
REWRITE_TAC[o_DEF; LIFT_DROP; IMAGE_LIFT_UNIV; IMAGE_LIFT_REAL_INTERVAL] THEN
REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[GSYM FORALL_DROP] THEN
ASM_SIMP_TAC[FUN_IN_IMAGE; LIFT_DROP; GSYM LIFT_NUM]);;
let CONTINUOUS_IMP_REAL_MEASURABLE_ON = prove
(`!f. f real_continuous_on (:real) ==> f real_measurable_on (:real)`,
REWRITE_TAC[REAL_CONTINUOUS_ON; real_measurable_on] THEN
REWRITE_TAC[CONTINUOUS_IMP_MEASURABLE_ON; IMAGE_LIFT_UNIV]);;
let REAL_MEASURABLE_ON_CONST = prove
(`!k:real. (\x. k) real_measurable_on (:real)`,
SIMP_TAC[real_measurable_on; o_DEF; MEASURABLE_ON_CONST; IMAGE_LIFT_UNIV]);;
let REAL_MEASURABLE_ON_0 = prove
(`!s. (\x. &0) real_measurable_on s`,
GEN_TAC THEN ONCE_REWRITE_TAC[GSYM REAL_MEASURABLE_ON_UNIV] THEN
REWRITE_TAC[REAL_MEASURABLE_ON_CONST; COND_ID]);;
let REAL_MEASURABLE_ON_LMUL = prove
(`!c f s. f real_measurable_on s ==> (\x. c * f x) real_measurable_on s`,
REPEAT GEN_TAC THEN REWRITE_TAC[real_measurable_on] THEN
DISCH_THEN(MP_TAC o SPEC `c:real` o MATCH_MP MEASURABLE_ON_CMUL) THEN
REWRITE_TAC[o_DEF; LIFT_CMUL; LIFT_DROP]);;
let REAL_MEASURABLE_ON_RMUL = prove
(`!c f s. f real_measurable_on s ==> (\x. f x * c) real_measurable_on s`,
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
REWRITE_TAC[REAL_MEASURABLE_ON_LMUL]);;
let REAL_MEASURABLE_ON_NEG = prove
(`!f s. f real_measurable_on s ==> (\x. --(f x)) real_measurable_on s`,
REPEAT GEN_TAC THEN REWRITE_TAC[real_measurable_on] THEN
DISCH_THEN(MP_TAC o MATCH_MP MEASURABLE_ON_NEG) THEN
REWRITE_TAC[o_DEF; LIFT_NEG; LIFT_DROP]);;
let REAL_MEASURABLE_ON_NEG_EQ = prove
(`!f s. (\x. --(f x)) real_measurable_on s <=> f real_measurable_on s`,
REPEAT GEN_TAC THEN EQ_TAC THEN
DISCH_THEN(MP_TAC o MATCH_MP REAL_MEASURABLE_ON_NEG) THEN
REWRITE_TAC[REAL_NEG_NEG; ETA_AX]);;
let REAL_MEASURABLE_ON_ABS = prove
(`!f s. f real_measurable_on s ==> (\x. abs(f x)) real_measurable_on s`,
REPEAT GEN_TAC THEN REWRITE_TAC[real_measurable_on] THEN
DISCH_THEN(MP_TAC o MATCH_MP MEASURABLE_ON_NORM) THEN
REWRITE_TAC[o_DEF; NORM_LIFT]);;
let REAL_MEASURABLE_ON_ADD = prove
(`!f g s. f real_measurable_on s /\ g real_measurable_on s
==> (\x. f x + g x) real_measurable_on s`,
REPEAT GEN_TAC THEN REWRITE_TAC[real_measurable_on] THEN
DISCH_THEN(MP_TAC o MATCH_MP MEASURABLE_ON_ADD) THEN
REWRITE_TAC[o_DEF; LIFT_ADD; LIFT_DROP]);;
let REAL_MEASURABLE_ON_SUB = prove
(`!f g s.
f real_measurable_on s /\ g real_measurable_on s
==> (\x. f x - g x) real_measurable_on s`,
REPEAT GEN_TAC THEN REWRITE_TAC[real_measurable_on] THEN
DISCH_THEN(MP_TAC o MATCH_MP MEASURABLE_ON_SUB) THEN
REWRITE_TAC[o_DEF; LIFT_SUB; LIFT_DROP]);;
let REAL_MEASURABLE_ON_MAX = prove
(`!f g s.
f real_measurable_on s /\ g real_measurable_on s
==> (\x. max (f x) (g x)) real_measurable_on s`,
REPEAT GEN_TAC THEN REWRITE_TAC[real_measurable_on] THEN
DISCH_THEN(MP_TAC o MATCH_MP MEASURABLE_ON_MAX) THEN
MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN
SIMP_TAC[FUN_EQ_THM; o_THM; CART_EQ; LAMBDA_BETA; DIMINDEX_1; FORALL_1] THEN
REWRITE_TAC[GSYM drop; LIFT_DROP]);;
let REAL_MEASURABLE_ON_MIN = prove
(`!f g s.
f real_measurable_on s /\ g real_measurable_on s
==> (\x. min (f x) (g x)) real_measurable_on s`,
REPEAT GEN_TAC THEN REWRITE_TAC[real_measurable_on] THEN
DISCH_THEN(MP_TAC o MATCH_MP MEASURABLE_ON_MIN) THEN
MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN
SIMP_TAC[FUN_EQ_THM; o_THM; CART_EQ; LAMBDA_BETA; DIMINDEX_1; FORALL_1] THEN
REWRITE_TAC[GSYM drop; LIFT_DROP]);;
let REAL_MEASURABLE_ON_MUL = prove
(`!f g s.
f real_measurable_on s /\ g real_measurable_on s
==> (\x. f x * g x) real_measurable_on s`,
REPEAT GEN_TAC THEN REWRITE_TAC[real_measurable_on] THEN
DISCH_THEN(MP_TAC o MATCH_MP MEASURABLE_ON_DROP_MUL) THEN
REWRITE_TAC[o_DEF; LIFT_CMUL; LIFT_DROP]);;
let REAL_MEASURABLE_ON_SPIKE_SET = prove
(`!f:real->real s t.
real_negligible (s DIFF t UNION t DIFF s)
==> f real_measurable_on s
==> f real_measurable_on t`,
REWRITE_TAC[real_measurable_on; real_negligible] THEN
REPEAT GEN_TAC THEN DISCH_TAC THEN
MATCH_MP_TAC MEASURABLE_ON_SPIKE_SET THEN POP_ASSUM MP_TAC THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] NEGLIGIBLE_SUBSET) THEN
SET_TAC[]);;
let REAL_MEASURABLE_ON_RESTRICT = prove
(`!f s. f real_measurable_on (:real) /\
real_lebesgue_measurable s
==> (\x. if x IN s then f(x) else &0) real_measurable_on (:real)`,
REPEAT GEN_TAC THEN
REWRITE_TAC[real_measurable_on; REAL_LEBESGUE_MEASURABLE;
IMAGE_LIFT_UNIV] THEN
REWRITE_TAC[o_DEF; COND_RAND; LIFT_NUM; GSYM IN_IMAGE_LIFT_DROP] THEN
DISCH_THEN(MP_TAC o MATCH_MP MEASURABLE_ON_RESTRICT) THEN
REWRITE_TAC[]);;
let REAL_MEASURABLE_ON_LIMIT = prove
(`!f g s k.
(!n. (f n) real_measurable_on s) /\
real_negligible k /\
(!x. x IN s DIFF k ==> ((\n. f n x) ---> g x) sequentially)
==> g real_measurable_on s`,
REWRITE_TAC[real_measurable_on; real_negligible; TENDSTO_REAL] THEN
REWRITE_TAC[o_DEF] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC MEASURABLE_ON_LIMIT THEN MAP_EVERY EXISTS_TAC
[`\n:num. lift o f n o drop`; `IMAGE lift k`] THEN
ASM_REWRITE_TAC[] THEN
SIMP_TAC[LIFT_DROP; SET_RULE `(!x. drop(lift x) = x)
==> IMAGE lift s DIFF IMAGE lift t = IMAGE lift (s DIFF t)`] THEN
ASM_REWRITE_TAC[FORALL_IN_IMAGE; o_DEF; LIFT_DROP]);;
let ABSOLUTELY_REAL_INTEGRABLE_BOUNDED_MEASURABLE_PRODUCT = prove
(`!f g s. f real_measurable_on s /\ real_bounded (IMAGE f s) /\
g absolutely_real_integrable_on s
==> (\x. f x * g x) absolutely_real_integrable_on s`,
REPEAT STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [REAL_BOUNDED_POS]) THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM; FORALL_IN_IMAGE] THEN
X_GEN_TAC `B:real` THEN STRIP_TAC THEN MATCH_MP_TAC
REAL_MEASURABLE_BOUNDED_BY_INTEGRABLE_IMP_ABSOLUTELY_INTEGRABLE THEN
EXISTS_TAC `\x. B * abs((g:real->real) x)` THEN
ASM_SIMP_TAC[REAL_MEASURABLE_ON_MUL; INTEGRABLE_IMP_REAL_MEASURABLE;
ABSOLUTELY_REAL_INTEGRABLE_IMP_INTEGRABLE; REAL_INTEGRABLE_LMUL;
ABSOLUTELY_REAL_INTEGRABLE_ABS] THEN
ASM_SIMP_TAC[REAL_ABS_MUL; REAL_LE_RMUL; REAL_ABS_POS]);;
let REAL_COMPLEX_MEASURABLE_ON = prove
(`!f s. f real_measurable_on s <=>
(Cx o f o drop) measurable_on (IMAGE lift s)`,
ONCE_REWRITE_TAC[GSYM REAL_MEASURABLE_ON_UNIV;
GSYM MEASURABLE_ON_UNIV] THEN
ONCE_REWRITE_TAC[MEASURABLE_ON_COMPONENTWISE] THEN
REWRITE_TAC[FORALL_2; DIMINDEX_2; GSYM RE_DEF; GSYM IM_DEF] THEN
REPEAT GEN_TAC THEN REWRITE_TAC[real_measurable_on; IMAGE_LIFT_UNIV] THEN
REWRITE_TAC[o_DEF; IN_IMAGE_LIFT_DROP] THEN
REWRITE_TAC[COND_RAND; COND_RATOR; LIFT_NUM; COMPLEX_VEC_0] THEN
REWRITE_TAC[RE_CX; IM_CX; COND_ID; MEASURABLE_ON_CONST; LIFT_NUM]);;
let REAL_MEASURABLE_ON_INV = prove
(`!f. f real_measurable_on (:real) /\ real_negligible {x | f x = &0}
==> (\x. inv(f x)) real_measurable_on (:real)`,
GEN_TAC THEN REWRITE_TAC[REAL_COMPLEX_MEASURABLE_ON] THEN
REWRITE_TAC[o_DEF; CX_INV; IMAGE_LIFT_UNIV] THEN STRIP_TAC THEN
MATCH_MP_TAC MEASURABLE_ON_COMPLEX_INV THEN ASM_REWRITE_TAC[CX_INJ] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [real_negligible]) THEN
MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN
MATCH_MP_TAC SURJECTIVE_IMAGE_EQ THEN
REWRITE_TAC[IN_ELIM_THM; LIFT_DROP] THEN MESON_TAC[LIFT_DROP]);;
let REAL_MEASURABLE_ON_DIV = prove
(`!f g. f real_measurable_on s /\ g real_measurable_on (:real) /\
real_negligible {x | g(x) = &0}
==> (\x. f(x) / g(x)) real_measurable_on s`,
REPEAT GEN_TAC THEN REWRITE_TAC[REAL_COMPLEX_MEASURABLE_ON] THEN
REWRITE_TAC[o_DEF; CX_DIV; IMAGE_LIFT_UNIV] THEN STRIP_TAC THEN
MATCH_MP_TAC MEASURABLE_ON_COMPLEX_DIV THEN ASM_REWRITE_TAC[CX_INJ] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [real_negligible]) THEN
MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN
MATCH_MP_TAC SURJECTIVE_IMAGE_EQ THEN
REWRITE_TAC[IN_ELIM_THM; LIFT_DROP] THEN MESON_TAC[LIFT_DROP]);;
let REAL_MEASURABLE_ON_RPOW = prove
(`!f r s. f real_measurable_on s /\ &0 < r
==> (\x. f x rpow r) real_measurable_on s`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `(\x. f x rpow r) = (\x. x rpow r) o (f:real->real)`
SUBST1_TAC THENL [REWRITE_TAC[o_DEF]; ALL_TAC] THEN
MATCH_MP_TAC REAL_MEASURABLE_ON_COMPOSE_CONTINUOUS_0 THEN
ASM_SIMP_TAC[REAL_CONTINUOUS_ON_RPOW; RPOW_ZERO;
REAL_LT_IMP_LE; REAL_LT_IMP_NZ]);;
let MEASURABLE_ON_LIFT_RPOW = prove
(`!f:real^N->real s y.
(\x. lift(f x)) measurable_on s /\ &0 < y
==> (\x. lift(f x rpow y)) measurable_on s`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`(\x:real^N. lift(f x rpow y)) =
(lift o (\w. w rpow y) o drop) o (\x. lift(f x))`
SUBST1_TAC THENL [REWRITE_TAC[FUN_EQ_THM; o_THM; LIFT_DROP]; ALL_TAC] THEN
MATCH_MP_TAC MEASURABLE_ON_COMPOSE_CONTINUOUS_0 THEN REPEAT CONJ_TAC THENL
[ASM_REWRITE_TAC[];
ONCE_REWRITE_TAC[GSYM IMAGE_LIFT_UNIV] THEN
REWRITE_TAC[GSYM REAL_CONTINUOUS_ON] THEN
MATCH_MP_TAC REAL_CONTINUOUS_ON_RPOW THEN ASM_REAL_ARITH_TAC;
ASM_SIMP_TAC[o_DEF; DROP_VEC; RPOW_ZERO; LIFT_NUM; REAL_LT_IMP_NZ]]);;
(* ------------------------------------------------------------------------- *)
(* Properties of real Lebesgue measurable sets. *)
(* ------------------------------------------------------------------------- *)
let REAL_MEASURABLE_IMP_REAL_LEBESGUE_MEASURABLE = prove
(`!s. real_measurable s ==> real_lebesgue_measurable s`,
REWRITE_TAC[REAL_LEBESGUE_MEASURABLE; REAL_MEASURABLE_MEASURABLE;
MEASURABLE_IMP_LEBESGUE_MEASURABLE]);;
let REAL_LEBESGUE_MEASURABLE_EMPTY = prove
(`real_lebesgue_measurable {}`,
REWRITE_TAC[REAL_LEBESGUE_MEASURABLE; IMAGE_CLAUSES;
LEBESGUE_MEASURABLE_EMPTY]);;
let REAL_LEBESGUE_MEASURABLE_UNIV = prove
(`real_lebesgue_measurable (:real)`,
REWRITE_TAC[REAL_LEBESGUE_MEASURABLE; IMAGE_LIFT_UNIV;
LEBESGUE_MEASURABLE_UNIV]);;
let REAL_LEBESGUE_MEASURABLE_COMPACT = prove
(`!s. real_compact s ==> real_lebesgue_measurable s`,
SIMP_TAC[REAL_MEASURABLE_IMP_REAL_LEBESGUE_MEASURABLE;
REAL_MEASURABLE_COMPACT]);;
let REAL_LEBESGUE_MEASURABLE_INTERVAL = prove
(`(!a b. real_lebesgue_measurable(real_interval[a,b])) /\
(!a b. real_lebesgue_measurable(real_interval(a,b)))`,
SIMP_TAC[REAL_MEASURABLE_IMP_REAL_LEBESGUE_MEASURABLE;
REAL_MEASURABLE_REAL_INTERVAL]);;
let REAL_LEBESGUE_MEASURABLE_INTER = prove
(`!s t. real_lebesgue_measurable s /\ real_lebesgue_measurable t
==> real_lebesgue_measurable(s INTER t)`,
REPEAT GEN_TAC THEN REWRITE_TAC[REAL_LEBESGUE_MEASURABLE] THEN
DISCH_THEN(MP_TAC o MATCH_MP LEBESGUE_MEASURABLE_INTER) THEN
MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN MP_TAC LIFT_DROP THEN SET_TAC[]);;
let REAL_LEBESGUE_MEASURABLE_UNION = prove
(`!s t:real->bool.
real_lebesgue_measurable s /\ real_lebesgue_measurable t
==> real_lebesgue_measurable(s UNION t)`,
REPEAT GEN_TAC THEN REWRITE_TAC[REAL_LEBESGUE_MEASURABLE] THEN
DISCH_THEN(MP_TAC o MATCH_MP LEBESGUE_MEASURABLE_UNION) THEN
MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN MP_TAC LIFT_DROP THEN SET_TAC[]);;
let REAL_LEBESGUE_MEASURABLE_COMPL = prove
(`!s. real_lebesgue_measurable((:real) DIFF s) <=>
real_lebesgue_measurable s`,
GEN_TAC THEN REWRITE_TAC[REAL_LEBESGUE_MEASURABLE] THEN
GEN_REWRITE_TAC (RAND_CONV) [GSYM LEBESGUE_MEASURABLE_COMPL] THEN
AP_TERM_TAC THEN MP_TAC LIFT_DROP THEN SET_TAC[]);;
let REAL_LEBESGUE_MEASURABLE_DIFF = prove
(`!s t:real->bool.
real_lebesgue_measurable s /\ real_lebesgue_measurable t
==> real_lebesgue_measurable(s DIFF t)`,
ONCE_REWRITE_TAC[SET_RULE `s DIFF t = s INTER (UNIV DIFF t)`] THEN
SIMP_TAC[REAL_LEBESGUE_MEASURABLE_COMPL; REAL_LEBESGUE_MEASURABLE_INTER]);;
let REAL_LEBESGUE_MEASURABLE_ON_SUBINTERVALS = prove
(`!s. real_lebesgue_measurable s <=>
!a b. real_lebesgue_measurable(s INTER real_interval[a,b])`,
GEN_TAC THEN REWRITE_TAC[REAL_LEBESGUE_MEASURABLE] THEN
GEN_REWRITE_TAC LAND_CONV [LEBESGUE_MEASURABLE_ON_SUBINTERVALS] THEN
REWRITE_TAC[FORALL_DROP; GSYM IMAGE_DROP_INTERVAL] THEN
REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN AP_TERM_TAC THEN
MP_TAC LIFT_DROP THEN SET_TAC[]);;
let REAL_LEBESGUE_MEASURABLE_CLOSED = prove
(`!s. real_closed s ==> real_lebesgue_measurable s`,
REWRITE_TAC[REAL_LEBESGUE_MEASURABLE; REAL_CLOSED;
LEBESGUE_MEASURABLE_CLOSED]);;
let REAL_LEBESGUE_MEASURABLE_OPEN = prove
(`!s. real_open s ==> real_lebesgue_measurable s`,
REWRITE_TAC[REAL_LEBESGUE_MEASURABLE; REAL_OPEN;
LEBESGUE_MEASURABLE_OPEN]);;
let REAL_LEBESGUE_MEASURABLE_UNIONS = prove
(`!f. FINITE f /\ (!s. s IN f ==> real_lebesgue_measurable s)
==> real_lebesgue_measurable (UNIONS f)`,
REWRITE_TAC[IMP_CONJ] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[UNIONS_0; UNIONS_INSERT; REAL_LEBESGUE_MEASURABLE_EMPTY] THEN
REWRITE_TAC[IN_INSERT] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC REAL_LEBESGUE_MEASURABLE_UNION THEN ASM_SIMP_TAC[]);;
let REAL_LEBESGUE_MEASURABLE_COUNTABLE_UNIONS_EXPLICIT = prove
(`!s:num->real->bool.
(!n. real_lebesgue_measurable(s n))
==> real_lebesgue_measurable(UNIONS {s n | n IN (:num)})`,
GEN_TAC THEN REWRITE_TAC[REAL_LEBESGUE_MEASURABLE] THEN DISCH_THEN(MP_TAC o
MATCH_MP LEBESGUE_MEASURABLE_COUNTABLE_UNIONS_EXPLICIT) THEN
REWRITE_TAC[IMAGE_UNIONS; SIMPLE_IMAGE] THEN
MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN SET_TAC[]);;
let REAL_LEBESGUE_MEASURABLE_COUNTABLE_UNIONS = prove
(`!f:(real->bool)->bool.
COUNTABLE f /\ (!s. s IN f ==> real_lebesgue_measurable s)
==> real_lebesgue_measurable (UNIONS f)`,
GEN_TAC THEN ASM_CASES_TAC `f:(real->bool)->bool = {}` THEN
ASM_REWRITE_TAC[UNIONS_0; REAL_LEBESGUE_MEASURABLE_EMPTY] THEN STRIP_TAC THEN
MP_TAC(ISPEC `f:(real->bool)->bool` COUNTABLE_AS_IMAGE) THEN
ASM_REWRITE_TAC[] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
ONCE_REWRITE_TAC[GSYM SIMPLE_IMAGE] THEN
MATCH_MP_TAC REAL_LEBESGUE_MEASURABLE_COUNTABLE_UNIONS_EXPLICIT THEN
GEN_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[IN_IMAGE; IN_UNIV] THEN MESON_TAC[]);;
let REAL_LEBESGUE_MEASURABLE_COUNTABLE_INTERS = prove
(`!f:(real->bool)->bool.
COUNTABLE f /\ (!s. s IN f ==> real_lebesgue_measurable s)
==> real_lebesgue_measurable (INTERS f)`,
REPEAT STRIP_TAC THEN
REWRITE_TAC[INTERS_UNIONS; REAL_LEBESGUE_MEASURABLE_COMPL] THEN
MATCH_MP_TAC REAL_LEBESGUE_MEASURABLE_COUNTABLE_UNIONS THEN
ASM_SIMP_TAC[SIMPLE_IMAGE; FORALL_IN_IMAGE; COUNTABLE_IMAGE;
REAL_LEBESGUE_MEASURABLE_COMPL]);;
let REAL_LEBESGUE_MEASURABLE_COUNTABLE_INTERS_EXPLICIT = prove
(`!s:num->real->bool.
(!n. real_lebesgue_measurable(s n))
==> real_lebesgue_measurable(INTERS {s n | n IN (:num)})`,
REPEAT STRIP_TAC THEN
MATCH_MP_TAC REAL_LEBESGUE_MEASURABLE_COUNTABLE_INTERS THEN
ASM_SIMP_TAC[SIMPLE_IMAGE; FORALL_IN_IMAGE; COUNTABLE_IMAGE; NUM_COUNTABLE]);;
let REAL_LEBESGUE_MEASURABLE_INTERS = prove
(`!f:(real->bool)->bool.
FINITE f /\ (!s. s IN f ==> real_lebesgue_measurable s)
==> real_lebesgue_measurable (INTERS f)`,
SIMP_TAC[REAL_LEBESGUE_MEASURABLE_COUNTABLE_INTERS; FINITE_IMP_COUNTABLE]);;
let REAL_LEBESGUE_MEASURABLE_IFF_MEASURABLE = prove
(`!s. real_bounded s ==> (real_lebesgue_measurable s <=> real_measurable s)`,
REWRITE_TAC[REAL_BOUNDED; REAL_LEBESGUE_MEASURABLE;
REAL_MEASURABLE_MEASURABLE] THEN
REWRITE_TAC[LEBESGUE_MEASURABLE_IFF_MEASURABLE]);;
let REAL_MEASURABLE_ON_LEBESGUE_MEASURABLE_SUBSET = prove
(`!f s t. s SUBSET t /\ f real_measurable_on t /\
real_lebesgue_measurable s
==> f real_measurable_on s`,
REPEAT GEN_TAC THEN
ONCE_REWRITE_TAC[GSYM REAL_MEASURABLE_ON_UNIV] THEN
REWRITE_TAC[IN_UNIV] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
DISCH_THEN(MP_TAC o MATCH_MP REAL_MEASURABLE_ON_RESTRICT) THEN
MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[FUN_EQ_THM] THEN ASM SET_TAC[]);;
let REAL_MEASURABLE_ON_MEASURABLE_SUBSET = prove
(`!f s t. s SUBSET t /\ f real_measurable_on t /\ real_measurable s
==> f real_measurable_on s`,
MESON_TAC[REAL_MEASURABLE_ON_LEBESGUE_MEASURABLE_SUBSET;
REAL_MEASURABLE_IMP_REAL_LEBESGUE_MEASURABLE]);;
let REAL_CONTINUOUS_IMP_REAL_MEASURABLE_ON_CLOSED_SUBSET = prove
(`!f s. f real_continuous_on s /\ real_closed s ==> f real_measurable_on s`,
REWRITE_TAC[REAL_CONTINUOUS_ON; REAL_CLOSED; real_measurable_on] THEN
REWRITE_TAC[CONTINUOUS_IMP_MEASURABLE_ON_CLOSED_SUBSET]);;
let REAL_CONTINUOUS_AE_IMP_MEASURABLE_ON_LEBESGUE_MEASURABLE_SUBSET = prove
(`!f s m.
f real_continuous_on s DIFF m /\
real_lebesgue_measurable s /\
real_negligible m
==> f real_measurable_on s`,
REWRITE_TAC[real_measurable_on; real_negligible; REAL_LEBESGUE_MEASURABLE;
REAL_CONTINUOUS_ON] THEN
SIMP_TAC[IMAGE_DIFF_INJ; LIFT_EQ] THEN
REWRITE_TAC[CONTINUOUS_AE_IMP_MEASURABLE_ON_LEBESGUE_MEASURABLE_SUBSET]);;
let REAL_MEASURABLE_ON_CASES = prove
(`!P f g s.
real_lebesgue_measurable {x | P x} /\
f real_measurable_on s /\ g real_measurable_on s
==> (\x. if P x then f x else g x) real_measurable_on s`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM REAL_MEASURABLE_ON_UNIV] THEN
REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`!x. (if x IN s then if P x then f x else g x else &0) =
(if x IN {x | P x} then if x IN s then f x else &0 else &0) +
(if x IN (:real) DIFF {x | P x}
then if x IN s then g x else &0 else &0)`
(fun th -> REWRITE_TAC[th])
THENL
[GEN_TAC THEN REWRITE_TAC[IN_UNIV; IN_ELIM_THM; IN_DIFF] THEN
MESON_TAC[REAL_ADD_LID; REAL_ADD_RID];
MATCH_MP_TAC REAL_MEASURABLE_ON_ADD THEN
CONJ_TAC THEN MATCH_MP_TAC REAL_MEASURABLE_ON_RESTRICT THEN
ASM_REWRITE_TAC[REAL_LEBESGUE_MEASURABLE_COMPL]]);;
(* ------------------------------------------------------------------------- *)
(* Various common equivalent forms of function measurability. *)
(* ------------------------------------------------------------------------- *)
let REAL_MEASURABLE_ON_PREIMAGE_HALFSPACE_LT = prove
(`!f. f real_measurable_on (:real) <=>
!a. real_lebesgue_measurable {x | f(x) < a}`,
REWRITE_TAC[real_measurable_on; REAL_LEBESGUE_MEASURABLE; IMAGE_LIFT_UNIV;
MEASURABLE_ON_PREIMAGE_HALFSPACE_COMPONENT_LT] THEN
REWRITE_TAC[DIMINDEX_1; FORALL_1; GSYM drop; o_DEF; LIFT_DROP] THEN
GEN_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN
CONV_TAC SYM_CONV THEN MATCH_MP_TAC SURJECTIVE_IMAGE_EQ THEN
REWRITE_TAC[IN_ELIM_THM] THEN MESON_TAC[LIFT_DROP]);;
let REAL_MEASURABLE_ON_PREIMAGE_HALFSPACE_LE = prove
(`!f. f real_measurable_on (:real) <=>
!a. real_lebesgue_measurable {x | f(x) <= a}`,
REWRITE_TAC[real_measurable_on; REAL_LEBESGUE_MEASURABLE; IMAGE_LIFT_UNIV;
MEASURABLE_ON_PREIMAGE_HALFSPACE_COMPONENT_LE] THEN
REWRITE_TAC[DIMINDEX_1; FORALL_1; GSYM drop; o_DEF; LIFT_DROP] THEN
GEN_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN
CONV_TAC SYM_CONV THEN MATCH_MP_TAC SURJECTIVE_IMAGE_EQ THEN
REWRITE_TAC[IN_ELIM_THM] THEN MESON_TAC[LIFT_DROP]);;
let REAL_MEASURABLE_ON_PREIMAGE_HALFSPACE_GT = prove
(`!f. f real_measurable_on (:real) <=>
!a. real_lebesgue_measurable {x | f(x) > a}`,
REWRITE_TAC[real_measurable_on; REAL_LEBESGUE_MEASURABLE; IMAGE_LIFT_UNIV;
MEASURABLE_ON_PREIMAGE_HALFSPACE_COMPONENT_GT] THEN
REWRITE_TAC[DIMINDEX_1; FORALL_1; GSYM drop; o_DEF; LIFT_DROP] THEN
GEN_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN
CONV_TAC SYM_CONV THEN MATCH_MP_TAC SURJECTIVE_IMAGE_EQ THEN
REWRITE_TAC[IN_ELIM_THM] THEN MESON_TAC[LIFT_DROP]);;
let REAL_MEASURABLE_ON_PREIMAGE_HALFSPACE_GE = prove
(`!f. f real_measurable_on (:real) <=>
!a. real_lebesgue_measurable {x | f(x) >= a}`,
REWRITE_TAC[real_measurable_on; REAL_LEBESGUE_MEASURABLE; IMAGE_LIFT_UNIV;
MEASURABLE_ON_PREIMAGE_HALFSPACE_COMPONENT_GE] THEN
REWRITE_TAC[DIMINDEX_1; FORALL_1; GSYM drop; o_DEF; LIFT_DROP] THEN
GEN_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN
CONV_TAC SYM_CONV THEN MATCH_MP_TAC SURJECTIVE_IMAGE_EQ THEN
REWRITE_TAC[IN_ELIM_THM] THEN MESON_TAC[LIFT_DROP]);;
let REAL_MEASURABLE_ON_PREIMAGE_OPEN_INTERVAL = prove
(`!f. f real_measurable_on (:real) <=>
!a b. real_lebesgue_measurable {x | f(x) IN real_interval(a,b)}`,
REWRITE_TAC[real_measurable_on; REAL_LEBESGUE_MEASURABLE; IMAGE_LIFT_UNIV;
MEASURABLE_ON_PREIMAGE_OPEN_INTERVAL; FORALL_DROP] THEN
GEN_TAC THEN REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN AP_TERM_TAC THEN
CONV_TAC SYM_CONV THEN MATCH_MP_TAC SURJECTIVE_IMAGE_EQ THEN
REWRITE_TAC[IN_ELIM_THM; o_DEF; GSYM IMAGE_DROP_INTERVAL; LIFT_DROP;
FORALL_DROP; IN_IMAGE] THEN MESON_TAC[LIFT_DROP]);;
let REAL_MEASURABLE_ON_PREIMAGE_CLOSED_INTERVAL = prove
(`!f. f real_measurable_on (:real) <=>
!a b. real_lebesgue_measurable {x | f(x) IN real_interval[a,b]}`,
REWRITE_TAC[real_measurable_on; REAL_LEBESGUE_MEASURABLE; IMAGE_LIFT_UNIV;
MEASURABLE_ON_PREIMAGE_CLOSED_INTERVAL; FORALL_DROP] THEN
GEN_TAC THEN REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN AP_TERM_TAC THEN
CONV_TAC SYM_CONV THEN MATCH_MP_TAC SURJECTIVE_IMAGE_EQ THEN
REWRITE_TAC[IN_ELIM_THM; o_DEF; GSYM IMAGE_DROP_INTERVAL; LIFT_DROP;
FORALL_DROP; IN_IMAGE] THEN MESON_TAC[LIFT_DROP]);;
let REAL_MEASURABLE_ON_PREIMAGE_OPEN = prove
(`!f. f real_measurable_on (:real) <=>
!t. real_open t ==> real_lebesgue_measurable {x | f(x) IN t}`,
REWRITE_TAC[real_measurable_on; REAL_LEBESGUE_MEASURABLE; IMAGE_LIFT_UNIV;
MEASURABLE_ON_PREIMAGE_OPEN; REAL_OPEN] THEN
GEN_TAC THEN EQ_TAC THEN DISCH_TAC THENL
[X_GEN_TAC `t:real->bool` THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `IMAGE lift t`) THEN
ASM_REWRITE_TAC[];
X_GEN_TAC `t:real^1->bool` THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `IMAGE drop t`) THEN
ASM_REWRITE_TAC[IMAGE_LIFT_DROP; GSYM IMAGE_o]] THEN
MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THENL
[CONV_TAC SYM_CONV; ALL_TAC] THEN
MATCH_MP_TAC SURJECTIVE_IMAGE_EQ THEN
REWRITE_TAC[IN_IMAGE; o_DEF; IN_ELIM_THM] THEN MESON_TAC[LIFT_DROP]);;
let REAL_MEASURABLE_ON_PREIMAGE_CLOSED = prove
(`!f. f real_measurable_on (:real) <=>
!t. real_closed t ==> real_lebesgue_measurable {x | f(x) IN t}`,
REWRITE_TAC[real_measurable_on; REAL_LEBESGUE_MEASURABLE; IMAGE_LIFT_UNIV;
MEASURABLE_ON_PREIMAGE_CLOSED; REAL_CLOSED] THEN
GEN_TAC THEN EQ_TAC THEN DISCH_TAC THENL
[X_GEN_TAC `t:real->bool` THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `IMAGE lift t`) THEN
ASM_REWRITE_TAC[];
X_GEN_TAC `t:real^1->bool` THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `IMAGE drop t`) THEN
ASM_REWRITE_TAC[IMAGE_LIFT_DROP; GSYM IMAGE_o]] THEN
MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THENL
[CONV_TAC SYM_CONV; ALL_TAC] THEN
MATCH_MP_TAC SURJECTIVE_IMAGE_EQ THEN
REWRITE_TAC[IN_IMAGE; o_DEF; IN_ELIM_THM] THEN MESON_TAC[LIFT_DROP]);;
let REAL_MEASURABLE_ON_SIMPLE_FUNCTION_LIMIT = prove
(`!f. f real_measurable_on (:real) <=>
?g. (!n. (g n) real_measurable_on (:real)) /\
(!n. FINITE(IMAGE (g n) (:real))) /\
(!x. ((\n. g n x) ---> f x) sequentially)`,
GEN_TAC THEN REWRITE_TAC[real_measurable_on; IMAGE_LIFT_UNIV] THEN
GEN_REWRITE_TAC LAND_CONV [MEASURABLE_ON_SIMPLE_FUNCTION_LIMIT] THEN
EQ_TAC THENL
[DISCH_THEN(X_CHOOSE_THEN `g:num->real^1->real^1` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `\n:num. drop o g n o lift` THEN
REWRITE_TAC[TENDSTO_REAL] THEN REPEAT CONJ_TAC THENL
[ASM_REWRITE_TAC[o_DEF; LIFT_DROP; ETA_AX];
GEN_TAC THEN REWRITE_TAC[IMAGE_o; IMAGE_LIFT_UNIV] THEN
MATCH_MP_TAC FINITE_IMAGE THEN ASM_REWRITE_TAC[];
X_GEN_TAC `x:real` THEN REWRITE_TAC[TENDSTO_REAL] THEN
FIRST_X_ASSUM(MP_TAC o SPEC `lift x`) THEN
REWRITE_TAC[o_DEF; LIFT_DROP]];
DISCH_THEN(X_CHOOSE_THEN `g:num->real->real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `\n:num. lift o g n o drop` THEN REPEAT CONJ_TAC THENL
[ASM_REWRITE_TAC[];
GEN_TAC THEN REWRITE_TAC[IMAGE_o; IMAGE_DROP_UNIV] THEN
MATCH_MP_TAC FINITE_IMAGE THEN ASM_REWRITE_TAC[];
X_GEN_TAC `x:real^1` THEN FIRST_X_ASSUM(MP_TAC o SPEC `drop x`) THEN
REWRITE_TAC[TENDSTO_REAL; o_DEF; LIFT_DROP]]]);;
let REAL_LEBESGUE_MEASURABLE_PREIMAGE_OPEN = prove
(`!f t. f real_measurable_on (:real) /\ real_open t
==> real_lebesgue_measurable {x | f(x) IN t}`,
SIMP_TAC[REAL_MEASURABLE_ON_PREIMAGE_OPEN]);;
let REAL_LEBESGUE_MEASURABLE_PREIMAGE_CLOSED = prove
(`!f t. f real_measurable_on (:real) /\ real_closed t
==> real_lebesgue_measurable {x | f(x) IN t}`,
SIMP_TAC[REAL_MEASURABLE_ON_PREIMAGE_CLOSED]);;
(* ------------------------------------------------------------------------- *)
(* Continuity of measure within a halfspace w.r.t. to the boundary. *)
(* ------------------------------------------------------------------------- *)
let REAL_CONTINUOUS_MEASURE_IN_HALFSPACE_LE = prove
(`!(s:real^N->bool) a i.
measurable s /\ 1 <= i /\ i <= dimindex(:N)
==> (\a. measure(s INTER {x | x$i <= a})) real_continuous atreal a`,
REPEAT STRIP_TAC THEN REWRITE_TAC[REAL_CONTINUOUS_CONTINUOUS1] THEN
REWRITE_TAC[continuous_atreal; o_THM] THEN
X_GEN_TAC `e:real` THEN DISCH_TAC THEN
SUBGOAL_THEN
`?u v:real^N. abs(measure(s INTER interval[u,v]) - measure s) < e / &2 /\
~(interval(u,v) = {}) /\ u$i < a /\ a < v$i`
STRIP_ASSUME_TAC THENL
[MP_TAC(ISPECL [`s:real^N->bool`; `e / &2`] MEASURE_LIMIT) THEN
ASM_REWRITE_TAC[REAL_HALF] THEN
DISCH_THEN(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC) THEN
MP_TAC(ISPEC `ball(vec 0:real^N,B)` BOUNDED_SUBSET_CLOSED_INTERVAL) THEN
REWRITE_TAC[BOUNDED_BALL; LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`u:real^N`; `v:real^N`] THEN DISCH_TAC THEN
EXISTS_TAC `(lambda j. min (a - &1) ((u:real^N)$j)):real^N` THEN
EXISTS_TAC `(lambda j. max (a + &1) ((v:real^N)$j)):real^N` THEN
CONJ_TAC THENL
[FIRST_X_ASSUM MATCH_MP_TAC THEN FIRST_X_ASSUM
(MATCH_MP_TAC o MATCH_MP(REWRITE_RULE[IMP_CONJ] SUBSET_TRANS)) THEN
SIMP_TAC[SUBSET_INTERVAL; LAMBDA_BETA] THEN REAL_ARITH_TAC;
ASM_SIMP_TAC[INTERVAL_NE_EMPTY; LAMBDA_BETA] THEN REAL_ARITH_TAC];
ALL_TAC] THEN
MP_TAC(ISPECL
[`indicator(s:real^N->bool)`; `u:real^N`; `v:real^N`; `u:real^N`;
`(lambda j. if j = i then min ((v:real^N)$i) a else v$j):real^N`;
`e / &2`]
INDEFINITE_INTEGRAL_CONTINUOUS) THEN
ASM_REWRITE_TAC[REAL_HALF] THEN ANTS_TAC THENL
[ONCE_REWRITE_TAC[GSYM INTEGRABLE_RESTRICT_UNIV] THEN
REWRITE_TAC[indicator; MESON[]
`(if P then if Q then x else y else y) =
(if P /\ Q then x else y)`] THEN
REWRITE_TAC[GSYM IN_INTER; GSYM MEASURABLE_INTEGRABLE] THEN
ASM_SIMP_TAC[MEASURABLE_INTER; MEASURABLE_INTERVAL] THEN
RULE_ASSUM_TAC(REWRITE_RULE[INTERVAL_NE_EMPTY]) THEN
ASM_SIMP_TAC[IN_INTERVAL; LAMBDA_BETA; REAL_LE_REFL; REAL_LT_IMP_LE] THEN
X_GEN_TAC `j:num` THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `j:num`) THEN ASM_REWRITE_TAC[] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC;
ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `min d (min (a - (u:real^N)$i) ((v:real^N)$i - a))` THEN
ASM_REWRITE_TAC[REAL_LT_MIN; REAL_SUB_LT] THEN
X_GEN_TAC `b:real` THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`u:real^N`;
`(lambda j. if j = i then min ((v:real^N)$i) b else v$j):real^N`]) THEN
REWRITE_TAC[dist] THEN ANTS_TAC THENL
[RULE_ASSUM_TAC(REWRITE_RULE[INTERVAL_NE_EMPTY]) THEN
ASM_SIMP_TAC[IN_INTERVAL; LAMBDA_BETA; REAL_LE_REFL; REAL_LT_IMP_LE] THEN
ASM_SIMP_TAC[VECTOR_SUB_REFL; NORM_0; REAL_LT_IMP_LE] THEN CONJ_TAC THENL
[X_GEN_TAC `j:num` THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `j:num`) THEN ASM_REWRITE_TAC[] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC;
ASM_SIMP_TAC[NORM_LE_SQUARE; dot; REAL_LT_IMP_LE] THEN
MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC
`sum(1..dimindex(:N)) (\j. if j = i then d pow 2 else &0)` THEN
CONJ_TAC THENL
[MATCH_MP_TAC SUM_LE_NUMSEG THEN X_GEN_TAC `j:num` THEN STRIP_TAC THEN
ASM_SIMP_TAC[LAMBDA_BETA; VECTOR_SUB_COMPONENT] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[GSYM REAL_POW_2; GSYM REAL_LE_SQUARE_ABS] THEN
ASM_REAL_ARITH_TAC;
ASM_REWRITE_TAC[SUM_DELTA; IN_NUMSEG; REAL_LE_REFL]]];
SUBGOAL_THEN
`!b. integral
(interval[u:real^N,
(lambda j. if j = i then min (v$i) b else (v:real^N)$j)])
(indicator s) =
lift(measure(s INTER interval[u,v] INTER {x | x$i <= b}))`
(fun th -> REWRITE_TAC[th])
THENL
[GEN_TAC THEN
ASM_SIMP_TAC[MEASURE_INTEGRAL; MEASURABLE_INTER_HALFSPACE_LE;
MEASURABLE_INTER; MEASURABLE_INTERVAL; LIFT_DROP] THEN
ONCE_REWRITE_TAC[GSYM INTEGRAL_RESTRICT_UNIV] THEN
AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN GEN_TAC THEN
ASM_SIMP_TAC[INTERVAL_SPLIT; indicator] THEN
REWRITE_TAC[IN_INTER] THEN MESON_TAC[];
REWRITE_TAC[GSYM LIFT_SUB; NORM_LIFT] THEN
SUBGOAL_THEN
`!b. measure(s INTER {x:real^N | x$i <= b}) =
measure((s INTER interval[u,v]) INTER {x | x$i <= b}) +
measure((s DIFF interval[u,v]) INTER {x | x$i <= b})`
(fun th -> REWRITE_TAC[th])
THENL
[GEN_TAC THEN CONV_TAC SYM_CONV THEN
MATCH_MP_TAC MEASURE_NEGLIGIBLE_UNION_EQ THEN
ASM_SIMP_TAC[MEASURABLE_INTER; MEASURABLE_INTER_HALFSPACE_LE;
MEASURABLE_INTERVAL; MEASURABLE_DIFF] THEN
CONJ_TAC THENL [SET_TAC[]; ALL_TAC] THEN
MATCH_MP_TAC(MESON[NEGLIGIBLE_EMPTY] `s = {} ==> negligible s`) THEN
SET_TAC[];
REWRITE_TAC[GSYM INTER_ASSOC] THEN MATCH_MP_TAC(REAL_ARITH
`abs(nub - nua) < e / &2
==> abs(mub - mua) < e / &2
==> abs((mub + nub) - (mua + nua)) < e`) THEN
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
`y < e ==> x <= y ==> x < e`)) THEN
SUBGOAL_THEN
`abs(measure(s INTER interval [u,v]) - measure s) =
measure(s DIFF interval[u:real^N,v])`
SUBST1_TAC THENL
[MATCH_MP_TAC(REAL_ARITH
`x + z = y /\ &0 <= z ==> abs(x - y) = z`) THEN
ASM_SIMP_TAC[MEASURE_POS_LE; MEASURABLE_DIFF;
MEASURABLE_INTERVAL] THEN
MATCH_MP_TAC MEASURE_NEGLIGIBLE_UNION_EQ THEN
ASM_SIMP_TAC[MEASURABLE_INTER; MEASURABLE_DIFF;
MEASURABLE_INTERVAL] THEN
CONJ_TAC THENL [SET_TAC[]; ALL_TAC] THEN
MATCH_MP_TAC(MESON[NEGLIGIBLE_EMPTY] `s = {} ==> negligible s`) THEN
SET_TAC[];
MATCH_MP_TAC(REAL_ARITH
`&0 <= x /\ x <= a /\ &0 <= y /\ y <= a ==> abs(x - y) <= a`) THEN
ASM_SIMP_TAC[MEASURABLE_INTER; MEASURABLE_INTER_HALFSPACE_LE;
MEASURABLE_INTERVAL; MEASURABLE_DIFF; MEASURE_POS_LE] THEN
CONJ_TAC THEN MATCH_MP_TAC MEASURE_SUBSET THEN
ASM_SIMP_TAC[MEASURABLE_INTER; MEASURABLE_INTER_HALFSPACE_LE;
MEASURABLE_INTERVAL; MEASURABLE_DIFF; MEASURE_POS_LE] THEN
SET_TAC[]]]]]);;
(* ------------------------------------------------------------------------- *)
(* Second mean value theorem and monotone integrability. *)
(* ------------------------------------------------------------------------- *)
let REAL_SECOND_MEAN_VALUE_THEOREM_FULL = prove
(`!f g a b.
~(real_interval[a,b] = {}) /\
f real_integrable_on real_interval[a,b] /\
(!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y
==> g x <= g y)
==> ?c. c IN real_interval[a,b] /\
((\x. g x * f x) has_real_integral
(g(a) * real_integral (real_interval[a,c]) f +
g(b) * real_integral (real_interval[c,b]) f))
(real_interval[a,b])`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`lift o f o drop`; `(g:real->real) o drop`;
`lift a`; `lift b`]
SECOND_MEAN_VALUE_THEOREM_FULL) THEN
ASM_REWRITE_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; IMAGE_EQ_EMPTY] THEN
ASM_REWRITE_TAC[GSYM REAL_INTEGRABLE_ON] THEN
REWRITE_TAC[EXISTS_IN_IMAGE; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
ASM_SIMP_TAC[FORALL_IN_IMAGE; o_THM; LIFT_DROP] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `c:real` THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[HAS_REAL_INTEGRAL; IMAGE_LIFT_REAL_INTERVAL] THEN
MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN
REWRITE_TAC[o_DEF; LIFT_CMUL; LIFT_ADD] THEN AP_TERM_TAC THEN
BINOP_TAC THEN AP_TERM_TAC THEN ONCE_REWRITE_TAC[GSYM DROP_EQ] THEN
REWRITE_TAC[LIFT_DROP] THEN
W(MP_TAC o PART_MATCH (lhs o rand) REAL_INTEGRAL o rand o snd) THEN
REWRITE_TAC[o_DEF] THEN ANTS_TAC THEN SIMP_TAC[IMAGE_LIFT_REAL_INTERVAL] THEN
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ]
REAL_INTEGRABLE_ON_SUBINTERVAL)) THEN
REWRITE_TAC[SUBSET_REAL_INTERVAL] THEN
RULE_ASSUM_TAC(REWRITE_RULE[IN_REAL_INTERVAL; REAL_INTERVAL_EQ_EMPTY]) THEN
ASM_REAL_ARITH_TAC);;
let REAL_SECOND_MEAN_VALUE_THEOREM = prove
(`!f g a b.
~(real_interval[a,b] = {}) /\
f real_integrable_on real_interval[a,b] /\
(!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y
==> g x <= g y)
==> ?c. c IN real_interval[a,b] /\
real_integral (real_interval[a,b]) (\x. g x * f x) =
g(a) * real_integral (real_interval[a,c]) f +
g(b) * real_integral (real_interval[c,b]) f`,
REPEAT GEN_TAC THEN
DISCH_THEN(MP_TAC o MATCH_MP REAL_SECOND_MEAN_VALUE_THEOREM_FULL) THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `c:real` THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM(SUBST1_TAC o MATCH_MP REAL_INTEGRAL_UNIQUE) THEN
REWRITE_TAC[]);;
let REAL_SECOND_MEAN_VALUE_THEOREM_GEN_FULL = prove
(`!f g a b u v.
~(real_interval[a,b] = {}) /\
f real_integrable_on real_interval[a,b] /\
(!x. x IN real_interval(a,b) ==> u <= g x /\ g x <= v) /\
(!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y
==> g x <= g y)
==> ?c. c IN real_interval[a,b] /\
((\x. g x * f x) has_real_integral
(u * real_integral (real_interval[a,c]) f +
v * real_integral (real_interval[c,b]) f))
(real_interval[a,b])`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`lift o f o drop`; `(g:real->real) o drop`;
`lift a`; `lift b`; `u:real`; `v:real`]
SECOND_MEAN_VALUE_THEOREM_GEN_FULL) THEN
ASM_REWRITE_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; IMAGE_EQ_EMPTY] THEN
ASM_REWRITE_TAC[GSYM REAL_INTEGRABLE_ON] THEN
REWRITE_TAC[EXISTS_IN_IMAGE; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
ASM_SIMP_TAC[FORALL_IN_IMAGE; o_THM; LIFT_DROP] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `c:real` THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[HAS_REAL_INTEGRAL; IMAGE_LIFT_REAL_INTERVAL] THEN
MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN
REWRITE_TAC[o_DEF; LIFT_CMUL; LIFT_ADD] THEN AP_TERM_TAC THEN
BINOP_TAC THEN AP_TERM_TAC THEN ONCE_REWRITE_TAC[GSYM DROP_EQ] THEN
REWRITE_TAC[LIFT_DROP] THEN
W(MP_TAC o PART_MATCH (lhs o rand) REAL_INTEGRAL o rand o snd) THEN
REWRITE_TAC[o_DEF] THEN ANTS_TAC THEN SIMP_TAC[IMAGE_LIFT_REAL_INTERVAL] THEN
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ]
REAL_INTEGRABLE_ON_SUBINTERVAL)) THEN
REWRITE_TAC[SUBSET_REAL_INTERVAL] THEN
RULE_ASSUM_TAC(REWRITE_RULE[IN_REAL_INTERVAL; REAL_INTERVAL_EQ_EMPTY]) THEN
ASM_REAL_ARITH_TAC);;
let REAL_SECOND_MEAN_VALUE_THEOREM_GEN = prove
(`!f g a b u v.
~(real_interval[a,b] = {}) /\
f real_integrable_on real_interval[a,b] /\
(!x. x IN real_interval(a,b) ==> u <= g x /\ g x <= v) /\
(!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y
==> g x <= g y)
==> ?c. c IN real_interval[a,b] /\
real_integral (real_interval[a,b]) (\x. g x * f x) =
u * real_integral (real_interval[a,c]) f +
v * real_integral (real_interval[c,b]) f`,
REPEAT GEN_TAC THEN
DISCH_THEN(MP_TAC o MATCH_MP REAL_SECOND_MEAN_VALUE_THEOREM_GEN_FULL) THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `c:real` THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM(SUBST1_TAC o MATCH_MP REAL_INTEGRAL_UNIQUE) THEN
REWRITE_TAC[]);;
let REAL_SECOND_MEAN_VALUE_THEOREM_BONNET_FULL = prove
(`!f g a b.
~(real_interval[a,b] = {}) /\
f real_integrable_on real_interval[a,b] /\
(!x. x IN real_interval[a,b] ==> &0 <= g x) /\
(!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y
==> g x <= g y)
==> ?c. c IN real_interval[a,b] /\
((\x. g x * f x) has_real_integral
(g(b) * real_integral (real_interval[c,b]) f))
(real_interval[a,b])`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`lift o f o drop`; `(g:real->real) o drop`;
`lift a`; `lift b`]
SECOND_MEAN_VALUE_THEOREM_BONNET_FULL) THEN
ASM_REWRITE_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; IMAGE_EQ_EMPTY] THEN
ASM_REWRITE_TAC[GSYM REAL_INTEGRABLE_ON] THEN
REWRITE_TAC[EXISTS_IN_IMAGE; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
ASM_SIMP_TAC[FORALL_IN_IMAGE; o_THM; LIFT_DROP] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `c:real` THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[HAS_REAL_INTEGRAL; IMAGE_LIFT_REAL_INTERVAL] THEN
MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN
REWRITE_TAC[o_DEF; LIFT_CMUL; LIFT_ADD] THEN AP_TERM_TAC THEN
AP_TERM_TAC THEN ONCE_REWRITE_TAC[GSYM DROP_EQ] THEN
REWRITE_TAC[LIFT_DROP] THEN
W(MP_TAC o PART_MATCH (lhs o rand) REAL_INTEGRAL o rand o snd) THEN
REWRITE_TAC[o_DEF] THEN ANTS_TAC THEN SIMP_TAC[IMAGE_LIFT_REAL_INTERVAL] THEN
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ]
REAL_INTEGRABLE_ON_SUBINTERVAL)) THEN
REWRITE_TAC[SUBSET_REAL_INTERVAL] THEN
RULE_ASSUM_TAC(REWRITE_RULE[IN_REAL_INTERVAL; REAL_INTERVAL_EQ_EMPTY]) THEN
ASM_REAL_ARITH_TAC);;
let REAL_SECOND_MEAN_VALUE_THEOREM_BONNET = prove
(`!f g a b.
~(real_interval[a,b] = {}) /\
f real_integrable_on real_interval[a,b] /\
(!x. x IN real_interval[a,b] ==> &0 <= g x) /\
(!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y
==> g x <= g y)
==> ?c. c IN real_interval[a,b] /\
real_integral (real_interval[a,b]) (\x. g x * f x) =
g(b) * real_integral (real_interval[c,b]) f`,
REPEAT GEN_TAC THEN
DISCH_THEN(MP_TAC o MATCH_MP REAL_SECOND_MEAN_VALUE_THEOREM_BONNET_FULL) THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `c:real` THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM(SUBST1_TAC o MATCH_MP REAL_INTEGRAL_UNIQUE) THEN
REWRITE_TAC[]);;
let REAL_INTEGRABLE_INCREASING_PRODUCT = prove
(`!f g a b.
f real_integrable_on real_interval[a,b] /\
(!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y
==> g(x) <= g(y))
==> (\x. g(x) * f(x)) real_integrable_on real_interval[a,b]`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`lift o f o drop`; `(g:real->real) o drop`;
`lift a`; `lift b`]
INTEGRABLE_INCREASING_PRODUCT) THEN
ASM_REWRITE_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL;
GSYM REAL_INTEGRABLE_ON] THEN
ASM_SIMP_TAC[FORALL_IN_IMAGE; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
ASM_SIMP_TAC[o_DEF; LIFT_DROP; REAL_INTEGRABLE_ON; LIFT_CMUL]);;
let REAL_INTEGRABLE_INCREASING_PRODUCT_UNIV = prove
(`!f g B.
f real_integrable_on (:real) /\
(!x y. x <= y ==> g x <= g y) /\
(!x. abs(g x) <= B)
==> (\x. g x * f x) real_integrable_on (:real)`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`lift o f o drop`; `(g:real->real) o drop`; `B:real`]
INTEGRABLE_INCREASING_PRODUCT_UNIV) THEN
ASM_REWRITE_TAC[GSYM IMAGE_LIFT_UNIV;
GSYM REAL_INTEGRABLE_ON] THEN
ASM_SIMP_TAC[FORALL_IN_IMAGE; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
ASM_SIMP_TAC[o_DEF; LIFT_DROP; REAL_INTEGRABLE_ON; LIFT_CMUL]);;
let REAL_INTEGRABLE_INCREASING = prove
(`!f a b.
(!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y
==> f(x) <= f(y))
==> f real_integrable_on real_interval[a,b]`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`lift o f o drop`; `lift a`; `lift b`]
INTEGRABLE_INCREASING_1) THEN
ASM_REWRITE_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL;
GSYM REAL_INTEGRABLE_ON] THEN
DISCH_THEN MATCH_MP_TAC THEN
ASM_SIMP_TAC[FORALL_IN_IMAGE; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
ASM_SIMP_TAC[o_DEF; LIFT_DROP; REAL_INTEGRABLE_ON; LIFT_CMUL]);;
let REAL_INTEGRABLE_DECREASING_PRODUCT = prove
(`!f g a b.
f real_integrable_on real_interval[a,b] /\
(!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y
==> g(y) <= g(x))
==> (\x. g(x) * f(x)) real_integrable_on real_interval[a,b]`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`lift o f o drop`; `(g:real->real) o drop`;
`lift a`; `lift b`]
INTEGRABLE_DECREASING_PRODUCT) THEN
ASM_REWRITE_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL;
GSYM REAL_INTEGRABLE_ON] THEN
ASM_SIMP_TAC[FORALL_IN_IMAGE; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
ASM_SIMP_TAC[o_DEF; LIFT_DROP; REAL_INTEGRABLE_ON; LIFT_CMUL]);;
let REAL_INTEGRABLE_DECREASING_PRODUCT_UNIV = prove
(`!f g B.
f real_integrable_on (:real) /\
(!x y. x <= y ==> g y <= g x) /\
(!x. abs(g x) <= B)
==> (\x. g x * f x) real_integrable_on (:real)`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`lift o f o drop`; `(g:real->real) o drop`; `B:real`]
INTEGRABLE_DECREASING_PRODUCT_UNIV) THEN
ASM_REWRITE_TAC[GSYM IMAGE_LIFT_UNIV;
GSYM REAL_INTEGRABLE_ON] THEN
ASM_SIMP_TAC[FORALL_IN_IMAGE; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
ASM_SIMP_TAC[o_DEF; LIFT_DROP; REAL_INTEGRABLE_ON; LIFT_CMUL]);;
let REAL_INTEGRABLE_DECREASING = prove
(`!f a b.
(!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y
==> f(y) <= f(x))
==> f real_integrable_on real_interval[a,b]`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`lift o f o drop`; `lift a`; `lift b`]
INTEGRABLE_DECREASING_1) THEN
ASM_REWRITE_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL;
GSYM REAL_INTEGRABLE_ON] THEN
DISCH_THEN MATCH_MP_TAC THEN
ASM_SIMP_TAC[FORALL_IN_IMAGE; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
ASM_SIMP_TAC[o_DEF; LIFT_DROP; REAL_INTEGRABLE_ON; LIFT_CMUL]);;
(* ------------------------------------------------------------------------- *)
(* Measurability and absolute integrability of monotone functions. *)
(* ------------------------------------------------------------------------- *)
let REAL_MEASURABLE_ON_INCREASING_UNIV = prove
(`!f. (!x y. x <= y ==> f x <= f y) ==> f real_measurable_on (:real)`,
REPEAT STRIP_TAC THEN
REWRITE_TAC[REAL_MEASURABLE_ON_PREIMAGE_HALFSPACE_LE] THEN
X_GEN_TAC `y:real` THEN
REPEAT_TCL STRIP_THM_THEN ASSUME_TAC
(SET_RULE `{x | (f:real->real) x <= y} = {} \/
{x | (f:real->real) x <= y} = UNIV \/
?a b. f a <= y /\ ~(f b <= y)`) THEN
ASM_REWRITE_TAC[REAL_LEBESGUE_MEASURABLE_EMPTY;
REAL_LEBESGUE_MEASURABLE_UNIV] THEN
MP_TAC(ISPEC `{x | (f:real->real) x <= y}` SUP) THEN
REWRITE_TAC[IN_ELIM_THM; EXTENSION; NOT_IN_EMPTY] THEN ANTS_TAC THENL
[ASM_MESON_TAC[REAL_LE_TOTAL; REAL_LE_TRANS]; ALL_TAC] THEN
ABBREV_TAC `s = sup {x | (f:real->real) x <= y}` THEN STRIP_TAC THEN
SUBGOAL_THEN
`(!x. (f:real->real) x <= y <=> x < s) \/
(!x. (f:real->real) x <= y <=> x <= s)`
STRIP_ASSUME_TAC THENL
[ASM_CASES_TAC `(f:real->real) s <= y` THEN
ASM_MESON_TAC[REAL_LE_TRANS; REAL_NOT_LE; REAL_LE_ANTISYM; REAL_LE_TOTAL];
ASM_SIMP_TAC[REAL_OPEN_HALFSPACE_LT; REAL_LEBESGUE_MEASURABLE_OPEN];
ASM_SIMP_TAC[REAL_CLOSED_HALFSPACE_LE; REAL_LEBESGUE_MEASURABLE_CLOSED]]);;
let REAL_MEASURABLE_ON_INCREASING = prove
(`!f a b. (!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y
==> f x <= f y)
==> f real_measurable_on real_interval[a,b]`,
REWRITE_TAC[IN_REAL_INTERVAL] THEN REPEAT STRIP_TAC THEN
ASM_CASES_TAC `real_interval[a,b] = {}` THENL
[ONCE_REWRITE_TAC[GSYM REAL_MEASURABLE_ON_UNIV] THEN
ASM_REWRITE_TAC[NOT_IN_EMPTY; REAL_MEASURABLE_ON_0];
RULE_ASSUM_TAC(REWRITE_RULE[REAL_INTERVAL_EQ_EMPTY; REAL_NOT_LT])] THEN
ABBREV_TAC `g = \x. if x < a then f(a)
else if b < x then f(b)
else (f:real->real) x` THEN
SUBGOAL_THEN `g real_measurable_on real_interval[a,b]` MP_TAC THENL
[ALL_TAC;
ONCE_REWRITE_TAC[GSYM REAL_MEASURABLE_ON_UNIV] THEN EXPAND_TAC "g" THEN
SIMP_TAC[IN_REAL_INTERVAL; GSYM REAL_NOT_LT]] THEN
MATCH_MP_TAC REAL_MEASURABLE_ON_LEBESGUE_MEASURABLE_SUBSET THEN
EXISTS_TAC `(:real)` THEN
REWRITE_TAC[SUBSET_UNIV; REAL_LEBESGUE_MEASURABLE_INTERVAL] THEN
MATCH_MP_TAC REAL_MEASURABLE_ON_INCREASING_UNIV THEN EXPAND_TAC "g" THEN
ASM_MESON_TAC[REAL_LT_LE; REAL_LE_TRANS; REAL_LE_TOTAL; REAL_LE_ANTISYM;
REAL_NOT_LT; REAL_LT_IMP_LE; REAL_LE_REFL]);;
let REAL_MEASURABLE_ON_DECREASING_UNIV = prove
(`!f. (!x y. x <= y ==> f y <= f x) ==> f real_measurable_on (:real)`,
REPEAT STRIP_TAC THEN
GEN_REWRITE_TAC I [GSYM REAL_MEASURABLE_ON_NEG_EQ] THEN
MATCH_MP_TAC REAL_MEASURABLE_ON_INCREASING_UNIV THEN
ASM_SIMP_TAC[REAL_LE_NEG2]);;
let REAL_MEASURABLE_ON_DECREASING = prove
(`!f a b. (!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y
==> f y <= f x)
==> f real_measurable_on real_interval[a,b]`,
REPEAT STRIP_TAC THEN
GEN_REWRITE_TAC I [GSYM REAL_MEASURABLE_ON_NEG_EQ] THEN
MATCH_MP_TAC REAL_MEASURABLE_ON_INCREASING THEN
ASM_SIMP_TAC[REAL_LE_NEG2]);;
let ABSOLUTELY_REAL_INTEGRABLE_INCREASING_PRODUCT = prove
(`!f g a b.
(!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y
==> f x <= f y) /\
g absolutely_real_integrable_on real_interval[a,b]
==> (\x. f x * g x) absolutely_real_integrable_on real_interval[a,b]`,
REPEAT STRIP_TAC THEN
MATCH_MP_TAC ABSOLUTELY_REAL_INTEGRABLE_BOUNDED_MEASURABLE_PRODUCT THEN
ASM_SIMP_TAC[REAL_MEASURABLE_ON_INCREASING] THEN
REWRITE_TAC[real_bounded; FORALL_IN_IMAGE] THEN
EXISTS_TAC `abs((f:real->real) a) + abs((f:real->real) b)` THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC
(REAL_ARITH `a <= x /\ x <= b ==> abs x <= abs a + abs b`) THEN
CONJ_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[IN_REAL_INTERVAL; REAL_LE_TRANS; REAL_LE_REFL]);;
let ABSOLUTELY_REAL_INTEGRABLE_INCREASING = prove
(`!f a b. (!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y
==> f x <= f y)
==> f absolutely_real_integrable_on real_interval[a,b]`,
REPEAT STRIP_TAC THEN GEN_REWRITE_TAC LAND_CONV [GSYM ETA_AX] THEN
GEN_REWRITE_TAC (LAND_CONV o ABS_CONV) [GSYM REAL_MUL_RID] THEN
MATCH_MP_TAC ABSOLUTELY_REAL_INTEGRABLE_INCREASING_PRODUCT THEN
ASM_REWRITE_TAC[ABSOLUTELY_REAL_INTEGRABLE_CONST]);;
let ABSOLUTELY_REAL_INTEGRABLE_DECREASING_PRODUCT = prove
(`!f g a b.
(!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y
==> f y <= f x) /\
g absolutely_real_integrable_on real_interval[a,b]
==> (\x. f x * g x) absolutely_real_integrable_on real_interval[a,b]`,
REPEAT STRIP_TAC THEN
MATCH_MP_TAC ABSOLUTELY_REAL_INTEGRABLE_BOUNDED_MEASURABLE_PRODUCT THEN
ASM_SIMP_TAC[REAL_MEASURABLE_ON_DECREASING] THEN
REWRITE_TAC[real_bounded; FORALL_IN_IMAGE] THEN
EXISTS_TAC `abs((f:real->real) a) + abs((f:real->real) b)` THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC
(REAL_ARITH `b <= x /\ x <= a ==> abs x <= abs a + abs b`) THEN
CONJ_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[IN_REAL_INTERVAL; REAL_LE_TRANS; REAL_LE_REFL]);;
let ABSOLUTELY_REAL_INTEGRABLE_DECREASING = prove
(`!f a b. (!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y
==> f y <= f x)
==> f absolutely_real_integrable_on real_interval[a,b]`,
REPEAT STRIP_TAC THEN GEN_REWRITE_TAC LAND_CONV [GSYM ETA_AX] THEN
GEN_REWRITE_TAC (LAND_CONV o ABS_CONV) [GSYM REAL_MUL_RID] THEN
MATCH_MP_TAC ABSOLUTELY_REAL_INTEGRABLE_DECREASING_PRODUCT THEN
ASM_REWRITE_TAC[ABSOLUTELY_REAL_INTEGRABLE_CONST]);;
(* ------------------------------------------------------------------------- *)
(* Real functions of bounded variation. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("has_bounded_real_variation_on",(12,"right"));;
let has_bounded_real_variation_on = new_definition
`f has_bounded_real_variation_on s <=>
(lift o f o drop) has_bounded_variation_on (IMAGE lift s)`;;
let real_variation = new_definition
`real_variation s f = vector_variation (IMAGE lift s) (lift o f o drop)`;;
let HAS_BOUNDED_REAL_VARIATION_ON_EQ = prove
(`!f g s.
(!x. x IN s ==> f x = g x) /\ f has_bounded_real_variation_on s
==> g has_bounded_real_variation_on s`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
REWRITE_TAC[IMP_CONJ; has_bounded_real_variation_on] THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] HAS_BOUNDED_VARIATION_ON_EQ) THEN
ASM_SIMP_TAC[FORALL_IN_IMAGE; o_THM; LIFT_DROP]);;
let HAS_BOUNDED_REAL_VARIATION_ON_SUBSET = prove
(`!f s t. f has_bounded_real_variation_on s /\ t SUBSET s
==> f has_bounded_real_variation_on t`,
REWRITE_TAC[has_bounded_real_variation_on] THEN
MESON_TAC[HAS_BOUNDED_VARIATION_ON_SUBSET; IMAGE_SUBSET]);;
let HAS_BOUNDED_REAL_VARIATION_ON_LMUL = prove
(`!f c s. f has_bounded_real_variation_on s
==> (\x. c * f x) has_bounded_real_variation_on s`,
REPEAT GEN_TAC THEN REWRITE_TAC[has_bounded_real_variation_on] THEN
REWRITE_TAC[o_DEF; LIFT_CMUL; HAS_BOUNDED_VARIATION_ON_CMUL]);;
let HAS_BOUNDED_REAL_VARIATION_ON_RMUL = prove
(`!f c s. f has_bounded_real_variation_on s
==> (\x. f x * c) has_bounded_real_variation_on s`,
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
REWRITE_TAC[HAS_BOUNDED_REAL_VARIATION_ON_LMUL]);;
let HAS_BOUNDED_REAL_VARIATION_ON_NEG = prove
(`!f s. f has_bounded_real_variation_on s
==> (\x. --f x) has_bounded_real_variation_on s`,
REWRITE_TAC[has_bounded_real_variation_on; o_DEF; LIFT_NEG] THEN
REWRITE_TAC[HAS_BOUNDED_VARIATION_ON_NEG]);;
let HAS_BOUNDED_REAL_VARIATION_ON_ADD = prove
(`!f g s. f has_bounded_real_variation_on s /\
g has_bounded_real_variation_on s
==> (\x. f x + g x) has_bounded_real_variation_on s`,
REWRITE_TAC[has_bounded_real_variation_on; o_DEF; LIFT_ADD] THEN
REWRITE_TAC[HAS_BOUNDED_VARIATION_ON_ADD]);;
let HAS_BOUNDED_REAL_VARIATION_ON_SUB = prove
(`!f g s. f has_bounded_real_variation_on s /\
g has_bounded_real_variation_on s
==> (\x. f x - g x) has_bounded_real_variation_on s`,
REWRITE_TAC[has_bounded_real_variation_on; o_DEF; LIFT_SUB] THEN
REWRITE_TAC[HAS_BOUNDED_VARIATION_ON_SUB]);;
let HAS_BOUNDED_REAL_VARIATION_ON_NULL = prove
(`!f a b. b <= a ==> f has_bounded_real_variation_on real_interval[a,b]`,
REPEAT STRIP_TAC THEN REWRITE_TAC[has_bounded_real_variation_on] THEN
REWRITE_TAC[IMAGE_LIFT_REAL_INTERVAL] THEN
MATCH_MP_TAC HAS_BOUNDED_VARIATION_ON_NULL THEN
ASM_REWRITE_TAC[BOUNDED_INTERVAL; CONTENT_EQ_0_1; LIFT_DROP]);;
let HAS_BOUNDED_REAL_VARIATION_ON_EMPTY = prove
(`!f. f has_bounded_real_variation_on {}`,
REWRITE_TAC[IMAGE_CLAUSES; has_bounded_real_variation_on] THEN
REWRITE_TAC[HAS_BOUNDED_VARIATION_ON_EMPTY]);;
let HAS_BOUNDED_REAL_VARIATION_ON_ABS = prove
(`!f s. f has_bounded_real_variation_on s
==> (\x. abs(f x)) has_bounded_real_variation_on s`,
REPEAT GEN_TAC THEN REWRITE_TAC[has_bounded_real_variation_on] THEN
DISCH_THEN(MP_TAC o MATCH_MP HAS_BOUNDED_VARIATION_ON_NORM) THEN
REWRITE_TAC[o_DEF; NORM_REAL; GSYM drop; LIFT_DROP]);;
let HAS_BOUNDED_REAL_VARIATION_ON_MAX = prove
(`!f g s. f has_bounded_real_variation_on s /\
g has_bounded_real_variation_on s
==> (\x. max (f x) (g x)) has_bounded_real_variation_on s`,
REPEAT GEN_TAC THEN REWRITE_TAC[has_bounded_real_variation_on] THEN
DISCH_THEN(MP_TAC o MATCH_MP HAS_BOUNDED_VARIATION_ON_MAX) THEN
REWRITE_TAC[o_DEF; LIFT_DROP]);;
let HAS_BOUNDED_REAL_VARIATION_ON_MIN = prove
(`!f g s. f has_bounded_real_variation_on s /\
g has_bounded_real_variation_on s
==> (\x. min (f x) (g x)) has_bounded_real_variation_on s`,
REPEAT GEN_TAC THEN REWRITE_TAC[has_bounded_real_variation_on] THEN
DISCH_THEN(MP_TAC o MATCH_MP HAS_BOUNDED_VARIATION_ON_MIN) THEN
REWRITE_TAC[o_DEF; LIFT_DROP]);;
let HAS_BOUNDED_REAL_VARIATION_ON_IMP_BOUNDED_ON_INTERVAL = prove
(`!f a b. f has_bounded_real_variation_on real_interval[a,b]
==> real_bounded(IMAGE f (real_interval[a,b]))`,
REPEAT GEN_TAC THEN
REWRITE_TAC[has_bounded_real_variation_on; REAL_BOUNDED] THEN
REWRITE_TAC[IMAGE_LIFT_REAL_INTERVAL] THEN
DISCH_THEN(MP_TAC o MATCH_MP
HAS_BOUNDED_VARIATION_ON_IMP_BOUNDED_ON_INTERVAL) THEN
REWRITE_TAC[IMAGE_o; IMAGE_DROP_INTERVAL; LIFT_DROP]);;
let HAS_BOUNDED_REAL_VARIATION_ON_MUL = prove
(`!f g s.
f has_bounded_real_variation_on s /\
g has_bounded_real_variation_on s /\
is_realinterval s
==> (\x. f x * g x) has_bounded_real_variation_on s`,
REPEAT GEN_TAC THEN REWRITE_TAC[has_bounded_real_variation_on] THEN
REWRITE_TAC[IMAGE_LIFT_REAL_INTERVAL; IS_REALINTERVAL_IS_INTERVAL] THEN
DISCH_THEN(MP_TAC o MATCH_MP HAS_BOUNDED_VARIATION_ON_MUL) THEN
REWRITE_TAC[o_DEF; LIFT_CMUL; LIFT_DROP]);;
let REAL_VARIATION_POS_LE = prove
(`!f s. f has_bounded_real_variation_on s ==> &0 <= real_variation s f`,
REWRITE_TAC[real_variation; has_bounded_real_variation_on] THEN
REWRITE_TAC[VECTOR_VARIATION_POS_LE]);;
let REAL_VARIATION_GE_ABS_FUNCTION = prove
(`!f s a b.
f has_bounded_real_variation_on s /\ real_segment[a,b] SUBSET s
==> abs(f b - f a) <= real_variation s f`,
REWRITE_TAC[has_bounded_real_variation_on] THEN REPEAT STRIP_TAC THEN
MP_TAC(ISPECL
[`lift o f o drop`; `IMAGE lift s`; `lift a`; `lift b`]
VECTOR_VARIATION_GE_NORM_FUNCTION) THEN
ASM_SIMP_TAC[GSYM IMAGE_LIFT_REAL_SEGMENT;
IMAGE_EQ_EMPTY; IMAGE_SUBSET] THEN
REWRITE_TAC[real_variation; o_THM; LIFT_DROP; GSYM LIFT_SUB; NORM_LIFT]);;
let REAL_VARIATION_GE_FUNCTION = prove
(`!f s a b.
f has_bounded_real_variation_on s /\ real_segment[a,b] SUBSET s
==> f b - f a <= real_variation s f`,
REPEAT STRIP_TAC THEN
MATCH_MP_TAC(REAL_ARITH `abs x <= a ==> x <= a`) THEN
ASM_MESON_TAC[REAL_VARIATION_GE_ABS_FUNCTION]);;
let REAL_VARIATION_MONOTONE = prove
(`!f s t. f has_bounded_real_variation_on s /\ t SUBSET s
==> real_variation t f <= real_variation s f`,
REWRITE_TAC[has_bounded_real_variation_on; real_variation] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC VECTOR_VARIATION_MONOTONE THEN
ASM_SIMP_TAC[IMAGE_SUBSET]);;
let REAL_VARIATION_NEG = prove
(`!f s. real_variation s (\x. --(f x)) = real_variation s f`,
SIMP_TAC[real_variation; o_DEF; LIFT_NEG; VECTOR_VARIATION_NEG]);;
let REAL_VARIATION_TRIANGLE = prove
(`!f g s. f has_bounded_real_variation_on s /\
g has_bounded_real_variation_on s
==> real_variation s (\x. f x + g x)
<= real_variation s f + real_variation s g`,
REPEAT GEN_TAC THEN
REWRITE_TAC[has_bounded_real_variation_on; real_variation] THEN
DISCH_THEN(MP_TAC o MATCH_MP VECTOR_VARIATION_TRIANGLE) THEN
REWRITE_TAC[o_DEF; LIFT_ADD]);;
let HAS_BOUNDED_REAL_VARIATION_ON_COMBINE = prove
(`!f a b c.
a <= c /\ c <= b
==> (f has_bounded_real_variation_on real_interval[a,b] <=>
f has_bounded_real_variation_on real_interval[a,c] /\
f has_bounded_real_variation_on real_interval[c,b])`,
REWRITE_TAC[has_bounded_real_variation_on; IMAGE_LIFT_REAL_INTERVAL] THEN
REPEAT STRIP_TAC THEN MP_TAC(ISPECL
[`lift o f o drop`; `lift a`; `lift b`; `lift c`]
HAS_BOUNDED_VARIATION_ON_COMBINE) THEN
ASM_REWRITE_TAC[LIFT_DROP; has_bounded_real_variation_on;
IMAGE_LIFT_REAL_INTERVAL]);;
let REAL_VARIATION_COMBINE = prove
(`!f a b c.
a <= c /\ c <= b /\
f has_bounded_real_variation_on real_interval[a,b]
==> real_variation (real_interval[a,c]) f +
real_variation (real_interval[c,b]) f =
real_variation (real_interval[a,b]) f`,
REWRITE_TAC[has_bounded_real_variation_on; IMAGE_LIFT_REAL_INTERVAL] THEN
REPEAT STRIP_TAC THEN MP_TAC(ISPECL
[`lift o f o drop`; `lift a`; `lift b`; `lift c`]
VECTOR_VARIATION_COMBINE) THEN
ASM_REWRITE_TAC[LIFT_DROP; real_variation; IMAGE_LIFT_REAL_INTERVAL]);;
let REAL_VARIATION_MINUS_FUNCTION_MONOTONE = prove
(`!f a b c d.
f has_bounded_real_variation_on real_interval[a,b] /\
real_interval[c,d] SUBSET real_interval[a,b] /\
~(real_interval[c,d] = {})
==> real_variation (real_interval[c,d]) f - (f d - f c) <=
real_variation (real_interval[a,b]) f - (f b - f a)`,
REWRITE_TAC[has_bounded_real_variation_on; IMAGE_LIFT_REAL_INTERVAL] THEN
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL
[`lift o f o drop`; `lift a`; `lift b`; `lift c`; `lift d`]
VECTOR_VARIATION_MINUS_FUNCTION_MONOTONE) THEN
ASM_SIMP_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; real_variation;
IMAGE_EQ_EMPTY; IMAGE_SUBSET] THEN
REWRITE_TAC[o_THM; LIFT_DROP; DROP_SUB]);;
let INCREASING_BOUNDED_REAL_VARIATION = prove
(`!f a b.
(!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y
==> f x <= f y)
==> f has_bounded_real_variation_on real_interval[a,b]`,
REPEAT STRIP_TAC THEN REWRITE_TAC[has_bounded_real_variation_on] THEN
REWRITE_TAC[IMAGE_LIFT_REAL_INTERVAL] THEN
MATCH_MP_TAC INCREASING_BOUNDED_VARIATION THEN
REWRITE_TAC[IN_INTERVAL_1; GSYM FORALL_DROP; o_THM; LIFT_DROP] THEN
RULE_ASSUM_TAC(REWRITE_RULE[IN_REAL_INTERVAL]) THEN ASM_MESON_TAC[]);;
let INCREASING_REAL_VARIATION = prove
(`!f a b.
~(real_interval[a,b] = {}) /\
(!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y
==> f x <= f y)
==> real_variation (real_interval[a,b]) f = f b - f a`,
REPEAT STRIP_TAC THEN
REWRITE_TAC[real_variation; IMAGE_LIFT_REAL_INTERVAL] THEN
MP_TAC(ISPECL [`lift o f o drop`; `lift a`; `lift b`]
INCREASING_VECTOR_VARIATION) THEN
REWRITE_TAC[o_THM; LIFT_DROP] THEN DISCH_THEN MATCH_MP_TAC THEN
ASM_REWRITE_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; IMAGE_EQ_EMPTY] THEN
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN
REWRITE_TAC[LIFT_DROP] THEN ASM_MESON_TAC[]);;
let HAS_BOUNDED_REAL_VARIATION_AFFINITY2_EQ = prove
(`!m c f s.
(\x. f (m * x + c)) has_bounded_real_variation_on
IMAGE (\x. inv m * x + --(inv m * c)) s <=>
m = &0 \/ f has_bounded_real_variation_on s`,
REPEAT GEN_TAC THEN
MP_TAC(ISPECL [`m:real`; `lift c`; `lift o f o drop`; `IMAGE lift s`]
HAS_BOUNDED_VARIATION_AFFINITY2_EQ) THEN
REWRITE_TAC[o_DEF; has_bounded_real_variation_on; GSYM IMAGE_o;
DROP_ADD; DROP_CMUL; LIFT_ADD; LIFT_CMUL; LIFT_NEG; LIFT_DROP]);;
let REAL_VARIATION_AFFINITY2 = prove
(`!m c f s.
real_variation (IMAGE (\x. inv m * x + --(inv m * c)) s)
(\x. f (m * x + c)) =
if m = &0 then &0 else real_variation s f`,
REPEAT GEN_TAC THEN
MP_TAC(ISPECL [`m:real`; `lift c`; `lift o f o drop`; `IMAGE lift s`]
VECTOR_VARIATION_AFFINITY2) THEN
REWRITE_TAC[o_DEF; real_variation; GSYM IMAGE_o;
DROP_ADD; DROP_CMUL; LIFT_ADD; LIFT_CMUL; LIFT_NEG; LIFT_DROP]);;
let HAS_BOUNDED_REAL_VARIATION_AFFINITY_EQ = prove
(`!m c f s.
(\x. f (m * x + c)) has_bounded_real_variation_on s <=>
m = &0 \/ f has_bounded_real_variation_on IMAGE (\x. m * x + c) s`,
REPEAT GEN_TAC THEN
MP_TAC(ISPECL [`m:real`; `lift c`; `lift o f o drop`; `IMAGE lift s`]
HAS_BOUNDED_VARIATION_AFFINITY_EQ) THEN
REWRITE_TAC[o_DEF; has_bounded_real_variation_on; GSYM IMAGE_o;
DROP_ADD; DROP_CMUL; LIFT_ADD; LIFT_CMUL; LIFT_NEG; LIFT_DROP]);;
let REAL_VARIATION_AFFINITY = prove
(`!m c f s.
real_variation s (\x. f (m * x + c)) =
if m = &0 then &0 else real_variation (IMAGE (\x. m * x + c) s) f`,
REPEAT GEN_TAC THEN
MP_TAC(ISPECL [`m:real`; `lift c`; `lift o f o drop`; `IMAGE lift s`]
VECTOR_VARIATION_AFFINITY) THEN
REWRITE_TAC[o_DEF; real_variation; GSYM IMAGE_o;
DROP_ADD; DROP_CMUL; LIFT_ADD; LIFT_CMUL; LIFT_NEG; LIFT_DROP]);;
let HAS_BOUNDED_REAL_VARIATION_TRANSLATION2_EQ = prove
(`!a f s.
(\x. f(a + x)) has_bounded_real_variation_on (IMAGE (\x. --a + x) s) <=>
f has_bounded_real_variation_on s`,
REPEAT GEN_TAC THEN
MP_TAC(ISPECL [`lift a`; `lift o f o drop`; `IMAGE lift s`]
HAS_BOUNDED_VARIATION_TRANSLATION2_EQ) THEN
REWRITE_TAC[o_DEF; has_bounded_real_variation_on; GSYM IMAGE_o;
DROP_ADD; LIFT_DROP; LIFT_ADD; LIFT_NEG]);;
let REAL_VARIATION_TRANSLATION2 = prove
(`!a f s. real_variation (IMAGE (\x. --a + x) s) (\x. f(a + x)) =
real_variation s f`,
REPEAT GEN_TAC THEN
MP_TAC(ISPECL [`lift a`; `lift o f o drop`; `IMAGE lift s`]
VECTOR_VARIATION_TRANSLATION2) THEN
REWRITE_TAC[o_DEF; real_variation; GSYM IMAGE_o;
DROP_ADD; LIFT_DROP; LIFT_ADD; LIFT_NEG]);;
let HAS_BOUNDED_REAL_VARIATION_TRANSLATION_EQ = prove
(`!a f s. (\x. f(a + x)) has_bounded_real_variation_on s <=>
f has_bounded_real_variation_on (IMAGE (\x. a + x) s)`,
REPEAT GEN_TAC THEN
MP_TAC(ISPECL [`lift a`; `lift o f o drop`; `IMAGE lift s`]
HAS_BOUNDED_VARIATION_TRANSLATION_EQ) THEN
REWRITE_TAC[o_DEF; has_bounded_real_variation_on; GSYM IMAGE_o;
DROP_ADD; LIFT_DROP; LIFT_ADD; LIFT_NEG]);;
let REAL_VARIATION_TRANSLATION = prove
(`!a f s. real_variation s (\x. f(a + x)) =
real_variation (IMAGE (\x. a + x) s) f`,
REPEAT GEN_TAC THEN
MP_TAC(ISPECL [`lift a`; `lift o f o drop`; `IMAGE lift s`]
VECTOR_VARIATION_TRANSLATION_ALT) THEN
REWRITE_TAC[o_DEF; real_variation; GSYM IMAGE_o;
DROP_ADD; LIFT_DROP; LIFT_ADD; LIFT_NEG]);;
let HAS_BOUNDED_REAL_VARIATION_TRANSLATION_EQ_INTERVAL = prove
(`!a f u v.
(\x. f(a + x)) has_bounded_real_variation_on real_interval[u,v] <=>
f has_bounded_real_variation_on real_interval[a+u,a+v]`,
REWRITE_TAC[REAL_INTERVAL_TRANSLATION;
HAS_BOUNDED_REAL_VARIATION_TRANSLATION_EQ]);;
let REAL_VARIATION_TRANSLATION_INTERVAL = prove
(`!a f u v.
real_variation (real_interval[u,v]) (\x. f(a + x)) =
real_variation (real_interval[a+u,a+v]) f`,
REWRITE_TAC[REAL_INTERVAL_TRANSLATION;
REAL_VARIATION_TRANSLATION]);;
let HAS_BOUNDED_REAL_VARIATION_TRANSLATION = prove
(`!f s a. f has_bounded_real_variation_on s
==> (\x. f(a + x)) has_bounded_real_variation_on
(IMAGE (\x. --a + x) s)`,
REWRITE_TAC[HAS_BOUNDED_REAL_VARIATION_TRANSLATION2_EQ]);;
let HAS_BOUNDED_REAL_VARIATION_REFLECT2_EQ = prove
(`!f s. (\x. f(--x)) has_bounded_real_variation_on (IMAGE (--) s) <=>
f has_bounded_real_variation_on s`,
REPEAT GEN_TAC THEN
MP_TAC(ISPECL [`lift o f o drop`; `IMAGE lift s`]
HAS_BOUNDED_VARIATION_REFLECT2_EQ) THEN
REWRITE_TAC[o_DEF; has_bounded_real_variation_on; GSYM IMAGE_o;
DROP_NEG; LIFT_DROP; LIFT_NEG]);;
let REAL_VARIATION_REFLECT2 = prove
(`!f s. real_variation (IMAGE (--) s) (\x. f(--x)) =
real_variation s f`,
REPEAT GEN_TAC THEN
MP_TAC(ISPECL [`lift o f o drop`; `IMAGE lift s`]
VECTOR_VARIATION_REFLECT2) THEN
REWRITE_TAC[o_DEF; real_variation; GSYM IMAGE_o;
DROP_NEG; LIFT_DROP; LIFT_NEG]);;
let HAS_BOUNDED_REAL_VARIATION_REFLECT_EQ = prove
(`!f s. (\x. f(--x)) has_bounded_real_variation_on s <=>
f has_bounded_real_variation_on (IMAGE (--) s)`,
REPEAT GEN_TAC THEN
MP_TAC(ISPECL [`lift o f o drop`; `IMAGE lift s`]
HAS_BOUNDED_VARIATION_REFLECT_EQ) THEN
REWRITE_TAC[o_DEF; has_bounded_real_variation_on; GSYM IMAGE_o;
DROP_NEG; LIFT_DROP; LIFT_NEG]);;
let REAL_VARIATION_REFLECT = prove
(`!f s. real_variation s (\x. f(--x)) =
real_variation (IMAGE (--) s) f`,
REPEAT GEN_TAC THEN
MP_TAC(ISPECL [`lift o f o drop`; `IMAGE lift s`]
VECTOR_VARIATION_REFLECT) THEN
REWRITE_TAC[o_DEF; real_variation; GSYM IMAGE_o;
DROP_NEG; LIFT_DROP; LIFT_NEG]);;
let HAS_BOUNDED_REAL_VARIATION_REFLECT_EQ_INTERVAL = prove
(`!f u v. (\x. f(--x)) has_bounded_real_variation_on real_interval[u,v] <=>
f has_bounded_real_variation_on real_interval[--v,--u]`,
REWRITE_TAC[GSYM REFLECT_REAL_INTERVAL;
HAS_BOUNDED_REAL_VARIATION_REFLECT_EQ]);;
let REAL_VARIATION_REFLECT_INTERVAL = prove
(`!f u v. real_variation (real_interval[u,v]) (\x. f(--x)) =
real_variation (real_interval[--v,--u]) f`,
REWRITE_TAC[GSYM REFLECT_REAL_INTERVAL; REAL_VARIATION_REFLECT]);;
let HAS_BOUNDED_REAL_VARIATION_DARBOUX = prove
(`!f a b.
f has_bounded_real_variation_on real_interval[a,b] <=>
?g h. (!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y
==> g x <= g y) /\
(!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y
==> h x <= h y) /\
(!x. f x = g x - h x)`,
REPEAT GEN_TAC THEN REWRITE_TAC[has_bounded_real_variation_on] THEN
REWRITE_TAC[HAS_BOUNDED_VARIATION_DARBOUX; IMAGE_LIFT_REAL_INTERVAL] THEN
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE;
GSYM IMAGE_LIFT_REAL_INTERVAL; LIFT_DROP] THEN
REWRITE_TAC[RIGHT_IMP_FORALL_THM; IMP_IMP; GSYM CONJ_ASSOC] THEN
EQ_TAC THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM; o_THM] THENL
[MAP_EVERY X_GEN_TAC [`g:real^1->real^1`; `h:real^1->real^1`] THEN
STRIP_TAC THEN
MAP_EVERY EXISTS_TAC [`drop o g o lift`; `drop o h o lift`] THEN
ASM_REWRITE_TAC[o_THM] THEN REWRITE_TAC[GSYM LIFT_EQ; FORALL_DROP] THEN
ASM_REWRITE_TAC[LIFT_DROP; LIFT_SUB];
MAP_EVERY X_GEN_TAC [`g:real->real`; `h:real->real`] THEN
STRIP_TAC THEN
MAP_EVERY EXISTS_TAC [`lift o g o drop`; `lift o h o drop`] THEN
ASM_REWRITE_TAC[o_THM; LIFT_DROP] THEN REWRITE_TAC[LIFT_SUB]]);;
let HAS_BOUNDED_REAL_VARIATION_DARBOUX_STRICT = prove
(`!f a b.
f has_bounded_real_variation_on real_interval[a,b] <=>
?g h. (!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x < y
==> g x < g y) /\
(!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x < y
==> h x < h y) /\
(!x. f x = g x - h x)`,
REPEAT GEN_TAC THEN REWRITE_TAC[has_bounded_real_variation_on] THEN
REWRITE_TAC[HAS_BOUNDED_VARIATION_DARBOUX_STRICT;
IMAGE_LIFT_REAL_INTERVAL] THEN
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE;
GSYM IMAGE_LIFT_REAL_INTERVAL; LIFT_DROP] THEN
REWRITE_TAC[RIGHT_IMP_FORALL_THM; IMP_IMP; GSYM CONJ_ASSOC] THEN
EQ_TAC THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM; o_THM] THENL
[MAP_EVERY X_GEN_TAC [`g:real^1->real^1`; `h:real^1->real^1`] THEN
STRIP_TAC THEN
MAP_EVERY EXISTS_TAC [`drop o g o lift`; `drop o h o lift`] THEN
ASM_REWRITE_TAC[o_THM] THEN REWRITE_TAC[GSYM LIFT_EQ; FORALL_DROP] THEN
ASM_REWRITE_TAC[LIFT_DROP; LIFT_SUB];
MAP_EVERY X_GEN_TAC [`g:real->real`; `h:real->real`] THEN
STRIP_TAC THEN
MAP_EVERY EXISTS_TAC [`lift o g o drop`; `lift o h o drop`] THEN
ASM_REWRITE_TAC[o_THM; LIFT_DROP] THEN REWRITE_TAC[LIFT_SUB]]);;
let INCREASING_LEFT_LIMIT = prove
(`!f a b c.
(!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y
==> f x <= f y) /\
c IN real_interval[a,b]
==> ?l. (f ---> l) (atreal c within real_interval[a,c])`,
REPEAT STRIP_TAC THEN REWRITE_TAC[TENDSTO_REAL; GSYM EXISTS_LIFT] THEN
REWRITE_TAC[LIM_WITHINREAL_WITHIN; IMAGE_LIFT_REAL_INTERVAL] THEN
MATCH_MP_TAC INCREASING_LEFT_LIMIT_1 THEN EXISTS_TAC `lift b` THEN
SIMP_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
ASM_SIMP_TAC[FORALL_IN_IMAGE; o_THM; LIFT_DROP; FUN_IN_IMAGE]);;
let DECREASING_LEFT_LIMIT = prove
(`!f a b c.
(!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y
==> f y <= f x) /\
c IN real_interval[a,b]
==> ?l. (f ---> l) (atreal c within real_interval[a,c])`,
REPEAT STRIP_TAC THEN REWRITE_TAC[TENDSTO_REAL; GSYM EXISTS_LIFT] THEN
REWRITE_TAC[LIM_WITHINREAL_WITHIN; IMAGE_LIFT_REAL_INTERVAL] THEN
MATCH_MP_TAC DECREASING_LEFT_LIMIT_1 THEN EXISTS_TAC `lift b` THEN
SIMP_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
ASM_SIMP_TAC[FORALL_IN_IMAGE; o_THM; LIFT_DROP; FUN_IN_IMAGE]);;
let INCREASING_RIGHT_LIMIT = prove
(`!f a b c.
(!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y
==> f x <= f y) /\
c IN real_interval[a,b]
==> ?l. (f ---> l) (atreal c within real_interval[c,b])`,
REPEAT STRIP_TAC THEN REWRITE_TAC[TENDSTO_REAL; GSYM EXISTS_LIFT] THEN
REWRITE_TAC[LIM_WITHINREAL_WITHIN; IMAGE_LIFT_REAL_INTERVAL] THEN
MATCH_MP_TAC INCREASING_RIGHT_LIMIT_1 THEN EXISTS_TAC `lift a` THEN
SIMP_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
ASM_SIMP_TAC[FORALL_IN_IMAGE; o_THM; LIFT_DROP; FUN_IN_IMAGE]);;
let DECREASING_RIGHT_LIMIT = prove
(`!f a b c.
(!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y
==> f y <= f x) /\
c IN real_interval[a,b]
==> ?l. (f ---> l) (atreal c within real_interval[c,b])`,
REPEAT STRIP_TAC THEN REWRITE_TAC[TENDSTO_REAL; GSYM EXISTS_LIFT] THEN
REWRITE_TAC[LIM_WITHINREAL_WITHIN; IMAGE_LIFT_REAL_INTERVAL] THEN
MATCH_MP_TAC DECREASING_RIGHT_LIMIT_1 THEN EXISTS_TAC `lift a` THEN
SIMP_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
ASM_SIMP_TAC[FORALL_IN_IMAGE; o_THM; LIFT_DROP; FUN_IN_IMAGE]);;
let HAS_BOUNDED_REAL_VARIATION_LEFT_LIMIT = prove
(`!f a b c.
f has_bounded_real_variation_on real_interval[a,b] /\
c IN real_interval[a,b]
==> ?l. (f ---> l) (atreal c within real_interval[a,c])`,
REWRITE_TAC[has_bounded_real_variation_on] THEN REPEAT STRIP_TAC THEN
REWRITE_TAC[TENDSTO_REAL; GSYM EXISTS_LIFT] THEN
REWRITE_TAC[LIM_WITHINREAL_WITHIN; IMAGE_LIFT_REAL_INTERVAL] THEN
MATCH_MP_TAC HAS_BOUNDED_VECTOR_VARIATION_LEFT_LIMIT THEN
EXISTS_TAC `lift b` THEN
ASM_SIMP_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; GSYM o_ASSOC; FUN_IN_IMAGE]);;
let HAS_BOUNDED_REAL_VARIATION_RIGHT_LIMIT = prove
(`!f a b c.
f has_bounded_real_variation_on real_interval[a,b] /\
c IN real_interval[a,b]
==> ?l. (f ---> l) (atreal c within real_interval[c,b])`,
REWRITE_TAC[has_bounded_real_variation_on] THEN REPEAT STRIP_TAC THEN
REWRITE_TAC[TENDSTO_REAL; GSYM EXISTS_LIFT] THEN
REWRITE_TAC[LIM_WITHINREAL_WITHIN; IMAGE_LIFT_REAL_INTERVAL] THEN
MATCH_MP_TAC HAS_BOUNDED_VECTOR_VARIATION_RIGHT_LIMIT THEN
EXISTS_TAC `lift a` THEN
ASM_SIMP_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; GSYM o_ASSOC; FUN_IN_IMAGE]);;
let REAL_VARIATION_CONTINUOUS_LEFT = prove
(`!f a b c.
f has_bounded_real_variation_on real_interval[a,b] /\
c IN real_interval[a,b]
==> ((\x. real_variation(real_interval[a,x]) f)
real_continuous (atreal c within real_interval[a,c]) <=>
f real_continuous (atreal c within real_interval[a,c]))`,
REWRITE_TAC[has_bounded_real_variation_on; real_variation] THEN
REWRITE_TAC[IMAGE_LIFT_REAL_INTERVAL;
REAL_CONTINUOUS_CONTINUOUS_WITHINREAL] THEN
REWRITE_TAC[o_DEF; LIFT_DROP] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC VECTOR_VARIATION_CONTINUOUS_LEFT THEN
EXISTS_TAC `lift b` THEN ASM_REWRITE_TAC[] THEN
ASM_SIMP_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; FUN_IN_IMAGE]);;
let REAL_VARIATION_CONTINUOUS_RIGHT = prove
(`!f a b c.
f has_bounded_real_variation_on real_interval[a,b] /\
c IN real_interval[a,b]
==> ((\x. real_variation(real_interval[a,x]) f)
real_continuous (atreal c within real_interval[c,b]) <=>
f real_continuous (atreal c within real_interval[c,b]))`,
REWRITE_TAC[has_bounded_real_variation_on; real_variation] THEN
REWRITE_TAC[IMAGE_LIFT_REAL_INTERVAL;
REAL_CONTINUOUS_CONTINUOUS_WITHINREAL] THEN
REWRITE_TAC[o_DEF; LIFT_DROP] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC VECTOR_VARIATION_CONTINUOUS_RIGHT THEN
ASM_REWRITE_TAC[] THEN
ASM_SIMP_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; FUN_IN_IMAGE]);;
let REAL_VARIATION_CONTINUOUS = prove
(`!f a b c.
f has_bounded_real_variation_on real_interval[a,b] /\
c IN real_interval[a,b]
==> ((\x. real_variation(real_interval[a,x]) f)
real_continuous (atreal c within real_interval[a,b]) <=>
f real_continuous (atreal c within real_interval[a,b]))`,
REWRITE_TAC[has_bounded_real_variation_on; real_variation] THEN
REWRITE_TAC[IMAGE_LIFT_REAL_INTERVAL;
REAL_CONTINUOUS_CONTINUOUS_WITHINREAL] THEN
REWRITE_TAC[o_DEF; LIFT_DROP] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC VECTOR_VARIATION_CONTINUOUS THEN
ASM_REWRITE_TAC[] THEN
ASM_SIMP_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; FUN_IN_IMAGE]);;
let HAS_BOUNDED_REAL_VARIATION_DARBOUX_STRONG = prove
(`!f a b.
f has_bounded_real_variation_on real_interval[a,b]
==> ?g h.
(!x. f x = g x - h x) /\
(!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y
==> g x <= g y) /\
(!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y
==> h x <= h y) /\
(!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x < y
==> g x < g y) /\
(!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x < y
==> h x < h y) /\
(!x. x IN real_interval[a,b] /\
f real_continuous (atreal x within real_interval[a,x])
==> g real_continuous (atreal x within real_interval[a,x]) /\
h real_continuous (atreal x within real_interval[a,x])) /\
(!x. x IN real_interval[a,b] /\
f real_continuous (atreal x within real_interval[x,b])
==> g real_continuous (atreal x within real_interval[x,b]) /\
h real_continuous (atreal x within real_interval[x,b])) /\
(!x. x IN real_interval[a,b] /\
f real_continuous (atreal x within real_interval[a,b])
==> g real_continuous (atreal x within real_interval[a,b]) /\
h real_continuous (atreal x within real_interval[a,b]))`,
REPEAT STRIP_TAC THEN
MAP_EVERY EXISTS_TAC
[`\x. x + real_variation (real_interval[a,x]) f`;
`\x. x + real_variation (real_interval[a,x]) f - f x`] THEN
REWRITE_TAC[REAL_ARITH `(x + l) - (x + l - f):real = f`] THEN
REPEAT STRIP_TAC THENL
[MATCH_MP_TAC REAL_LE_ADD2 THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC REAL_VARIATION_MONOTONE;
MATCH_MP_TAC REAL_LE_ADD2 THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC(REAL_ARITH
`!x. a - (b - x) <= c - (d - x) ==> a - b <= c - d`) THEN
EXISTS_TAC `(f:real->real) a` THEN
MATCH_MP_TAC REAL_VARIATION_MINUS_FUNCTION_MONOTONE;
MATCH_MP_TAC REAL_LTE_ADD2 THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC REAL_VARIATION_MONOTONE;
MATCH_MP_TAC REAL_LTE_ADD2 THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC(REAL_ARITH
`!x. a - (b - x) <= c - (d - x) ==> a - b <= c - d`) THEN
EXISTS_TAC `(f:real->real) a` THEN
MATCH_MP_TAC REAL_VARIATION_MINUS_FUNCTION_MONOTONE;
MATCH_MP_TAC REAL_CONTINUOUS_ADD THEN
REWRITE_TAC[REAL_CONTINUOUS_WITHIN_ID] THEN
MP_TAC(ISPECL [`f:real->real`; `a:real`; `b:real`; `x:real`]
REAL_VARIATION_CONTINUOUS_LEFT) THEN
ASM_REWRITE_TAC[];
MATCH_MP_TAC REAL_CONTINUOUS_ADD THEN
REWRITE_TAC[REAL_CONTINUOUS_WITHIN_ID] THEN
MATCH_MP_TAC REAL_CONTINUOUS_SUB THEN ASM_REWRITE_TAC[] THEN
MP_TAC(ISPECL [`f:real->real`; `a:real`; `b:real`; `x:real`]
REAL_VARIATION_CONTINUOUS_LEFT) THEN
ASM_REWRITE_TAC[];
MATCH_MP_TAC REAL_CONTINUOUS_ADD THEN
REWRITE_TAC[REAL_CONTINUOUS_WITHIN_ID] THEN
MP_TAC(ISPECL [`f:real->real`; `a:real`; `b:real`; `x:real`]
REAL_VARIATION_CONTINUOUS_RIGHT) THEN
ASM_REWRITE_TAC[];
MATCH_MP_TAC REAL_CONTINUOUS_ADD THEN
REWRITE_TAC[REAL_CONTINUOUS_WITHIN_ID] THEN
MATCH_MP_TAC REAL_CONTINUOUS_SUB THEN ASM_REWRITE_TAC[] THEN
MP_TAC(ISPECL [`f:real->real`; `a:real`; `b:real`; `x:real`]
REAL_VARIATION_CONTINUOUS_RIGHT) THEN
ASM_REWRITE_TAC[];
MATCH_MP_TAC REAL_CONTINUOUS_ADD THEN
REWRITE_TAC[REAL_CONTINUOUS_WITHIN_ID] THEN
MP_TAC(ISPECL [`f:real->real`; `a:real`; `b:real`; `x:real`]
REAL_VARIATION_CONTINUOUS) THEN
ASM_REWRITE_TAC[];
MATCH_MP_TAC REAL_CONTINUOUS_ADD THEN
REWRITE_TAC[REAL_CONTINUOUS_WITHIN_ID] THEN
MATCH_MP_TAC REAL_CONTINUOUS_SUB THEN ASM_REWRITE_TAC[] THEN
MP_TAC(ISPECL [`f:real->real`; `a:real`; `b:real`; `x:real`]
REAL_VARIATION_CONTINUOUS) THEN
ASM_REWRITE_TAC[]] THEN
(CONJ_TAC THENL
[FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ]
HAS_BOUNDED_REAL_VARIATION_ON_SUBSET));
ALL_TAC] THEN
RULE_ASSUM_TAC(REWRITE_RULE[IN_REAL_INTERVAL]) THEN
REWRITE_TAC[SUBSET_REAL_INTERVAL; REAL_INTERVAL_EQ_EMPTY] THEN
ASM_REAL_ARITH_TAC));;
let HAS_BOUNDED_REAL_VARIATION_COUNTABLE_DISCONTINUITIES = prove
(`!f s. f has_bounded_real_variation_on s /\ is_realinterval s
==> COUNTABLE {x | x IN s /\ ~(f real_continuous atreal x)}`,
REPEAT GEN_TAC THEN REWRITE_TAC[has_bounded_real_variation_on] THEN
REWRITE_TAC[REAL_CONTINUOUS_CONTINUOUS_ATREAL] THEN
REWRITE_TAC[IS_REALINTERVAL_IS_INTERVAL] THEN DISCH_THEN(MP_TAC o
MATCH_MP HAS_BOUNDED_VARIATION_COUNTABLE_DISCONTINUITIES) THEN
DISCH_THEN(MP_TAC o ISPEC `drop` o MATCH_MP COUNTABLE_IMAGE) THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] COUNTABLE_SUBSET) THEN
REWRITE_TAC[SUBSET; IN_IMAGE; EXISTS_LIFT; LIFT_DROP; UNWIND_THM1] THEN
REWRITE_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; IN_ELIM_THM] THEN
REWRITE_TAC[EXISTS_IN_IMAGE; GSYM CONJ_ASSOC; EXISTS_DROP; LIFT_DROP] THEN
MESON_TAC[LIFT_DROP]);;
let REAL_INTEGRABLE_REAL_BOUNDED_VARIATION_PRODUCT = prove
(`!f g a b.
f real_integrable_on real_interval[a,b] /\
g has_bounded_real_variation_on real_interval[a,b]
==> (\x. g x * f x) real_integrable_on real_interval[a,b]`,
REPEAT GEN_TAC THEN
REWRITE_TAC[has_bounded_real_variation_on; REAL_INTEGRABLE_ON] THEN
REWRITE_TAC[IMAGE_LIFT_REAL_INTERVAL; o_DEF; LIFT_CMUL] THEN
DISCH_THEN(MP_TAC o MATCH_MP INTEGRABLE_BOUNDED_VARIATION_PRODUCT) THEN
REWRITE_TAC[LIFT_DROP]);;
let REAL_LEBESGUE_DIFFERENTIATION_THEOREM = prove
(`!f s. is_realinterval s /\ f has_bounded_real_variation_on s
==> real_negligible
{x | x IN s /\ ~(f real_differentiable atreal x)}`,
REPEAT GEN_TAC THEN REWRITE_TAC[real_negligible] THEN
REWRITE_TAC[has_bounded_real_variation_on; IS_REALINTERVAL_IS_INTERVAL] THEN
DISCH_THEN(MP_TAC o MATCH_MP LEBESGUE_DIFFERENTIATION_THEOREM) THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] NEGLIGIBLE_SUBSET) THEN
REWRITE_TAC[REAL_DIFFERENTIABLE_AT] THEN SET_TAC[]);;
let REAL_LEBESGUE_DIFFERENTIATION_THEOREM_ALT = prove
(`!f s. is_realinterval s /\ f has_bounded_real_variation_on s
==> ?t. t SUBSET s /\ real_negligible t /\
!x. x IN s DIFF t ==> f real_differentiable atreal x`,
REPEAT STRIP_TAC THEN
EXISTS_TAC `{x | x IN s /\ ~(f real_differentiable atreal x)}` THEN
ASM_SIMP_TAC[REAL_LEBESGUE_DIFFERENTIATION_THEOREM; SUBSET_RESTRICT] THEN
REWRITE_TAC[IN_DIFF; IN_ELIM_THM] THEN CONV_TAC TAUT);;
let REAL_LEBESGUE_DIFFERENTIATION_THEOREM_INCREASING = prove
(`!f s. is_realinterval s /\
(!x y. x IN s /\ y IN s /\ x <= y ==> f x <= f y)
==> real_negligible
{x | x IN s /\ ~(f real_differentiable atreal x)}`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`lift o f o drop`; `IMAGE lift s`]
LEBESGUE_DIFFERENTIATION_THEOREM_INCREASING) THEN
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN
ASM_SIMP_TAC[GSYM IS_REALINTERVAL_IS_INTERVAL; o_THM; LIFT_DROP] THEN
REWRITE_TAC[real_negligible] THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] NEGLIGIBLE_SUBSET) THEN
REWRITE_TAC[REAL_DIFFERENTIABLE_AT] THEN SET_TAC[]);;
let REAL_LEBESGUE_DIFFERENTIATION_THEOREM_DECREASING = prove
(`!f s. is_realinterval s /\
(!x y. x IN s /\ y IN s /\ x <= y ==> f y <= f x)
==> real_negligible
{x | x IN s /\ ~(f real_differentiable atreal x)}`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`lift o f o drop`; `IMAGE lift s`]
LEBESGUE_DIFFERENTIATION_THEOREM_DECREASING) THEN
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN
ASM_SIMP_TAC[GSYM IS_REALINTERVAL_IS_INTERVAL; o_THM; LIFT_DROP] THEN
REWRITE_TAC[real_negligible] THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] NEGLIGIBLE_SUBSET) THEN
REWRITE_TAC[REAL_DIFFERENTIABLE_AT] THEN SET_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Lebesgue density theorem. This isn't about R specifically, but it's most *)
(* naturally stated as a real limit so it ends up here in this file. *)
(* ------------------------------------------------------------------------- *)
let LEBESGUE_DENSITY_THEOREM = prove
(`!s:real^N->bool.
lebesgue_measurable s
==> ?k. negligible k /\
!x. ~(x IN k)
==> ((\e. measure(s INTER cball(x,e)) / measure(cball(x,e)))
---> (if x IN s then &1 else &0))
(atreal(&0) within {e | &0 < e})`,
GEN_TAC THEN
DISCH_THEN(MP_TAC o MATCH_MP LEBESGUE_DENSITY_THEOREM_LIFT_CBALL) THEN
MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN
REWRITE_TAC[REALLIM_WITHINREAL; LIM_WITHIN] THEN
REWRITE_TAC[FORALL_LIFT; IN_ELIM_THM; LIFT_DROP; DIST_1] THEN
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [COND_RAND] THEN
REWRITE_TAC[DROP_VEC]);;
|